
7 Green’s Functions for Ordinary Differential Equations

One of the most important applications of the δ-function is as a means to develop a sys-

tematic theory of Green’s functions for ODEs. Consider a general linear second–order

differential operator L on [a, b] (which may be ±∞, respectively). We write

Ly(x) = α(x)
d2

dx2
y + β(x)

d

dx
y + γ(x)y = f(x) , (7.1)

where α, β, γ are continuous functions on [a, b], and α is nonzero (except perhaps at a

finite number of isolated points). We also require the forcing term f(x) to be bounded in

[a, b]. We now define the Green’s function G(x; ξ) of L to be the unique solution to the

problem

LG = δ(x− ξ) (7.2)

that satisfies homogeneous boundary conditions29 G(a; ξ) = G(b; ξ) = 0.

The importance of the Green’s function comes from the fact that, given our solution

G(x, ξ) to equation (7.2), we can immediately solve the more general problem Ly(x) = f(x)

of (7.1) for an arbitrary forcing term f(x) by writing

y(x) =

∫ b

a
G(x; ξ) f(ξ) dξ . (7.3)

To see that it does indeed solve (7.1), we compute

Ly(x) = L
[∫ b

a
G(x, ξ) f(ξ) dξ

]
=

∫ b

a
[LG(x, ξ)] f(ξ) dξ

=

∫ b

a
δ(x− ξ) f(ξ) dξ = f(x) ,

(7.4)

since the Green’s function is the only thing that depends on x. We also note that the

solution (7.3) constructed this way obeys y(a) = y(b) = 0 as a direct consequence of these

conditions on the Green’s function.

The important point is that G depends on L, but not on the forcing term f(x). Once

G is known, we will be able write down the solution to Ly = f for an arbitrary force

term. To put this differently, asking for a solution to the differential equation Ly =

f is asking to invert the differential operator L, and we might formally write y(x) =

L−1f(x). Equation (7.3) shows what is meant by the inverse of the differential operator L
is integration with the Green’s function as the integral kernel.

7.1 Construction of the Green’s function

We now give a constructive means for determining the Green’s function. (We’ll see later

how this compares to the eigenfunction expansion for inverting Sturm–Liouville operators

that we gave in 2.6.)

29Other homogeneous boundary conditions are also possible, but for clarity will will treat only the simplest

case G(a, ξ) = G(b, ξ) = 0 here.
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Our construction relies on the fact that whenever x #= ξ, LG = 0. Thus, both for

x < ξ and x > ξ we can express G in terms of solutions of the homogeneous equation. Let

us suppose that {y1, y2} are a basis of linearly independent solutions to the second–order

homogeneous problem Ly = 0 on [a, b]. We define this basis by requiring that y1(a) = 0

whereas y2(b) = 0. That is, each of y1,2 obeys one of the homogeneous boundary conditions.

On [a, ξ) the Green’s function obeys LG = 0 and G(a, ξ) = 0. But any homogeneous

solution to Ly = 0 obeying y(a) = 0 must be proportional to y1(x), with a proportionality

constant that is independent of x. Thus we set

G(x, ξ) = A(ξ) y1(x) for x ∈ [a, ξ) . (7.5)

Similarly, on (ξ, b] the Green’s function must be proportional to y2(x) and so we set

G(x, ξ) = B(ξ) y2(x) for x ∈ 9ξ, b] . (7.6)

Note that the coefficient functions A(ξ) and B(ξ) may depend on the point ξ, but must be

independent of x.

This construction gives us families of Green’s function for x ∈ [a, b] − {ξ}, in terms

of the functions A and B. We must now determine how these two solutions are to be

joined together at x = ξ. Suppose first that G(x, ξ) was discontinuous at x = ξ, with

the discontinuity modelled by a step function. Then ∂xG ∝ δ(x − ξ) and consequently

∂2
xG ∝ δ′(x−ξ). However, the form of equation (7.2) shows that LG involves no generalized

functions beyond δ(x − ξ), and in particular contains no derivatives of δ-functions. Thus

we conclude that G(x, ξ) must be continuous throughout [a, b] and in particular at x = ξ.

