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0 Introduction

0.1 Schedule

The schedules, or syllabuses, are determined by a committee which has input from all the Physical Science
subjects in the Natural Sciences and from Computer Science and is agreed by the Faculty of Mathematics.
The schedules are minimal for lecturing and maximal for examining; that is to say, all the material in the
schedules will be lectured and only this material will be examined.

Below is a copy from the booklet of schedules.1 The numbers in square brackets at the end of paragraphs
of the schedules indicate roughly (I emphasise roughly) the number of lectures that will be devoted to the
material in the paragraph.

Part IB: Mathematics

This course comprises Mathematical Methods I, Mathematical Methods II, Mathematical Meth-
ods III and six Computer Practicals. The material in Course A from Part IA will be assumed in
the lectures for this course. Topics marked with asterisks should be lectured, but questions will
not be set on them in examinations.

The material in the course will be as well illustrated as time allows with examples and applications
of Mathematical Methods to the Physical Sciences.2

Mathematical Methods II 24 lectures, Lent term

Sturm-Liouville theory
Self-adjoint operators, eigenfunctions and eigenvalues, reality of eigenvalues and orthogonality
of eigenfunctions. Eigenfunction expansions and determination of coefficients. Legendre polyno-
mials; orthogonality. [3]

Conditional stationary values and the calculus of variations
Lagrange multipliers, examples with two or three variables. Euler-Lagrange equations and ex-
amples.

Variational principles; Fermat’s principle; Hamilton’s principle and deduction of Lagrange’s equa-
tion, illustrated by a system with:

L = 1
2 m1ẋ

2
1 + 1

2 m2ẋ
2
2 − V (x1 − x2) .

Variational principle for the lowest eigenvalue ∗and for higher eigenvalues∗ (Rayleigh-Ritz). [6]

Laplace and Poisson’s equations
Solution by separation of variables of Laplace’s equation in plane polar coordinates, and spherical
polar coordinates (axisymmetric case); Legendre polynomials again.

Solution of Poisson’s equation as an integral. Uniqueness for Poisson’s equation with Dirich-
let boundary conditions. Green’s identity. Green’s function for Laplace’s equation with simple
boundary conditions using the method of images. Applications to electrostatic fields and steady
heat flow. [5]

Cartesian tensors
Transformation laws, addition, multiplication, contraction. Isotropic tensors, symmetric and anti-
symmetric tensors. Principal axes and diagonalisation. Tensor fields, e.g. conductivity, polariz-
ability, elasticity. [4]

Contour integration
Integration along a path; elementary properties. Cauchy’s theorem; proof by Cauchy-Riemann
equations and divergence theorem in 2–D. Integral of f ′(z); Cauchy’s formula for f(z). Calculus

1 See https://www.maths.cam.ac.uk/undergradnst/files/misc/NSTschedules.pdf.
2 Time is always short.
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of residues; examples of contour integration; point at infinity; multi-valued functions, branch
points, log (z). [4]

Transform methods
Fourier inversion by contour integration. Examples of simple linear differential equations, includ-
ing diffusion equation. [2]

0.2 Books

As noted in the schedules, there are very many books which cover the sort of mathematics required by
Natural Scientists. The following should be helpful as general reference. Books which can reasonably be
used as principal texts for the course are marked with a dagger.

† G. Arfken & H.J. Weber, Mathematical Methods for Physicists, 6th edition. Elsevier, 2005.

D.E. Bourne and P.C. Kendall, Vector Analysis and Cartesian Tensors, 3rd edition. Nelson
Thornes, 1992.

† J.W. Dettman, Mathematical Methods in Physics and Engineering. Dover, 1988.

E. Kreyszig, Advanced Engineering Mathematics, 8th edition. Wiley, 1999.
† J. Mathews & R.L. Walker, Mathematical Methods of Physics, 2nd edition. Pearson/Benjamin

Cummings, 1970.

H.A. Priestley, Introduction to Complex Analysis, 2nd edition. Oxford University Press, 2003.
† K.F. Riley, M.P. Hobson & S.J. Bence, Mathematical Methods for Physics and Engineering,

3rd edition. Cambridge University Press, 2006 (available online via the University Library
website).

R.N. Snieder, A guided tour of mathematical methods for the physical sciences. Cambridge Uni-
versity Press, 2004.

There is likely to be a resemblance between my notes and Riley, Hobson & Bence. This is because we both
used the same source, i.e. previous Cambridge lecture notes.3

Of the other books, I like Mathews & Walker, but it might be a little mathematical for some. Also, the first
time I gave a ‘service’ mathematics course (over 30 years ago to aeronautics students at Imperial), my notes
bore a resemblance to Kreyszig . . . and that was not because we were using a common source!

0.3 Course Website

See NST Part IB: Mathematics on Moodle at

https://www.vle.cam.ac.uk/course/view.php?id=78772

The direct link to this term’s section is

https://www.vle.cam.ac.uk/course/view.php?id=78772&sectionid=365782#section-19

but this might break if someone changes the number of sections!

Copies of the previous years’ lecture notes (this year’s will be remarkably close to last year’s version) are
available if you look.

0.4 Lectures

� This is a very different year to normal. If I am particularly unclear then, if you are watching the
webcast, I welcome constructive heckling (although the 40-second lag will not help); hence, if you spot
a bad typo, or I use jargon you do not understand, or I am just plain wrong, then please speak up.

3 When I last lectured NST IB over 15 years ago, a student hoped that Riley et al. were getting royalties from my lecture
notes; my hope is that my lecturers from 45 years ago are getting royalties from Riley et al.!
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� If it is a minor typo, and/or if I am inaudible and/or illegible, and/or if you think that I could have
been clearer, then

◦ if you are watching the webcast, you can ask questions at the end of the lecture via Zoom (since
I will endeavour to stay around for a few minutes);

◦ alternatively, questions (and comments) can be emailed to me at S.J.Cowley@maths.cam.ac.uk.

� Comments and administration/organisational queries can also be sent to: nst@maths.cam.ac.uk.

� This is a ‘service’ course, so you will not get pure mathematical levels of rigour. However, I will give
some justification for a method, rather than just a recipe, because if you are to use a method efficiently
and effectively, or extend it as might be necessary in research, you need to understand why a method
works, as well as how to apply it.

� If anyone is colour blind please tell me which colours you cannot read.

0.5 Example Sheets

� There will be four Example Sheets. They are all available on Moodle now.

� You should be able to do Example Sheets 1/2/3/4 after lectures 9/14/18/24 respectively. Please bear
this in mind when arranging supervisions.

� There are answers to the sheets. I will make these available to you on Moodle at the end of weeks 3,
5, 7 and 9 (where I count weeks from 0, with week 0 starting on the Sunday before the Tuesday on
which Full Term starts). If I forget to do this, please remind me by email.

� The good news for supervisors is that the sheets are the same as last year (and that they can have
access to the answers immediately, as indicated on the Moodle site).

0.6 Examples Classes

There will be Examples Classes on Wednesday 17 February and Wednesday 10 March at 14:00. More details
closer to the time.

0.7 Acknowledgements

These lecture notes were developed from the notes of Paul Townsend, Robert Hunt, Christopher Thomas
and other previous lecturers, though I am responsible for any errors.
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1 Sturm-Liouville Theory

1.0 Why Study This?

Numerous scientific and other phenomena are described by differential equations. You have already encoun-
tered a number of different methods for solving linear ordinary differential equations (ODEs), e.g. by writing
the solution as a linear combination of solutions (with coefficients determined by the boundary conditions),
Green’s functions and finding the solution in terms of a power series.

This section is about extending your armoury for solving an important sub-class of ODEs, i.e. those of
‘Sturm-Liouville’ type, such as those that often arise in quantum mechanics and electrodynamics. In addition
we will consider eigenvalue problems for ‘Sturm-Liouville’ operators. In subsequent courses, if you have not
already, you will learn that such eigenvalues fix, say, the angular momentum of electrons in an atom.

1.1 Introduction

Notation. Let L̃ be a linear differential operator, e.g.

L̃ = p(x)
d2

dx2
+ r(x)

d

dx
+ s(x) ,

where p, r and s are real functions.

Suppose we want to solve an inhomogeneous ordinary differential equation (ODE) of the form,

L̃ y(x) = F (x) , (1.1a)

where F is a real function, and also suppose there are known boundary conditions on y(x), say, at x = α
and x = β.

Example. A forced damped oscillator equation is of this form; for instance

− d2y

dx2
− dy

dx
− 1

4y = e−x/2 , (1.1b)

subject to boundary conditions

y = 0 at x = 0 , and
dy

dx
+ 1

2y = 0 at x = 1. (1.1c)

Except for simple F (x), it is usually not possible to find a particular integral in closed form even if we can

find solutions of the homogeneous equation with F (x) = 0. Our aim to to exploit the linearity of L̃ to find
solutions in terms of a superposition of a set of ‘basis’ functions, cf. the sine and cosine basis functions in
the case of Fourier series (see page 13 for the solution to (1.1b) and (1.1c) by this method).

We shall see that a particularly convenient choice for the set of ‘basis’ functions is the set of eigenfunctions
of L̃, say yi(x), which satisfy the boundary conditions and,

L̃ yi(x) = λi yi(x) , (1.1d)

where the constants λi are the eigenvalues of L̃ (cf. the eigenvectors and eigenvalues of a matrix).

However, before using eigenfunctions to find solutions to differential equations, we first need to develop some
formalism and explore properties of differential operators and eigenfunctions.

1.2 Inner Products

Analogy between matrices and differential operators. There is a close analogy between matrices and differ-
ential operators. Matrices act on vectors in a finite-dimensional vector space, taking one vector to
another vector. Differential operators act on functions in some (often infinite-dimensional) space of
functions, taking one function to another.

In what follows we must specify the space of functions on which a differential operator acts. Although
we only consider real differential operators, we will allow for complex functions and, in principle,
complex eigenvalues (cf. the possibility of polynomials with real coefficients having complex roots).
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Definition of an inner product for a n-dimensional vector space (revision). Let V be an n-dimensional vec-
tor space over the complex numbers C, and let vectors u, v ∈ V . Then recall that a scalar product
u · v ∈ C or, in an alternative notation, an inner product 〈u |v 〉 ∈ C, has the following properties.

(i) If we denote a complex conjugate with ∗ then

〈u |v 〉 = 〈v |u 〉∗ . (1.2a)

Implicit in this equation is the statement that for a complex vector space the ordering of the
vectors in the inner product is important. Further, if we let u = v, then this implies that

〈v |v 〉 = 〈v |v 〉∗ , (1.2b)

i.e. 〈v |v 〉 is real.

(ii) The inner product is linear in its second argument, i.e. for A,B ∈ C

〈u |Av1 +Bv2 〉 = A 〈u |v1 〉+B 〈u |v2 〉 . (1.2c)

(iii) The inner product of a vector with itself is positive, i.e.

〈v |v 〉 > 0 . (1.2d)

This allows us to write 〈v |v 〉 = ‖v‖2, where the real positive number ‖v‖ is the norm (cf.
length) of the vector v.

(iv) The only vector of zero norm should be the zero vector, i.e.

‖v‖ = 0 ⇒ v = 0 . (1.2e)

Definition of an inner product of functions.

Given two piecewise continuous functions u(x) and v(x), defined
on α 6 x 6 β in a space of complex functions, define an inner
product (a complex number), 〈u | v 〉, by

〈u | v 〉 =

∫ β

α

u∗(x)v(x)w(x) dx , (1.3a)

where w(x) is a real weight function such that

w(x) > 0 for α < x < β . (1.3b)

Notation. When w 6= 1, we will sometimes include a subscript w (a non-standard notation) in the
inner product, as in 〈u | v 〉w, in order to clarify the role of the weight function w.

For (1.3a) and (1.3b) to define an inner product, we need to confirm that the key properties of an
inner product are satisfied. To this end we first note that for piecewise continuous functions u, v, v1

and v2, and complex constants A and B, properties (1.2a), (1.2c) and (1.2d) are satisfied by (1.3a):

〈u | v 〉 = 〈 v |u 〉∗ , (1.4a)

〈u |Av1 +Bv2 〉 = A 〈u | v1 〉+B 〈u | v2 〉 , (1.4b)

‖v‖2 ≡ 〈 v | v 〉 > 0 , (1.4c)

where (1.4c) defines the norm of v. Further, it is possible to show for a piecewise continuous linear
function v, that (1.2e) is satisfied in the case of an inner product defined by (1.3a) and (1.3b), i.e.

‖v‖ = 0 ⇒ v = 0 . (1.4d)

Unlectured remark. However, ‖v‖ = 0 does not imply that v = 0 for all possible functions. For
example, a function v(x) that is unity when x is rational and zero otherwise will not contribute
to the integral that defines the norm. The problem of how to make the idea of ‘reasonably well-
behaved’, or ‘nice’, functions mathematically rigorous is left to the pure mathematicians.

Natural Sciences Tripos: IB Mathematical Methods II 2 © S.J.Cowley@maths.cam.ac.uk, Lent 2021



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

1.3 Adjoint and Self-Adjoint Operators

Definition. For a general differential operator L̃, and a given inner product 〈u | v 〉, the adjoint operator L̃†,
is defined to be that operator such that〈

u
∣∣∣ L̃v 〉 =

〈
L̃†u | v

〉
. (1.5a)

Definition. A general differential operator L̃ is said to be self-adjoint if〈
u
∣∣∣ L̃v 〉 =

〈
L̃u | v

〉
. (1.5b)

Remarks.

(i) Self-adjoint operators have many analogous properties to Hermitian matrices, i.e. matrices such that
H† = H, where in this case † indicates the complex conjugate of the transpose.

For example, suppose that an inner product for column vectors u and v is defined by

〈 u | v 〉 = u† v . (1.5c)

Then for a Hermitian matrix H

〈 u |Hv 〉 = u†Hv = u†H† v since H is Hermitian

= (Hu)
† v = 〈Hu | v 〉 since (AB)† = B†A†. (1.5d)

A comparison of (1.5b) and (1.5d) suggests that self-adjoint operators are to general operators what
Hermitian matrices are to general matrices.

(ii) Whether or not an operator L̃ is self-adjoint with respect to an inner product depends on the defintion
of the inner product, e.g. the choice of weight function.

Example. If L̃ is a nth order differential operator, then for an inner product defined by (1.3a), integrate by
parts n times to obtain

〈u|L̃v〉 =

∫ β

α

u∗(x)L̃v(x)w(x) dx .

=

∫ β

α

[
L̃†u(x)

]∗
v(x)w(x) dx+ b.t.

= 〈L̃†u|v〉+ b.t. , (1.5e)

where b.t. stands for the boundary terms arising from the integration by parts; the operator arising
from this manipulation defines L̃†. If L̃† = L̃, and the boundary terms are zero, then the operator is
self-adjoint.

1.4 The Sturm-Liouville Operator

Definition. A second-order linear differential operator L is said to be of Sturm-Liouville type if

L = − d

dx

(
ρ(x)

d

dx

)
− q(x) , (1.6a)

where ρ(x) and q(x) are real functions defined for α 6 x 6 β, with

ρ(x) > 0 for α < x < β . (1.6b)
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The Sturm-Liouville operator is self-adjoint for suitable boundary conditions. Consider the Sturm-Liouville
operator (1.6a) in conjunction with the identity weight function w = 1, then

〈u | Lv 〉 =

∫ β

α

dxu∗Lv from (1.3a)

= −
∫ β

α

dxu∗
(

d

dx

(
ρ

dv

dx

)
+ qv

)
from (1.6a)

= −
[
u∗ρ

dv

dx

]β
α

+

∫ β

α

dx ρ
du∗

dx

dv

dx
−
∫ β

α

dx qu∗v integrate by parts

=

[
−u∗ρdv

dx
+ ρ

du∗

dx
v

]β
α

−
∫ β

α

dx v
d

dx

(
ρ

du∗

dx

)
−
∫ β

α

dx v qu∗ integrate by parts

=

[
ρ

(
v

du∗

dx
− u∗ dv

dx

)]β
α

+

∫ β

α

dx vLu∗ from (1.6a)

=

[
ρ

(
v

du∗

dx
− u∗ dv

dx

)]β
α

+

∫ β

α

dx (Lu)∗v since L real

=

[
ρ

(
v

du∗

dx
− u∗ dv

dx

)]β
α

+ 〈 Lu | v 〉 from (1.3a). (1.7a)

Suppose we now insist that u and v be such that[
ρ

(
v

du∗

dx
− u∗ dv

dx

)]β
α

= 0 , (1.7b)

then (1.5b) is satisfied. We conclude that the Sturm-Liouville differential operator

L = − d

dx

(
ρ(x)

d

dx

)
− q(x)

acting on piecewise linear functions, say u or v, which satisfy homogeneous boundary conditions at
x = α and x = β (e.g. u(α) = 0, v(α) = 0 and u(β) = 0, v(β) = 0), is self-adjoint with respect to the
inner product with w = 1.

Remark. The boundary conditions are part of the conditions for an operator to be self-adjoint.

1.5 The Rôle of the Weight Function

Not all second-order linear differential operators have the Sturm-Liouville form (1.6a). However, suppose

that L̃ is a second-order linear differential operator not of Sturm-Liouville form, then we claim that, subject
to the restriction (1.9b), there exists a function w(x) so that

L = wL̃ (1.8)

is of Sturm-Liouville form.

Proof. The general second-order linear differential operator acting on functions defined for α 6 x 6 β can
be written in the form

L̃ = −P (x)
d2

dx2
−R(x)

d

dx
−Q(x) , (1.9a)

where P , Q and R are real functions; we shall assume that

P (x) > 0 for α < x < β . (1.9b)

Hence for L defined by (1.8)

L = −wP d2

dx2
− wR d

dx
− wQ

= − d

dx

(
wP

d

dx

)
+

(
d

dx

(
wP
)
− wR

)
d

dx
− wQ . (1.10)
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The operator L in (1.10) is of Sturm-Liouville form (1.6a) if we choose our integrating factor w so
that

P
dw

dx
+

(
dP

dx
−R

)
w = 0 , (1.11a)

and let
ρ = wP and q = wQ . (1.11b)

On solving (1.11a), and on choosing the constant of integration so that w(α) = 1, we obtain

w = exp

∫ x

α

1

P (ζ)

(
R(ζ)− dP

dx
(ζ)

)
dζ . (1.12)

Remark. It follows from (1.12) that w > 0, and hence from (1.9b) and (1.11b) that ρ > 0 for α < x < β (cf.
(1.6b)).

Example. Bessel’s operator is defined as

L̃ =
d2

dx2
+

1

x

d

dx
+ λ . (1.13a)

Hence, from comparison with (1.9a), P = −1, R = − 1
x and Q = −λ, where we have relaxed the

requirement that P is positive, but not the fact that P is single signed. From (1.12) we deduce the
the weight function, w, should be (with a judicious choice of α = 1),

w = exp

∫ x

1

1

ζ
dζ = x . (1.13b)

As expected

L = xL̃ = x
d2

dx2
+

d

dx
+ xλ

=
d

dx

(
x

d

dx

)
+ xλ , (1.13c)

is of Sturm-Liouville form.
01/21

Is L̃ self-adjoint? We have seen that the general second-order linear differential operator L̃ can be trans-
formed into Sturm-Liouville form by multiplication by a weight function w. It follows from § 1.4 that,
subject to the boundary conditions (1.7b) being satisfied, wL̃ = L is self-adjoint with respect to an
inner product with the identity weight function, i.e.∫ β

α

u∗ (L v) dx =

∫ β

α

(Lu)∗ v dx . (1.14a)

However suppose that we slightly rearrange this equation to∫ β

α

u∗ (L̃ v)w dx =

∫ β

α

(L̃u)∗ v w dx . (1.14b)

Then from reference to the definition of an inner product with weight function w, i.e. (1.3a), we see
that, subject to appropriate boundary conditions being satisfied, i.e.[

wP

(
v

du∗

dx
− u∗ dv

dx

)]β
α

= 0 , (1.14c)

L̃ is self-adjoint with respect to an inner product with the weight function w.01/20
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1.6 Eigenvalues and Eigenfunctions

The equation L̃y = f is analogous to the matrix equation Mx = b. This analogy suggests that it might be
profitable to consider the eigenvalue equation

L̃y = λy , (1.15)

where λ is the, possibly complex, eigenvalue associated with the eigenfunction y 6= 0.

Example. The Schrödinger equation for a one-dimensional quantum harmonic oscillator is(
− ~2

2m

d2

dx2
+ 1

2k
2x2

)
ψ = Eψ .

This is an eigenvalue equation where the eigenvalue E is the energy level of the oscillator.

Remark. If L̃ is not in Sturm-Liouville form we can multiply by w to get the equivalent eigenvalue equation,

Ly = λwy , (1.16)

where L is in Sturm-Liouville form.

The Claim. We claim, but do not prove, that if the functions on which L̃ [ or equivalently L ] acts are such
that the boundary conditions (1.14c) [ or equivalently (1.7b) ] are satisfied, then it is generally the case
that (1.15) [ or equivalently (1.16) ] has solutions only for a discrete, but infinite, set of values of λ:

{λn,n = 1, 2, 3, . . . } (1.17)

These are the eigenvalues of L̃ [ or equivalently L ]. The corresponding solutions {yn(x),n = 1, 2, 3, . . . }
are the eigenfunctions.

Example: Harmonic Functions. Find the eigenvalues and eigenfunctions for the operator

L = − d2

dx2
, (1.18)

on the assumption that L acts on functions defined on 0 6 x 6 π that vanish at end-points x = 0 and
x = π.

Answer. L is in Sturm-Liouville form, i.e. (1.6a), with ρ = 1 and q = 0. Further, the boundary
conditions ensure that (1.7b) is satisfied. Hence L is self-adjoint. The eigenvalue equation is

y′′ + λy = 0 , (1.19a)

with general solution
y = A cosλ

1
2x+B sinλ

1
2x . (1.19b)

Non-zero solutions exist with y(0) = y(π) = 0 only if

y(0) = A = 0 and y(π) = B sinλ
1
2π = 0 . (1.20)

For non-zero eigenfunctions we require B 6= 0. It then follows that λ = n2 for integer n, and that
the corresponding eigenfunctions are

yn(x) = B sinnx . (1.21)

Remarks.

(i) The eigenvalues λn = n2 are real (cf. the eigenvalues of an Hermitian matrix.).

(ii) It is conventional to normalize eigenfunctions to have unit norm. Recall from (1.4c) that the
norm of yn(x) is given by (with w = 1)

‖yn‖2 =

∫ β

α

|yn|2 dx . (1.22a)

For our example (1.21), the unit-norm eigenfunctions are

yn =

(
2

π

) 1
2

sinnx . (1.22b)

Natural Sciences Tripos: IB Mathematical Methods II 6 © S.J.Cowley@maths.cam.ac.uk, Lent 2021
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Unlectured example: Hermite polynomials. Hermite’s equation,

y′′ − 2xy′ + 2ny = 0 , (1.23a)

arises when solving the harmonic oscillator in quantum mechanics. (1.23a) can be written as an

eigenvalue equation, L̃ y = λ y, with,

L̃ = − d2

dx2
+ 2x

d

dx
= −ex

2 d

dx

[
e−x

2 d

dx

]
, λ = 2n . (1.23b)

L̃ is not of Sturm-Liouville form. However, multiplying by w(x) = e−x
2

yields

L = e−x
2

L̃ = − d

dx

[
e−x

2 d

dx

]
, (1.23c)

which is of Sturm-Liouville form (ρ = e−x
2

, q = 0). Hence Hermite’s equation is equivalent to

L y = λw(x) y . (1.23d)

Remark. Hermite’s equation can be viewed either as (1.23d), where L is self-adjoint with respect to a
unit-weight inner product, or equivalently as

L̃ y = λ y , (1.23e)

where L̃ is self-adjoint with respect to a weight-w inner product.

You saw last term that if the boundary condition to be applied to solutions of (1.23a) is that the norm
‖y‖w is finite, where

‖y‖2w =

∫ ∞
−∞

e−x
2

|y|2 dx , (1.23f)

then non-zero solutions only exist when n is a non-negative integer; hence the eigenvalues, λ = 2n,
are the even non-negative integers. The eigenfunctions are the nth order Hermite polynomials. In the
context of a quantum harmonic oscillator, the wavefunction is ψ(x) = y(x)e−x

2/2, and so it makes
sense physically to require the norm of ψ to be finite.

1.6.1 Eigenvalues of a self-adjoint operator are real

Let L̃ be a self-adjoint operator with respect to an inner product (1.3a) with weight w, and suppose that y
is a non-zero eigenfunction with eigenvalue λ satisfying

L̃y = λy . (1.24a)

Take the complex conjugate of this equation, remembering that L̃ is real, to obtain

L̃y∗ = λ∗y∗ . (1.24b)

Consider

〈 y | L̃y 〉 − 〈 L̃y | y 〉 =

∫ β

α

(
y∗ L̃y − y L̃y∗

)
w dx from (1.3a) and L̃ real

=

∫ β

α

(y∗λy − yλ∗y∗)w dx from (1.24a) and (1.24b)

= (λ− λ∗)
∫ β

α

|y|2w dx .

= (λ− λ∗)‖y‖2w . (1.25)

But L̃ is self-adjoint with respect to an inner product with weight w, and hence the left hand side of (1.25)
is zero (see (1.5b) with u = v = y). It follows that

(λ− λ∗)‖y‖2w = 0 , (1.26)

But ‖y‖2w > 0 from (1.4d) since y has been assumed to be a non-zero eigenfunction. Hence

λ = λ∗ , i.e. λ is real. (1.27)

Natural Sciences Tripos: IB Mathematical Methods II 7 © S.J.Cowley@maths.cam.ac.uk, Lent 2021



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Remark. As for the eigenvalues of Hermitian matrices, this result can also be obtained, arguably in a more
elegant fashion, using inner product notation:

λ〈 y | y 〉w = 〈 y |λy 〉w from (1.4b)

= 〈 y | L̃y 〉w from (1.15)

= 〈 L̃y | y 〉w since L̃ is self-adjoint wrt weight w

= 〈λy | y 〉w from (1.15)

= λ∗〈 y | y 〉w from (1.4a) and (1.4b). (1.28)

This is essentially (1.26), and hence (1.27) follows as above.

1.6.2 Eigenfunctions of a self-adjoint operator with distinct eigenvalues are orthogonal

Definition. Two functions u and v are said to be orthogonal with respect to a given inner product, if

〈u | v 〉w = 0 . (1.29)

As before let L̃ be a general second-order linear differential operator that is self-adjoint with respect to an
inner product with weight w. Suppose that y1 and y2 are eigenfunctions of L̃, with distinct eigenvalues λ1

and λ2 respectively. Then from the definition (1.15)

L̃y1 = λ1y1 , (1.30a)

L̃y2 = λ2y2 . (1.30b)

This time use inner product notation; then, by analogy with the proof for eigenvectors for Hermitian matrices:

λ2〈 y1 | y2 〉w = 〈 y1 |λ2y2 〉w from (1.4b)

= 〈 y1 | L̃y2 〉w from (1.30b)

= 〈 L̃y1 | y2 〉w since L̃ is self-adjoint wrt weight w

= 〈λ1y1 | y2 〉w from (1.30a)

= λ∗1〈 y1 | y2 〉w from (1.4a) and (1.4b)

= λ1〈 y1 | y2 〉w from (1.27). (1.31a)

It follows that
(λ2 − λ1) 〈 y1 | y2 〉w = 0 . (1.31b)

Hence if λ1 6= λ2 then the eigenfunctions are orthogonal:

〈 y1 | y2 〉w = 0 . (1.31c)

Unlectured remark. Alternatively the same result can be obtained using the defintion of the inner product
in terms of integrals. First, from taking the complex conjugate of (1.30a), we have that

L̃y∗1 = λ1y
∗
1 , (1.32a)

since L̃ and λ1 are real. Hence∫ β

α

(
y∗1 L̃y2 − y2 L̃y∗1

)
w dx =

∫ β

α

(y∗1 λ2y2 − y2 λ1y
∗
1)w dx from (1.30b) and (1.32a)

= (λ2 − λ1)

∫ β

α

y∗1y2 w dx

= (λ2 − λ1) 〈 y1 | y2 〉w . (1.32b)

But L̃ is self-adjoint, and hence the left hand side of (1.32b) is zero (e.g. (1.14b) with u = y1 and
v = y2). It follows that, as in (1.31b),

(λ2 − λ1) 〈 y1 | y2 〉w = 0 . (1.32c)

Hence if λ1 6= λ2 then the eigenfunctions are orthogonal.

