
Software packages and FreeFem++

For simple straight forward problems where one has a good idea of what the answer is,
there is much to be said for using a pre-existing software package to find the exact answer.
Many research problems are however not straight forward and one may have little idea of
what the answer is. In these cases, it is certainly better to write one’s own tailor-made
code that can treat carefully the tricky points.

There are many good software packages for CFD, some free. Propriety packages
include Comsol and Ansys Fluent. Free packages include Gerris a volume of fluid
code, OpenFOAM a finite volume code, and FreeFem++ a finite element code. I do
not have a favourite: over the years, I have given lecture demonstrations of several.

Many software packages are easy to use, despite coming with thick manuals. This
lecture is a quick introduction of one particular package, FreeFem++. My aim is to
show that packages are not difficult to use to produce useful results.

FreeFem++ was pioneered in 1987 by Olivier Pironneau in the Laboratoire Jacques-
Lious Lion in Paris, and is currently managed by Frédéric Hecht. The finite element
package for 2D and 3D includes a simple but versatile mesh generator, around 40 types
of finite elements, visualisation of results, MPI parallisation capabilities, various linear
solvers including sparse solvers, and more. There is a nice Integrated Development En-
vironment FreeFem++-cs, which presents three windows, one for the code, one for
figures of the results and one for the runtime commentary. There are versions for Linux,
Windoze, and Mac OS, all of which are free and can be downloaded from the web. There
is a 400 page manual and good tutorial through worked examples.

FreeFem++

1 Poisson problem

Given ρ, to find φ:
∇2φ = ρ in r ≤ 1,

φ = 0 on r = 1.

Weak form: multiply by an arbitrary test function w, integrate over domain, reduce high
derivatives by integrating by parts using boundary condition,∫

r≤1

∇φ · ∇w + ρw = 0

// define boundary - domain to left

border Gamma(t=0,2*pi) { x = cos(t); y = sin(t); }

// construction of mesh of T_h = triangles size h, 20 points on boundary

mesh Th=buildmesh(Gamma(20));

// plot the grid

plot(Th);

1

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

// Finite Element space V_h of P1 (linear) elements over mesh Th

fespace Vh(Th,P1);

// unknown phi & test function w over FE space

Vh phi,w;

// set rho(x,y) = -1.0

Vh rho = -1.0;

// solve weak form Poisson equation with BC

solve Poisson (phi,w) = int2d(Th)(dx(phi)*dx(w) + dy(phi)*dy(w))

+ int2d(Th)(rho*w)

+ on(Gamma,phi=0);

// bilinear (phi & w) and linear (w only) in separate integrals

// plot the result

plot(phi);

See next page for figure.

// write to console phi(0,0), should be -0.25

x=0; y=0;

cout << phi << endl;

The result for linear P1 elements and 20 points around the boundary is 0.2496. How-
ever this is unrepresentively accurate, because with 14 points the value is 0.2545 and with
28 points 0.2484. With linear elements the value at a fixed point can be erratic, depending
on how near the point is to a vertex of a triangle. Using quadratic P2 elements, the error
at a fixed point decreases quadratically with the mesh size. With 20 points around the
boundary, the value at the centre is 0.2455, a 2% error.

Change to elliptical boundary with elliptical hole.

2

-1

-0.5

 0

 0.5

 1-1

-0.5

 0

 0.5

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

// the length of the semimajor axis and semiminor axis

real a=2.,b=1.;

border Gamma1(t=0,2*pi) { x = a * cos(t); y = b*sin(t); }

border Gamma2(t=0,2*pi) { x = 0.5*a * cos(t); y = 0.5*b*sin(t); }

// construction of mesh

mesh Th=buildmesh(Gamma1(30)+Gamma2(-20)); //-20 makes hole

plot(Th)

Although of little use in this Poisson problem, one can adapt mesh to place more
points where a function f large.

border Gamma(t=0,2*pi) { x = cos(t); y = sin(t); }

mesh Th=buildmesh(Gamma(20));

plot(Th);

fespace Vh(Th,P1);

func f = 3*(x-0.5)^3 + 3*(y-0.5)^3;

Vh fh = f;

mesh Th2 = adaptmesh(Th,fh);

plot(Th2);

3

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

2 Driven cavity

Implicit, with pressure penalty

un+1 − un

δt
+ un · ∇un = −∇pn+1 + ν∇2un+1,

∇ · un+1 = −10−6pn+1.

Weak form: multiply first by v and second by q, integrate over domain, reduce high
derivatives:∫

1

δt
un+1 · v + ν∇un+1 : ∇v − pn+1∇ · v −∇ · un+1q − 10−6pn+1q

− 1

δt
un · v + un · ∇un · v = 0.

Streamlines by solving Poisson problem

∇2ψ = −∂v
∂x

+
∂u

∂y
.

4

real nu=1.0/10.0; // i.e. Re=10

int nx = 20; // number of points on a side

real finaltime = 3.0;

int itt = 30; // number of time steps to stop

real dt=finaltime/itt;

int j;

int i=0;

border bottom (t=0,1.0) {x=t; y=0.0; }

border rside (t=0,1.0) {x=1.0; y=t; }

border top (t=0,1.0) {x=1.0-t; y=1.0; }

border lside (t=0,1.0) {x=0.0; y=1.0-t; }

mesh Th=buildmesh(bottom(nx)+rside(nx)+top(nx)+lside(nx));

plot(Th);

fespace Xh(Th,P2); // quadratic P2 elements for velocity

fespace Mh(Th,P1); // linear P1 elements for pressure

Xh ux,uy, vx,vy, uxold,uyold;

Mh p,q;

// define Navier-Stokes problem, solve later

// init=i to store stiffness matrix and not recompute

problem NS ([ux,uy,p],[vx,vy,q],solver=Crout,init=i) =

int2d(Th)((1/dt)*(ux*vx + uy*vy)

+ nu*(dx(ux)*dx(vx) + dy(ux)*dy(vx)

+ dx(uy)*dx(vy) + dy(uy)*dy(vy))

- p*(dx(vx)+ dy(vy))

- (dx(ux) + dy(uy))*q

- 0.000001*p*q)

+ int2d(Th)(-(1/dt)*(uxold*vx + uyold*vy)

+ (uxold*dx(uxold) + uyold*dy(uxold))*vx

+ (uxold*dx(uyold) + uyold*dy(uyold))*vy)

+ on(top,ux=sin(pi*x)*sin(pi*x),uy=0)

+ on(lside,bottom,rside,ux=0,uy=0) ;

for (i=0;i<=itt;i++)

{ uxold=ux; // store old time step,

uyold=uy;

NS; } // solve NS

// calculate force on top plate as intgral of shear-rate

cout << "t = " << dt*i << " Force = " <<

int1d(Th,top)(dy(ux)) << endl; }

5

// output file of horizontal velocity on centreline x=0.5

ofstream ofile("res.txt");

for (j=0;j<51;j++)

{ x=0.5;y=j*0.02;

ofile << y << " " << ux << endl; };

// find streamfunction

Xh psi,w;

solve streamlines(psi,w) =

int2d(Th)(dx(psi)*dx(w) + dy(psi)*dy(w))

+ int2d(Th)(-w*(dy(ux)-dx(uy)))

+ on(top,lside,bottom,rside,psi=0);

plot(psi);

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

u

v

With 20 points along each of the sides, the value of the steady force on the top surface
is found to be

F = 3.893.

6