However, integrating equation (7.2) over an infinitesimal neighbourhood of x = ξ we

learn that
∫ ξ+ε

ξ−ε

[
α(x)

∂2G

∂x2
dx+ β(x)

∂G

∂x
dx+ γ(x)G

]
dx =

∫ ξ+ε

ξ−ε
δ(x− ξ) dx = 1 . (7.7)

We have already seen that G(x, ξ) is continuous, and all three coefficient functions α,β, γ

are bounded by assumption, so the final term on the lhs contributes zero as we make the

integration region infinitesimally thin. Also, since G is continuous, ∂xG must be bounded

so the term β∂xG also cannot contribute as the integration region shrinks to zero size.

Finally, since α is continuous we have

lim
ε→0+

∫ ξ+ε

ξ−ε
α(x)

∂2G

∂x2
dx = α(ξ)

[
∂G

∂x

∣∣∣∣
x=ξ+

− ∂G

∂x

∣∣∣∣
x=ξ−

]
. (7.8)

To summarize, we must glue the Green’s functions (7.5) & (7.6) according to the conditions

G(x, ξ)|x=ξ− = G(x, ξ)|x=ξ+ continuity

∂G

∂x

∣∣∣∣
x=ξ−

− ∂G

∂x

∣∣∣∣
x=ξ−

=
1

α(ξ)
jump in derivative.

(7.9)

In terms of (7.5) & (7.6) these conditions become

A(ξ) y1(ξ) = B(ξ) y2(ξ) and A(ξ) y′1(ξ)−B(ξ) y′2(ξ) =
1

α(ξ)
. (7.10)
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These are two linear equations for A and B, determining them to be

A(ξ) =
y2(ξ)

α(ξ)W (ξ)
and B(ξ) =

y1(ξ)

α(ξ)W (ξ)
, (7.11)

where

W (x) ≡ y1y
′
2 − y2y

′
1 (7.12)

is known as the Wronskian of y1 and y2. Note that the Wronskian is evaluated at x = ξ in

equation (7.11).

To conclude, we have found that the solutionG(x, ξ) of LG = δ(x−ξ) obeyingG(a, ξ) =

G(b, ξ) = 0 is given by

G(x; ξ) =






y1(x)y2(ξ)

α(ξ)W (ξ)
a ≤ x < ξ

y2(x)y1(ξ)

α(ξ)W (ξ)
ξ < x ≤ b

=
1

α(ξ)W (ξ)
[Θ(ξ − x) y1(x)y2(ξ) +Θ(x− ξ) y2(x)y1(ξ)]

(7.13)

where Θ is again the step function. Hence the solution to Ly = f is

y(x) =

∫ b

a
G(x; ξ) f(ξ) dξ

= y2(x)

∫ x

a

y1(ξ)

α(ξ)W (ξ)
f(ξ) dξ + y1(x)

∫ b

x

y2(ξ)

α(ξ)W (ξ)
f(ξ) dξ .

(7.14)

The integral over ξ here is separated at x into two parts, (i)
∫ x
a and (ii)

∫ b
x . In the range

of (i) we have ξ < x so the second line of equation (7.13) for G(x; ξ) applies, even though

this expression incorporates the boundary condition at x = b. For (ii) we have x > ξ so

we use the G(x; ξ) expression from the first line of equation (7.13) that incorporates the

boundary condition at x = a.

As an example of the use of Green’s functions, suppose we wish to solve the forced

problem

Ly = −y′′ − y = f(x) (7.15)

on the interval [0, 1], subject to the boundary conditions y(0) = y(1) = 0. We follow our

procedure above. The general homogeneous solution is c1 sinx + c2 cosx so we can take

y1(x) = sinx and y2(x) = sin(1−x) as our homogeneous solutions satisfying the boundary

conditions at x = 0 and x = 1, respectively. Then

G(x; ξ) =

{
A(ξ) sinx 0 ≤ x < ξ

B(ξ) sin(1− x) ξ < x ≤ 1 .
(7.16)

Applying the continuity condition we get

A sin ξ = B sin(1− ξ) (7.17)
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while the jump condition gives

B(− cos(1− ξ))−A cos ξ = −1 . (7.18)

where we note that α = −1. Solving these two equations for A and B gives the Green’s

function

G(x; ξ) =
1

sin 1
[Θ(ξ − x) sin(1− ξ) sinx+Θ(x− ξ) sin(1− x) sin ξ] (7.19)

Using this Green’s function we are immediately able to write down the complete solution

to −y′′ − y = f(x) with y(0) = y(1) = 0 as

y(x) =
sin(1− x)

sin 1

∫ x

0
f(ξ) sin ξ dξ +

sinx

sin 1

∫ 1

x
f(ξ) sin(1− ξ) dξ. (7.20)

where again only the second term for G in (7.19) contributes in the first integration region

where ξ > x, while only the first term for G contributes to the integral over the region

ξ < x.