Natural Sciences Tripos: IB Mathematical Methods II 8 © S.J.Cowley@maths.cam.ac.uk, Lent 2021
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Orthonormal set. We have seen that eigenfunctions with different eigenvalues are mutually orthogonal. We
claim, but do not prove, that mutually orthogonal eigenfunctions can always be constructed, even for
repeated eigenvalues. Further, if we normalize all eigenfunctions to have unit norm then we have an
orthonormal set of eigenfunctions, i.e.

〈 yn | ym 〉w =

∫ β

α

w y∗nym dx = δmn . (1.33)

Example: Harmonic Functions. Return to the earlier example for the Sturm-Liouville operator (1.18), i.e.

L = − d2

dx2
, (1.34a)

acting on functions that vanish at end-points x = 0 and x = π. We note that

(i) the eigenvalues are n2, and hence real (cf. (1.27));

(ii) the unit norm eigenfunctions (1.22b), i.e.

yn =

(
2

π

) 1
2

sinnx , (1.34b)

satisfy ∫ π

0

y∗nym dx =
2

π

∫ π

0

sinnx sinmx dx

=
1

π

∫ π

0

(
cos(n−m)x− cos(n+m)x

)
dx

= 0 if n 6= m; (1.34c)

and are thus orthogonal (cf. (1.33)).

Example: Legendre Polynomials. Legendre’s equation,

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0 , (1.35a)

arises, inter alia, in solutions of Laplace’s equation with axial symmetry, and Schrödinger’s equation
in three dimensions with a central potential. Equation (1.35a) can be written in Sturm-Liouville
eigenvalue form, Ly = λy, with

L = − d

dx

[(
1− x2

) d

dx

]
and λ = ` (`+ 1) , (1.35b)

where, in terms of our standard notation,

ρ = 1− x2 and q = 0 . (1.35c)

In question 3 on Example Sheet 1 you will show that this operator is self-adjoint when acting on
functions y(x) that satisfy the boundary conditions that they are finite at x = ±1.

Last term, using series solutions, you found that the only non-zero solutions for which y is finite at
x = ±1 are polynomials (the series terminates), and that this only happens if ` is an integer. Further,
since negative integers just repeat the set of possible solutions, we may restrict to ` > 0. These
polynomials, are known as the Legendre polynomials, P`(x). Hence we can identify the eigenvalues and
eigenfunctions as

λ` = `(`+ 1) and y`(x) = P`(x) for ` = 0, 1, 2, . . . . (1.35d)

Remark. In the context of the Schrödinger equation applied to the hydrogen atom, ` is the (quantized)
orbital angular momentum of the electron, and the lowest energy state has ` = 0.

A conventional normalization is P`(1) = 1, in which case the first few polynomials are

P0 = 1 , P1 = x , P2 = 1
2

(
3x2 − 1

)
, P3 = 1

2

(
5x3 − 3x

)
. (1.35e)

It follows from our general theory that the Legendre polynomials are orthogonal (see also question 3
on Example Sheet 1). However, with the conventional normalisation they are not orthonormal; in fact∫ 1

−1

P`(x)Pk(x)dx =
2

2`+ 1
δ`k . (1.35f)

Natural Sciences Tripos: IB Mathematical Methods II 9 © S.J.Cowley@maths.cam.ac.uk, Lent 2021



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Unlectured remark. As a check on (1.35f) we note that if ` is odd and k is even, then P`Pk is an odd
polynomial, and hence a symmetric integral like (1.35f) must be zero.

02/19
02/20

1.7 Eigenfunction Expansions

Let {yn,n = 1, 2, . . . } be an orthonormal set of eigenfunctions of a self-adjoint operator. Then we claim
that any function f(x) with the same boundary conditions as the eigenfunctions can be expressed as an
eigenfunction expansion

f(x) =

∞∑
n=1

anyn(x) , (1.36a)

where the coefficients an are given by
an = 〈 yn | f 〉w , (1.36b)

i.e. we claim that the eigenfunctions form a basis. A set of eigenfunctions that has this property is said to
be complete.

Consistency. We will not prove the existence of the expansion (1.36a). However, if we assume such an
expansion does exist, the coefficients must be given by (1.36b) because

〈 yn | f 〉w = 〈 yn |
∑∞
m=1 amym 〉w from (1.36a)

=

∞∑
m=1

am〈 yn | ym 〉w from inner product property (1.2c)

=

∞∑
m=1

amδnm from (1.33) since the yn are orthonormal

= an as required.

The completeness relation. Further, it follows from (1.36a) and (1.36b) that

f(x) =

∞∑
n=1

〈 yn | f 〉w yn(x)

=

∞∑
n=1

yn(x)

∫ β

α

w(ζ) y∗n(ζ)f(ζ) dζ from the definition of the inner product (1.3a)

=

∫ β

α

f(ζ)

(
w(ζ)

∞∑
n=1

yn(x)y∗n(ζ)

)
dζ interchange sum and integral. (1.37)

If this expression holds for all functions f satisfying the appropriate homogeneous boundary conditions,
then from the defintion of the delta function

w(ζ)

∞∑
n=1

yn(x)y∗n(ζ) = δ(x− ζ) . (1.38a)

This is the completeness relation.

Remark. If x and ζ are exchanged in the complex conjugate of (1.38a), then since the weight function
is real and the delta function is real and symmetric, it follows that

w(x)

∞∑
n=1

yn(x)y∗n(ζ) = δ(x− ζ) . (1.38b)

Example: Fourier series. Again consider the Sturm-Liouville operator

L = − d2

dx2
. (1.39a)

In this case assume that the operator acts on functions that are 2π-periodic, i.e. y(x) = y(x+2π). L is
still self-adjoint with weight function w = 1 since the periodicity ensures that the boundary conditions

Natural Sciences Tripos: IB Mathematical Methods II 10 © S.J.Cowley@maths.cam.ac.uk, Lent 2021
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(1.7b) are satisfied if, say, α = 0 and β = 2π. This time we choose to write the general solution of the
eigenvalue equation (1.16), Ly = λy, as

y = Aeıλ
1
2 x +Be−ıλ

1
2 x , (1.39b)

where A and B are constants. This solution is 2π-periodic if λ = n2 for integer n (as before). Label
the eigenfunctions by yn for n = . . . ,−1, 0, 1, . . . , with corresponding eigenvalues λn = n2. Although
there are repeated eigenvalues (there are two eigenfunctions for each eigenvalue except for n = 0),
there still exists an orthonormal set of eigenfunctions (as claimed), i.e.

yn =
1√
2π
eınx for n ∈ Z. (1.39c)

Hence, from (1.36a), a 2π-periodic function f has an eigenfunction expansion

f(x) =
1√
2π

∞∑
n=−∞

ane
ınx , (1.39d)

where the an are given by (1.36b). Thus the Fourier series representation of f is an example of an
expansion in terms of the eigenfunctions of a self-adjoint operator. The completeness relation (1.38a)
is

1

2π

∞∑
n=−∞

eın(x−ζ) = δ(x− ζ) . (1.39e)

1.8 Solution of Differential Equations

Finally we consider how eigenfunction expansions can be used to solve differential equations of the form

L y(x) = f(x) , (1.40)

for some forcing function f(x) and homogeneous boundary conditions. We assume that

(i) the equation has been rewritten so that L is in Sturm-Liouville form;

(ii) L has a complete orthonormal set of eigenfunctions {yn} with eigenvalues {λn} such that

Lyn = λnwyn , 〈yn|ym〉w = δnm , n,m = 1, 2, 3, . . . . (1.41)

In order to solve (1.40) we introduce the Green’s function, G(x, ζ), that

(i) is the response to a point-like source at x = ζ, i.e. satisfies

LxG(x, ζ) = δ(x− ζ) , (1.42a)

where the subscript x on L is to emphasise that L contains x, d
dx etc.;

(ii) is required to satisfy the boundary conditions when considered both as a function of x and as a function
of ζ.

Given G, the formal solution to (1.40) is then

y(x) =

∫ β

α

G(x, ζ)f(ζ)dζ , (1.42b)

since

L y(x) = L
∫ β

α

G(x, ζ)f(ζ)dζ from (1.42b)

=

∫ β

α

δ(x− ζ)f(ζ)dζ from (1.42a)

= f(x) . (1.42c)
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One method to find the Green’s function is to observe that, provided none of the λn vanish, the function

G(x, ζ) =

∞∑
n=1

1

λn
yn(x)y∗n(ζ) , (1.43a)

satisfies the required boundary conditions, and

LxG(x, ζ) =

∞∑
n=1

y∗n(ζ)

λn
Lxyn(x) from (1.43a)

=

∞∑
n=1

w(x)y∗n(ζ) yn(x) from (1.41)

=
w(x)

w(ζ)
δ(x− ζ) = δ(x− ζ) from (1.38b). (1.43b)

Remark. From the form of the Green’s function (1.43a), we deduce that

G(x, ζ) = G∗(ζ,x) . (1.43c)

The solution as an eigenfunction expansion. Substitute (1.43a) into (1.42b) to obtain

y(x) =

∫ β

α

∞∑
n=1

1

λn
yn(x)y∗n(ζ)f(ζ)dζ

=

∞∑
n=1

1

λn
yn(x)

∫ β

α

y∗n(ζ)f(ζ)dζ

=

∞∑
n=1

1

λn
yn(x)〈 yn | f 〉 (recall that w = 1). (1.44a)

In summary,

y(x) =

∞∑
n=1

bn yn(x) , (1.44b)

where

bn =
an
λn

, and an = 〈 yn | f 〉 =

∫ β

α

y∗n(ζ)f(ζ)dζ . (1.44c)

Resonance. If λn = 0 for some n, say λ1 = 0, then G(x, ζ) does not exist and there is no [finite] solution
for y for general f (see (1.44a)); in other words, there is no solution to the forced problem if there is a
solution to the homogeneous equation, Ly = 0, satisfying the boundary conditions (y1(x) is precisely
such a solution). The vanishing of one or more of the eigenvalues is related to the phenomenon of
resonance. so that if a solution to the problem (including the boundary conditions) exists in the
absence of the forcing f (i.e. if there exists a zero eigenvalue of L), then any non-zero force elicits an
infinite response.

If, instead, one of the eigenvalues, again say λ1, is very small compared to the others, then from
(1.44a), and assuming that 〈y1|f〉 is not too small,

y(x) ≈ y1(x)

λ1
〈y1|f〉 .

Hence, any forcing function with non-zero y1-component causes a large ‘resonant’ response proportional
to y1(x).

Example. Find the solution of Ly = sin3 x subject to the boundary conditions y(0) = y(π) = 0, where

L = − d2

dx2 + 2.

The unit-norm eigenfunctions of L, which is of Sturm-Liouville form, are

yn(x) =

√
2

π
sin(nx) where n = 1, 2, 3, . . . ,

Natural Sciences Tripos: IB Mathematical Methods II 12 © S.J.Cowley@maths.cam.ac.uk, Lent 2021
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with eigenvalues, λn = n2 + 2. We can write f(x) = sin3 x = 3
4 sinx− 1

4 sin 3x and so,

f(x) =

∞∑
n=1

an yn(x) , with a1 = 3
4

√
π

2
, a3 = − 1

4

√
π

2
and the other an zero.

Writing y(x) =
∑
n bnyn(x), and using Lyn = λnyn, gives

Ly =
∑
n

λnbnyn(x) = f(x) =
∑
n

anyn(x) ⇒ bn = an/λn ,

as in (1.44c). It follows that

y(x) =
3

4λ1
sinx− 1

4λ3
sin 3x = 1

4 sinx− 1
44 sin 3x .

Remarks.

(i) Alternatively, we could obtain the same result using the general solution (1.42b), together
with the Green’s function from the general expression (1.43a):

G(x, ζ) =
2

π

∞∑
n=1

sinnx sinnζ

n2 + 2
.

(ii) In this example we were able to write the solution in terms of a finite number of eigenfunctions,
but in general we’ll require a sum over an infinite number of eigenfunctions.

Example. Solve the problem specified by (1.1b) and (1.1c), i.e.

L̃y ≡ −d
2y

dx2
− dy

dx
− 1

4y = e−x/2 , (1.1b)

with

y = 0 at x = 0 , and
dy

dx
+ 1

2y = 0 at x = 1. (1.1c)

(i) First put the differential operator L̃ = − d2

dx2 − d
dx −

1
4 in Sturm-Liouville form.

A suitable weight function for L̃ is, from (1.9a) with with P = R = 1, and from using (1.12),

w(x) = e
∫ x dx = ex .

Therefore the Sturm-Liouville form of (1.1b) is, from (1.8),

Ly = w(x) L̃y = − d

dx

(
ex
dy

dx

)
− 1

4e
x y = ex/2 .

03/19

(ii) Next determine the eigenvalues and orthonormal eigenfunctions for 0 6 x 6 1 with boundary
conditions (1.1c), i.e. y(0) = 0 and dy

dx + 1
2y = 0 at x = 1.

We need to solve L̃yn = λnyn or equivalently Lyn = λnwyn. Using the first form and trying
y = ekx we deduce that (

−k2 − k − 1
4

)
ekx = λekx ,

and hence that

k = − 1
2 ± i

√
λ .

Therefore
y(x) = Ae−x/2 cos

√
λx+Be−x/2 sin

√
λx ,

where A and B are constants. Applying the boundary condition (1.1c) at x = 0, i.e. y(0) = 0,
yields A = 0, while applying the boundary condition at x = 1 yields, after cancellation,

B
√
λ e−1/2 cos

√
λ = 0 .
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Hence, for a non-zero eigenfunction, we require that
√
λ =

(
n+ 1

2

)
π for n = 0, 1, 2, 3, . . . ,

and so

λn =
(
n+ 1

2

)2
π2 , yn(x) = Bn e

−x/2 sin
[(
n+ 1

2

)
πx
]

for n = 0, 1, 2, 3, . . . .

It is left as an exercise to check that, with these eigenfunctions, the boundary terms (1.7b) vanish
so that L is self-adjoint. For an orthonormal basis we require that

〈yn|ym〉w =

∫ 1

0

y∗n(x) ym(x) ex dx = δnm .

For the yn(x) to have unit norm we therefore require that

|Bn|2
∫ 1

0

sin2
[(
n+ 1

2

)
πx
]
dx = 1

An orthonormal basis is thus

yn(x) =
√

2 e−x/2 sin
[(
n+ 1

2

)
πx
]

, n = 0, 1, 2, 3, . . . .
03/20
03/21 (iii) Hence solve L̃y = e−x/2, subject to the above boundary conditions.

Our aim is to solve, in terms of the notation of (1.40),

Ly = w L̃y = ex/2 ≡ f ,

using the orthonormal eigenfunctions, yn, that satisfy Lyn = λne
xyn. Hence, writing y =

∑
n bnyn

as in (1.44b), we require that

L y =
∑
n

bn λn e
x yn = ex/2 ≡ f .

Forming an inner product by multiplying by y∗m(x) and integrating, cf. (1.36b), we obtain∑
n

λn bn

∫ 1

0

y∗m(x) ex yn(x) dx =
∑
n

λn bn δmn =

∫ 1

0

ex/2 y∗m(x) dx ≡ 〈 ym | f 〉 ,

from which we deduce that, cf. (1.44c),

bm =
〈 ym | f 〉
λm

=

√
2

λm

∫ 1

0

sin
[(
m+ 1

2

)
πx
]
dx ,

= −
√

2

λm

1(
m+ 1

2

)
π

[
cos
[(
m+ 1

2

)
πx
]]1

0
=

√
2

λm

1(
m+ 1

2

)
π

.

Hence

y(x) =
2

π3

∞∑
n=0

1(
n+ 1

2

)3 e−x/2 sin
[(
n+ 1

2

)
πx
]

.

Remark. There is a better way to solve this problem: by inspection

y = xe−x/2 − 1
2x

2e−x/2 .

1.9 Approximation via Eigenfunction Expansions

It is often useful, e.g. in a numerical method (since a computer cannot store an infinite number of terms), to
approximate a function with Sturm-Liouville boundary conditions by a finite linear combination of Sturm-
Liouville eigenfunctions, i.e.

f(x) ≈
N∑
n=1

anyn(x) . (1.45)
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The question then arises as to how to optimize the choice of the {an}; should one continue to use the an for
the infinite series as given by (1.36b)?

To this end, define the error of the approximation, i.e. the “distance” between f and the approximation, to
be

ΣN (a1, a2, . . . , aN ) =

∥∥∥∥ f(x)−
N∑
n=1

anyn(x)

∥∥∥∥2

w

. (1.46)

Then, one definition of the ‘best’ approximation is that the error (1.46) should be minimized with respect
to the coefficients a1, a2, . . . , aN . By expanding (1.46) we have, assuming that the yn are an orthonormal
set,

ΣN =

〈
f(x)−

N∑
n=1

anyn(x)

∣∣∣∣ f(x)−
N∑
m=1

amym(x)

〉
w

= 〈 f | f 〉w −
N∑
n=1

a∗n〈 yn | f 〉w −
N∑
m=1

am〈 f | ym 〉w +

N∑
n=1

N∑
m=1

a∗nam〈 yn | ym 〉w

= ‖f‖2w −
N∑
n=1

(
a∗n〈 yn | f 〉w + an〈 yn | f 〉∗w

)
+

N∑
n=1

ana
∗
n . (1.47)

To find the minimum, differentiate with respect to the ak and a∗k (viewed as independent variables) to obtain

∂ΣN
∂ak

= −〈yk|f〉∗w + a∗k , and its complex conjugate
∂ΣN
∂a∗k

= −〈yk|f〉w + ak . (1.48)

Thus the error ΣN is minimized when

ak = 〈 yk | f 〉w, or equivalently a∗k = 〈 yk | f 〉∗w . (1.49)

This is the same value for ak as (1.36b), i.e. when the expansion (1.45) has an infinite number of terms. The
value of the error, ΣN , is then, from (1.47) and (1.49),

ΣN = ‖f‖2w −
N∑
n=1

|an|2 . (1.50)

Since ΣN > 0 from (1.46), we arrive at Bessel’s inequality

‖f‖2w >
N∑
n=1

|an|2 . (1.51)

It is possible to show, but not here, that this inequality becomes an equality when N →∞, and hence

‖f‖2w =

∞∑
n=1

|an|2 (1.52)

which is a generalization of Parseval’s theorem.

Unlectured remark. While it is not strictly true that any function satisfying the Sturm-Liouville boundary
conditions can be expressed as an eigenfunction expansion (1.36a) (since there are restrictions such as
continuity), it is true that Σ∞ = 0 for such functions, i.e.∥∥∥∥ f(x)−

∞∑
n=1

〈 yn | f 〉w yn(x)

∥∥∥∥2

w

= 0 . (1.53)
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2 Calculus of Variations 4

2.1 Functionals

A real function of many variables {yk; k = 1, 2, . . . N} maps the {yk} to a real number, i.e.

f : {yk} → f({yk}) ∈ R .

Our aim is to generalise this idea to a continuous infinity of variables.

For instance, consider the following definite integral involving a real function y(x)

F [y] =

∫ β

α

(
y′(x)2 − y(x)2

)
dx . (2.1)

This is a simple example of a functional, where a continuous infinity of variables {y(x);x ∈ R} is mapped
to a real number, F , that is independent of x but depends on y(x).

Definition. A real functional takes a function y(x) and yields a real number as output

F : y(x)→ F [y] ∈ R . (2.2)

Remarks.

(i) In the particular example (2.1), the integrand of F [y] implicitly depends on x through y and its
derivatives; however, the integrand may also explicitly depend on x:

F [y] =

∫ β

α

f(y, y′, y′′, . . . ;x) dx . (2.3a)

(ii) More generally, there may be more dependent variables {yi} and a multiple integral over a number
of independent variables {xj}.

(iii) We shall usually be concerned with functionals of the form,

F [y] =

∫ β

α

f(y, y′;x) dx . (2.3b)

The calculus of variations. The calculus of variations extends the calculus of functions to functionals. It
aims to answer questions such as: what functions y(x) extremize the functional F [y]?

Remarks

(i) It will usually be obvious from the problem whether a given
extremum is a maximum, a minimum or something else –
there’s no equivalent of the Hessian criteria for functions
(or at least one that’s practical to use).

(ii) We must also keep in mind that, as with ordinary calculus,
an extremum we find may be only a local extremum and
not a global extremum.

(iii) Functionals are useful because many problems can be formulated as a variational principle, the
extremization of some functional. For instance, a chain suspended between two fixed points hangs
in equilibrium such that its total potential energy is minimized; an extension of this idea (incorpo-
rating chemical potential energy) can be applied to chemical reactions. Two well-known examples
that we will examine are

� Fermat’s principle in optics,

� Hamilton’s principle of least action in mechanics.

4 You are warned: this section is probably conceptually harder than other parts of the course.
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2.2 Functional Derivatives

Consider the effect of changing a function
y(x) to a nearby function y(x) + δy(x),
assuming that the endpoints at A and B
are fixed.

The variation of F , say as given by (2.3b), is defined by,

δF = F [y + δy]− F [y] (2.4a)

=

∫ β

α

f (y + δy, y′ + (δy)′;x) dx−
∫ β

α

f(y, y′;x)dx from (2.3b)

=

∫ β

α

[
δy
∂f

∂y
+ (δy)

′ ∂f

∂y′

]
dx + . . . cf. Taylor’s Theorem

=

[
δy
∂f

∂y′

]β
α

+

∫ β

α

δy

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
dx + . . . by integrating by parts, (2.4b)

where we have omitted terms of order (δy)2. If the boundary term in (2.4b) is zero (e.g. if, as above, y is
fixed on the boundaries), equation (2.4b) can be written as

δF =

∫ β

α

δy

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
dx + . . . , . (2.4c)

Definition. Define the functional derivative of F at the point x with respect to the function y to be the
function

δF

δy(x)
as defined by the expression δF =

∫ β

α

δy(x)
δF

δy(x)
dx + . . . . (2.5a)

In the case of F given by (2.3b), it follows from (2.4c) that

δF

δy(x)
=
∂f

∂y

∣∣∣∣
y′,x

− d

dx

(
∂f

∂y′

∣∣∣∣
y,x

)
. (2.5b)

Remarks.

(i) The value of the functional derivative depends on the point x.

(ii) The notation ∂f
∂y′

∣∣∣
y,x

may look strange since it seems impossible for y′ to change if y does not.

However, ∂
∂y and ∂

∂y′ are formal derivatives in which it is supposed that y and y′ are unconnected.

By contrast, d
dx in (2.5b) is the usual full derivative with respect to x.

(iii) Compare with the variation of a function:

f({yi}) : δf =
∑
i

δyi
∂f

∂yi
.

2.2.1 The Euler-Lagrange equation

Definition. The functional F is said to be stationary when δF
δy(x) = 0, i.e. when f satisfies the Euler-Lagrange

equation
d

dx

(
∂f

∂y′

)
=
∂f

∂y
. (2.6)

04/20
04/21
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Example: Geodesics of the plane. What is the
shortest distance between two points on
the Euclidean plane (supposing that the
Romans did not know the answer)? The
distance L between points A and B on the
curve given by y(x) is given by

L =

∫ B

A

dl =

∫ B

A

√
dx2 + dy2 =

∫ xB

xA

√
1 + (y′)2 dx . (2.7a)

We can view L as a functional of y(x)

L[y] =

∫ xB

xA

f(y′) dx , where f(y′) =
√

1 + (y′)2 . (2.7b)

For simplicity we assume that y(x) is a single-valued function of x (so that the curve does not “double-
back” on itself). The Euler-Lagrange equation (2.6) is thus

d

dx

(
∂f

∂y′

)
=

d

dx

(
y′√

1 + (y′)2

)
= 0 . (2.7c)

From integrating once

y′√
1 + (y′)2

= c , (2.7d)

where c is a constant. Hence y′ is a constant, and from integrating again

y = ax+ b , (2.7e)

which is a straight line. The integration constants a and b must be chosen such that the line passes
through the points A and B.

2.2.2 A first integral of the Euler-Lagrange equation

In the example above we reduced the second-order Euler-Lagrange equation to a first-order equation, (2.7d).
This was because the function f(y, y′;x) had no explicit dependence on y, i.e. ∂f∂y = 0, and so a first integral

of the Euler-Lagrange equation (2.6) gave ∂f
∂y′ = const.

It is also possible to reduce the Euler-Lagrange equation to a first integral if ∂f
∂x = 0, i.e. if f has no explicit

dependence on x. To see this, first assume that f has an explicit dependence on x, i.e. f ≡ f(y, y′;x), then
we have from the chain rule that

df

dx
=
∂f

∂y

dy

dx
+
∂f

∂y′
d2y

dx2
+
∂f

∂x

=
∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′
. (2.8a)

Using the Euler-Lagrange equation (2.6) gives,

df

dx
=
∂f

∂x
+ y′

d

dx

(
∂f

∂y′

)
+ y′′

∂f

∂y′

=
∂f

∂x
+

d

dx

(
y′
∂f

∂y′

)
(2.8b)

and hence
d

dx

(
f − y′ ∂f

∂y′

)
=
∂f

∂x
. (2.8c)

When f(y, y′;x) has no explicit dependence on x, i.e. when ∂f
∂x = 0, then we have the first integral

f − y′ ∂f
∂y′

= const. (2.8d)

We will use this result in the next example, but it could also be applied to the above example for geodesics
of the plane (an exercise for the keen).
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2.2.3 Examples

The Brachistochrone. A bead slides down a frictionless wire from A to B. What shape must the wire have
for the bead to fall from A to B in the shortest time?

The calculus of variations makes this difficult problem
(relatively) easy. Take A to be the origin in the ver-
tical plane, x to be the horizontal distance from the
origin, and y to be the distance below the origin. Sup-
pose that the bead starts with speed v = 0; then from
conservation of energy we have that

1
2mv

2 = mgy ⇒ v =
√

2gy . (2.9a)

We also have that

v =
√
ẋ2 + ẏ2 = ẋ

√
1 + (y′)2 ⇒ dt =

dx

v

√
1 + (y′)2 , (2.9b)

where y′ = dy/dx. The total time T [y] is, from (2.9a) and (2.9b),

T [y] =

∫ tB

tA

dt =
1√
2g

∫ xB

xA

f(y, y′)dx , where f(y, y′) =

√
1 + (y′)2

y
. (2.9c)

Here ∂f
∂x = 0, and so the first integral (2.8d) implies that

f − y′ ∂f
∂y′

=

√
1 + (y′)2

y
− y′ y′√

y (1 + (y′)2)
=

1√
y (1 + (y′)2)

=
1√
2c

. (2.9d)

where c is a conveniently chosen constant. Hence

y
(
1 + (y′)2

)
= 2c ⇒ y′ =

√
2c− y
y

. (2.9e)

Substituting y = c(1− cos θ) = 2c sin2(θ/2), we obtain√
2c− y
y

=
cos(θ/2)

sin(θ/2)
, y′ =

dy

dθ

dθ

dx
= 2c sin(θ/2) cos(θ/2)

dθ

dx
, (2.9f)

and so from (2.9e) and (2.9f)

dx = 2c sin2(θ/2) dθ = c(1− cos θ) dθ . (2.9g)

Taking y = 0 at θ = x = 0, the solution is given
parametrically by

x = c (θ − sin θ) , y = c (1− cos θ) . (2.9h)

Requiring y = yB when x = xB fixes c and the value
of θ = θB at point B. This is an inverted cycloid (i.e.
the curve that a point on the rim of a wheel rolling
along a flat plane traces out).

Remark. The calculus of variations is not restricted to functionals of the form considered so far. We can
also apply it to functions of functionals, e.g. ratios, as in the following example.

Eigenfunctions as extremals of a functional. Consider the Sturm-Liouville operator L, and the following
real functionals of the real function y,

F [y] ≡ 〈 y | Ly 〉 =

∫ β

α

y

(
− d

dx

(
ρ(x)

dy

dx

)
− q(x) y

)
dx from (1.6a), (2.10a)

G[y] ≡ 〈 y | y 〉w =

∫ β

α

w(x) y2 dx , (2.10b)

where
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(i) as before, ρ(x) > 0 and w(x) > 0 for α < x < β,

(ii) F [y] is the inner product 〈 y | Ly 〉 with unit weight,

(iii) G[y] is the weight-w norm 〈 y | y 〉w of y.

If we consider small variations in y analogous to those in (2.4b), then we have that

δF =

∫ β

α

(
−δy (ρy′)

′ − y (ρ(δy)′)
′ − 2q y δy

)
dx

= 2

∫ β

α

δy
{
−(ρy′)′ − qy

}
dx+

[
ρ (y′ δy − y(δy)′)

]β
α

from integrating by parts twice, (2.10c)

δG = 2

∫ β

α

δy wy dx (2.10d)

From (1.6a) we see that the expression inside {} is Ly. Hence, if the boundary conditions are such
that the boundary terms in (2.10c) vanish, e.g. if y satisfies homogeneous conditions y = 0 or y′ = 0
at x = α and x = β (cf. (1.7b)), then from the definition (2.5a) of a functional derivative, i.e.

