
Fluid Dynamics II E.J. Hinch, November 2012

Example Sheet 4

1. Wind blowing over a reservoir exerts at the water surface a uniform tangential stress S
which is normal to, and away from, a straight side of the reservoir. Use dimensional
analysis, based both on balancing the inertial and viscous forces in a thin boundary
layer and on the imposed boundary condition, to find order-of-magnitude estimates for
the boundary-layer thickness δ(x) and the surface velocity U(x) as functions of distance
x from the shore. Using the boundary-layer equations, find the ordinary differential
equation governing the non-dimensional function f defined by

ψ(x, y) = U(x)δ(x)f(η), where η = y/δ(x).

What are the boundary conditions on f?

2. A steady two-dimensional jet of fluid runs along a plane rigid wall, the fluid being
at rest far from the wall. Use the boundary-layer equations to show that the quantity

P =

∫ ∞
0

u(y)

(∫ ∞
y

u(y′)2 dy′
)
dy

is independent of the distance x along the wall. Find order-of-magnitude estimates for
the boundary-layer thickness and velocity as functions of x.

Show that in the analogous axisymmetric wall jet spreading out radially the ve-
locity varies like r−3/2.

3. Show that the streamfunction ψ(r, θ) for a steady two-dimensional flow satisfies

−1

r

∂(ψ,∇2ψ)

∂(r, θ)
= ν∇4ψ.

Show further that this equation admits solutions of the form

ψ = Qf(θ),

if f satisfies

f ′′′′ + 4f ′′ +
2Q

ν
f ′f ′′ = 0.

[See lectures for solutions.]

Please notify all errors to ejh1@cam.ac.uk.
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4. A vortex sheet of strength U is located at a distance h above a rigid wall y = 0 and
is parallel to it, so that the fluid velocity (u, 0, 0) is

u =

{
U in 0 < y < h,
0 in y > h .

Suppose now that the sheet is perturbed slightly to the position y = h + η0e
ik(x−ct)

where k > 0 is real but c may be complex. Show that

c = U/(1± i
√

tanh kh).

Deduce that
(i) the sheet is unstable to disturbances of all wavelengths;

(ii) for short waves (kh� 1) the growth rate kIm(c) is 1
2Uk and the wave propagation

speed Re(c) is 1
2U , as if the wall were absent;

(iii) for long waves (kh � 1) the growth rate is Uk
√
kh (so that the wall inhibits the

growth of long waves) and the propagation speed is U .

5. A two-dimensional jet in the x-direction has velocity profile

u =

{
0 in y > h,
U in −h < y < h,
0 in y < −h .

The vortex sheets at y = ±h are perturbed to

y =

{
+h+ η1e

ik(x−ct),
−h+ η2e

ik(x−ct).

Show that the jet is unstable to a ‘varicose’ instability for which η1 = −η2 (identical
to that of question 5), and also to a ‘sinuous’ instability for which η1 = η2 and

c = U/(1± i
√

coth kh).

[The growth rates at small kh are again Uk
√
kh. Hence thin jets (e.g. smoke filaments)

can suffer rather slowly growing sinuous instabilities.]

6. Show that the rate of dissipation of mechanical energy in an incompressible fluid is
2µeijeij per unit volume, where eij is the rate-of-strain tensor and µ is the viscosity.

A finite mass of incompressible fluid, of viscosity µ and density ρ is held in the
shape of a sphere r < a by surface tension. It is set into a mode of small oscillations in
which the velocity field may be taken to have Cartesian components

u = βx, v = −βy, w = 0.

where β ∝ exp(−εt) sinωt. Assuming that ε � ω, calculate the dissipation rate aver-
aged over a cycle (ignoring the slowly varying factor exp(−εt)) and hence show that
ε = 5µ/ρa2. You may assume that the total energy of the oscillation is twice the ki-
netic energy averaged over a cycle. Why is is permissible to ignore the details of the
boundary layer near r = a?
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