7.2 Physical interpretation of the Green’s function

We can think of the expression

y(x) =

∫ b

a
G(x; ξ) f(ξ) dξ (7.21)

as a ‘summation’ (or integral) of individual point source effects, each of strength f(ξ), with

G(x; ξ) describing the effect at x of a unit point source placed at ξ.

To illustrate this with a physical example, consider again the wave equation for a

horizontal elastic string with ends fixed at x = 0, L. If y(x, t) represents the small vertical

displacement transverse to the string, we found that T∂2
xy = µ ∂2

t y. Also including the

effect of gravity acting in the vertical direction leads to

T
∂2y

∂x2
− µg = µ

∂2y

∂t2
(7.22)

for x ∈ [0, L] with y(0) = y(L) = 0. Here, T is the constant tension in the string and µ is

the mass density per unit length, which may vary with x.

When the string is at rest, its profile obeys the steady state equation

∂2y

∂x2
=

µ(x)g

T
, (7.23)

whose solution describes the shape of a (non–uniform) string hanging under gravity. We’ll

be interested in these steady state solutions. We consider three cases. Firstly, suppose µ is

a (non–zero) constant then equation (7.23) is easily integrated and we find the parabolic

shape

y(x) =
µg

2T
x(x− L) . (7.24)

that obeys y(0) = y(L) = 0.
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In the second case, suppose instead that the string itself is very light, but that it has a

metal bead attached at a point x = ξ. We treat the bead as a point mass m, and assume

it is not too heavy. To find its location, let θ1 and θ2 be the angles the string makes on

either side of the bead. Resolving forces vertically, the equilibrium condition is

mg = T (sin θ1 + sin θ2) ≈ T (tan θ1 + tan θ2) (7.25)

where the small angle approximation sin θ ≈ tan θ will hold provided the mass m is suffi-

ciently small. (Note also that y < 0 since the bead pulls the string down.) Thus the point

mass is located at (x, y) = (ξ, y(ξ)) where

y(ξ) =
mg

T

ξ(ξ − L)

L
. (7.26)

Since the string is effectively massless on either side of the bead, gravity does not act there,

so the only force felt by the string at x #= ξ is the (tangential) tension. Thus the string

must be straight either side of the point mass and so

y(x) =
mg

T
×






x(ξ − L)

L
for 0 ≤ x < ξ,

ξ(x− L)

L
for ξ < x ≤ L

(7.27)

gives the steady–state shape of this string.

We obtained this answer from physical principles; let’s now rederive it using the Green’s

function. For the case of a point mass at x = ξ, we take the mass density to be µ(x) =

m δ(x− ξ) so that the steady–state equation becomes

∂2y

∂x2
=

mg

T
δ(x− ξ) . (7.28)

The differential operator ∂2/∂x2 is a (very simple) self–adjoint operator and the rhs is a

forcing term. We look for a Green’s function G(x, ξ) that obeys

∂2G

∂x2
= δ(x− ξ) (7.29)

subject to the boundary conditions G(0, ξ) = G(L, ξ) = 0. Following our usual procedure,

we have the general solutions

G(x, ξ) = A(ξ)x+B(ξ) when 0 ≤ x < ξ,

G(x, ξ) = C(ξ)(1− x) +D(ξ) when ξ < x ≤ L
(7.30)

on either side of the point mass. The boundary conditions at 0 and L enforce B(ξ) =

D(ξ) = 0, and continuity (the string does not break!) at x = ξ fixed C(ξ) = A(ξ)ξ/(ξ−L).

Finally, the jump condition on the derivative (with α = 1) gives A(ξ) = (ξ − L)/L. Thus

our Green’s function is

G(x, ξ) =






x(ξ − L)

L
for 0 ≤ x < ξ,

ξ(x− L)

L
for ξ < x ≤ L.

(7.31)
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Rescaling this Green’s function by mg/T gives exact agreement with the string profile

in (7.27).