δF =
∫ β
α
δy(x) δF

δy(x) dx, it follows that

δF

δy
= 2Ly ,

δG

δy
= 2wy . (2.10e)

Now consider the ratio,

Λ[y] =
F [y]

G[y]
≡
∫ β
α
f(y, y′;x)dx∫ β

α
g(y, y′;x)dx

. (2.10f)

05/19

Then, keeping only first-order terms,

δΛ ≡ Λ[y + δy]− Λ[y] =
F [y + δy]

G[y + δy]
− F [y]

G[y]

=
F + δF

G+ δG
− F

G
from (2.4a)

=
1

G

[(
F + δF

)(
1− δG

G

)
− F

]
=

1

G

[
δF − F

G
δG
]

. (2.10g)

From definition (2.5a) and (2.10e), this can be written in terms of functional derivatives as,

δΛ

δy
=

1

G

[
δF

δy
− Λ

δG

δy

]
=

2

G

[
L y − Λw y

]
.

Therefore Λ[y], which we recall is a real number, is extremized by solutions of

L y = λw y ,

where the λ are the extremal values of Λ. This is the Sturm-Liouville eigenvalue problem with weight
function w.

Interpretation. Λ[y] is extremized by eigenfunctions of L̃ = w−1L, and the eigenvalues are the extremal
values of Λ.

Remark. A similar result holds for complex y(x) if the definitions of F [y] and G[y] are modified to

F [y] =

∫ β

α

y∗Ly dx =

∫ β

α

{
ρ(x)|y′|2 − q(x)|y|2

}
dx ,

G[y] =

∫ β

α

w(x)|y|2dx .

05/20
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Geodesics on the surface of a sphere.

We work in spherical polar coordinates (r, θ,φ), where 0 6 r <∞,
0 6 θ 6 π and 0 6 φ 6 2π. In such coordinates, the increment
vector position is given by dr = dr êr + rdθ êθ + r sin θ dφ êφ.

On the surface of a sphere dr = 0, and so the length of a path from
A to B described by φ(θ) on the surface of a sphere is given by

L =

∫ B

A

|dr| =
∫ B

A

(dr · dr)
1
2 ,

= r

∫ B

A

√
dθ2 + sin2 θ dφ2 ,

= r

∫ θB

θA

√
1 + sin2 θ (φ′)2 dθ , where φ′ = dφ/dθ . (2.11a)

05/21

By substituting θ, φ and r
√

1 + sin2 θ (φ′)2 for x, y and f(y, y′;x), respectively, in the Euler-Lagrange

equation (2.6), it follows that

d

dθ

(
r
∂

∂φ′

√
1 + sin2 θ(φ′)2

)
= r

∂

∂φ

√
1 + sin2 θ (φ′)2

= 0 . (2.11b)

Hence a first integral is
sin2 θ φ′√

1 + sin2 θ (φ′)2

= c . (2.11c)

where c is a constant. This equation can be rearranged (after choosing the positive sign) to

φ′ =
c

sin θ
√

sin2 θ − c2
=

c

sin2 θ
√

1− c2 cosec2 θ
. (2.11d)

To integrate this substitute u = cot θ, so du/dθ = − cosec2 θ and,

φ =

∫
−c du

cosec2 θ sin2 θ
√

1− c2 cosec2 θ

=

∫
−c du√

1− c2(1 + u2)

=

∫
−du√
k2 − u2

where k ≡
√

1− c2
c

,

= cos−1(u/k) + φ0 , (2.11e)

where φ0 is a constant. The path is therefore given by

cot θ = k cos(φ− φ0) , (2.11f)

where the constants k and φ0 are fixed so that the path passes through the end points.

Remark. This path is an arc of a great circle (i.e. a circle which
has a centre that coincides with the centre of the sphere).
For instance:

� if θA = θB = π
2 , then k = 0 (and φ0 is arbitrary),

with the solution to (2.11f) being θ = π
2 and φ taking

values between φA and φB ;

� if φA = φB , let κ = 1/k and rewrite (2.11f) as

κ cot θ = cos(φ− φ0) , (2.11g)

then κ = 0 and φ0 = φA − π
2 , with the solution to

(2.11f) being φ = φA = φB and θ being able to take
any value between θA and θB .
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2.3 Variational Principles

Many problems can be formulated as the extremization of some functional. Two important examples are
Fermat’s principle in optics and Hamilton’s principle of least action in mechanics.

2.3.1 Fermat’s principle

Consider a material with variable refractive index, i.e. a material
where the speed of propagation of light is c/µ, where c is speed of
light in a vacuum. Then, Fermat’s principle of geometric optics
states that the path taken by a light ray from point A to point B
is that which makes stationary the optical path length, P , where

P =

∫ B

A

µ(r) dl , (2.12a)

and dl is the three-dimensional length element, i.e.

dl =
√
dx2 + dy2 + dz2 . (2.12b)

Remarks.

(i) When µ is a constant, compare with (2.7a) for a plane.

(ii) Water has µ ≈ 1.33, while a vacuum has µ = 1 by definition.

(iii) Fermat’s principle only applies in the geometric optics approximation, i.e. when the wavelength
of light is small compared to the physical dimensions of the system. It does not apply when this
approximation is not appropriate, e.g. as in the case of diffraction.

Using the x-coordinate to parameterize position along the path, and assuming there is no doubling back,
the optical path length is a functional of y(x) and z(x), i.e.

P [y, z] =

∫ xB

xA

µ(x, y, z)
√

1 + (y′)2 + (z′)2 dx . (2.12c)

Looking for stationary points of P [y, z] with respect to variations of y(x) and z(x) gives the two simultaneous
equations, cf. the definition (2.5a),

δP

δy(x)
= 0 ,

δP

δz(x)
= 0 . (2.12d)

By independently varying the functions y and z, the generalisation of the Euler-Lagrange equation (2.6) is

d

dx

(
∂f

∂y′

)
=
∂f

∂y
, (2.12e)

d

dx

(
∂f

∂z′

)
=
∂f

∂z
, (2.12f)

where f = µ(x, y, z)
√

1 + (y′)2 + (z′)2.

Remarks.

(i) If µ is a constant, then these imply that y′ and z′ are constants (cf. geodesics of the plane). The
path is thus the intersection of two planes, i.e. a straight line.

(ii) In simple applications the problem can often be reduced to a path in a plane and so the variation
of a functional of one function.

Example: Snell’s law. We can use Fermat’s principle to derive Snell’s law which gives the angle by which a
light ray is bent on passing from one material to another.
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We suppose that µ ≡ µ(y), that the path is in the x-y
plane, and that

µ =

{
µ1 y < y1

µ2 y > y2
. (2.13a)

From (2.12c), the integrand to make stationary is

f(y, y′) = µ(y)
√

1 + (y′)2 . (2.13b)

This has no explicit x-dependence and so the first-
integral (2.8d) gives

µ(y)
√

1 + y′2 − µ(y) y′2√
1 + y′2

= k , (2.13c)

where k is a constant. After a little manipulation, this
yields

µ(y)√
1 + (y′)2

= k . (2.13d)

Let y′ = − cot θ (as in the diagram), then the solution (2.13d) to the path can alternatively be written
as

µ sin θ = k . (2.13e)

For regions where µ is constant this implies that the path is a straight line, and since k is the same
constant for the entire path, we deduce Snell’s law that

µ1 sin θ1 = µ2 sin θ2 . (2.13f)

Remark. This result remains true if the interface is ‘quite’ sharp, i.e. if y1 ≈ y2, although in order to
be consistent with the geometric optics approximation, we need to assume that the interface still
extends over a number of wavelengths of light.

Remark. Fermat’s original formulation was slightly different. It was based on minimizing the time, say τ ,
for a light ray to go from A to B, i.e. on minimizing

τ =

∫ B

A

dl

v
=

∫ B

A

µdl

c
≡ P

c
,

where light travels at a speed v(r) = c/µ(r). This is equivalent to minimizing the optical path length P
specified in (2.12a). The modern version is to find stationary paths rather than the minimal paths. This
has advantages because µ is directly measurable, while the speed of light in a medium is ambiguous
(Fermat’s velocity must be interpreted as the phase velocity, rather than the group velocity).

Sound waves. There is an analogous (approximate) principle for sound waves where the optical path length
is replaced by the acoustic path length. This can be used to explain why distant sounds are heard
better at night.

The speed of sound v depends on the density of air,
and thence the absolute air temperature T such that, if
the air is modelled by a perfect gas, v =

√
γRT , where

γ is the ratio of specific heats and R is specific gas
constant. After sunset, the ground cools faster than
the air setting up a temperature gradient. If we assume
T = T0 + αz, where z is the height above ground and
α is a positive constant, then v ∝

√
T0 + αz.

This leads to a variational problem for

P [z] =

∫ xB

xA

f(z, z′)dx , where f(z, z′) =

√
1 + (z′)2

T0 + αz
, (2.14)

that is equivalent to the Brachistochrone problem (cf. (2.9c), noting that y in the Brachistochrone
problem points in the opposite direction to z here).06/19
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2.3.2 Hamilton’s principle

Lagrange and Hamilton developed a powerful reformulation of Newtonian mechanics in terms of a ‘principle
of least action’ based on energy rather than force. The time evolution of a system is viewed as the motion
of a point in a multi-dimensional configuration space described by some generalised coordinates {qi}. For
example

(i) A system of n particles (in 3n-dimensional coordinate
space) can be described by the 3 coordinates for each of
n positions.

(ii) A rigid pendulum swinging in a vertical plane requires one
generalised coordinate, the angle to the vertical, say, θ = q1.

(iii) A top spinning on its axis on a smooth plane requires five
generalised coordinates:

� two, (x, y) = (q1, q2), to describe the position of the
point of contact,

� one, θ = q3, for the angle of the axis to the vertical,

� one, φ = q4, for the rotation of the axis about the
vertical,

� one, ψ = q5
a, for the rotation of the top about its axis.

a Nearly as in Gangnam Style.06/20
06/21

Remark. Problems can often be simplified by a convenient choice of generalised coordinates; this is part of
the power of these methods.

Definition: Lagrangian. The Lagrangian is defined as

L = T − V (2.15a)

where T is the kinetic energy and V is the potential energy.

Definition: Action. The action of a path, starting at time ti and ending at tf , is given by,

S[{qi}] =

∫ tf

ti

L ({qi(t)}, {q̇i(t)}, . . . ; t) dt . (2.15b)

Hamilton’s principle. Hamilton’s principle states that the motion in configuration space extremizes the
action functional S.

Lagrange’s equations. For a Lagrangian L ({qi}, {q̇i}; t), with i = 1, . . . ,N generalised coordinates, and for
a motion with fixed start and end points, it follows from independently varying the coordinates that,
cf. (2.6),

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , i = 1, . . . ,N . (2.15c)

These are Lagrange’s equations.

A first integral. If the Lagrangian L ({qi}, {q̇i}; t) has no explicit dependence on t, then by generalizing
the derivation of the first integral (2.8d), we can find a constant of the motion. The chain rule and
Lagrange’s equations (2.15c) give

dL

dt
=
∂L

∂t
+

N∑
i=1

(
q̇i
∂L

∂qi
+ q̈i

∂L

∂q̇i

)

=
∂L

∂t
+

N∑
i=1

(
q̇i
d

dt

(
∂L

∂q̇i

)
+ q̈i

∂L

∂q̇i

)

=
∂L

∂t
+
d

dt

(
N∑
i=1

q̇i
∂L

∂q̇i

)
, (2.15d)

and hence
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d

dt

[
L−

N∑
i=1

q̇i
∂L

∂q̇i

]
=
∂L

∂t
. (2.15e)

If the Lagrangian has no explicit dependence on t, i.e. ∂L
∂t = 0, then we have the first integral

N∑
i=1

q̇i
∂L

∂q̇i
− L = const. (2.15f)

Remark. Often, when the Lagrangian does not explicitly depend on time,

(i) the kinetic energy T is a homogeneous quadratic in the generalised velocities {q̇i}, i.e.

T =
∑
i

∑
j

aij(q1, . . . , qN ) q̇iq̇j ; (2.15g)

(ii) the potential energy V does not depend on the generalised velocities, i.e.

V ≡ V (q1, . . . , qN ) . (2.15h)

In such cases it follows that

N∑
i=1

q̇i
∂L

∂q̇i
− L = T + V = const. (2.15i)

i.e. the total energy E = T + V is conserved.

Unlectured proof. From (2.15a), (2.15g) and (2.15h), and careful use of dummy variables,

N∑
i=1

q̇i
∂L

∂q̇i
− L =

N∑
i=1

q̇i
∂

∂q̇i

 N∑
k=1

N∑
j=1

akj(q1, . . . , qN ) q̇kq̇j − V (q1, . . . , qN )

− T + V

=

N∑
i=1

q̇i

 N∑
k=1

N∑
j=1

akj (δikq̇j + q̇kδij)

− T + V since ∂q̇k
∂q̇i

= δik

=

N∑
i=1

N∑
j=1

aij q̇iq̇j +

N∑
i=1

N∑
k=1

aki q̇kq̇i − T + V

= T + V .

Example. Consider a particle of mass m subject to a conservative force field F(r) = −∇V (r). From the
definition of the Lagrangian (2.15a) and using Cartesian coordinates, we have that

L = T − V = 1
2m|ṙ|

2 − V (r)

= 1
2m

3∑
i=1

ẋ2
i − V (x1,x2,x3) . (2.16a)

Thus

∂L

∂ẋi
= mẋi ,

∂L

∂xi
= − ∂V

∂xi
, (2.16b)

and so the Lagrange’s equations (2.15c) yield Newton’s second law

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= mẍi +

∂V

∂xi
= 0 , i.e. mr̈ = −∇V = F . (2.16c)

Energy conservation. We also find using the first integral (2.15f), the definition of the Lagrangian
(2.16a), and the partial derivatives (2.16b) that, consistent with (2.15i), the energy, E = T + V ,
is conserved:

N∑
i=1

ẋi
∂L

∂ẋi
− L =

N∑
i=1

ẋi
∂

∂ẋi

(
1
2m

3∑
j=1

ẋ2
j − V (x1,x2,x3)

)
− 1

2m

3∑
i=1

ẋ2
i + V (x1,x2,x3)

= 1
2m

3∑
i=1

ẋ2
i + V (x1,x2,x3) = E = const. (2.16d)
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Example. Reconsider the above example, but this time for a central force field V that depends only on
r = |r|.

Then the natural choice of coordinates are spherical po-
lars (q1, q2, q3) ≡ (r, θ,φ), where 0 6 r <∞, 0 6 θ 6 π and
0 6 φ 6 2π. From dynamics we know that the motion is pla-
nar, i.e. in the plane normal to the constant angular momen-
tum vector. Hence, without loss of generality, we can orien-
tate the axes so that the motion is in a plane φ = constant.
It then follows that the Lagrangian is given by, cf. (2.16a),

L = 1
2mṙ

2 + 1
2mr

2θ̇2 − V (r) . (2.17a)

Hence Lagrange’s equations, (2.15c), are

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= mr̈ −mrθ̇2 + V ′ = 0 , (2.17b)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
=

d

dt

(
r2θ̇
)

= 0 . (2.17c)

The second equation, (2.17c), yields conservation of the angular momentum, J :

J/m = r2θ̇ = constant = h . (2.17d)

Using this result the first equation, (2.17b), reduces to

mr̈ = −dV
dr

+
mh2

r3
= −dVeff

dr
, where Veff(r) = V (r) +

mh2

2r2
. (2.17e)

For h 6= 0 the effective potential Veff(r) has a centrifugal barrier. For instance, if V = −GMm
r , where

G is Newton’s gravitational constant and M the mass of, say, the sun, then we get

Veff(r) = m

(
−GM

r
+

h2

2r2

)
(2.17f)

Because Veff ∝ m, the acceleration will be independent of
the mass m. When h 6= 0, the centrifugal barrier prevents
an approach to r = 0; in this case a sketch of Veff shows
there will be stable orbits.

Example. Consider two particles, masses m1 and m2, interacting via a potential V (r1 − r2).

A point in configuration space can be specified by the two
position vectors r1, r2. Alternatively, we can use the centre
of mass R and the relative position r, where

q1 ≡ R =
m1r1 +m2r2

M
and M = m1 +m2 , (2.18a)

q2 ≡ r = r1 − r2 . (2.18b)

07/19

Then the kinetic energy can be shown to be given by (after some manipulation)

T = 1
2m1|ṙ1|2 + 1

2m2|ṙ2|2 = 1
2M |Ṙ|

2 + 1
2µ|ṙ|

2 and µ =
m1m2

m1 +m2
, (2.18c)

where µ is the reduced mass. The Lagrangian is therefore

L = T − V = 1
2MṘ · Ṙ + 1

2µṙ · ṙ − V (r) . (2.18d)

The Lagrange equations for the components of R can be written as

d

dt

(
∂L

∂Ṙi

)
− ∂L

∂Ri
=

d

dt
(MṘi) = 0 , ⇒ R̈ = 0 and Ṙ = const. (2.18e)

Natural Sciences Tripos: IB Mathematical Methods II 26 © S.J.Cowley@maths.cam.ac.uk, Lent 2021



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Hence the centre of mass moves with constant velocity. The Lagrange equations for the components
of r yield

d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri
= µr̈i +

∂V

∂ri
= 0 , ⇒ µr̈ = −∇V . (2.18f)

Further, because

� T is a homogeneous quadratic in the generalised velocities,

� V doesn’t depend on the velocities,

� L contains no explicit t-dependence,

we can also conclude that E = T + V is constant.

2.4 Constrained Variation and Lagrange Multipliers

Recall from Taylor’s theorem that in R3

δf = f(x + δx)− f(x) =
∂f

∂x
δx+

∂f

∂y
δy +

∂f

∂z
δz + . . . = ∇f · δx + . . . . (2.19a)

Further, in the limit |δx| → 0 we have, in any number of dimensions,

df = ∇f · dx . (2.19b)

Suppose that f(x, y) is the height of a function above the x-y plane, and suppose that there is a hilltop.
Consider lines of constant f , i.e. contours around the hilltop, together with a path specified by p(x, y) = 0
that does not reach the hilltop.

07/17

Hilltop maximum. At the hilltop (a maximum) a small change in position, say dl, does not change f . Then

0 = df = dl · ∇f , (2.20)

i.e. ∇f is orthogonal to all possible displacement vectors and is zero there. To find the position of
the hilltop we need to solve two equations ∇f = 0 for (x, y); note that these criteria are the same for
minima and saddle points, so it may be necessary to check for a maximum.07/20

07/21
Path maximum. Suppose instead we want to find the position of the highest point on the path. We still

require 0 = df = dl · ∇f but dl is no longer arbitrary; it must lie on the path. The constraint for dl to
remain on the path p(x, y) = 0 is, using (2.19b), that

0 = dp = dl · ∇p . (2.21a)

From (2.20) and (2.21a), at the highest point on the path, ∇f will be orthogonal to all dl that are
orthogonal to ∇p. Therefore ∇f and ∇p are parallel/anti-parallel, i.e. ∇f = λ∇p for some λ. Thus,
the maximisation problem is to solve

∇f − λ∇p = 0 with p = 0 . (2.21b)

Remark. There is both an additional equation, p = 0, and an additional variable, λ.

A Lagrange multiplier. An alternative approach to these equations is to note that they also arise from
extremization without constraint of the following function of three variables

ϕ(x, y;λ) = f(x, y)− λ p(x, y) . (2.22)

Natural Sciences Tripos: IB Mathematical Methods II 27 © S.J.Cowley@maths.cam.ac.uk, Lent 2021



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

� Extremization with respect to the Lagrange multiplier λ gives the constraint p = 0.

� Extremization with respect to x, y gives the other equations.

Remarks.

(i) By introducing a Lagrange multiplier we have turned a constrained variation problem into
an unconstrained variation problem.

(ii) Actually we replaced maximization by extremization and so we could end up finding a min-
imum rather than a maximum, but this is usually quite easy to sort out.

(iii) The Lagrange multiplier sometimes has some significance to the problem.

Extension to functions of N variables. We can extend the method to find stationary points of a function
f(ξ) of N variables (ξ1, . . . , ξN ) subject to k < N constraints pi(ξ) = 0 (i = 1, . . . , k). We now need k
Lagrange multipliers and we have to extremize a generalised ϕ with respect to the N + k variables:

ϕ(ξ;λ1, . . . ,λk) = f(ξ)−
k∑
i=1

λipi(ξ). (2.23)

Extension to functionals. There is also a generalization to functionals (N =∞). For example, to extremize
F [y] subject to the constraint P [y] = 0, we may extremize without constraint,

Φλ[y] = F [y]− λP [y] , (2.24a)

with respect to the function y and the variable λ. Assuming the boundary terms are zero we obtain,
cf. (2.21b),

δF

δy(x)
− λ δP

δy(x)
= 0 , P [y] = 0 . (2.24b)

Example: Catenary. What is the shape of the curve described by a uniform chain hanging under its own
weight from two fixed points?

Let the two fixed points be at x = ±L. Assume that
the chain has a fixed length `0 > 2L and a constant
mass per unit length ρ. The potential energy of an
element dl is dV = (ρ dl)gy where y(x) is the height
of the chain above the ground. Therefore,

V

ρg
=

∫
chain

y dl =

∫ x=L

x=−L
y
√
dx2 + dy2

=

∫ L

−L
y

√
1 + (y′)

2
dx . (2.25a)

We minimize V/ρg subject to the constraint

`0 =

∫
chain

dl =

∫ L

−L

√
1 + (y′)

2
dx . (2.25b)

This is equivalent to extremizing without constraint,

Φλ[y] =

∫ L

−L
y

√
1 + (y′)

2
dx− λ

(∫ L

−L

√
1 + (y′)

2
dx− `0

)
,

=

∫ L

−L
f(y, y′;λ) dx+ λ`0 with f(y, y′;λ) = (y − λ)

√
1 + (y′)

2
, (2.25c)

where λ is a Lagrange multiplier. Because there is no explicit dependence on x in the integrand, the
first integral (2.8d) yields

y′
∂f

∂y′
− f =

λ− y√
1 + (y′)

2
= c , (2.25d)
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where c is a constant. After rearrangement

y′ = c−1

√
(y − λ)

2 − c2 . (2.25e)

08/19

On making the substitution y − λ = c cosh(u/c), we find that u′ = 1. Hence u = x + a for some
constant a, and thus

y(x) = λ+ c cosh
(
x+a
c

)
. (2.25f)

We can fix the constants (c, a) by requiring the chain to pass through the fixed end points. For
simplicity, suppose both ends are at height h above the ground, then a = 0 from symmetry, and

h = λ+ c cosh(L/c) .

It can be shown that the total length of the curve is 2c sinh(L/c), and so the catenary is specified by

y(x) = c cosh(x/c) , 2c sinh(L/c) = `0 , (2.25g)

where, because the shape is independent of h, we have chosen h so that the lowest point of the chain
is at y = c and λ = 0.

Example: Isoperimetric problem. What closed curve of fixed length L in a plane maximizes an enclosed
area A?

We will assume that the curve does not double back
(other than in the obvious way). The area of the strip
is dA = y dx, so the total area is

A =

∮
C−+C+

y(x) dx =

∮
C

y(x) dx . (2.26a)

We need to maximize A subject to the constraint

L =

∮
C

dl =

∮
C

√
dx2 + dy2

=

∮
C

√
1 + (y′)2 dx . (2.26b)

Therefore we have to extremize without constraint

Φλ[y] =

∮
C

ydx− λ
(∮

C

√
1 + (y′)2 dx − L

)
=

∮
C

f(y, y′;λ) dx+ λL where f(y, y′;λ) = y − λ
√

1 + (y′)2 , (2.26c)

with respect to the function y and the real variable λ.

The boundary terms are effectively periodic, and f(y, y′;λ) has no explicit x-dependence. Hence the
first integral, (2.8d), gives

f − y′ ∂f
∂y′

= y − λ√
1 + (y′)2

= y0 , (2.26d)

where y0 is a constant. After some manipulation, this is equivalent to

y′ =

(
λ2

(y − y0)2
− 1

) 1
2

. (2.26e)

This separable ODE has solution

y = y0 ±
√
λ2 − (x− x0)2 , (2.26f)

for some constant x0. Hence the maximising curve is a circle of radius λ:

(x− x0)2 + (y − y0)2 = λ2 . (2.26g)

Varying Φλ with respect to λ gives 2πλ = L.
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Example. Sturm-Liouville eigenfunctions. Consider a formulation of the Sturm-Liouville problem as an
extremization of F subject to a normalisation constraint G = 1, where, as in (2.10a) and (2.10b),

F [y] = 〈 y | Ly 〉 =

∫ β

α

y
(
− (ρ(x)y′)

′ − q(x) y
)
dx (2.27a)

G[y] = 〈 y | y 〉w =

∫ β

α

w(x) y2 dx . (2.27b)
08/20

This is equivalent to extremizing without constraint,

Φλ[y] = F [y]− λ (G[y]− 1) = (F [y]− λG[y]) + λ , (2.27c)

with respect to the function y and the real variable λ. Assuming again that the boundary terms in
(2.10c) are zero, then from (2.10e) we have that

δF

δy
= 2Ly ,

δG

δy
= 2wy . (2.27d)

Extremizing Φλ[y] with respect to y we therefore obtain that

Ly − λwy = 0 , (2.27e)

i.e. the Sturm-Liouville eigenvalue equation, where the Lagrange multiplier λ is the eigenvalue.

Remark. This is the same result as we found on page 20 by extremizing the ratio Λ = F/G, where the
extremal values of Λ are the eigenvalues.

08/21

2.5 Estimating Eigenvalues: The Rayleigh-Ritz Method

In §2.2.3 we have seen that the eigenvalues of a Sturm-Liouville problem are the extremal values of Λ = F/G
where, from (2.10a) and (2.10b), and assuming that the boundary terms after integrating by parts are zero,

F [y] = 〈 y | Ly 〉 =

∫ β

α

y
(
− (ρ(x)y′)

′ − q(x) y
)
dx

=

∫ β

α

(
ρ(x) (y′)

2 − q(x) y2
)
dx , from integrating by parts, (2.28a)

G[y] = 〈 y | y 〉w =

∫ β

α

w(x) y2 dx . (2.28b)

Suppose that q 6 0, in addition to ρ > 0, so that F > 0. In this case, recalling that w(x) > 0 and hence
that G > 0 for non-zero y, it follows that Λ > 0. Further, this implies that one of the extremal values, λ0,
is an absolute minimum. Suppose that y0 is the eigenfunction corresponding to λ0 (and for simplicity we
assume that there is no degeneracy). Then we have the inequalities

Λ[y] > Λ[y0] = λ0 > 0 , (2.28c)

with Λ[y] = Λ[y0] if and only if y = y0.

Rayleigh-Ritz method. This provides us with a way to find an upper bound on λ0. Suppose we make an
[educated] guess, ytrial, for y0 and evaluate Λ[ytrial], then

Λ[ytrial] > λ0 . (2.29a)

The better ytrial is, the closer Λ[ytrial] will be to λ0. Moreover,
because Λ[y] is stationary at y = y0, a moderately-good guess
should yield a reasonable approximation to λ0.

Taking this further, we may choose ytrial to depend on one
or more parameters (γ1, γ2, . . .). We know λ0 6 Λ({γi}) for
all choices of the parameters and so we get the best (lowest)
upper bound by minimizing Λ({γi}) with respect to {γi}, i.e.

λ0 6 min
{γi}

Λ({γi}) . (2.29b)

This is the Rayleigh-Ritz method.
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Alternative derivation of (2.29a). Since the eigenfunctions of the Sturm-Liouville operator form a basis, we
can express ytrial as

ytrial =

∞∑
n=0

bnyn , (2.29c)

for some coefficients bn, where we do not need to know what the eigenfunctions yn are, just that they
are a complete set. It follows that

Λ[ytrial] =
〈
∑∞
m=0 bmym | L

∑∞
n=0 bnyn 〉

〈
∑∞
m=0 bmym |

∑∞
n=0 bnyn 〉w

with a careful choice of dummy variables

=

∑∞
m=0

∑∞
n=0 b

∗
mbn〈 ym |λnwyn 〉∑∞

m=0

∑∞
n=0 b

∗
mbn〈 ym | yn 〉w

since Lyn = λnwyn

=

∑∞
n=0 |bn|2λn∑∞
n=0 |bn|2

using 〈u |wv 〉 = 〈u | v 〉w & orthonormality (2.29d)

>

∑∞
n=0 |bn|2λ0∑∞
n=0 |bn|2

= λ0 since λn > λ0. (2.29e)

Remark. Applications include finding wavefunctions/energies in quantum mechanics, and in identifying
resonances, as illustrated in the following examples.

Example: Quantum harmonic oscillator. Let

F [ψ] =

∫ ∞
−∞

[
(ψ′)2 + x2ψ2

]
dx , G[ψ] =

∫ ∞
−∞

ψ2dx . (2.30a)

Then from above, the functions that extremize Λ = F/G are the solutions to

Lψ = 2E ψ , L = − d2

dx2
+ x2 , (2.30b)

subject to the boundary conditions that ψ → 0 as |x| → ∞ (these boundary conditions ensure that the
Sturm-Liouville operator L is self-adjoint). By denoting the eigenvalues by 2E, for a suitable choice of
units, (2.30b) is the Schrödinger equation for a particle of energy E in a harmonic oscillator potential.

Suppose we try
ψtrial(x) = exp

(
− 1

2αx
2
)

, (2.31a)

with parameter α > 0 to satisfy the boundary conditions. Then

F =

∫ ∞
−∞

(α2 + 1)x2 exp
(
−αx2

)
dx , G =

∫ ∞
−∞

exp
(
−αx2

)
dx . (2.31b)

Using the result that ∫ ∞
−∞

x2ne−αx
2

dx =
(2n)!

22nn!

√
π

α2n+1
, (2.31c)

we find that

Λ [ψtrial] =
α2 + 1

2α
. (2.31d)

Since
∂Λ [ψtrial]

∂α
= 1− α2 + 1

2α2
=
α2 − 1

2α2
, (2.31e)

this is a minimum for α > 0 when α = 1, in which case

ψtrial = exp
(
− 1

2x
2
)

, Λ [ψtrial] = 1 . (2.31f)

We deduce that λ0 6 1.

Remark. In fact this is the exact answer, because it so happens that we have included the exact
eigenfunction corresponding to the lowest eigenvalue in the family of trial functions considered.
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A less-inspired guess might be

ψtrial =
(
1 + ax2

)
e−x

2

, (2.32a)

which yields after some manipulation

Λ [ψtrial] =
1

4

(
43a2 − 8a+ 80

3a2 + 8a+ 16

)
≡ Λ(a) . (2.32b)

The minimum of Λ(a) is at amin = 4
23

(
−7 +

√
118
)

and so

λ0 6 Λ (amin) =
2537− 162

√
118

708 + 4
√

118
≈ 1.03 . (2.32c)

Remark: estimating the error. This estimate is within 3% of the exact answer, but we would not know
this if we did not already know the answer! We can, however, improve our bound by including
more parameters. As the integrand depends on x2, we might guess that ψ0(x) is an even function
of x, so an improved trial function might be,

ψtrial =
(
1 + ax2 + bx4

)
e−x

2

. (2.32d)

This new estimate could then be systematically improved by including an x6 term etc. An estimate
of the [percentage] error might then be obtained by seeing how much each improvement changes
the result.

Example: Circularly symmetric vibrations of a circular drum. Consider a drum with unit radius fixed at
r = 1. Then the amplitude y(r) of small-amplitude vibrations satisfies Bessel’s equation

d2y

dr2
+

1

r

dy

dr
+ λy = 0 , (2.33a)

subject to y(1) = 0 and y(0) being finite. The eigenvalue λ scales like the square of the angular
frequency; the dominant sound is thus from the lowest frequency. Suppose that we want to estimate
this, i.e. to estimate λ0.

There are a number of steps.

(i) From (1.13b), first multiply (2.33a) by w = r to put the operator in Sturm-Liouville form:

(ry′)′ + λry = 0 . (2.33b)

Then, from (2.28a) and (2.28b),

F [y] =

∫ 1

0

r (y′)
2
dr , G[y] =

∫ 1

0

ry2 dr . (2.33c)

(ii) Try ytrial = a + br2 + cr4, where a + b + c = 0 to satisfy the boundary condition y(1) = 0. We
include only even powers because the equation (2.33a) has the same form when r → −r.

(iii) Next compute F [ytrial] and G[ytrial]. Using a = −b− c we get,

F [ytrial] = b2 + 8
3bc+ 2c2 = f(b, c) , (2.33d)

G[ytrial] = 1
6b

2 + 5
12bc+ 4

15c
2 = g(b, c) . (2.33e)

(iv) Now minimize Λ(b, c) = f(b, c)/g(b, c) with respect to b, c to deduce that at the minimum

4 (Λ− 6) b = (32− 5Λ) c and 5 (32− 5Λ) b = 16 (2Λ− 15) c . (2.33f)

These imply that

3Λ2 − 128Λ + 640 = 0 ⇒ Λ = 8
3

(
8±
√

34
)

. (2.33g)

Choosing the minus sign to get the lower value of Λ gives an approximation to λ0 of λ ≈ 5.784.
This is close to the exact value λ = 5.7832 . . . .

Remarks.

(i) If we used the simplified trial function ytrial = a + br2, then putting c = 0 in (2.33d) and
(2.33e) we deduce that λ ≈ 6, which suggests a 4% error in λ0 (in fact, as noted above, the
error is much smaller than this).

(ii) Using the estimated value of λ we get a relation between b and c, Then, along with the
normalization condition G = 1, this determines the optimal trial function of the form chosen.
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2.5.1 Extension to higher eigenvalues (non-examinable)

Suppose we already have a good approximation to λ0 and y0, i.e. the ground state in quantum mechanics, and
suppose that we want an approximation to the next-lowest eigenvalue λ1. We know that the eigenfunction

y1 is orthogonal to y0, which suggests we should consider a trial function y
(1)
trial with this property. We can

write such a function as, cf. (2.29c),

y
(1)
trial =

∞∑
n=1

bnyn (2.34a)

for some coefficients bn. The b0y0 term is missing because of the required orthogonality. We do not need to
know what the functions yn are, just that they are a complete set of eigenfunctions. Since

Ly(1)
trial =

∞∑
n=1

λnbnyn , (2.34b)

it follows by the same method leading to (2.29d), that

Λ
[
y

(1)
trial

]
=
〈 y | Ly 〉
〈 y | y 〉w

=

∑∞
n=1 λn|bn|2∑∞
n=1 |bn|2

. (2.34c)

Since |bn|2 > 0 and λ1 6 λn for n = 2, . . . , we have that

∞∑
n=1

λn|bn|2 > λ1

∞∑
n=1

|bn|2 , (2.34d)

and hence Λ
[
y

(1)
trial

]
> λ1. Hence we have an upper bound on λ1 from any trial function orthogonal to y0,

and a reasonably good guess will give a good estimate for λ1.

However, there is an obvious problem: how do we find a trial function orthogonal to y0 if we only have an
approximation to y0? In general we cannot, in which case we are reduced to trying trial functions that are
orthogonal to the approximation.

Nevertheless, there are exceptions. For example, a theorem in quantum mechanics states that the ground-
state wavefunction of a particle in a symmetric potential, V (x) = V (−x), is a symmetric function. Since
any antisymmetric function is orthogonal to any symmetric function, we can find a [true] bound on λ1 by
choosing any antisymmetric trial function.09/19

09/20
09/21
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3 Laplace’s and Poisson’s Equations

3.1 Physical Origins

3.1.1 Poisson’s equation

The second-order partial differential equation

∇2Ψ = ρ(x) , (3.1)

is known as Poisson’s equation. It arises in many different physical contexts.

Remark. There are different sign conventions, so do not be surprised to encounter the alternative∇2Ψ = −ρ.

3.1.2 Laplace’s equation

The special case where the ‘source term’, ρ(x), in (3.1) is zero everywhere, or everywhere except in some
specific regions or at some particular points, is known as Laplace’s equation:

∇2Ψ = 0 . (3.2)

3.1.3 Diffusion equation

Let u(x, t) be a scalar quantity that diffuses (e.g. the concentration of a solute in a solution, or the temper-
ature in a heat-conducting medium). The flux, F, of u is given by F = −κ∇u, where κ > 0 is the diffusivity
or diffusion constant, where the minus sign arises because solute diffuses from high to low concentrations,
and heat flows from hot to cold. When u is the temperature, κ is also known as the coefficient of heat
conductivity.

In many simple cases the diffusion process is governed by the diffusion equation (as derived last term):

∂u

∂t
= κ∇2u . (3.3a)

More generally, if there are sources or sinks S(x), e.g. sources of solute or heat,

∂u

∂t
= κ∇2u+ S(x) . (3.3b)

Steady States. If the distribution is in steady-state, i.e. if ∂u∂t = 0, then (3.3b) reduces to Poisson’s equation:

∇2u = −S(x)

κ
. (3.4)

If S(x) = 0, this simplifies further to Laplace’s equation.

3.1.4 Electrostatics

In the absence of a magnetic field, Maxwell’s equations for a static electric field E(x) state that

∇ ·E = ρq(x)/ε0 , ∇×E = 0 , (3.5a)

where ρq(x) is the charge density distribution,5 and ε0 is the constant permittivity.

Because E is irrotational, i.e. ∇ × E = 0, we can write E = −∇Φ, where Φ(x) is the electric potential. It
follows from (3.5a) that the potential satisfies Poisson’s equation

∇2Φ = −ρq(x)/ε0 , (3.5b)

where, by convention, there is a minus sign. In a region where there is no electric charge, this reduces to
Laplace’s equation, ∇2Φ = 0.

Remark. In the absence of currents, a static magnetic field B(x) satisfies ∇×B = 0 and ∇ ·B = 0, and so
there is also a magneto-static potential ψ satisfying ∇2ψ = 0.

5 There are very many different physical quantities conventionally labelled by ρ, so we include the subscript q for clarity.
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3.1.5 Gravitation

In a similar way it can be shown, using Gauss’s law for gravity, that the gravitational potential Φ(x) satisfies
Poisson’s equation,

∇2Φ = 4πGρm(x) , (3.6)

where ρm(x) is the mass density distribution and G is the gravitational constant. Note that by convention
there is no minus sign in this equation.

3.1.6 Schrödinger’s equation

Schrödinger’s equation in quantum mechanics has a similar form and reduces to Poisson’s equation in certain
circumstances.

3.1.7 Ideal fluid flow

The flow of a fluid can be described by a vector field for the fluid’s velocity u(x, t). Suppose that we make
the simplification (that is more honoured in the breach than in the observance) that

(i) the flow is not subject to viscous forces (i.e. is ‘inviscid’ or ‘ideal’);

(ii) the inviscid flow is irrotational, i.e. ∇× u = 0; in which case the flow can be described by a velocity
potential Φ, where

u = ∇Φ . (3.7a)

The flow must also satisfy the conservation of mass equation, or ‘continuity’ equation,

Dρ

Dt
= −ρ∇ · u , (3.7b)

where ρ is the fluid density and D
Dt indicates the rate of change following a fluid particle.6 If we make the

further assumption that the fluid is incompressible, so that the density of a fluid particle does not change,
i.e.

Dρ

Dt
= 0 , (3.7c)

then the conservation of mass equation, (3.7b), reduces to

∇ · u = 0 . (3.7d)

From (3.7a) it follows that the velocity potential for the irrotational flow of an ideal incompressible fluid
satisfies Laplace’s equation

∇2Φ = 0 . (3.7e)

Such flow is known as potential flow.

3.2 Separation of Variables for Laplace’s Equation

Superposition. First recall that, because Laplace’s equation ∇2Ψ = 0 is linear in Ψ, the superposition
of any two (or more) solutions is another solution; i.e. if ∇2Ψ1 = 0 = ∇2Ψ2 then ∇2Ψ3 = 0 if
Ψ3 = α1Ψ1 + α2Ψ2 for constants α1 and α2

General solution. We then claim that the general solution can be written as a linear combination of some
set of basis solutions (cf. the infinite set of basis eigenfunctions of a Sturm-Liouville operator).

Remark. The number of solutions is infinite and so the space of solutions can be viewed as an infinite-
dimensional vector space.

6 By convention we write D
Dt

, but if you feel happier, then imagine the derivative as d
dt

.
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Separation of variables. In some orthogonal systems of coordinates, separation of variables can provide a
method to find a useful set of basis solutions. For instance, you have previously used separation of
variables in Cartesian coordinates to solve Laplace’s equation. In particular, in Cartesian coordinates
the Laplacian is

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (3.8)

and you have considered solutions of the factorized form

Ψ(x, y, z) = X(x)Y (y)Z(z) . (3.9)

The general solution is then be written as a linear superposition of these solutions. Question 1 on
Example Sheet 2 provides some revision of this.

The ‘right’ co-ordinate system. For any given problem, choosing a basis set appropriately, according to the
symmetry of the problem, can often lead to the solution in a simpler form, e.g. only a few of the
basis set may be needed. This involves choosing an appropriate coordinate system. For example, for a
spherically-symmetric source in infinite space we expect spherical polar coordinates to be most useful,
whereas for the flow of air around a very long cylinder, cylindrical polar coordinates may be more
appropriate.

We will consider plane polar coordinates (equivalent to cylindrical polars with no z-dependence) and
spherical polar coordinates with cylindrical symmetry.

3.2.1 Plane polar coordinates

Let (r,φ) denote plane polar coordinates, where x = r cosφ
and y = r sinφ. The expression for ∇2 in plane polar co-
ordinates was covered last term, from which it follows that
Laplace’s equation is given by

∇2Ψ =
1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2

∂2Ψ

∂φ2
= 0 , (3.10)

where Ψ(r,φ) is a scalar field.

Remark. This is the same equation as for cylindrical polar
coordinates (r,φ, z) when ∂Ψ

∂z = 0.

Consider separable solutions of the form Ψ(r,φ) = R(r)Φ(φ) then from (3.10)

Φ

r

d

dr

(
r
dR

dr

)
+
R

r2

d2Φ

dφ2
= 0 . (3.11a)

Rearranging we obtain
r

R

d

dr

(
r
dR

dr

)
︸ ︷︷ ︸

A function of r only

= − 1

Φ

d2Φ

dφ2︸ ︷︷ ︸
A function of φ only

. (3.11b)

The only way that a function of r can equal a function of φ is if they are both a constant, say λ. Then the
equation for Φ(φ) yields

Φ′′ = −λΦ , (3.12a)

with solution

Φ =

{
a0 + b0 φ for λ = 0

aλ cos
√
λφ+ bλ sin

√
λφ for λ 6= 0

. (3.12b)

In many cases Ψ corresponds to some physical quantity, e.g. the concentration of solute or the temperature,
and must be periodic, i.e. Ψ(r,φ) = Ψ(r,φ+ 2π). However, in other situations, e.g. electrostatics, Ψ is not
a physical quantity just a potential and ∇Ψ must be periodic. We will allow for the more general case by
requiring Φ′(φ) = Φ′(φ+ 2π). It follows from (3.12b) that

2π
√
λ = 2πn , i.e. λ = n2 , n ∈ Z . (3.12c)
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Hence

Φ =

{
a0 + b0φ for n = 0

an cosnφ+ bn sinnφ for n 6= 0
. (3.12d)

Returning to the equation for R(r), and using λ = n2,

r

R

d

dr

(
r
dR

dr

)
= n2

i.e.

r2R′′ + rR′ − n2R = 0 . (3.13a)

This is a dimensionally-homogeneous second-order ODE with solution (e.g. try R = rk or substitute v = ln r)

R =

{
c0 ln r + d0 for n = 0

cnr
n + dnr

−n for n 6= 0
. (3.13b)

Combining R and Φ from (3.13b) and (3.12b) respectively, we obtain

Ψ = RΦ =

{
(c0 ln r + d0)(a0 + b0φ) for n = 0

(cnr
n + dnr

−n)(an cosnφ+ bn sinnφ) for n 6= 0
. (3.14a)

At this point it is convenient to relabel the arbitrary constants, e.g. A0 = a0d0, B0 = b0d0, C0 = c0a0,
D0 = c0b0, etc., and re-write the general solution as

Ψ = A0 +B0φ+ C0 ln r +

∞∑
n=1

(
Anr

n + Cnr
−n) cosnφ+

∞∑
n=1

(
Bnr

n +Dnr
−n) sinnφ . (3.14b)

We have set D0 = 0, after relabelling, in order to exclude the φ ln r combination because it does not satisfy
the periodicity requirement on ∇Ψ. With some further relabelling this can be rewritten more compactly as

Ψ = A0 +B0φ+ C0 ln r +

∞∑
n=−∞
n 6=0

rn (αn cosnφ+ βn sinnφ) . (3.14c)

Remark. Note: a common mistake is to retain too many arbitrary constants, e.g. in∑
cnr

n(an cosnφ+ bn sinnφ) , (3.15)

it might seem that there are three arbitrary constants for each value of n, but in reality there are two
independent arbitrary quantities, i.e. cnan and cnbn.

We now consider two examples (see also questions 2, 3 and 4 on Example Sheet 2).

Steady-state temperature distribution in a cylinder.

An infinitely-long cylinder of radius a is heated on its
boundary as illustrated. The steady-state temperature
T (r,φ) for r < a satisfies

∇2T = 0 , (3.16a)

with boundary conditions,

T (a,φ) =

{
−T0 for − π < φ < 0

+T0 for 0 < φ < π
. (3.16b)

Physics tells us that the temperature T must be single-
valued and finite at r = 0, hence, considering the first
form of the general solution, (3.14b),

B0 = C0 = 0 , Cn = Dn = 0 for n > 1. (3.16c)
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It follows that

T (r,φ) = A0 +

∞∑
n=1

rn (An cosnφ+Bn sinnφ) , (3.17a)

in which case at r = a,

T (a,φ) = A0 +

∞∑
n=1

an (An cosnφ+Bn sinnφ) . (3.17b)

This is just a Fourier series and so, applying the boundary conditions, the coefficients are given by

A0 =
1

2π

∫ π

−π
T (a,φ) dφ = 0 by anti-symmetry of T ,

anAn =
1

π

∫ π

−π
T (a,φ) cosnφdφ = 0 by anti-symmetry of T ,

anBn =
1

π

∫ π

−π
T (a,φ) sinnφdφ

=
1

π

∫ π

0

T0 sinnφdφ− 1

π

∫ 0

−π
T0 sinnφdφ

=

{
4T0/(nπ) n odd

0 n even (by anti-symmetry about ±π/2)
.

The final solution is therefore (with n = 2m− 1, since n is odd)

T (r,φ) =
4T0

π

∞∑
m=1

r2m−1

(2m− 1)a2m−1
sin ((2m− 1)φ) . (3.18)

10/19
10/20
10/21

Two-dimensional fluid flow past a circular cylinder.

Consider the two-dimensional steady flow of an incom-
pressible, ideal (i.e. irrotational and non-viscous) fluid
past a circular barrier of radius a. Assume that the
fluid has constant velocity U = U x̂ at infinity.

As discussed in § 3.1.7 on page 35, the velocity field
u(r,φ) of such a flow can be described by a velocity
potential Φ, where u = ∇Φ and ∇2Φ = 0.

As |x| → ∞, we require ∇Φ→ U x̂ and so,

Φ→ Ux = Ur cosφ . (3.19)

Considering the general solution (3.14b), since the physical quantity is ∇Φ, without loss of generality
we can assume A0 = 0. Then the boundary condition at infinity, (3.19), implies7 that in (3.14b)

A1 = U , An = 0 for n > 2, (3.20a)

Bn = 0 for n > 0, (3.20b)

C0 = 0 . (3.20c)

Therefore

Φ(r,φ) = Ur cosφ+

∞∑
n=1

r−n (Cn cosnφ+Dn sinnφ) . (3.20d)

On the surface of the cylinder, the flow must be in a tangential direction, i.e. there must be no radial
component of velocity into the cylinder; hence

0 = u(a,φ) · r̂ =
∂Φ

∂r
(a,φ) = U cosφ−

∞∑
n=1

na−(n+1) (Cn cosnφ+Dn sinnφ) . (3.21a)

7 The reason that B0 and C0 are zero is, in reality, more subtle, in that we are also requiring that there is no swirl/circulation
and that there is no net flux of fluid in to or out of a closed surface surrounding the cylinder.
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This must be true for all φ, and we know that cosnφ and sinnφ are linearly independent, i.e. if∑
(αn cosnφ+ βn sinnφ) = 0 then αn = βn = 0 for all n. Hence, from equating coefficients of cosnφ

and sinnφ it follows that8

C1 = Ua2, D1 = 0, and Cn = Dn = 0 for n > 2. (3.21b)

Therefore

Φ(r,φ) = U cosφ

(
r +

a2

r

)
= U · r

(
1 +

a2

r2

)
. (3.22a)

Using ∇r = r/r and ∇(U · r) = U,

u(r,φ) =

(
1 +

a2

r2

)
U− 2a2

r4
(U · r)r . (3.22b)

3.2.2 Spherical polar coordinates (axisymmetric case)

Consider spherical polar coordinates, (r, θ,φ), where

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ . (3.23)

If a function Ψ(r, θ,φ) is axisymmetric, then it is independent of φ and ∂Ψ
∂φ = 0. In this case Laplace’s

equation (3.2) reduces to

∇2Ψ =
1

r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
= 0 . (3.24a)

Again we seek separable solutions, this time of the form Ψ(r, θ) = R(r)T (θ). Then

1

R

(
r2R′

)′︸ ︷︷ ︸
A function of r only

= − 1

T sin θ
(T ′ sin θ)

′︸ ︷︷ ︸
A function of θ only

(3.24b)

The only way that a function of r can equal a function of θ is if they are both a constant, say λ. Then the
equation for T (θ) yields

(T ′ sin θ)
′

= −λT sin θ . (3.25a)

Setting u = cos θ, we have that d
dθ = − sin θ d

du and so

− sin θ
d

du

(
− sin2 θ

dT

du

)
= −λT sin θ . (3.25b)

Hence T satisfies Legendre’s equation, as in (1.35a) and (1.35b),

d

du

(
(1− u2)

dT

du

)
+ λT = 0 . (3.25c)

For well-behaved solutions at u = ±1, i.e. at the poles θ = 0 and θ = π, we require that

λ = `(`+ 1) where ` = 0, 1, 2, . . .. (3.25d)

With these values of `, finite series solutions can be found, i.e. the Legendre polynomials P`(u). Recall that
these polynomials are normalised so that P`(1) = 1 (cf. (1.35e)).

Returning to (3.24b), the equation for R(r) becomes (
r2R′

)′
= λR , (3.26a)

or equivalently

r2R′′ + 2rR′ − `(`+ 1)R = 0 . (3.26b)

8 Alternatively, multiply (3.21a) by cosmφ or sinmφ, integrate φ over [0, 2π], and use the orthogonality properties of sine
and cosine.
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This is a dimensionally-homogeneous second-order ODE with solution (e.g. try R = rk or substitute v = ln r)

R = Ar` +Br−`−1 . (3.26c)

The general regular solution to Laplace’s equation in spherical polar coordinates in the axisymmetric case
is therefore, after redefining the arbitrary constants,

Ψ(r, θ) =

∞∑
`=0

(
A` r

` +B` r
−`−1

)
P`(cos θ) . (3.27)

Remark. In the non-axisymmetric case, a similar analysis gives an extra equation involving φ, and the
Legendre polynomials are replaced by associated Legendre polynomials (solutions of the associated
Legendre equation).

We now consider two examples (see also questions 5 and 6 on Example Sheet 2).

Diffusion of a solute past a solid sphere. Consider an impermeable fixed solid sphere of radius a surrounded
by fluid. Suppose that solute diffuses through the fluid, and that at large distances there is a constant
flux of solute of magnitude F parallel to the z-axis. What is the steady-state concentration Φ(r, θ,φ)
of solute?

The problem is axisymmetric and so

Φ(r, θ,φ) ≡ Φ(r, θ) . (3.28a)

The flux of solute is −κ∇Φ, and far from the sphere
we require

− κ∇Φ→ F ẑ as r →∞. (3.28b)

Hence as r →∞, after using (1.35e),

Φ→ −F
κ
z = −F

κ
r cos θ = −F

κ
r P1(cos θ) . (3.28c)

Considering the general solution (3.27), the boundary condition at infinity implies

A1 = −F/κ , An = 0 for n > 2, (3.29a)

and thus

Φ(r, θ) = A0 −
F

κ
rP1(cos θ) +

∞∑
n=0

Bn
rn+1

Pn(cos θ) . (3.29b)

Since the sphere is impermeable, there is no radial flux of solute at r = a. Hence we require that

0 = r̂ ·∇Φ|r=a =
∂Φ

∂r

∣∣∣∣
r=a

= −F
κ
P1(cos θ)−

∞∑
n=0

(n+ 1)Bn
an+2

Pn(cos θ) . (3.29c)

This must be true for all θ, and we know that the Pn are linearly independent, i.e. if
∑
αnPn(cos θ) = 0

then αn = 0 for all n. It follows that by equating the coefficients of the Pn that

B1 = −Fa
3

2κ
, Bn = 0 for n = 0 and n > 2. (3.29d)

Hence the solution for the concentration of solute is

Φ(r, θ) = A0 −
F

κ

(
r +

a3

2r2

)
cos θ , (3.29e)

where A0 is still an arbitrary constant (since only the flux, not the concentration, was specified).
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The electric potential, Φ, inside and outside a sphere.

Consider a hollow conducting sphere of radius a
that has its top hemisphere held at electric potential
Φ = V0, while the bottom hemisphere, separated from
the top by an insulating layer, is earthed so that Φ = 0.
What is the electric potential, Φ, inside and outside
the sphere, assuming that Φ→ 0 as r →∞.

The problem is axisymmetric with boundary condi-
tions

Φ(a, θ) =

{
V0 for 0 < θ < π/2

0 for π/2 < θ < π
. (3.30)

r 6 a. Inside the sphere Φ must be finite at r = 0. This implies that in the general solution, (3.27),
B` = 0 for all ` > 0, so yielding at r = a−

Φ(a, θ) =

∞∑
`=0

A` a
`P`(cos θ) . (3.31a)

The A` can be determined using the orthogonality of Legendre polynomials, i.e. from (1.35f),∫ 1

−1

Pm(u)Pn(u) du =
2

2m+ 1
δmn . (3.31b)

Hence from multiplying (3.31a) by Pm(cos θ), writing u = cos θ, integrating u from −1 to +1,
substituting the boundary conditions (3.30), and using (3.31b),

2
2m+1Am a

m =

∫ 1

−1

Φ(a,u)Pm(u) d cos θ

= V0

∫ 1

0

Pm(u) du . (3.31c)

The integrals can be evaluated to give,

A0 =
V0

2
, A1 =

3V0

4a
, A2 = 0 , A3 = − 7V0

16a3
, . . . , (3.31d)

and so inside the sphere,

Φ(r, θ) =
V0

2

[
1 +

3r

2a
P1(cos θ)− 7r3

8a3
P3(cos θ) + . . .

]
. (3.31e)

11/19
11/20 r > a. Outside the sphere we require that Φ → 0 as r → ∞, and so A` = 0 for all ` > 0. Using a

similar argument to the above, the boundary conditions imply that,

2
2m+1Bm a

−m−1 = V0

∫ 1

0

Pm(u) du , (3.32a)

and so outside the sphere,

Φ(r, θ) =
V0 a

2r

[
1 +

3a

2r
P1(cos θ)− 7a3

8r3
P3(cos θ) + . . .

]
. (3.32b)

11/21

3.3 Uniqueness of Solutions of Poisson’s Equation

If we have a solution to Poisson’s equation (or Laplace’s equation) how do we know whether it is the only
solution, i.e. the unique, non-fake, solution?

Consider solutions to Poisson’s equation,

∇2Φ = ρ(r) , (3.33)

in a volume V with boundary surface S. In order to find a
[unique] solution we require boundary conditions.
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Dirichlet boundary conditions. One possible choice of boundary conditions is to specify Φ(r) on S, e.g.

Φ(r) = f(r) for some f defined on S. (3.34a)

Such boundary conditions on Φ, rather than ∇Φ, are referred to as Dirichlet boundary conditions.
Physically we then have a well-defined problem. For instance:

(i) in electrostatics the surface of a conductor might be specified to be at a constant potential (cf.
the example of the potential specified on the surface of a sphere on page 41);

(ii) if the source of heat in some volume and the temperature on the boundary is specified, this should
uniquely determine the temperature in the volume.

However, can we prove that the problem is well-defined? To this end, suppose that it is not the case
and that there are two solutions Φ1(r) and Φ2(r). Let Ψ ≡ Φ1 − Φ2 then from (3.33)

∇2Ψ = ∇2Φ1 −∇2Φ2 = ρ− ρ = 0 in V , (3.34b)

and from (3.34a)

Ψ = f − f = 0 on S. (3.34c)

Now consider

∇ · (Ψ∇Ψ) = ∇Ψ ·∇Ψ + Ψ∇ · (∇Ψ)

= |∇Ψ|2 + Ψ∇2Ψ

= |∇Ψ|2 using (3.34b).

Therefore, using the divergence theorem and the boundary condition (3.34c) that Ψ = 0 on S,∫
V

|∇Ψ|2 dV =

∫
V

∇ · (Ψ∇Ψ)dV =

∮
S

Ψ(∇Ψ · n) dS = 0 , (3.34d)

where n is the unit outward normal to S. On the assumption that Ψ is a continuous function, the
integral on the left-hand side can only be zero if ∇Ψ = 0 everywhere, i.e. if Ψ is a constant in V .
However, from (3.34c), Ψ = 0 on S and so Ψ = 0 throughout V . This means that Φ1 = Φ2, i.e. there
is a unique solution.

Neumann boundary conditions. A similar theorem holds for Neumann boundary conditions, where we specify
the normal gradient of Φ on S, i.e.

∂Φ

∂n
≡ n ·∇Φ = f(r) on S. (3.35)

In this case solutions are unique up to a constant (see also question 7 on Example Sheet 2).

Remark. As a physical example, in electrostatics we could specify E = −∇Φ on S.

3.4 The Green’s Function and the Fundamental Solution

The aim of the next few sections is to derive a general solution to Poisson’s equation.

Dirichlet boundary conditions. We start by considering solutions of Poisson’s equation with Dirichlet bound-
ary conditions.

Definition. Define the Green’s function, G(r, r′), for Poisson’s equation in a volume V with Dirichlet
boundary conditions given on a boundary surface S, to be the solution to

∇2
rG(r, r′) = δ(3)(r− r′) for r in V , (3.36a)

G(r, r′) = 0 for r on S, (3.36b)

where δ(3)(r − r′) = δ(x − x′)δ(y − y′)δ(z − z′) is the three-dimensional Dirac delta function
satisfying ∫

V

f(r) δ(3)(r− r′) dV =

{
f(r′) for r′ ∈ V ,

0 for r′ 6∈ V .
(3.36c)
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Definition. If V is all of space (the limit of a sphere with radius → ∞), the Green’s function is known as
the fundamental solution.

Symmetry. It is possible to prove that a real Green’s function is symmetric, i.e.

G(r, r′) = G(r′, r) . (3.36d)

We saw this in (1.43c) for a one-dimensional Green’s function written as a sum over eigenfunctions,
and can check it is true in the examples we consider.

Interpretation. We can think of G as the potential due to a point charge at r′. The physical interpretation
of (3.36d) is that the potential at r due to a source at r′ is the same as the potential at r′ due to a
source at r.

Neumann boundary conditions. If instead the solution to Poisson’s equation is required to satisfy Neumann
boundary conditions on S, instead of G = 0 on S, i.e. (3.36b), we require,

∂G

∂n
=

1

A
on S, (3.36e)

where A =
∮
S
dS is the surface area of the boundary. When A → ∞ the condition becomes ∂G

∂n = 0
on S.

Remark. One might have expected the Neumann boundary condition for G to be ∂G
∂n = 0 on S, however

there is a necessary ‘compatibility’ condition on the surface average ∂G
∂n . Specifically, from using

the divergence theorem and the governing equation for G, (3.36a), it follows that∫
S

∂G

∂n
dS ≡

∫
S

∇G · n dS =

∫
V

∇2GdV

=

∫
V

δ(3)(r− r′) dV

= 1 . (3.36f)

The boundary condition (3.36e) is consistent with the compatibility condition (3.36f).

3.4.1 The fundamental solution in three dimensions

First consider the case when r′ = 0, so that there is a point source at the origin, and consider Dirichlet
boundary conditions. Then

∇2G = δ(3)(r) with G→ 0 as |r| → ∞ . (3.37a)

The problem has spherical symmetry and so we will assume that G is a function of r only; if we can find a
solution then it will be the unique solution from § 3.3.

Using the expression for ∇2 in spherical polar coordinates, it follows from (3.24a) that for r 6= 0(
r2G′

)′
= 0 ⇒ G = A+

C

r
, (3.37b)

for some constants A and C. From the boundary condition (3.36b) applied at infinity, we require A = 0.
To determine C we integrate ∇2G over a sphere of radius ε centred on the origin. Using the divergence
theorem, ∫

r<ε

∇2GdV =

∮
r=ε

∇G · n dS =

∮
r=ε

∂G

∂r
dS = −C

ε2

∮
r=ε

dS = −4πC . (3.37c)

However, no matter how small ε, from (3.37a)∫
r<ε

∇2GdV =

∫
r<ε

δ(3)(r) dV = 1 . (3.37d)

Hence we require C = −1/4π, so giving

G = − 1

4π|r|
. (3.37e)

Shifting the origin to r′, we obtain the solution

G(r, r′) = − 1

4π|r− r′|
. (3.37f)
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Remark. This is also the fundamental solution for Neumann boundary conditions.

Example. An electron (a point source with charge −e) is located at r0 and Φ → 0 as |r − r0| → ∞. What
is the electrostatic potential?

The charge distribution is ρq(r) = −e δ(3)(r− r0). So from (3.5b), the potential satisfies

∇2Φ = −ρq
ε0

=

(
e

ε0

)
δ(3)(r− r0) . (3.38a)

The solution is therefore the fundamental solution multiplied by e/ε0:

Φ(r) = − e

4πε0|r− r0|
. (3.38b)

3.4.2 The fundamental solution in two dimensions

Again, we start by considering the case r′ = 0, so that

∇2G = δ(2)(r) . (3.39a)

The problem has circular symmetry and so we assume that G is a function of r only. Then, using the
expression for ∇2 in plane polar coordinates, i.e. (3.10), it follows that for r 6= 0

(rG′)
′

= 0 ⇒ G = A+ C ln r . (3.39b)

for some constants A and C. Unlike the case of three dimensions it is now not possible to apply the Dirichlet
boundary condition (3.36b) at infinity, i.e. the only solution that has G→ 0 as |r| → ∞ is the trivial solution
G = 0. Instead, we require that G vanishes on some circle of radius R, or |∇G| → 0 as |r| → ∞ (which fixes
neither A nor C).

To determine C we integrate ∇2G over a circle of radius ε > 0 centred on the origin. Using the [two-
dimensional] divergence theorem and (3.39b), it follows that∫

r<ε

∇2GdA =

∮
r=ε

∇G · n dl =

∮
r=ε

∂G

∂r
dl =

C

ε

∮
r=ε

dl = 2πC . (3.39c)

However, no matter how small ε, from (3.39a)∫
r<ε

∇2GdA =

∫
r<ε

δ(2)(r) dA = 1 . (3.39d)

Hence

C = 1
2π , (3.39e)

giving

G = 1
2π ln |r|+A . (3.39f)

Reassuringly, as r →∞, G′(r)→ 0 although G(r)→∞. Shifting the origin to r′ we obtain,

G(r, r′) = 1
2π ln |r− r′|+A . (3.39g)

Example. Consider an infinite line of charges lying along the z-axis with infinitesimal width and a charge
density of µ per unit length. What is the electrostatic potential?

This is, de facto, a two-dimensional problem with a charge distribution is ρq(r) = µ δ(x)δ(y). We have
from (3.5b) that the potential satisfies

∇2Φ = − µ
ε0
δ(x)δ(y) . (3.40a)

Hence the solution, up to an arbitrary constant, is

Φ(r) = − µ

2πε0
ln
√
x2 + y2 . (3.40b)12/19

12/20
12/21
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3.5 The Method of Images

So far we have sought fundamental solutions, i.e. Green’s functions, G, when V is all of space. We can use
the method of images to find G in some other simple geometries. We illustrate this method by a number of
examples.

Uniqueness. Recall that if we find a solution that satisfies Poisson’s equation and the boundary conditions,
from the uniqueness of solutions it must be the solution (up to a constant if we have purely Neumann
boundary conditions).

3.5.1 Three-dimensional half-space

Dirichlet boundary conditions. What is the Green’s function for a domain D with Dirichlet boundary con-
ditions, where D is the half-space of R3 with z > 0?

The Green’s function satisfies,

∇2G = δ(3)(r− r′) r ∈ D, (3.41a)

G = 0 on z = 0 , (3.41b)

G→ 0 as |r| → ∞, r ∈ D. (3.41c)

The uniqueness of solutions allows us to solve using a trick:
remove the boundary at z = 0, consider all of space and add
a point source of opposite sign, an ‘image source’, at the im-
age point r′′ = (x′, y′,−z′). The new Green’s function is then
required to satisfy, throughout R3,

∇2G = δ(3)(r− r′)− δ(3)(r− r′′) . (3.41d)

The solution to (3.41d), by superposition of two fundamental
solutions of the form (3.37f), gives

G(r, r′) = − 1

4π|r− r′|
+

1

4π|r− r′′|
. (3.41e)

This satisfies the boundary condition G = 0 on z = 0, i.e.
(3.41b), either by geometry, or because when z = 0

|r− r′| =
√

(x− x′)2 + (y − y′)2 + z′2 = |r− r′′| . (3.41f)

The solution (3.41e) also satisfies the other two requirements when r ∈ D, i.e. (3.41a) and (3.41c).
Therefore, by uniqueness,

G(r, r′) = − 1

4π

(
1

|r− r′|
− 1

|r− r′′|

)
. (3.41g)

Neumann boundary conditions. Suppose instead we impose Neumann boundary conditions at z = 0, i.e.

∂G

∂n
= −∂G

∂z
= 0 on z = 0 . (3.42a)

Suppose that we all still require G→ 0 as |r| → ∞ for r ∈ D.
Then in order to satisfy (3.42a), we need a point charge of the
same sign at the image point so that the Green’s function is

G(r, r′) = − 1

4π

(
1

|r− r′|
+

1

|r− r′′|

)
. (3.42b)

As a check we note that when r ∈ D, (3.42b) satisfies (3.41a)
and (3.41c). It also satisfies (3.42a) because of a change in sign
of z′ between r′ and r′′:

∂

∂z

(
1

|r− r′|

)
z=0

=
z′

[(x− x′)2 + (y − y′)2 + z′2]
3/2

= − ∂

∂z

(
1

|r− r′′|

)
z=0

.
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3.5.2 Two-dimensional quarter-plane

What is the Green’s function, say G(r, r0), when the domain D is the quarter plane of R2 with x > 0 and
y > 0, and G satisfies Dirichlet boundary conditions?

We require that

∇2G = δ(2)(r− r0) r ∈ D, (3.43a)

G = 0 on x = 0 and y = 0, (3.43b)

G→ 0 as |r| → ∞, r ∈ D. (3.43c)

In this case it turns out we need three image charges as
shown in the figure, r1 and r2 with strength −1 and r3

with strength +1. This gives, from (3.39g),

G(r, r0) = + 1
2π ln |r− r0| − 1

2π ln |r− r1|
− 1

2π ln |r− r2|+ 1
2π ln |r− r3|+B

= 1
2π ln

|r− r0| |r− r3|
|r− r1| |r− r2|

, (3.43d)

where the constant B is zero from the boundary conditions
on x = 0 and on y = 0, since by geometry

|r− r0| = |r− r1| and |r− r2| = |r− r3| on x = 0 ,

|r− r0| = |r− r2| and |r− r1| = |r− r3| on y = 0.

3.5.3 Heat source in a three-dimensional half-space bounded by a constant temperature wall

Suppose that T0 is both the temperature of the boundary, S,
at z = 0, and the ambient temperature as |r| → ∞. Suppose
also that there is a point heat source of strength Q at r0.
What is the total heat flux across the wall?

For z > 0, the temperature T satisfies, from (3.4),

∇2T = −Q
κ
δ(r− r0) . (3.44a)

Hence, the solution that satisfies Poisson’s equation and the
boundary conditions is

T (r) = T0 −
Q

κ
G(r, r0) , (3.44b)

where G is the Green’s function, (3.41g), for a three-
dimensional half-space with Dirichlet boundary conditions.

From (3.44b), the total heat flux across the wall, say S, is

F = −κ
∫
S

∇T · n dS = Q

∫
S

∇G · n dS . (3.44c)

This could be evaluated directly, but there is a neater way. As |r| → ∞, it follows from (3.41g) that G ∝ r−2,
and ∇G ∝ r−3. Hence

∫
H
∇G · n dS, where the surface, H, is a hemisphere of radius R, scales as R−1, i.e.

tends to zero as R→∞. It follows that, as expected on physical grounds,

F = Q

∫
S+H

∇G · n dS = Q

∮
∇G · n dS by taking the limit R→∞ and adding zero

= Q

∫
V

∇ ·∇GdV = Q

∫
V

∇2GdV by using the divergence theorem

= Q by using (3.41a). (3.44d)
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Remark. The three-dimensional problem in z > 0, where we have a point electric charge Q at r0 near an
earthed plate at z = 0 on which Φ = 0, is very similar to the above; in this case

Φ(r) = −Q
ε0
G(r, r0) , (3.44e)

where G is again the Green’s function with Dirichlet boundary conditions for the three-dimensional
half-space z > 0.

13/19

3.5.4 Heat source near an insulated wall

Suppose instead that a point heat source of strength Q
is located at r0 near an insulated wall at z = 0 (i.e. a
wall through which no heat can pass), and that T → 0 as
|r| → ∞. What is the temperature distribution for z > 0?

As before, the temperature T satisfies

∇2T = −(Q/κ) δ(r− r0) for z > 0. (3.45a)

The heat flux condition on z = 0,

F = −κ∇T · n = κ
∂T

∂z
= 0 , (3.45b)

is a Neumann boundary condition, and so we introduce an
image charge of strength +Q at r1 = (x0, y0,−z0). We then
find, from (3.42b), that

T (r) =
Q

4πκ

(
1

|r− r0|
+

1

|r− r1|

)
, (3.45c)

which satisfies both the boundary condition at z = 0 and
the requirement that T → 0 as |r| → ∞.

Exercise. What is the total heat flux across the hemisphere, H, at infinity?

Remarks.

(i) The equivalent problem in electrostatics has

Ez = −∂Φ

∂z
= 0 at z = 0. (3.45d)

(ii) See also question 8 on Example Sheet 2.13/20
13/21

3.5.5 Images in a sphere

What is the Green’s function, with Dirichlet boundary conditions, for a domain D which is r < a in R3?

The Green’s function satisfies

∇2G = δ(3)(r− r′) for r < a, (3.46a)

G = 0 on r = a. (3.46b)

Claim. The image point, r′′, is the [classical] inverse point

r′ r′′ = a2 , i.e. r′′ =
a2

r′2
r′ . (3.46c)

What then needs to be fixed is the strength of the
image source, and the strength that works, see (3.46e),
is − a

r′ . Hence, from the fundamental solution (3.37f),
the required Green’s function is

G(r, r′) = − 1

4π

(
1

|r− r′|
− a

r′
1

|r− r′′|

)
. (3.46d)
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Check. The solution (3.46d) satisfies equation (3.46a) for r ∈ D. It also satisfies that boundary condition
(3.46b) because when r lies on the surface of the sphere, |r| = a,

−4πG(r, r′) =
1

|r− r′|
− a

r′
1

|r− r′′|
from (3.46d)

=
1√

a2 + r′2 − 2r · r′
− a

r′
1√

a2 + r′′2 − 2r · r′′
using the cosine rule

=
1√

a2 + r′2 − 2ar′ cos θ
− 1

r′

a

√
a2 + a4

r′2 − 2a
3

r′ cos θ
from (3.46c)

= 0 . (3.46e)

Remark. By symmetry, the same result holds if the domain is instead r > a.

3.5.6 Images in a circle

What is the Green’s function, with Dirichlet boundary conditions, for a domain D which is r < a in R2?

The image point is again the inverse point

r′′ =
a2

r′2
r′ , (3.47a)

but in this case we require the image source to have strength −1. From the two-dimensional fundamental
solution, (3.39g), it follows that the Green’s function is

G(r, r′) =
1

2π
ln
|r− r′|
|r− r′′|

+B , where B = − 1

2π
ln
r′

a
. (3.47b)

Here the constant B has been chosen to ensure that G = 0 on the circle r = a (see question 9 on Example
Sheet 2 for the calculation).

Remark. Further applications of the method of images are
possible. For example, to planes inclined at 60◦ to
each other, or to a pair of parallel planes. In the latter
example there are an infinite number of image points.

3.6 The Integral Solution of Poisson’s Equation

So far we have found solutions of Poisson’s equation with point sources. However, Green’s functions can be
used to find the solution for an arbitrary source distribution. For this we will need Green’s identity.

Definition. For any smooth functions Φ and Ψ defined in a volume V with surface S, Green’s identity states
that ∫

V

(
Φ∇2Ψ−Ψ∇2Φ

)
dV =

∮
S

(Φ∇Ψ−Ψ∇Φ) · n dS ≡
∮
S

(
Φ
∂Ψ

∂n
−Ψ

∂Φ

∂n

)
dS . (3.48a)

Proof. Using the divergence theorem∮
S

(Φ∇Ψ−Ψ∇Φ) · n dS =

∫
V

∇ · (Φ∇Ψ−Ψ∇Φ) dV

=

∫
V

(
∇Φ ·∇Ψ + Φ∇2Ψ−∇Ψ ·∇Φ−Ψ∇2Φ

)
dV

=

∫
V

(
Φ∇2Ψ−Ψ∇2Φ

)
dV .

Two dimensions. In two-dimensions, Green’s identity for a plane surface S bounded by a curve C is∫
S

(
Φ∇2Ψ−Ψ∇2Φ

)
dA =

∮
C

(
Φ
∂Ψ

∂n
−Ψ

∂Φ

∂n

)
dl . (3.48b)
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Integral solution of Poisson’s equation. Consider Poisson’s equation with Dirichlet boundary conditions:

∇2Φ = ρ(r) for r in V , (3.49a)

Φ(r) = f(r) for r on S . (3.49b)

Into Green’s identity, (3.48a), we substitute Ψ = G, and use

� the equation (3.36a), ∇2G = δ(3)(r− r′) for r ∈ V
� the boundary condition (3.36b), G = 0 for r ∈ S,

� the equation (3.49a), ∇2Φ = ρ for r ∈ V ,

� the boundary condition (3.49b), Φ = f for r ∈ S,

to obtain ∫
V

(
Φ δ(3)(r− r′)−Gρ

)
dV =

∮
S

f∇G · n dS . (3.49c)

After rearrangement this yields

Φ(r′) =

∫
V

ρ(r)G(r, r′) dV +

∮
S

f(r)
∂G

∂n
dS , (3.49d)

where the right-hand side consists of known quantities. This is the integral solution of Poisson’s
equation with Dirichlet boundary conditions.

Remark. This expression can also be used to solve Laplace’s equation by setting ρ(r) = 0.

All space. If V is all space we can use the fundamental solution, (3.37f), for G; however, we need to check
the convergence of the integrals. In the case of

∫
V
ρGdV , we will assume, say, that ρ(r) = 0 for all

|r| > R for some R. In the case of
∮
S
G∇Φ · n dS, we no longer have G = 0 on S, hence we need to

check that ∮
S

G∇Φ · n dS → 0 as |r| → ∞. (3.50a)

Since G ∝ r−1 as r → ∞, this is true if, say, |Φ| ∝ r−1 and |∇Φ| ∝ r−2 as r → ∞, which we can
check, a posteriori, is consistent with (3.50b). Hence, from (3.37f),

Φ(r′) =

∫
R3

ρ(r)G(r, r′) dV = −
∫
R3

ρ(r)

4π|r− r′|
dV . (3.50b)

Electrostatics in R3. For example, consider a charge distribution, ρq(r), that decays rapidly far from the
origin. Then, from (3.5b), and accounting for the sign convention,

Φ(r′) =

∫
R3

ρq(r)

4πε0|r− r′|
dV . (3.50c)

This can be understood as the superposition of many infinitesimal charge elements.

Remark. For |r′| � 1, it follows from (3.50c) that |Φ(r′)| ∝ 1/r′ for r′ � 1, and hence that (3.50a) is
satisfied.

Neumann boundary conditions. An integral solution of Poisson’s equation can also be derived for Neumann
boundary conditions. Into Green’s identity, (3.48a), we substitute Ψ = G, and use

� the equation (3.36a), ∇2G = δ(3)(r− r′) for r ∈ V
� the boundary condition (3.36e), ∂G

∂n = 1
A for r ∈ S,

� the equation (3.49a), ∇2Φ = ρ for r ∈ V ,

� the Neumann boundary condition ∂Φ
∂n = g(r) for r ∈ S,

to obtain

Φ(r′) =

∫
V

ρ(r)G(r, r′) dV +
1

A

∮
S

Φ(r) dS −
∮
S

g(r)G(r, r′) dS . (3.51a)

Natural Sciences Tripos: IB Mathematical Methods II 49 © S.J.Cowley@maths.cam.ac.uk, Lent 2021



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

Whoops? Since Φ appears on the right-hand side of (3.51a), this appears not to be a solution. However,
in the case of Neumann boundary conditions, Φ is only determined up to a constant. Define the
mean of Φ on S as

Φ̄ =
1

A

∮
S

Φ(r) dS , (3.51b)

where Φ̄ is a constant, albeit unknown. It follows from (3.51a) that

ϕ(r′) = Φ(r′)− Φ̄ =

∫
V

ρ(r)G(r, r′) dV −
∮
S

g(r)G(r, r′) dS , (3.51c)

is a solution with a known right-hand side; indeed, it is the [unique] solution with a zero mean
over the boundary, i.e. ϕ̄ = 0.

Unbounded space. If V is unbounded as |r| → ∞, but with a finite interior surface S, then A → ∞.
Hence, as long as the surface integral of Φ at ‘infinity’ is finite, we again have, cf. (3.51c),

Φ(r′) =

∫
V

ρ(r)G(r, r′) dV −
∮
S

g(r)G(r, r′) dS . (3.51d)

The electric potential generated by a wire of finite length.

Consider a wire of length 2L with charge density µ per unit length,
lying along the z-axis from z = −L to +L. What is the electric
potential Φ?

We have that ρq(r) = µδ(x)δ(y) for −L 6 z 6 L and zero oth-
erwise. So from (3.50c), and by making use of the substitution

z − z′ =
√
x′2 + y′2 sinhu,

Φ(r′) =

∫
R3

ρq(r)

4πε0|r− r′|
dV

=

∫ +L

−L

µ

4πε0
√
x′2 + y′2 + (z − z′)2

dz

=
µ

4πε0

(
sinh−1 L− z′√

x′2 + y′2
− sinh−1 −L− z′√

x′2 + y′2

)
. (3.52a)

Relabelling to eliminate the ′, we have that

Φ(r) =
µ

4πε0

[
sinh−1 L− z√

x2 + y2
+ sinh−1 L+ z√

x2 + y2

]
. (3.52b)

Remark. As L→∞, we can use the result that sinh−1 Z → lnZ as Z →∞, to recover the expression
for the two-dimensional potential around an infinitely long wire, i.e. (3.40b),

Φ→ − µ

2πε0
ln
√
x2 + y2 + const. (3.52c)

Solution of Laplace’s equation in three-dimensional half-space.

What is the solution of Laplace’s equation in the three-dimensional
half-space with z > 0, subject to Φ = f(x, y) on z = 0?

We use the integral solution (3.49d) with ρ = 0, where V is the
half-space and S is the z = 0 plane plus the hemisphere at ∞. We
neglect the hemisphere at ∞, on the assumption that Φ→ 0 there
(an assumption that can be confirmed a posteriori). Hence,

Φ(r′) =

∮
S

f(r)
∂G

∂n
dS = −

∫ ∞
−∞

∫ ∞
−∞

f(x, y)
∂G

∂z
dx dy . (3.53a)

We derived the required Green’s function earlier using the method of images; so from (3.41g)

G(r, r′) = − 1

4π

(
1

|r− r′|
− 1

|r− r′′|

)
. (3.53b)
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We need,

∂G

∂z

∣∣∣∣
z=0

=− 1

4π

∂

∂z

{
1√

(x− x′)2 + (y − y′)2 + (z − z′)2

− 1√
(x− x′)2 + (y − y′)2 + (z + z′)2

}∣∣∣∣∣
z=0

.

After some algebra this reduces to

∂G

∂z

∣∣∣∣
z=0

= − z′

2π [(x− x′)2 + (y − y′)2 + z′2]
3/2

. (3.53c)

Hence

Φ(r′) =
z′

2π

∫ ∞
−∞

∫ ∞
−∞

f(x, y)

[(x− x′)2 + (y − y′)2 + z′2]
3/2

dx dy . (3.53d)

Remark. This example is relevant for a range of different problems, e.g. the steady-state temperature
distribution with a wall at a specified temperature, the electric potential with a conducting wall
held at a given potential, and the steady-state concentration of a solute with a wall kept at a
specified concentration.

More example. See questions 10-13 on Example Sheet 2 for some more examples.
14/19
14/20
14/21
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4 Cartesian Tensors

4.1 Vectors

We start be reviewing vectors since a vector is a particular example of a tensor, a first-order tensor.

Remark: number of dimensions. We will consider tensors in three dimensions, although most of the discus-
sion carries over straightforwardly to n dimensions. Hence, free suffices, as in vi, are assumed to range
through (1, 2, 3) without the need to explicitly say so.

A vector has a physical meaning (direction and magnitude)
independent of the coordinate system used. However, we
often think of a vector as a set of components (v1, v2, v3)
with respect to some coordinate system. The components
will in general be different in other coordinate systems, but
the vector will be the same.

For any coordinate system with a basis set of unit vectors
ei, where i = 1, 2, 3, we can write a vector v as

v = v1 e1 + v2 e2 + v3 e3 =
∑
i

vi ei . (4.1a)

Notation. We often refer to ‘the vector vi’, by which we
mean ‘the vector with components vi’ for a [known]
basis set of unit vectors.

Orthonormal basis. In an orthonormal coordinate system, ei · ej = δij , and so, from (4.1a),

v · ej = vj . (4.1b)

Cartesian Coordinates. We shall consider only Cartesian coordinate systems, i.e. orthonormal coordinate
systems where the ei are independent of position (compare with, for instance, cylindrical or spherical
polar coordinates).

Summation Convention. Recall that under Einstein’s summation convention the explicit sum,
∑

, can be
omitted for dummy suffices. In particular

� if a suffix appears once it is taken to be a free suffix and ranged through, and in the case of an
equation the free suffices should be identical on each side of an equation;

� if a suffix appears twice it is taken to be a dummy suffix and summed over;

� if a suffix appears more than twice in one term of an equation, something has gone wrong
(unless there is an explicit sum).

Examples. Under suffix notation and the summation convention

a + b = c can be written as ai + bi = ci ,

(a · b)c = d can be written as ai bi cj = dj ,

((a · b)c− (a · c)b)j can be written as ai bi cj − ak ck bj ,

or can be written as ai bi cj − ai ci bj ,

or can be written as ai(bi cj − ci bj) .

Under suffix notation the following equations make no sense

ak = bj because the free suffices are different,

((a · b)c)i = ai bi ci because i appears more than twice on the right-hand side.

Under suffix notation the following equation is problematical (and probably best avoided unless
you will always remember to double count the i on the right-hand side)

ni ni = n2
i because i occurs twice on the left-hand side and only once on the right-hand side.

We shall use the summation convention unless otherwise stated.
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Transforming between bases. Using the summation convention we can rewrite (4.1a) as

v = vj ej . (4.2a)

If we use a different set of Cartesian coordinates with unit vectors e′i, then from (4.1a) and (4.1b)

v = v′i e
′
i , v′i = e′i · v . (4.2b)

But we also have from (4.2a) that

e′i · v = e′i · ej vj = Lijvj , (4.2c)

where we define the transformation matrix L by

Lij ≡ e′i · ej . (4.2d)

Hence, from (4.2b) and (4.2c),
v′i = Lijvj or v′ = Lv , (4.2e)

where v′ and v are column vectors with components v′i and vi respectively.

Remark. It may look like we are rotating the vector but remember that v′ and v both represent the
same vector.

Relationship between basis vectors. Suppose that we consider the components of the [new] e′i basis
vectors with respect to the [old] ei basis vectors, then from (4.1a) or equivalently (4.2a), (4.1b)
and (4.2d),

e′i = (e′i · ej) ej = Lijej . (4.3)

Reversing the argument, i.e. by interchanging the primed and non-primed bases and components

vj = ej · v from (4.1b)

= ej · (v′ie′i) from (4.2b)

= Lijv
′
i from (4.2d), (4.4a)

i.e.

vj = LT
jiv
′
i or v = LTv′ . (4.4b)

Combining with (4.2e) we have that

v = LTv′ = LTLv or v′ = Lv = LLTv′ , (4.4c)

and so
LTL = I = LLT , (4.4d)

where I is the identity matrix/tensor. Hence the transformation matrix L is an orthogonal matrix.

Definition. A Cartesian vector v is a set of coefficients vi, defined with respect to a set of orthonormal
basis vectors ei, such that the coefficients v′i with respect to another orthonormal basis e′i are given
an orthogonal transformation of the form (4.2d) and (4.2e), i.e.

v′i = Lijvj where Lij = e′i · ej . (4.5)

Example: ∇. Consider the differential operator,

∇ = ei ∂i , where ∂i ≡
∂

∂xi
. (4.6a)

Is this a vector? Since from (4.4a), xj = Lkj x
′
k, and L does not depend on x′, we have that

∂xj
∂x′i

=
∂(Lkjx

′
k)

∂x′i
= Lkj

∂x′k
∂x′i

= Lkjδki = Lij . (4.6b)

Thus, using the chain rule,
∂

∂x′i
=
∂xj
∂x′i

∂

∂xj
= Lij

∂

∂xj
. (4.6c)

Therefore, from the definition (4.5), ∇ is a vector.

Remark. For more general straight-line coordinate systems, LT 6= L−1, and then ∇ is not a vector; one
has to distinguish between vectors and ‘co-vectors’, but there is no such distinction for Cartesian
coordinates.
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4.1.1 Axial-vectors

An orthogonal matrix has determinant ±1:

� those with det(L) = 1 are rotation matrices (‘proper rotations’),

� those with det(L) = −1 are the composition of a rotation with a reflection in some plane (‘improper
rotations’).

For example the matrices  cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 and

−1 0 0
0 −1 0
0 0 −1

 , (4.7)

are a rotation about the z-axis, and a reflection in the origin, and have determinant +1 and −1 respectively.

Consider a transformation from basis ei to e′i and then to e′′i . The components of a vector transform as

v′i = L
(1)
ij vj , v′′i = L

(2)
ij v
′
j ⇒ v′′i = L

(2)
ij L

(1)
jk vk . (4.8)

Therefore, if L(1) and L(2) are proper rotations, so is the composite transformation L(2)L(1), since rotations
form a subgroup. This is not true for improper rotations, since two reflections yield a rotation.

Definition. A Cartesian axial-vector (or pseudo-vector), a, is a set of coefficients ai, defined with respect to
a set of orthonormal basis vectors ei, such that the coefficients a′i with respect to another orthonormal
basis e′i are given by, cf. (4.5),

a′i = det(L)Lij aj . (4.9)

When det(L) = 1, i.e. we do not change the handedness of the coordinate system, this is the same as for a
vector, but it differs in sign when det(L) = −1.

Example. An example of an axial-vector is the angular momentum,
h = r × p, of a particle with momentum p at position r.a

Suppose that in the ei basis

r = (r, 0, 0) , p = (0, p, 0) , h = (0, 0, rp) . (4.10a)

Consider a reflectional transformation in the origin as given
by the second matrix in (4.7); then e′1 = −e1, e′2 = −e2 and
e′3 = −e3. In the e′i basis

r = (−r, 0, 0) , p = (0,−p, 0) , (4.10b)

and, because of the change in handedness,

h = (0, 0, rp) . (4.10c)

Hence, from (4.9), h is an axial-vector.

a We use h for angular momentum, rather than L, to avoid confusion with
the transformation matrix L.

Passive and active transformations. So far we have considered pas-
sive transformations, i.e. a change in the coordinate system,
without a physical change to the vector. An active transforma-
tion is a transformation which makes a physical change to the
vector, e.g. an active rotation or reflection. Active transforma-
tions provide an alternative way of looking at axial-vectors.

Example. Returning to the angular momentum example, con-
sider a physical reflectional transformation in the origin
(but keeping the same right-handed basis) so that

r′ = −r , p′ = −p . (4.11)

Although r and p change sign, the angular momentum
does not, consistent with h being an axial-vector.
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Remark. We will see later that the cross product of two vectors is always an axial-vector. Hence, because
∇ is a vector, the curl of a vector is an axial-vector (e.g. the magnetic field B is an axial-vector since
∂tB = −∇×E).

4.2 Tensors

Tensors are a generalisation of vectors. We can think of them as having some physical meaning independent
of the coordinate basis and we can measure their components in some coordinate system.

Suppose we have a relation between two vectors, for example the electric current density J arising when an
electric field E is applied to a material. For an isotropic material where the conductivity is the same in all
directions,

J = σE (4.12a)

where σ is the conductivity. However, if the conductivity is instead anisotropic, for example high in one
direction and low in the other directions, the generalised relation between current and field is

Ji = σijEj , (4.12b)

where the σij are the components of the conductivity tensor for a given coordinate basis, e.g. for conductor
laminated so as to be an insulator in the z-direction

σij =

1 0 0
0 1 0
0 0 0

 . (4.12c)

In a different basis the components of J, E and σ will change, say

J ′i = σ′ijE
′
j . (4.12d)

From the transformation law for vectors, (4.5),

J ′i = LilJl = LilσlmEm = LilσlmL
T
mjE

′
j , (4.12e)

and hence (
σ′ij − LilσlmLT

mj

)
E′j = 0 . (4.12f)

Since L and E are arbitrary, we deduce that, cf. (4.5),

σ′ij = LilLjmσlm , i.e. σ′ = LσLT . (4.12g)

Remark. Having two indices, σ is a tensor of order two.15/19
15/20
15/21 Definition. A Cartesian tensor, T, of order n (also known as a tensor of rank n) is a set of coefficients Ti1...in ,

labelled by n indices, defined with respect to a set of orthonormal basis vectors ei, and such that the
coefficients with respect to another orthonormal basis e′i = Lijej are given by the transformation law,

T ′ii...in = Li1j1 · · ·Linjn Tj1...jn . (4.13a)

Remark. A tensor of order zero is a scalar, i.e. a number. A tensor of order one is a vector.

Definition. A Cartesian pseudo-tensor E of order n is defined in a similar way to a tensor but there is an
additional det(L) factor in the transformation law:

E′ii...in = det(L)Li1j1 · · ·Linjn Ej1...jn . (4.13b)

Remarks

(i) When det(L) = 1, i.e. when there is no change in handedness of the coordinate system, this is the
same as for a tensor and so there is no distinction. However, it differs in sign when det(L) = −1, i.e.
for reflections.

(ii) Pseudo-tensors of first order, i.e. axial-vectors, have already been discussed in § 4.1.1.

(iii) A pseudo-scalar, i.e. an order-zero pseudo-tensor, is like a scalar but changes sign under reflections.
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4.2.1 The Kronecker delta δij and the Levi-Civita symbol εijk

Kronecker delta. The Kronecker delta, δij , has been defined without reference to a frame; i.e. it has been
assumed that its components are the same in all frames: δ′ij = δij . We can check that the Kronecker
delta is a second-order tensor using the definition (4.13a) and the orthogonality of L from (4.4d):

δ′ij = LipLjqδpq = LipLjp = δij . (4.14)

Levi-Civita symbol. Likewise, the Levi-Civita symbol, εijk, should be the same in all Cartesian coordinate
systems. While it has 27 components, it is sufficient to check one of the non-zero components, say
ε123 = 1. If it transformed as a tensor then, from (4.13a) and the definition of the determinant of a
3× 3 matrix,

ε′123 = L1pL2qL3rεpqr = det L , (4.15a)

However, this would imply that ε′123 = −1 under a reflection. Instead, the Levi-Civita symbol trans-
forms as a pseudo-tensor since, using the definition (4.13b),

ε′123 = det(L)L1pL2qL3rεpqr = (det L)2 = 1 . (4.15b)

With this definition, ε′123 = 1 in all frames as required. Therefore εijk is an pseudo-tensor of order 3.

Remark. δij and εijk are examples of isotropic tensors (see below).

4.2.2 Inertia tensors

Consider a rigid body of variable mass density ρ(x) within a volume V rotating with angular velocity ω.9

Then the angular momentum of an infinitesimal mass element dm = ρ(x)dV is

dmx× v = dmx× (ω × x) = dm
(
|x|2ω − (ω · x)x

)
. (4.16a)

It follows that the total angular momentum J is given by

Ji =

∫
V

ρ(x) (xkxkωi − ωjxjxi) dV =

∫
V

ρ(x) (xkxkδij − xjxi)ωj dV = Iijωj , (4.16b)

where I is here the inertia tensor of the rigid body (not the identity tensor) given by

Iij =

∫
V

ρ(x) (xkxkδij − xixj) dV . (4.16c)

It can be confirmed that I is a second-order tensor by applying the same arguments that were used to show
that the conductivity is a tensor.

Remark. The inertia tensor depends only on the properties of the rigid body, not on ω.

4.2.3 Electric and magnetic susceptibility tensors

Consider an electrical insulator (dielectric) in an external electric field E. No current flows because the
charges are not free to move. However, the field does induce an electric polarisation density (dipole moment
density), P, given by

Pi = ε0 χij Ej , (4.17a)

where χ is the electric susceptibility tensor. A related quantity is the molecular polarizability, α, that gives
the dipole moment of a molecule induced by a local electric field:

pi = ε0 αij E
local
j . (4.17b)

The magnetic susceptibility, χM , is defined in a similar way:

Mi = χMij Hj , (4.17c)

where M is the magnetisation (magnetic dipole moment per unit volume) and H is the magnetic field.

Again, the same arguments that were used to show that the conductivity is a tensor confirm that the
electric susceptibility, molecular polarizability and magnetic susceptibility are tensors (in the latter case it is
necessary to take into account that both the magnetisation and the magnetic field are pseudo-vectors).

9 Angular velocities are another example of axial-vectors.
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4.2.4 Stress and elastic strain tensors

In an elastic body, a local deformation due to applied forces (stresses) can be described by an elastic strain
tensor

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4.18a)

where u(x) is the displacement vector of a small volume element whose unstrained position is x.

The elements σij of the stress tensor, σ, are defined
as the xj component of forces acting on a plane per-
pendicular to the xi axis. A generalisation of Hooke’s
law (stress ∝ strain) gives, for certain materials,

σij = cijklekl , (4.18b)

where cijkl is the (fourth-order) stiffness tensor.

4.2.5 Piezo-electric strain tensor

The application of a stress to certain materials produces an electric polarisation that results in an electric
field. The electric polarisation density P is related to the applied stress σ by,

Pi = dijkσjk , (4.19)

where dijk is the (third-order) piezo-electric strain tensor.

4.3 Properties of Tensors

Addition. If Ai1...in and Bi1...in are tensors of order n, and α and β are scalars, then

Ci1...in = αAi1...in + βBi1...in (4.20a)

is an order-n tensor.

Proof.
C ′i1...in = α′A′i1...in + β′B′i1...in

= αLi1j1 . . . LinjnAj1...jn + βLi1j1 . . . LinjnBj1...jn

= Li1j1 . . . Linjn (αAj1...jn + βBj1...jn)

= Li1j1 . . . LinjnCj1...jn . (4.20b)

Outer (or tensor) product. If Ai1...in and Bi1...im are tensors of order n and m respectively, then

Ci1...inin+1...in+m
= Ai1...inBin+1...in+m

(4.21)

is a tensor of order n+m. The proof is a straightforward application of the transformation law.

Definition. This is called the outer (or tensor) product and written C = A⊗ B.

Remark. We can write a tensor as T = Ti1i2...in ei1 ⊗ ei2 . . .⊗ ein .

Pseudo-tensors (again). If instead A is a tensor of order n but B is a pseudo-tensor of order m, then
C = A⊗B is a pseudo-tensor of order n+m. The proof is again a straightforward application of
the transformation laws.

Contraction (or inner product). If Ti1j...im is a tensor of order m, then if we contract two indices (set equal
and sum over) we get a tensor of order m− 2, e.g.

Si1 ...ik−1ik+1...i`−1i`+1...im = Ti1...ik−1ikik+1...i`−1iki`+1...im . (4.22a)
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Proof.
S′α1 ...αk−1αk+1...α`−1α`+1...αm

= T ′α1...αk−1αkαk+1...α`−1αkα`+1...αm
.

= Lα1i1 . . . Lαkik . . . Lαki` . . . Lαmim Ti1...ik...i`...im

= (LαkikLαki`)Lα1i1 . . . Lαmim Ti1...ik...i`...im

= δiki`Lα1i1 . . . Lαmim Ti1...ik...i`...im

= Lα1i1 . . . . . . Lαmim Si1...im (4.22b)
16/19

Examples.

(i) If T is a tensor of order two then, from the definition of the inner product (4.22a), Tii = tr(T) is
a scalar.

(ii) Suppose u and v are vectors, then from the definition of the outer product (4.21), Tij = uivj is a
tensor of order two. It follows from (4.22a) that Tii = uivi = u ·v is a tensor of order zero; hence
u · v is scalar. ©

(iii) If A is an order-two tensor and u is a vector then, from (4.21) and (4.22a), vi = Aijuj is a vector,
since ‘(2+1)-2=1’.

(iv) If A and B are tensors of order two then, from (4.21) and (4.22a), AijBjk is a tensor of order
two, since ‘(2+2)-2=2’.

(v) The Levi-Civita symbol is used to define the cross product of two vectors:

(u× v)i = εijkujvk . (4.23)

Hence, because εijk is a third-order pseudo-tensor, this is an axial-vector, since ‘(3+1+1)-4=1’.16/20
16/21

4.4 Symmetric and Antisymmetric Tensors

Definitions. A tensor Tijk... is symmetric in a pair of indices α and β if

T...α...β... = T...β...α... , (4.24a)

and it is antisymmetric in α and β if

T...α...β... = −T...β...α... . (4.24b)

Symmetry/Antisymmetry is invariant. The (anti)symmetry property of pair of indices of a tensor is invari-
ant under a change of coordinate system.

Proof. If Tijk... is symmetric in, say, i and j then

T ′ijk... = LipLjqLkr . . . Tpqr... from (4.13a)

= LipLjqLkr . . . Tqpr... from (4.24a)

= LjqLipLkr . . . Tqpr... rearrange

= T ′jik... from (4.13a). (4.24c)

The proof for antisymmetry is similar.

Symmetric/antisymmetric contraction. If Sijk... is symmetric in, say, i and j and Apqr... is antisymmetric
in, say, p and q, then

Sijk...Aijr... = 0 . (4.24d)
Proof.

Sijk...Aijr... = −Sjik...Ajir... from (anti-)symmetry

= −Sijk...Aijr... from swapping dummy indices.
Hence

2Sijk...Aijr... = 0 . (4.24e)

Remarks.

� The Kronecker delta δij is symmetric, and the Levi-Civita symbol εijk is antisymmetric, in any
pair of indices.

� The inertia tensor and strain tensors are symmetric from their definitions (4.16c) and (4.18a)
respectively.

� In most situations, but not all, the stress tensor (4.18b) is also symmetric. The conductivity
tensor, (4.12b), and susceptibility tensors, e.g. (4.17a), are usually symmetric.
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4.5 Second-Order Tensors

Since a second-order tensor only has one pair of indices, if it is symmetric/antisymmetric in these indices
we can refer to the tensor as symmetric/antisymmetric. The matrices corresponding to symmetric and
antisymmetric second-order tensors are symmetric and antisymmetric respectively:

ST = S if S is symmetric, (4.25a)

AT = −A if A is antisymmetric. (4.25b)

Symmetric/antisymmetric decomposition. Any second-order tensor Tij can be uniquely decomposed into
the sum of a symmetric and an antisymmetric tensor:

Tij = Sij +Aij , where Sij = 1
2 (Tij + Tji) and Aij = 1

2 (Tij − Tji) . (4.26)

The equivalence of antisymmetric second-order tensors with axial-vectors. An antisymmetric second-order
tensor has only three independent components, and can be written as

Aij = −εijkωk =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4.27a)

where ω is known as the dual vector.10 We can check this by defining

ωk = − 1
2εklmAlm , (4.27b)

and then noting that

−εijkωk = 1
2εijkεklmAlm

= 1
2 (δilδjm − δimδjl)Alm

= 1
2 (Aij −Aji)

= Aij . (4.27c)

Since εijk is a pseudo-tensor, ω must be an axial-vector. So axial-vectors/pseudo-vectors are equivalent
to second-order antisymmetric tensors.

Symmetric tensor decomposition. Any symmetric second-order tensor, S, has a unique decomposition in
terms of a symmetric traceless tensor, S̃, and a scalar multiple of the identity I, i.e.

S = S̃ + 1
3 tr(S) I , where S̃ = S− 1

3 tr(S) I, (4.28a)
since

tr(S̃) = tr(S)− 1
3 tr(S) tr(I) = 0 . (4.28b)

Using the transformation law for tensors, (4.13a), it can be shown that S̃ is traceless in any Cartesian
coordinate system.

Example. An elastic body is subject to a simple shear so that the displacement u(x) at position x = (x, y, z)
is given by u = (γy, 0, 0) for some constant γ.

We can decompose ∂ui
∂xj

into symmetric and antisymmetric parts,

∂ui
∂xj

=

0 γ 0
0 0 0
0 0 0

 =

 0 1
2γ 0

1
2γ 0 0
0 0 0

+

 0 1
2γ 0

− 1
2γ 0 0
0 0 0

 , (4.29a)

where from (4.18a) the symmetric part is just the strain tensor, eij , and from (4.27a) and (4.27b), the
antisymmetric part can be written as −εijkωk where ω =

(
0, 0,− 1

2γ
)
.

This corresponds to writing

u =
(

1
2γy, 1

2γx, 0
)

+
(

1
2γy,− 1

2γx, 0
)

, (4.29b)

where the first term corresponds to a stretch at 45◦ to the x and y axes, while the second term is a
rotation.

10 Sign in definition changed on 06/03/21 to be consistent with Question 5 on Example Sheet 3, and convention!
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4.5.1 Diagonalisation of symmetric second-order tensors

Suppose that Sij is a symmetric second-order tensor with components relative to a coordinate system with
basis vectors ei (i = 1, 2, 3). The matrix of components, S, is symmetric, i.e. Hermitian. Hence from the
theory of last term, we know that S has three real eigenvalues, λi (i = 1, 2, 3), and three orthonormal
eigenvectors, e′i (i = 1, 2, 3), which, without loss of generality, we arrange in a right-handed set.

Now transform from the coordinate system with basis vectors ei, to a coordinate system with basis vectors e′i.
From (4.2d), L is the matrix with the components of the eigenvectors e′i as rows, i.e.

Lij = e′i · ej . (4.30a)

Hence

S LT = S (e′1 | e′2 | e′3) = (λ1e
′
1 |λ2e

′
2 |λ3e

′
3) . (4.30b)

Further, from (4.13a) or (4.12g),

S′ = LSLT =

 e′1
T

e′2
T

e′3
T


λ1e

′
1 λ2e

′
2 λ3e

′
3

 =

λ1 0 0
0 λ2 0
0 0 λ3

 , (4.30c)

because, for example, the top LHS entry is given by e′1 ·λ1e
′
1, and the top RHS entry is e′1 ·λ3e

′
3. Therefore,

we can diagonalise Sij with some appropriate rotation of the coordinate axes.

Principal values. The eigenvalues λ1,λ2,λ3 are known as the principal values of the tensor. The principal
values do not depend on frame; they are properties of the tensor not the coordinate system.

Principal axes. The Cartesian coordinate axes for which Sij is diagonal, i.e. the eigenvectors of Sij , are
known as principal axes.

Moments of inertia. The moments of inertia are the principal values of the inertia tensor (4.16c). If the
origin is taken to be the centre of mass of the rigid body, these are a property of the body itself. All
three are different for a generic irregular-shaped body. When two (or more) are equal, the body is said
to be ‘symmetric’.17/19

17/20
Example. Consider a thin circular disk of radius a and total mass M that is centred on the origin and lies

in the x3 = 0 plane. What are its moments of inertia?

From (4.16c)

Iij =
M

πa2

∫
V

(δijxkxk − xixj) δ(x3) dV

=
M

πa2

∫
Disk

(δijxkxk − xixj) dx1 dx2 . (4.31a)
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First consider the non-diagonal elements with i 6= j. Since x3 = 0 in the disk, I13 = I23 = I31 = I32 = 0.
Further, since by symmetry

∫ α
−α xj dxj = 0 for all α, I12 = I21 = 0. Hence Iij = 0 for i 6= j, i.e. I is

diagonal. The diagonal elements are given by

I11 =
M

πa2

∫ a

r=0

∫ 2π

φ=0

(
r2 − r2 cos2 φ

)
r dr dφ

= 1
4Ma2 = I22 , (4.31b)

I33 =
M

πa2

∫ a

r=0

∫ 2π

φ=0

r3 dr dφ = 1
2Ma2 . (4.31c)

This shows that the disk is a symmetric body with the x3-axis as a principal axis. Because I11 = I22,
the other two principal axes may be chosen to be any orthogonal directions in the x1x2-plane.17/21

4.6 Isotropic Tensors

Definition. An invariant tensor or an invariant pseudo-tensor is one which has the same components in all
frames, i.e.

T ′ijk... = Tijk... . (4.32)

Invariant tensors and invariant pseudo-tensors are both called isotropic tensors.

Remarks.

(i) All scalars are isotropic (from the transformation law for an order-zero tensor).

(ii) There are no non-zero isotropic vectors or isotropic axial-vectors.

(iii) From (4.14) it follows that δij is an isotropic tensor. Below we show that the most general
second-order isotropic tensor is λδij , where λ is a scalar.

(iv) The most general third-order isotropic tensor is λεijk, where λ is a scalar (see also below).

(v) The most general fourth-order isotropic tensor is

λ δijδkl + µ δikδjl + ν δilδjk , (4.33a)

where λ, µ and ν are scalars.

(vi) Isotropic tensors do not have any ‘preferred’ direction. For example, consider the conductivity
tensor σij of an isotropic medium, i.e. a medium that is the same in all directions. This should
be an isotropic tensor, and so σij = λδij . Therefore

Ji = σijEj = λδijEj = λEi or J = λE . (4.33b)

(vii) Do not confuse isotropic (no preferred direction) with homogeneous (the same at all points in
space, i.e. uniform).

4.6.1 Second-order isotropic tensors

Consider a general tensor T of rank two, with components
Tij with respect to some set of axes {e1, e2, e3}. Suppose that
T is isotropic. Its components should then be unaltered by
rotations.

First consider a rotation, L1, that sends the basis (e1, e2, e3)
to (e′1, e′2, e′3) = (e2, e3, e1). Since, (L1)ij = e′i · ej = ei+1 · ej
from (4.5), where we identify e4 = e1, it follows that

L1 =

e2 · e1 e2 · e2 e2 · e3

e3 · e1 e3 · e2 e3 · e3

e1 · e1 e1 · e2 e1 · e3

 . =

0 1 0
0 0 1
1 0 0

 . (4.34a)
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Then, from (4.13a) or (4.12g)

T′ = L1TL
T
1 (4.34b)

i.e. T ′11 T ′12 T ′13

T ′21 T ′22 T ′23

T ′31 T ′32 T ′33

 =

0 1 0
0 0 1
1 0 0

T11 T12 T13

T21 T22 T23

T31 T32 T33

0 0 1
1 0 0
0 1 0


=

T22 T23 T21

T32 T33 T31

T12 T13 T11

 . (4.34c)

Remark. Note that elements of T ′ij can be obtained from Tij by cyclically permutating the subscripts of Tij
by 1→ 2→ 3→ 1, as is the case for the basis vectors.

Because T is isotropic, T ′ij = Tij , so from comparing matrix
entries

T11 = T22 = T33 (4.34d)

T12 = T23 = T31 (4.34e)

T21 = T32 = T13 . (4.34f)

Next consider a rotation of π/2 about the x3-axis, so that
(e′1, e′2, e′3) = (e2,−e1, e3). The matrix L2 for this rotation is

L2 =

 0 1 0
−1 0 0
0 0 1

 . (4.34g)

T′ is given by T ′11 T ′12 T ′13

T ′21 T ′22 T ′23

T ′31 T ′32 T ′33

 =

 0 1 0
−1 0 0
0 0 1

T11 T12 T13

T21 T22 T23

T31 T32 T33

0 −1 0
1 0 0
0 0 1


=

 T22 −T21 T23

−T12 T11 −T13

T32 −T31 T33

 . (4.34h)

Remark. Note that elements of T ′ij can be obtained from Tij by permutating the subscripts such that 1→ 2,
2→ −1 and 3→ 3, as is the case for the basis vectors.

Hence, if T ′ij = Tij , we have that

T11 = T22; (4.34i)

T13 = T23 = −T13 so that T13 = T23 = 0; (4.34j)

T31 = T32 = −T31 so that T31 = T32 = 0. (4.34k)

Combining the results from the two rotations we conclude that all off-diagonal elements of T are zero, and
all diagonal elements are equal, i.e. Tij = λδij for some scalar λ.

In summary, we have shown that any isotropic second rank tensor must be equal to λδij for some scalar λ.

4.6.2 Third-order isotropic tensors

Consider a general tensor T of rank three that is isotropic, i.e such that for all rotations

T ′ijk = LipLjqLkrTpqr (4.35a)

First consider the effect of the rotation matrix L1 defined by (4.34a). Since the effect of L1 is to cyclically
permute 1→ 2→ 3→ 1, we conclude that if T ′ijk = Tijk then
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T111 = T222 = T333 , (4.35b)

T112 = T223 = T331 , T113 = T221 = T332, (4.35c)

T122 = T233 = T311 , T133 = T211 = T322, (4.35d)

T121 = T232 = T313 , T131 = T212 = T323, (4.35e)

T123 = T231 = T312 , T132 = T213 = T321. (4.35f)

Next consider the effect of the rotation matrix L2 defined by (4.34g). Then we require for T ′ijk = Tijk that

T111 = T222 = −T111 , (4.35g)

T112 = −T221 = −T112 , (4.35h)

T211 = −T122 = −T211 , (4.35i)

T121 = −T212 = −T121 , (4.35j)

T123 = −T213 . (4.35k)

Hence, from (4.35b) and (4.35g)
T111 = T222 = T333 = 0 , (4.35l)

and from (4.35c), (4.35d), (4.35h) and (4.35i)

T112 = T223 = T331 = T113 = T221 = T332 = 0 , (4.35m)

T122 = T233 = T311 = T133 = T211 = T322 = 0 , (4.35n)

T121 = T232 = T313 = T131 = T212 = T323 = 0 , (4.35o)

and from (4.35f) and (4.35k)

T123 = T231 = T312 = −T132 = −T213 = −T321 . (4.35p)

Hence Tijk differs from εijk by at most a scalar factor, i.e. any isotropic third rank tensor must be equal to
λεijk for some scalar λ.

4.6.3 Application to integrals

We consider four examples.

A vector integral over a sphere. Consider the integral over the sphere (which calculates the position of the
centre of mass for a radially symmetric density distribution)

X =

∫
r6a

x ρ(r) dV or Xi =

∫
r6a

xi ρ(r) dV , r2 = xixi . (4.36a)

Relabelling the integration variables we can write

Xi =

∫
r′6a

x′i ρ(r′) dV ′ . (4.36b)

Now make the substitution x′i = Rijxj for a rotation matrix R. The integration volume and the
function ρ are spherically symmetric, so r′ = r and dV ′ = dV , and since R is an orthogonal matrix,

Xi = Rij

∫
r6a

xjρ(r) dV = RijXj = X ′i . (4.36c)

from the definition, (4.5), of a vector. This equation says that Xi = X ′i, i.e. that X is an isotropic
vector. But the only isotropic vector is the zero vector, so we deduce that

X = 0 . (4.36d)

Check. Rewrite (4.36c) in matrix notation as (I− R)X = 0. This is valid for any rotation matrix, so
choose a rotation matrix for which the matrix (I− R) is invertible; it follows that X = 0.

Natural Sciences Tripos: IB Mathematical Methods II 63 © S.J.Cowley@maths.cam.ac.uk, Lent 2021



T
h

is
is

a
sp

ec
ifi

c
in

d
iv

id
u

a
l’

s
co

p
y

o
f

th
e

n
o
te

s.
It

is
n

o
t

to
b

e
co

p
ie

d
a
n

d
/
o
r

re
d

is
tr

ib
u

te
d

.

A second-order tensor integral over a sphere. Consider the integral

Kij =

∫
r6a

xixj ρ(r) dV . (4.37a)

A similar argument as above shows that, using the definition of a second-order tensor (4.13a),

Kij = RikRjlKkl = K ′ij . (4.37b)

This means that K is an isotropic tensor, and so

Kij = λδij , (4.37c)

for some scalar λ. Take the trace to deduce that,

λ = 1
3 tr(K) = 1

3

∫
r6a

r2 ρ(r) dV , (4.37d)

and hence that,

Kij =

(∫
r6a

1
3r

2ρ(r) dV

)
δij . (4.37e)

A second-order tensor integral over all space: unlectured. Calculate the following integral, where V is all of
space:

Kij =

∫
V

xixje
−r2 dV . (4.38a)

Using the result derived above

Kij =

(∫
V

1
3r

2e−r
2

dV

)
δij . (4.38b)

By straightforward integration∫
V

r2e−r
2

dV = 4π

∫ ∞
0

r4e−r
2

dr = 3
2

√
π3 . (4.38c)

Therefore
Kij = 1

2

√
π3 δij . (4.38d)

An inertia tensor. Another example is the inertia tensor of a sphere of radius a and mass M . The density
per unit volume is ρ = 3M/4πa3, and hence from (4.16c), (4.37c) and (4.37d)

Iij = ρ

∫
V

(xkxkδij − xixj) dV

=
3M

4πa3

(∫
V

(
r2 − 1

3r
2
)
dV

)
δij

=
M

2πa3

(∫
r6a

r2 dV

)
δij

=
2M

a3

∫ a

0

r4 dr δij

= 2
5Ma2 δij . (4.39)

4.7 Tensor Fields

Definition. A tensor field is a tensor that depends on position x.

Scalar fields. Scalar fields, i.e. zeroth-order tensor fields, include temperature T (x) and concentration Φ(x);
both are just ordinary functions of x.

Vector fields. A vector field is an first-order tensor field, e.g. the electric field E(x).

Higher-order tensor fields. In a conducting material, where the conductivity varies with position, σ(x) is a
second-order tensor field.

Other examples. Many of the other examples discussed in § 4.2 can be tensor fields if they vary with position,
e.g. susceptibilities, stress and strain tensors, the fourth-order stiffness tensor, and the third-order
piezo-electric strain tensor.
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4.7.1 Tensor differential operators

We have already seen, in (4.6c), that ∇, with components ∂i ≡ ∂
∂xi

, is a vector. Using the transformation
laws and/or the general properties of tensors discussed in § 4.3, we can deduce the following.

Gradient of a scalar. The gradient of a scalar field, Φ, is a vector field, ∂iΦ.

Divergence. The divergence of a vector field F is a scalar field, ∂iFi, since it is the contraction of a second-
order tensor formed from the outer product of two vectors.

Curl. The curl of a vector field F is an axial-vector field, εijk∂jFk, since it is the double contraction of
a fifth-order pseudo-tensor formed from the outer product of a third-order pseudo-tensor with two
vectors.

Laplacian. The Laplacian acting on a scalar field Φ is a scalar field, ∇Φ = ∂i∂iΦ, since it is the contraction
of a second-order tensor formed from the outer product of two vectors.

Derivative of a second-order tensor. The derivative of a second-order tensor, σ, is a third-order tensor field,
∂iσjk.

Remark. Remember that ∂i is an operator, and so the order is important.
18/19
18/20
18/20
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5 Contour Integration

This section explores properties of analytic functions and functions that contain singularities, and leads to
a new method for doing integrals such as∫ 2π

0

dθ

2(a− cos θ)
and

∫ ∞
0

dx

1 + x4
. (5.1)

In § 6 these methods will be applied to Fourier transforms.

5.1 Analytic Functions of a Complex Variable

Recall from last term that requiring a function of a complex
variable, z = x + iy, to be differentiable imposes a strong
constraint, i.e. that

df

dz
≡ f ′(z) = lim

δz→0

f(z + δz)− f(z)

δz
, (5.2)

must be finite and the limit must be the same when δz → 0
in any direction in the complex plane.

Definition. A function is analytic in some region of the complex plane if f ′(z) exists and is continuous in
that region. If f ′(z) exists and is continuous at z0, and is analytic in some region, however small,
around z0, then f(z) is analytic at z0 .

Definition. A function that is analytic everywhere in the complex plane is termed an entire function

Remark. We will see below that if f(z) is analytic at z = z0 then all of its derivatives exist at z0, not just
f ′(z), and it has a Taylor series,

f(z) =

∞∑
n=0

an(z − z0)n , an =
f (n)(z0)

n!
, (5.3)

which converges within some neighbourhood of z0.

Examples.

(i) f(z) = ez is analytic everywhere in the complex plane, i.e. it is an entire function.

(ii) f(z) = 1/z is analytic everywhere except at z = 0 where there is a simple pole.

(iii) f(z) = |z|2 is not analytic.

(iv) f(z) =
√
z is not analytic at the origin since not all the derivatives exist at the origin; indeed,√

z is not single-valued (see below).18/18

Cauchy-Riemann equations. Separating the function f(z) into real and imaginary parts,

f(z) = u(x, y) + i v(x, y) , (5.4a)

the requirement that the limit in (5.2) must be the same when δz → 0 in any direction in the complex
plane, leads to the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
. (5.4b)

Unlectured remark. Suppose that f is a [not necessarily analytic] function of the two variables x and y, i.e.
f ≡ f(x, y). We may, alternatively, view f as a function of the two variables z = x+iy and z∗ = x−iy,
i.e. f ≡ f(z, z∗). Further, since

x = 1
2 (z + z∗) , y = − 1

2 i (z − z∗) , (5.4c)

it follows from the chain rule that

∂

∂z

∣∣∣∣
z∗

=
1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z∗

∣∣∣∣
z

=
1

2

(
∂

∂x
+ i

∂

∂y

)
. (5.4d)
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If now we suppose that f is analytic, then it is only a function of z, and so

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

∂f

∂z∗

∣∣∣∣
z

= 0 . (5.4e)

If f = u+iv, then taking the real and imaginary parts of (5.4e) recovers the Cauchy-Riemann equations
(5.4b).

Definition. Last term you saw that if f(z) = u+ iv is analytic, the Cauchy-Riemann equations (5.4b) imply
that both u and v satisfy Laplace’s equation in two dimensions:

∂2u

∂x2
+
∂2u

∂y2
= 0 ,

∂2v

∂x2
+
∂2v

∂y2
= 0 . (5.4f)

Functions such as u and v are said to be harmonic. See also Question 1 on Example Sheet 4.

5.2 Contour Integrals

Consider an integral, ∫
C

f(z) dz , (5.5)

from z = α to β in the complex plane. We need to specify
the path or contour, C, along which we integrate.

For example, consider the integral
∫

1
z dz from z = −1 to

z = +1 along paths around half the unit circle

(i) clockwise (above the real axis),

(ii) anticlockwise (below the real axis).

Making the substitution z = eiθ, dz = ieiθdθ,

I1 =

∫
C1

1

z
dz =

∫ 0

π

ieiθ

eiθ
dθ =

∫ 0

π

i dθ = −iπ , (5.6a)

and

I2 =

∫
C2

1

z
dz =

∫ 2π

π

i dθ = +iπ . (5.6b)

Important remark. The result of a contour integration may depend on the contour.

Definition. As for a standard line integral, a contour integral can
be formally defined by introducing a partition of an in-
terval [α,β] of the form α = z0 < z1 < z2 < · · · < zN = β,
that divides C into small intervals δzk = zk − zk−1 for
k = 1, . . . ,N . Then we define,∫

C

f(z) dz = lim
∆→0

N−1∑
k=0

f(zk) δzk , (5.7)

where ∆ = max
k
|δzk| and N →∞ as ∆→ 0.

Properties. The following properties follow from this definition.

� If C1 is a contour from α to β, C2 is a contour from β to γ,
and C is C1 followed by C2, then∫

C

f(z) dz =

∫
C1

f(z) dz +

∫
C2

f(z) dz . (5.8a)
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� If C+ is a contour from α to β and C− is the contour in reverse,
then ∫

C+

f(z) dz = −
∫
C−

f(z) dz . (5.8b)

� If C is a closed contour, then it does not matter where we start
on C. However, if we reverse the direction of C the integral
changes sign, i.e.∮

anticlockwise

f(z) dz = −
∮

clockwise

f(z) dz . (5.8c)

� From (5.8a), we can split a closed contour into two parts:∮
C

f(z) dz =

∫
C1

f(z) dz +

∫
C2

f(z) dz . (5.8d)

� If the contour has length L then,∣∣∣∣∫
C

f(z) dz

∣∣∣∣ 6 L max
C
|f(z)| . (5.8e)

� We can use integration by parts and substitution.

5.3 Cauchy’s Theorem

Definition. A simply-connected domain (SCD) is a region R of the
complex plane without any holes; any closed curve in R encir-
cles points which are only in R.

Definition. A simple closed curve (SCC) is a continuous closed curve
of finite length that does not intersect itself; it divides the
complex plane into an interior region and an exterior region.

Theorem. Cauchy’s theorem states that if a function f(z) is analytic
in a simply-connected domain R, then for any simple closed
curve C in R, ∮

C

f(z) dz = 0 . (5.9a)

Proof. First recall that two-dimensional version of the divergence
theorem, i.e. Green’s theorem in a plane, for a vector p = (p, q)
states that∮

C

(−q dx+ p dy) =

∮
C

p · n dl

=

∫
R

∇ · p dS

=

∫
R

(
∂p

∂x
+
∂q

∂y

)
dx dy , (5.9b)

where R is the region inside C, and n is the exterior normal.

Hence, by expanding in real and imaginary parts, and using the Cauchy-Riemann equations (5.4b),∮
C

f(z) dz =

∮
C

(u+ iv) (dx+ idy)

=

∮
C

(u dx− v dy) + i

∮
C

(v dx+ u dy)

=

∫
R

(
−∂u
∂y
− ∂v

∂x

)
dx dy + i

∫
R

(
−∂v
∂y

+
∂u

∂x

)
dx dy

= 0 . (5.9c)
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5.3.1 Deforming contours

Consider two different contours, C1 and C2, from α to β. Then
if there are no singularities in the closed curve C = C1 − C2, it
follows from Cauchy’s theorem, (5.9a), that∮

C

f(z) dz =

∫
C1

f(z) dz −
∫
C2

f(z) dz = 0 . (5.10a)

Hence ∫
C1

f(z) dz =

∫
C2

f(z) dz . (5.10b)

Corollaries.

(i) We can deform a contour without changing the value
of the integral as long as we do not move the contour
across a singularity.

(ii) We can also deform a closed contour, if we can do
so without passing it through any singularities, to find
that, because the joins cancel,∮

C

f(z) dz =

∮
C1

f(z) dz −
∮
C2

f(z) dz

= 0 , (5.10c)

and hence that∮
C1

f(z) dz =

∮
C2

f(z) dz . (5.10d)19/19

Integration of the derivative. Suppose that f and f ′ are analytic in some simply-connected domain R. Con-
sider the integral from z = α to β in the complex plane, where α, β and the integration contour lie
in R, and parameterize the curve by s, where 0 6 s 6 1. Then∫ β

α

f ′(z) dz =

∫ 1

0

f ′(z(s))
dz

ds
ds

=

∫ 1

0

df(z(s))

ds
ds

=
[
f(z(s))

]1
0

= f(β)− f(α) . (5.11a)

Corollary (5.10d) confirms that this result is independent of the contour path within R, and hence
integration is the inverse of differentiation in the same sense as for real functions of a real variable.

Remarks.

(i) If f is entire, i.e. has no singularities anywhere, then the integral
∫ β
α
f(z) dz does not depend at

all on the path taken.

(ii) If f is analytic at z0 it can be written as g′ for some other function g that is analytic at z0. For
instance, using a Taylor series,

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n = g′ , g(z) =

∞∑
n=0

f (n)(z0)

(n+ 1)!
(z − z0)n+1 . (5.11b)

19/21

Examples.

(i) If f = z, then f is entire, and independent of path∫ i

0

z dz = 1
2 (i2 − 02) = − 1

2 . (5.12a)
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(ii) If f = ez, then f is entire, and independent of path∫ β

α

ez dz = eβ − eα . (5.12b)

(iii) If f = z−2, then f is analytic except at z = 0 where it has a
singularity. it is now necessary to specify a contour so that
it lies in a region where f is analytic, e.g. the straight line,
C, connecting 1 + i to −1 + i∫

C

1

z2
dz =

[
−1

z

]−1+i

1+i

= − 1

−1 + i
+

1

1 + i
= 1 . (5.12c)

19/20
(iv) Cauchy’s theorem, (5.9a), does not hold if there is a singu-

larity of f inside C, since f(z) is then not analytic in R.
Consider the case of f(z) = 1/z when C is a contour an-
ticlockwise around the unit circle. Then, from (5.6a) and
(5.6b) with C = C2 − C1,∮

C

f(z) dz =

∫
C2

1

z
dz −

∫
C1

1

z
dz

= i

∫ 2π

0

dθ = 2πi . (5.12d)

In this case the simple pole singularity of f(z) at z = 0
results in the non-zero answer.19/18

5.4 Residues

Definition. It can be shown that any function, which is analytic
and single-valued throughout an annulus α < |z − z0| < β
centred on z = z0, has a unique Laurent series about z = z0

which converges for all values of z within the annulus:

f(z) =

∞∑
n=−∞

an(z − z0)n (5.13)

= . . .
a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + . . . .

Remark. If f(z) has a single isolated singularity at z = z0, then
α > 0 can be made arbitrarily small.

Definition. If a−n = 0 for n > N but a−N 6= 0, f(z) is said to
have a pole of order N at z0.

Definitions. A pole of order one is a termed a simple pole, a pole of order two is termed a double pole, etc.
If there is no such N (i.e. the expansion in negative powers of z − z0 does not terminate) the point z0

is an essential singularity.

Definition. The coefficient a−1 is called the residue of the pole.

� For a simple pole,

res
z=z0

f(z) ≡ a−1 = lim
z→z0

{(z − z0)f(z)} = lim
z→z0

{
a−1 + a0(z − zo) + a1(z − z0)2 + . . .

}
. (5.14a)

� For a pole of order N ,

res
z=z0

f(z) ≡ a−1 = lim
z→z0

{
1

(N − 1)!

dN−1

dzN−1

[
(z − z0)Nf(z)

]}
. (5.14b)

= lim
z→z0

{
1

(N − 1)!

dN−1

dzN−1

[
a−N + · · ·+ a−1(z − z0)N−1 + a0(z − z0)N + . . .

]}
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5.4.1 Calculating example residues

(i) The function f(z) = ez/z3 has a pole of order 3 at z = 0. The Laurent series about z = 0 is

f =
ez

z3
=

1

z3

∞∑
r=0

zr

r!
=

1

0! z3
+

1

1! z2
+

1

2! z
+

1

3!
+ . . . . (5.15a)

Hence, the residue is 1
2 . Alternatively, we could use the formula, (5.14b), for the residue at z = 0 of a

triple pole:

lim
z→0

{
1

2!

d2

dz2

[
z3f(z)

]}
=

1

2
. (5.15b)

(ii) The function f(z) = (z8 − 1)−1 has 8 simple poles at z = eniπ/4

where n = 0, 1, 2, . . . , 7. We could evaluate the residue at, say, z = 1,
by factorising the denominator; however, using L’Hôpital’s rule is
more straightforward:

res
z=1

f(z) = lim
z→1

z − 1

z8 − 1
= lim
z→1

(z − 1)′

(z8 − 1)′
= lim
z→1

1

8z7
=

1

8
. (5.16)

(iii) The function f(z) = 1/ sinhπz has simple poles at z = in where n
is any integer. Using L’Hôpital’s rule again:

res
z=ni

f(z) = lim
z→in

z − in
sinhπz

= lim
z→in

1

π coshπz

=
1

π coshniπ

=
1

π cosnπ
=

(−1)n

π
. (5.17)

Alternatively, we could have used a Taylor series for sinhπz.

Remark. When calculating residues it can be a case of horses for courses, i.e. some methods are easier than
others depending on context.

Further examples can be found in Questions 2, 3 and 4 on Example Sheet 4.

5.5 Calculus of Residues

Consider the integral of a function,
∮
C
f(z) dz, anticlockwise around

a pole at z = z0, where C is a simple closed curve in a simply-
connected domain, within which the Laurent series converges.

Consider each term of the Laurent series, (5.13), separately.

For n > 0: ∮
C

an(z − z0)n dz = 0 , (5.18a)

from Cauchy’s theorem for analytic functions.

For n 6 −1, shrink the contour to a circle of radius ε about z0 and substitute z = z0 + εeiθ to obtain∮
C′
an(z − z0)n dz =

∫ 2π

0

anε
neinθ iεeiθ dθ = ianε

n+1

∫ 2π

0

ei(n+1)θ dθ

=

ianεn+1
[
ei(n+1)θ

i(n+1)

]2π
0

if n 6 −2

ianε
n+1 2π if n = −1

=

0 if n 6 −2

2πi a−1 if n = −1
. (5.18b)
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Therefore, from the form of the Laurent series (5.13), and playing fast and loose with re-ordering the
infinite series and the integral,∮

C

f(z) dz =

∞∑
n=−∞

∮
C

an(z − z0)n dz = 2πi a−1 = 2πi res
z=z0

f(z) . (5.18c)

Residue theorem. This result leads to the residue theorem which states that if a function f(z) is analytic
in a simply-connected domain R except for a finite number of poles at z = z1, z2, . . . zn, and C is a
simple closed curve that encircles the poles in an anticlockwise direction, then

1

2πi

∮
C

f(z) dz =

n∑
k=1

res
z=zk

f(z) . (5.19a)

Proof. To prove this, consider a new contour C ′ as shown.
C ′ doesn’t encircle any poles and so∮

C′
f(z) dz = 0. (5.19b)

We can express this integral as the sum of the integral
around C and integrals encircling each of the poles clock-
wise, Ck, i.e. C ′ = C +

∑
k Ck:∮

C′
f(z) dz =

∮
C

f(z) dz +
∑
k

∮
Ck

f(z) dz . (5.19c)

The ‘joining lines’ give zero net contribution because the
contribution going one way cancels with the contribution
going the other way. Using (5.19b), and the result we de-
rived for a contour encircling a single pole, (5.18c),

0 =

∮
C′
f(z) dz =

∮
C

f(z) dz − 2πi
∑
k

res
z=zk

f(z) . (5.19d)

The residue theorem, (5.19a), follows.
20/19

5.6 Cauchy’s Formula for f(z)

Cauchy’s formula. If f(z) is analytic in a region R containing z0,
then Cauchy’s formula states that,

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz , (5.20a)

where C is a simple closed curve in R encircling z0 anti-
clockwise.

Proof. Since f(z)/(z − z0) is analytic except for a simple pole at z = z0, from the residue theorem, (5.19a),

1

2πi

∮
C

f(z)

z − z0
dz = res

z=z0

(
f(z)

z − z0

)
= lim
z→z0

f(z) = f(z0) . (5.20b)

Remarks.

(i) If we know f(z) on C then, from Cauchy’s formula (5.20a), we know f(z) throughout the interior
of C.

(ii) Since the real and imaginary parts, u and v, of an analytic function satisfy Laplace’s equation,
this is equivalent to the uniqueness theorem for solutions of Laplace’s equation with Dirichlet
boundary conditions. In particular, if we specify u and v on C, then there is a unique solution for
u and v inside C; this is (3.49d), after relabelling, with ρ = 0 and with the Green’s function G
given by (3.39g).20/20
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(iii) If we differentiate Cauchy’s formula n times with respect to z0 we obtain

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz . (5.21)

Therefore, at any point where f is analytic, all its derivatives exist and it is differentiable infinitely
many times.

See also Question 5 on Example Sheet 4.20/21

5.7 The Point at Infinity

Some functions, f(z), tend to a definite limit as z → ∞ irrespective of the direction from which infinity is
approached; e.g. f(z) = 1/z goes to zero as |z| → ∞. Therefore, it sometimes makes sense to think of ∞ as
a single point, as illustrated by the stereographic projection of the complex plane onto the Riemann sphere,
a sphere with the south pole, say, at z = 0.

For any point on the plane we draw a line to the north
pole of the sphere; the point where the line intersects the
sphere is the equivalent point on the sphere. The south pole
is projected onto the origin. Circles of fixed latitude are
projected onto concentric circles centred on the origin.

Definition. The north pole is projected to all points on a
circle of infinite radius: think of this as a single point
at infinity.

We can study the behaviour of f(z) near the point at infin-
ity by defining a new complex variable

ζ =
1

z
. (5.22a)

The point at infinity in the z-plane is the origin in the ζ-plane, and vice-versa. Setting

g(ζ) = f(1/ζ) , (5.22b)

we can find a Laurent expansion for g about ζ = 0; if g has a singularity at ζ = 0 then f has this singularity
at infinity.

For example:

(i) if f(z) = zn, then g(ζ) = ζ−n has a pole of order n at ζ = 0, and f has a pole of order n at infinity.

(ii) if f(z) = ez, then g(ζ) = e1/ζ has an essential singularity at ζ = 0, and so f has an essential singularity
at infinity.

(iii) if f(z) = 1
z , then g = ζ has a simple zero at ζ = 0, which we interpret to mean that f(z) has a simple

zero at infinity.

Non-examinable remark. Care must be taken when combining the idea of a point at infinity with the residue
theorem because the residue is not strictly a property of f alone but of f dz. For example, if C is the
anticlockwise unit circle in the z-plane, then from (5.12d)

20/18

1

2πi

∮
C

dz

z
= 1 . (5.23a)

But C is the clockwise unit circle in the ζ-plane, so C may
also be viewed as a simple closed curve that encloses the
point at infinity in the z-plane. The integral is therefore
equal to minus the sum of the residues outside C.

As 1/z has no singularities in the complex plane away from
z = 0, the residue at z = ∞ must be −1, even though the
function 1/z is not singular there! This is indeed the case
because

dz

z
= −dζ

ζ
. (5.23b)
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5.8 Applications of the Calculus of Residues

We now consider some examples of using residue calculus. See also questions 6, 7 and 8 (parts i, ii and iii)
on Example Sheet 4.

5.8.1 Integrals involving trigonometric functions

How might we calculate the integral,

I =

∫ 2π

0

dθ

2(a− cos θ)
, (5.24a)

where a > 1 is a real constant?

Consider the substitution

z = eiθ . (5.24b)

This gives dz = iz dθ and cos θ = 1
2 (z + z−1), while the

integral between θ = 0 and 2π corresponds to the integral
over z around a unit circle C in the complex plane. Then,
from (5.24a),

I =

∮
C

dz

2iz
(
a− 1

2 (z + z−1)
)

= i

∮
C

dz

z2 − 2az + 1

= i

∮
C

dz

(z − z+)(z − z−)
, (5.24c)

where the integrand has simple poles at z± = a±
√
a2 − 1.

Because a > 1, it follows that 0 < z− < 1 and z+ > 1. Hence the pole at z− is inside C but that at z+ is
outside it. The residue at z− is

i

z− − z+
= − i

2
√
a2 − 1

. (5.24d)

Therefore, from the residue theorem (5.19a),

I =
π√
a2 − 1

. (5.24e)

Remark. The same method can be used for other integrals involving trigonometric functions.

5.8.2 Closing a contour at infinity

Suppose that we wish to calculate the integral

I =

∫ ∞
0

dx

x2 + 1
. (5.25a)

We already know how to do this using trigonometric substi-
tutions, but it is also possible to calculate it using residue
calculus. In particular, consider∮

C

dz

z2 + 1
=

∮
C0+CR

dz

(z + i)(z − i)
, (5.25b)

where C = C0 + CR consists of two parts: first a contour,
C0, from −R to +R along the real axis, and second a con-
tour, CR, clockwise along a semicircle of radius R in the
upper half-plane.
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The integrand has two simple poles, but only the one at z = i is enclosed by C. Hence, from the residue
theorem (5.19a), ∮

C

dz

z2 + 1
=

∮
C0+CR

dz

(z + i)(z − i)
= 2πi

1

2i
= π . (5.25c)

We also have that, using the symmetry of the integrand,∫
C0

dz

z2 + 1
≡
∫ R

−R

dz

z2 + 1
= 2

∫ R

0

dz

z2 + 1
→ 2 I as R→∞ . (5.25d)

Finally we need to consider the value of the integral along CR. On this semicircle, the integrand is O(R−2),
while the contour has length πR. Hence,∣∣∣∣∫

CR

dz

z2 + 1

∣∣∣∣ 6 ∫
CR

|dz|
min |z2 + 1|

6
πR

R2 − 1
→ 0 as R→∞ . (5.25e)

Combining (5.25c), (5.25d) and (5.25e), and taking the limit R→∞, we conclude that

I =
π

2
. (5.25f)

Generalisation to a double pole. Next consider the integral,

I =

∫ ∞
0

dx

(x2 + a2)2
, (5.26a)

where a > 0 is a real constant.
The analysis is very similar to the previous example. As
before, expand the integral to be over a closed curve:∮

C

dz

(z2 + a2)2
=

∮
C0+CR

dz

(z + ia)2(z − ia)2
. (5.26b)

The integrand has double poles at z = ±ia but the contour
only encloses the pole at z = +ia. The residue there is, from
(5.14b),

lim
z→ia

d

dz

1

(z + ia)2
= lim
z→ia

− 2

(z + ia)3
= − i

4a3
. (5.26c)

Similarly, by using the symmetry of the integrand as in (5.25d),∫
C0

dz

(z2 + a2)2
=

∫ R

−R

dx

(x2 + a2)2
→ 2I as R→∞. (5.26d)

Further, we can estimate the integral around the semicircle, CR, similarly as in (5.25e):∣∣∣∣∫
CR

dz

(z2 + a2)2

∣∣∣∣ 6 πR

(R2 − a2)2
→ 0 as R→∞ . (5.26e)

Therefore, we conclude that, on taking the limit R→∞,

2I = 2πi

(
− i

4a3

)
, i.e. I =

π

4a3
. (5.26f)

21/19

Generalisation to multiple poles. Finally, consider the integral

I =

∫ ∞
0

dx

x4 + 1
. (5.27a)

Again we adopt a similar approach and consider∮
C

dz

z4 + 1
=

∮
C0+CR

dz

(z − z1)(z − z2)(z − z3)(z − z4)
, (5.27b)
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where the integrand has simple poles at (−)
1
4 , i.e. at z1 = eiπ/4,

z2 = e3iπ/4, z3 = e−3iπ/4 and z4 = e−iπ/4. Only two of those
poles, i.e. those at z1 and z2, are enclosed by C. Using
L’Hôpital’s rule, these have residues

lim
z→z1

z − z1

z4 + 1
= lim
z→z1

1

4z3
= 1

4e
−3iπ/4 = − 1

4e
iπ/4 , (5.27c)

lim
z→z2

z − z2

z4 + 1
= 1

4e
−iπ/4 . (5.27d)

The contribution from CR can again be shown to tend to zero
as R→∞, hence in a similar way to above

2I = 2πi
(
− 1

4e
iπ/4 + 1

4e
−iπ/4

)
= π sin

π

4
, (5.27e)

i.e.

I =
π

2
√

2
. (5.27f)

21/20

Alternative method. Alternatively, we could use a contour, C ′ = C ′1 +C ′R +C ′2, that is confined to the
first quadrant, and that only encloses the pole at z1. Then, from (5.27c),∮

C′

dz

z4 + 1
= 2πi

(
res
z=z1

1

z4 + 1

)
= − iπ

2
eiπ/4 . (5.28a)

Again it is possible to show that the integral along C ′R tends to 0 as R→∞. It follows that

− iπ
2
eiπ/4 =

∫
C′1+C′R+C′2

dz

z4 + 1

= lim
R→∞

(∫ R

0

dx

x4 + 1
+

∫ 0

R

idy

(iy)4 + 1

)
substituting z = x and z = iy

= (1− i)
∫ ∞

0

dx

x4 + 1
= (1− i)I , (5.28b)

and so, as in (5.27f),

I =
π

2
√

2
. (5.28c)

21/21

5.9 Multi-Valued Functions and Branch Cuts

ln z. Not all complex functions have a single value for each complex point z = reiθ. For instance, the complex
function ln z = ln r + iθ has infinitely many values, or branches, because θ can take infinitely many
values, e.g.

ln i = . . . ,− 3
2 iπ, 1

2 iπ, 5
2 iπ, 9

2 iπ, . . .

=
(
2n+ 1

2

)
iπ for n ∈ Z. (5.29)

Consider the curves in the complex z-plane shown in
the figure. On C1 and C2 we can always choose θ to
be in some range no matter how many times we circle
the curve, e.g. 0 < θ < π

2 for C1 and π
2 < θ < 3π

2 for
C2. Consequently, ln z is continuous and single-valued
on such curves. However, this is not possible for C3

which encircles the origin, and where 2π is added to
θ each time the origin is circled. The consequence is
that ln z must either be multi-valued or discontinuous.

Definition. A point that cannot be encircled by a curve on which the function is continuous and single-
valued, is called a branch point ; the function has a branch point singularity at that point. In the
example of ln z there is a branch point at the origin.
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Further examples of branch points.

(i) ln(z − a) has a branch point at z = a.

(ii) ln(z2 − 1) = ln(z − 1) + ln(z + 1) has two branch points, i.e. at z = ±1.

(iii)
√
z =
√
reiθ/2 is double-valued and has a branch point at the origin. Unlike for a real function,

we can’t turn this into a single-valued function by just choosing the sign of
√
z because the sign

changes if we circle the origin once. Any function zα = rαeiαθ, where α is not an integer, has a
branch point at the origin.

(iv)
√
z2 − a2 =

√
z − a

√
z + a has two branch points, i.e. at z = ±a.

21/18

Definition. In order to make a function with a branch point continuous and single valued on a curve, it is
necessary that the curve does not encircle the branch point. To do this, introduce a branch cut that
no curve is permitted to cross.

Definition. Having introduced a branch cut, a branch of a function can be defined, e.g. in the neighbourhood
of the branch point by choosing values of θ in a 2π range around the branch point.

Example: ln z. The canonical (standard) branch cut for ln z
is along the real axis from −∞ to the origin, so that
−π < θ < π. With this choice of branch cut, the value
of ln z is called the principal value of the logarithm

Just above the cut, say at z = x+ i0+ with x < 0, the
argument θ = π and ln z = ln |x|+ iπ. Just below the
cut at z = x + i0−, θ = −π and ln z = ln |x| − iπ. If
a curve did cross the cut, ln z would be discontinuous
and so not analytic.

Remarks.

(i) There are, potentially, an infinite number of
branches.

(ii) The function is analytic everywhere on each
branch except on the branch cut.

(iii) The function is single-valued and continuous on
any curve that does not cross the cut.

(iv) Branch cuts need not be straight lines. In the
case of ln z, any continuous non-intersecting
curve from the branch point to infinity is accept-
able. However, the position of the cut is an essen-
tial part of the definition of the function because
the function is discontinuous across the cut.

Example: zα, α 6∈ Z. The same branch cut choices as for ln z can be made for zα = eα log z, where α is not
an integer. When α ∈ Q, i.e. when α is a rational, there are a finite number of branches (e.g.

√
z has

two branches), while when α is irrational there are an infinite number of branches (as for ln z).

Remark. Because of the branch cuts, neither ln z or zα have Laurent expansions about the origin; any
annulus α < |z| < β would be crossed by the branch cut and so the function would not be analytic in
the annulus.

Example:
√
z2 − 1. Consider

f(z) =
√
z2 − 1 =

√
z − 1

√
z + 1 , (5.30a)

a function that has branch points at z = ±1. Setting,

z − 1 = r1e
iθ1 and z + 1 = r2e

iθ2 , (5.30b)

we see that

f(z) =
√
r1r2e

i(θ1+θ2)/2 . (5.30c)
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If z = 1 is encircled by a small curve C1, then

θ1 → θ1 + 2π , θ2 → θ2 and 1
2 (θ1 + θ2)→ 1

2 (θ1 + θ2) + π . (5.30d)

Hence f(z) changes sign because eiπ = −1. The same applies to a small curve C2 encircling z = −1.
However, going around a curve C3 that encircles both branch points has the following effect:

θ1 → θ1 + 2π , θ2 → θ2 + 2π and 1
2 (θ1 + θ2)→ 1

2 (θ1 + θ2) + 2π . (5.30e)

Hence f(z) does not change sign because e2iπ = 1.

This means that we could introduce a branch cut that goes
from from z = −1 to z = +1; the simplest choice is to put
the cut on the real axis. The two branches of f(z) corre-
spond to specifying that f(z) is positive or negative on the
positive real axis.

Alternatively, we could introduce ‘two’ separate branch
cuts: one from each branch point to infinity.

Remark. These two branch cuts can be viewed as a single
branch cut that happens to pass through the point
at infinity. This is because the cut[s] can be smoothly
deformed until they lie along the real axis.

Remark. In general, when there is more than one branch point we may need more than one branch cut.

See also Question 9 on Example Sheet 4.

5.9.1 Contour integration around a branch cut

We illustrate contour integration around a branch cut by evaluating the integral

I =

∫ ∞
0

xα

1 +
√

2x+ x2
dx , (5.31a)

where −1 < α < 1.22/19

To this end, consider the contour integral∮
C

zα

1 +
√

2 z + z2
dz . (5.31b)

The integrand has a branch point at z = 0, and simple poles
at z1 = e3iπ/4 and z2 = e5iπ/4.

Choice of branch cut. As a rule of thumb, it is appropriate
to choose a branch cut along the integration range, i.e.
in this case along the positive real axis; we then define
the branch by choosing 0 6 θ < 2π, where z = reiθ.

It is then necessary to use a keyhole contour, C, in order
to avoid the branch point and the branch cut. We consider
the individual contributions from each part of the contour,
C = C1 + CR + C2 + Cε, in turn.

C1. The contribution from the contour, C1, just above the
branch cut is∫ R

ε

xα

1 +
√

2x+ x2
dx → I , (5.31c)

as ε→ 0 and R→∞.
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C2. Substituting z = re2πi into (5.31b), the contribution from the contour, C2, just below the branch cut is
(since z = r, z2 = r2 but zα = rαe2παi),∫ ε

R

rαe2παi

1 +
√

2r + r2
dr → −e2παi I as ε→ 0 and R→∞. (5.31d)

Cε. Substituting z = εeiθ into (5.31b), we obtain, since α > −1,∫
Cε

zα

1 +
√

2 z + z2
dz = εα+1

∫ 0

2π

ei(α+1)θ

1 +
√

2 εeiθ + ε2e2iθ
i dθ → 0 as ε→ 0. (5.31e)

CR. Substituting z = Reiθ into (5.31b), we obtain, since α < 1,∫
CR

zα

1 +
√

2 z + z2
dz = Rα+1

∫ 2π

0

ei(α+1)θ

1 +
√

2Reiθ +R2e2iθ
i dθ

= Rα−1

∫ 2π

0

ei(α+1)θ

R−2 +
√

2R−1eiθ + e2iθ
i dθ → 0 as R→∞. (5.31f)

Therefore, as ε→ 0 and R→∞,∮
C

zα

1 +
√

2z + z2
dz =

∮
C1+CR+C2+Cε

zα

(z − z1)(z − z2)
dz → (1− e2παi)I . (5.31g)

Because both poles are inside C, the residue theorem gives

res
z=z1

zα

(z − z1)(z − z2)
=

zα1
z1 − z2

=
e3παi/4

e3iπ/4 − e5iπ/4
, (5.31h)

res
z=z2

zα

(z − z1)(z − z2)
=

zα2
z2 − z1

=
e5παi/4

e5iπ/4 − e3iπ/4
. (5.31i)

Hence, from (5.31g),

(1− e2παi)I = 2πi

(
e3παi/4

i
√

2
− e5παi/4

i
√

2

)
, (5.31j)

and so

I =
√

2π
e−παi/4 − eπαi/4

e−παi − eπαi

=
√

2π
sin(απ/4)

sin(απ)
. (5.31k)

Further examples can be found in Question 8 (parts iv and v) on Example Sheet 4.22/20
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5.9.2 Contour integral around the EU

Date
∮

EU dl

Pre 23:00 GMT 31/01/20 2πi (43.8) 106

Post 23:00 GMT 31/01/20 2πi (43.0) 106

22/21
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6 Transform Methods

6.0 Introduction

This section concerns the applications of contour integration to Fourier transform methods. However, first
we need an important result.

6.1 Jordan’s Lemma

Consider

lim
R→∞

∫
CR

g(z)eiλz dz , (6.1a)

where

(i) λ > 0 is a real constant,

(ii) g(z) is analytic in the upper half-plane, Im z > 0,
except possibly at a finite number of poles,

(iii) the contour CR is a semicircle of radius R in the
upper half-plane.

Jordan’s Lemma. Jordan’s lemma states that if g(z)→ 0
uniformly on CR as R→∞, i.e. if, with z = Reiθ,

|g(Reiθ)| 6 G(R) for 0 < θ < π , (6.1b)

where G(R)→ 0 as R→∞, then

lim
R→∞

∫
CR

g(z)eiλz dz = 0 . (6.1c)

λ < 0. If instead λ < 0, with g(z) again being analytic in the lower half-plane except possibly at a finite
number of poles, then a similar result holds if the contour, C ′R, is taken to be a semicircle in the lower
half-plane.

Proof using an extra restriction on g. Suppose that g(z) satisfies the stronger bound

|g(Reiθ)| 6 µ

R2
as R→∞ , (6.2a)

where µ is a positive constant. Then, since for λ > 0 and y > 0,

|eiλz| = |eiλ(x+iy)| = e−λy 6 1 , (6.2b)

we have, using (5.8e) and substituting z = Reiθ, dz = iR eiθdθ and |dz| = Rdθ, that∣∣∣∣ lim
R→∞

∫
CR

g(z)eiλz dz

∣∣∣∣ 6 lim
R→∞

∫
CR

µ

R2
Rdθ

= lim
R→∞

2πµ

R
= 0 . . (6.2c)

Remark: λ < 0. A similar argument applies for λ < 0 in which case we consider y 6 0.

Proof using restriction (6.1b) on g. We start by observ-
ing that since the graph of sin θ is concave on the
interval 0 6 θ 6 π

2 , the graph of sin θ lies above the
straight line connecting its endpoints, i.e.

2
π θ 6 sin θ 6 1 for 0 6 θ 6 π

2 . (6.3a)
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Then, with z = Reiθ and dz = iReiθ dθ,∣∣∣∣∫
CR

g(z)eiλz dz

∣∣∣∣ 6 max
CR
|g(z)|

∫ π

0

∣∣eiλz∣∣ ∣∣Reiθ∣∣ dθ from (5.8e)

= max
CR
|g(z)|

∫ π

0

∣∣eiλxe−λy∣∣ ∣∣Reiθ∣∣ dθ with z = x+ iy

= R max
CR
|g(z)|

∫ π

0

e−λR sin θ dθ using y = R sin θ

= 2Rmax
CR
|g(z)|

∫ π/2

0

e−λR sin θ dθ using symmetry about θ = π
2

6 2R max
CR
|g(z)|

∫ π/2

0

e−2λRθ/π dθ using (6.3a)

=
π

λ

(
1− e−λR

)
max
CR
|g(z)|

→ 0 as R→∞ using (6.1b). (6.3b)

See Question 10 on Example Sheet 4.

6.1.1 Example using Jordan’s lemma

Consider the evaluation of

I =

∫ +∞

−∞

sinx

x
dx . (6.4a)

First note that the integrand, sinx/x, is well-behaved at the origin since, after extending into the complex
plane,

lim
z→0

sin z

z
= 1 . (6.4b)

Second, since sin z = 1
2i

(
eiz − e−iz

)
, it should be possible to apply Jordan’s lemma, but it will be necessary

to close the contour in the upper/lower half-plane in the case of eiz/e−iz respectively.

Method 1. Because sinx/x is well-behaved at the origin, de-
form the integration contour near the origin into the
lower half plane as illustrated, and then split the inte-
gral into two parts:

I =
1

2i

∫ +∞

−∞

eiz − e−iz

z
dz

=
1

2i

∫
CL∞

eiz

z
dz − 1

2i

∫
CL∞

e−iz

z
dz . (6.5a)

In the case of the first term, which has a simple pole
at z = 0, close a [finite] contour, CLR , with a contour
CRU in the upper half plane. Then, using the residue
theorem, (5.19a),

1

2πi

∮
CLR+CRU

eiz

z
dz = res

z=0

(
eiz

z

)
= 1 . (6.5b)

From Jordan’s lemma, (6.1c), the integral along CRU
tends to zero as R→∞.

In the case of the second term in (6.5a), close the CLR contour in the lower half plane with CRL . Then,
since no singularities are enclosed,

1

2πi

∮
CLR+CRL

e−iz

z
dz = 0 , (6.5c)
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where, from Jordan’s lemma (6.1c), the integral along CRL tends to zero as R→∞. From (6.5b) and
(6.5c) it follows from taking the limit R→∞, that

I =
1

2i

∫
CL∞

(
eiz

z
− e−iz

z

)
dz = π . (6.5d)

22/18

Method 2. Similar to (6.5a) split up the integral, but this time on the real axis:

I =
1

2i

(∫ +∞

−∞

eiz

z
dz −

∫ +∞

−∞

e−iz

z

)
dz

= Im

(∫ +∞

−∞

eiz

z
dz

)
from complex conjugation. (6.6a)

A difficulty now is that the contour passes through a pole, so instead consider the limit (actually a
Cauchy principal value)

I = Im lim
ε→0

lim
R→∞

(∫ −ε
−R

eiz

z
dz +

∫ R

ε

eiz

z
dz

)
. (6.6b)

Let C ′ be the contour as shown that encloses no poles. From Cauchy’s Theorem, (5.9a),∫ −ε
−R

eiz

z
dz +

∫
C′ε

eiz

z
dz +

∫ R

ε

eiz

z
dz +

∫
C′R

eiz

z
dz = 0 (6.6c)

On C ′ε, z = εeiθ and so,∫
C′ε

eiz

z
dz =

∫ 0

π

exp(iεeiθ)

εeiθ
iεeiθ dθ

= −i
∫ π

0

∞∑
r=0

irεreirθ

r!
dθ . (6.6d)

Thence

lim
ε→0

∫
C′ε

eiz

z
dz = −iπ . (6.6e)

Further, from Jordan’s lemma we know that the integral
around C ′R vanishes as R → ∞. Hence, taking the double
limit ε → 0 and R → ∞, it follows from (6.6b), (6.6c) and
(6.6e) that

I = Im(iπ) = π . (6.6f)

Remark. Similar methods can be used to evaluate, say,∫ +∞

−∞

sin2 x

x2
dx . (6.7)

6.2 Fourier Transform Methods

Fourier transform. Recall that the Fourier transform of a function f(x) of a real variable x is

f̃(k) ≡ F [f(x)] =

∫ +∞

−∞
f(x)e−ikx dx . (6.8a)

Inverse Fourier transform. The inverse Fourier transform,

f(x) ≡ F−1[f̃(k)] =
1

2π

∫ +∞

−∞
f̃(k)e+ikx dk , (6.8b)

follows from the result that
1

2π

∫ ∞
−∞

eik(x−x′) dk = δ(x− x′) . (6.8c)
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Warning. There are various definitions of Fourier transforms that differ in the signs of the exponents, and
in where the 2π is, or

√
2π are, placed.

Contour integrals. The integrals in (6.8a) and (6.8b) can be interpreted as contour integrals along the real
axis in the complex z-plane and complex k-plane respectively.23/19

6.2.1 Damped harmonic oscillator

Consider the equation for the amplitude x(t) of a driven damped harmonic oscillator,

ẍ(t) + 2γẋ(t) + ω2
0x(t) = f(t) , (6.9)

where f(t) is the forcing function, ω0 > 0 is real, and γ > 0 is real and represents the effects of damping
due to, say, friction.

Assume that x(t)→ 0 as |t| → ∞ so that we can define the Fourier transform, and its inverse, of x(t) as

x̃(ω) =

∫ +∞

−∞
x(t)e−iωt dt and x(t) =

1

2π

∫ +∞

−∞
x̃(ω)e+iωt dω , (6.10a)

where, as is conventional, we use ω as the Fourier variable when the function depends on t.

Last term it was shown that the Fourier transforms of the first and second derivative of a function are
related to the Fourier transform of the function by multiples of iω, i.e.

v(t) = ẋ(t) ⇔ ṽ(ω) = iωx̃(ω) and a(t) = ẍ(t) ⇔ ã(ω) = −ω2x̃(ω) . (6.10b)

Hence, by multiplying both sides of (6.9) by e−iωt and integrating over the real t axis, we deduce that(
−ω2 + 2iγω + ω2

0

)
x̃(ω) = f̃(ω) . (6.11a)

It follows that
x̃(ω) = f̃(ω) g̃(ω) , (6.11b)

where

g̃(ω) =
−1

ω2 − 2iγω − ω2
0

=
−1

(ω − ω+) (ω − ω−)
and ω± = iγ ±

√
ω2

0 − γ2 . (6.11c)

We can find x(t) by taking the inverse Fourier transform:

x(t) =
1

2π

∫ ∞
−∞

f̃(ω)g̃(ω) eiωt dω . (6.11d)

Recall that the convolution theorem states

h(t) =

∫ ∞
−∞

f(s)g(t− s) ds ⇔ h̃(ω) = f̃(ω)g̃(ω) . (6.12a)

Hence, we deduce that

x(t) =

∫ ∞
−∞

f(s)g(t− s) ds , (6.12b)

where, with τ = t− s,

g(τ) = F−1[g̃(ω)] = − 1

2π

∫ ∞
−∞

eiωτ dω

(ω − ω+) (ω − ω−)
. (6.12c)

23/20

Remark. This is equivalent to a solution using the Green function G(t, s) = g(t− s) of

L =
d2

dt2
+ 2γ

d

dt
+ ω2

0 . (6.13)

To complete the solution to the problem we now have to determine g(τ) by integrating over ω. We will do
this by employing a contour integral in the complex ω-plane.23/21
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If τ < 0, we choose a contour C that goes along the
real axis and is closed with a semicircle in the lower
half-plane. If τ > 0 we instead close the contour with a
semicircle in the upper half-plane. Since, from (6.11c),
g(ω)→ 0 as |ω| → ∞, Jordan’s lemma, (6.1c), implies
that in both cases the integral over the semicircle will
vanish. It then follows that

g(τ) =
1

2π

∫ ∞
−∞

g̃(ω)eiωτ dω

=
1

2π

(∫ ∞
−∞

+

∫
C∞

)
g̃(ω)eiωτ dω

=
1

2π

∮
C

g̃(ω)eiωτ dω . (6.14a)

As long as ω0 is real, so that ω2
0 > 0, it follows from (6.11c) that the poles at ω = ω± are both in the upper

half-plane. Therefore, from the residue theorem,

g(τ) = 0 when τ < 0 . (6.14b)

In other words, g(t − s) is zero if t < s. Suppose that the forcing term is not switched on until t = 0, i.e.
suppose that f(t) = 0 for t < 0, it follows from (6.12b) that

x(t) =

∫ ∞
0

f(s)g(t− s) ds = 0 for t < 0 . (6.14c)

Remark. This means that there is no response until the forcing term is switched on. This is causal behaviour,
i.e. effect follows cause and not the other way around. The Green’s function, G(t, s) ≡ g(t− s), is said
to be a causal Green’s function.

For τ > 0, there are two simple poles within C provided, as we [initially] assume, that γ 6= ω0. From (6.11c),
the residues at ω = ω± are given by

res
ω=ω±

(
1

2π
g̃eiωτ

)
=

−eiω±τ

2π (ω± − ω∓)
= ∓ e−γτe±iτ

√
ω2

0−γ2

4π
√
ω2

0 − γ2
. (6.14d)

Underdamped oscillator. For γ < ω0, the oscillator is said to be underdamped. We deduce from (6.14a) and
the residue theorem that

g(τ) =
e−γτ√
ω2

0 − γ2
sin

(
τ
√
ω2

0 − γ2

)
when τ > 0 . (6.14e)

Unit impulse. Suppose that there is a unit impulse at t = 0, i.e. f(t) = δ(t). It follows from (6.12b)
that x(t) = g(t), and hence from (6.14e) that the response to an impulsive force is oscillatory
with an amplitude that dies away exponentially over a time of order 1/γ. For γ � ω2

0 the main
effect of the damping term is to cause the oscillations to slowly reduce in amplitude rather than
change phase.

Overdamped oscillator. When γ > ω0 the oscillator is overdamped, and the damping prevents oscillation.
See Question 12 on Example Sheet 4.

Critically damped oscillator. When γ = ω0, i.e. when there is critical damping, for τ > 0 there is a double
pole at ω = iγ inside the contour C. Expanding the integrand of (6.14a) about ω = iγ we obtain,
using the residue formula (5.14b), that

res
ω=iγ

(
g̃eiωτ

2π

)
= res
ω=iγ

(
− eiωτ

2π (ω − iγ)
2

)

= lim
ω→iγ

{
d

dω

[
−e

iωτ

2π

]}
= − iτe

−γτ

2π
. (6.14f)

Hence the residue theorem yields

g(τ) = τe−γτ when τ > 0 . (6.14g)
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6.2.2 Gaussian integration lemma

The real integral

I =

∫ ∞
−∞

e−(u+c)2du , (6.15a)

where c is a real constant, can be evaluated by the substitution x = u+ c to obtain

I =

∫ ∞
−∞

e−x
2

dx =
√
π . (6.15b)

However, does this substitution continue to work if c = a+ ib is complex?

In this case extend the integral in to the complex plane,
and define a new complex variable z = u+ c. Then

I =

∫ ∞
−∞

e−(u+c)2du =

∫
Ci

e−z
2

dz , (6.15c)

where the contour Ci is the horizontal line in the com-
plex z-plane with Im z = Im c = b, as illustrated (on the
assumption, wlog, that b > 0).

The integrand e−z
2

is analytic everywhere and so the in-
tegral of e−z

2

around any closed contour is zero. In par-
ticular, consider the rectangular contour CR with vertices
at ±R and ±R+ ib.

Apply Cauchy’s theorem to this contour to obtain

0 = lim
R→∞

∮
CR

e−z
2

dz

= lim
R→∞

{∫ R

−R
e−z

2

dz +

∫ b

0

e−(R+iy)2 i dy +

∫ −R+ib

R+ib

e−z
2

dz +

∫ 0

b

e−(−R+iy)2 i dy

}

=
√
π − I + lim

R→∞
2e−R

2

∫ b

0

ey
2

sin (2Ry) dy . (6.15d)

In the limit R→∞ the final term tends to zero, and so we deduce that, for any complex number c,

I =

∫ ∞
−∞

e−(u+c)2du =
√
π . (6.15e)

6.2.3 Solution to the diffusion equation

Consider the temperature θ(x, t) in an infinite one-
dimensional bar with no source of heat. Then the tem-
perature θ satisfies the diffusion equation, cf. (3.3b),

∂θ

∂t
= λ

∂2θ

∂x2
, (6.16a)

where λ is the diffusion constant. Suppose that the initial
temperature distribution at t = 0 is known,

θ(x, 0) = θ0(x) , (6.16b)

and that we want to determine θ(x, t) at later times,
t > 0.

This problem can be solved by taking the Fourier transform of θ with respect to x, where from (6.8a) and
(6.8b),

θ̃(k, t) =

∫ ∞
−∞

θ(x, t) e−ikx dx , θ(x, t) =
1

2π

∫ ∞
−∞

θ̃(k, t) eikx dk . (6.17a)
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Recalling that Fourier transforms of the second derivative of a function is related to the Fourier transform
of the function by a multiple of −k2 , cf. (6.10b), we find, on taking the Fourier transform of the diffusion
equation (6.16a), that

∂θ̃(k, t)

∂t
= −λk2θ̃(k, t) . (6.17b)

The solution of this [ordinary] differential equation is

θ̃(k, t) = θ̃0(k)e−λk
2t , (6.17c)

where

θ̃0(k) = θ̃(k, 0) =

∫ ∞
−∞

e−ikx θ0(x) dx . (6.17d)

Rewrite equation (6.17c) as

θ̃(k, t) = θ̃0(k)G̃(k, t) , (6.18a)

where

G̃(k, t) = e−λk
2t . (6.18b)

Then, from the convolution theorem (6.12a), θ(x, t) is given by

θ(x, t) =

∫ ∞
−∞

θ0(y)G(x− y, t) dy , (6.18c)

where, from the inverse Fourier Transform formula given in (6.17a),

G(x, t) =
1

2π

∫ ∞
−∞

e+ikx−λk2t dk . (6.18d)

To evaluate (6.18d), introduce a new integration variable u =
√
λt k, complete the square in u, and use the

Gaussian integration lemma to obtain

G(x, t) =
e−

x2

4λt

2π
√
λt

∫ ∞
−∞

e
−
(
u− ix

2
√
λt

)2

du

=
e−

x2

4λt

√
4πλt

from (6.15e) . (6.18e)

Hence from (6.18c)

θ(x, t) =
1√

4πλt

∫ ∞
−∞

θ0(y) e−
(x−y)2

4λt dy . (6.18f)

To proceed further we need θ0(x). For example, sup-
pose that,

θ0(x) = H(x) =

{
1 x > 0

0 x < 0
. (6.19a)

This might arise from an idealisation of two long bars,
joined by an insulating layer, with each bar held at
a constant temperature until the insulating layer is
removed allowing heat to diffuse from one bar to the
other.

Then, from (6.18f),

θ(x, t) =
1√

4πλt

∫ ∞
0

e−
(x−y)2

4λt dy =
1√
π

∫ ∞
− x√

4λt

e−v
2

dv with v = (y − x)/
√

4λt

=
1√
π

[∫ ∞
0

e−v
2

dv +

∫ x√
4λt

0

e−v
2

dv

]

=
1

2

[
1 + erf

(
x√
4λt

)]
, (6.19b)
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where

erf(y) ≡ 2√
π

∫ y

0

e−v
2

dv , (6.19c)

is the error function.

The error function

� is an odd function of y,

� has the asymptotic values erf(−∞) = −1 and
erf(∞) = 1.

Checks. The initial conditions, (6.19a), are recovered
in (6.19b) as t → 0. Further, as might be ex-
pected, θ(x, t)→ 1

2 as t→∞ for fixed x.

For more examples see Questions 11-13 on Example Sheet 4.24/19
24/20
24/21

Natural Sciences Tripos: IB Mathematical Methods II 88 © S.J.Cowley@maths.cam.ac.uk, Lent 2021


	Contents
	Introduction
	Schedule
	Books
	Course Website
	Lectures
	Example Sheets
	Examples Classes
	Acknowledgements

	Sturm-Liouville Theory
	Why Study This?
	Introduction
	Inner Products
	Adjoint and Self-Adjoint Operators
	The Sturm-Liouville Operator
	The Rôle of the Weight Function
	Eigenvalues and Eigenfunctions
	Eigenvalues of a self-adjoint operator are real
	Eigenfunctions of a self-adjoint operator with distinct eigenvalues are orthogonal

	Eigenfunction Expansions
	Solution of Differential Equations
	Approximation via Eigenfunction Expansions

	Calculus of Variations
	Functionals
	Functional Derivatives
	The Euler-Lagrange equation
	A first integral of the Euler-Lagrange equation
	Examples

	Variational Principles
	Fermat's principle
	Hamilton's principle

	Constrained Variation and Lagrange Multipliers
	Estimating Eigenvalues: The Rayleigh-Ritz Method
	Extension to higher eigenvalues (non-examinable)


	Laplace's and Poisson's Equations
	Physical Origins
	Poisson's equation
	Laplace's equation
	Diffusion equation
	Electrostatics
	Gravitation
	Schrödinger's equation
	Ideal fluid flow

	Separation of Variables for Laplace's Equation
	Plane polar coordinates
	Spherical polar coordinates (axisymmetric case)

	Uniqueness of Solutions of Poisson's Equation
	The Green's Function and the Fundamental Solution
	The fundamental solution in three dimensions
	The fundamental solution in two dimensions

	The Method of Images
	Three-dimensional half-space
	Two-dimensional quarter-plane
	Heat source in a three-dimensional half-space bounded by a constant temperature wall
	Heat source near an insulated wall
	Images in a sphere
	Images in a circle

	The Integral Solution of Poisson's Equation

	Cartesian Tensors
	Vectors
	Axial-vectors

	Tensors
	The Kronecker delta  and the Levi-Civita symbol 
	Inertia tensors
	Electric and magnetic susceptibility tensors
	Stress and elastic strain tensors
	Piezo-electric strain tensor

	Properties of Tensors
	Symmetric and Antisymmetric Tensors
	Second-Order Tensors
	Diagonalisation of symmetric second-order tensors

	Isotropic Tensors
	Second-order isotropic tensors
	Third-order isotropic tensors
	Application to integrals

	Tensor Fields
	Tensor differential operators


	Contour Integration
	Analytic Functions of a Complex Variable
	Contour Integrals
	Cauchy's Theorem
	Deforming contours

	Residues
	Calculating example residues

	Calculus of Residues
	Cauchy's Formula 
	The Point at Infinity
	Applications of the Calculus of Residues
	Integrals involving trigonometric functions
	Closing a contour at infinity

	Multi-Valued Functions and Branch Cuts
	Contour integration around a branch cut
	Contour integral around the EU


	Transform Methods
	Introduction
	Jordan's Lemma
	Example using Jordan's lemma

	Fourier Transform Methods
	Damped harmonic oscillator
	Gaussian integration lemma
	Solution to the diffusion equation