For our final case, we now imagine that we have several point masses mi at positions

xi ∈ [0, L]. We can simply sum the solutions to obtain

y(x) =
∑

i

G(x, xi)
mi g

T
. (7.32)

To take the continuum limit we can imagine there are a large number of masses mi placed

at equal intervals xi = iL/N along the string, with i ∈ {1, 2, . . . , N − 1}. Setting mi =

µ(ξi)∆ξ where ξi = i∆ξ = iL/N , then by Riemann’s definition of integrals, as N → ∞
equation (7.32) becomes

y(x) =

∫ L

0
G(x, ξ)

g µ(ξ)

T
dξ . (7.33)

If µ is constant this function reproduces the parabolic result of case 1, as you should check

by direct integration. (Exercise! – take care with the limits of integration.)

7.3 Green’s functions for inhomogeneous boundary conditions

Our construction of the solution to the forced problem relied on the Green’s function

obeying homogeneous boundary conditions. This is because the integral in equation (7.3)

represents a “continuous superposition” of solutions for individual values of ξ. In order to

treat problems with inhomogeneous boundary conditions using Green’s functions, we must

proceed as follows.

First, find any particular solution yp(x) to the homogeneous equation Ly = 0 that

satisfies the inhomgeneous boundary conditions. This step is usually easy because we’re

not looking for the most general solution, just any simple solution. Since the differential

operator L is linear, the general solution of Ly = f obeying inhomogeneous boundary

conditions is simply

y(x) = yp(x) +

∫ b

a
G(x, ξ) f(ξ) dξ , (7.34)

where the term involving the Green’s function ensures that Ly indeed equals the forcing

term f(x), but does not disturb the boundary values.

As an example, suppose again we wish to solve −y′′−y = f(x), but now with inhomo-

geneous boundary conditions y(0) = 0 and y(1) = 1. We already have the Green’s function

solution to the homogeneous problem in (7.20), so we simply need to find a solution to

the homogeneous equation −y′′ − y = 0 that obeys the boundary conditions. The general

solution of this homogeneous equation c1 cosx+ c2 sinx and the inhomogeneous boundary

conditions require c1 = 0 and c2 = 1/ sin 1. Therefore yp(x) = sinx/ sin 1 is the desired

particular solution and the general solution is

y(x) =
sinx

sin 1
+

sin(1− x)

sin 1

∫ x

0
f(ξ) sin ξ dξ +

sinx

sin 1

∫ 1

x
f(ξ) sin(1− ξ) dξ (7.35)

using the result (7.20).
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7.4 Equivalence of eigenfunction expansion of G(x; ξ)

For self–adjoint differential operators, we have now discovered two different expressions for

the Green’s function with homogeneous boundary conditions. On the one hand, we have

G(x, ξ) =
1

α(ξ)W (ξ)
[Θ(ξ − x) y1(x)y2(ξ) +Θ(x− ξ) y2(x)y1(ξ)] (7.36)

as in equation (7.13). On the other hand, in section 2.6 we showed that the Green’s function

for a self–adjoint operator could be written as

G(x, ξ) =
∞∑

n=1

1

λn
Yn(x)Y

∗
n (ξ) (7.37)

in terms of the eigenfunctions {Yn(x)} and eigenvalues {λn} of the Sturm–Liouville oper-

ator.

Incidentally, we derived (7.37) in section 2.6 without any mention of δ-functions, but

it may also be quickly derived using the eigenfunction expansion

δ(x− ξ) = w(x)
∞∑

n∈Z
Yn(x)Y

∗
n (ξ) (7.38)

as in equation (6.36). Viewing ξ as a parameter we can write an eigenfunction expansion

of the Green’s function as

G(x, ξ) =
∑

n∈Z
Ĝn(ξ)Yn(x) . (7.39)

Applying the self–adjoint operator L we have

LG =
∑

n∈Z
Ĝn(ξ)LYn(x) = w(x)

∑

n∈Z
Ĝn(ξ)λn Yn(x) (7.40)

and for this to agree with δ(x−ξ), so that the expansion (7.39) obeys the defining equation

LG = δ(x− ξ) for the Green’s function, we need

Ĝn(ξ) =
1

λn
Y ∗
n (ξ) (7.41)

as can be checked by multiplying both sides of w(x)
∑

n∈Z Ĝn(ξ)λn Yn(x) = δ(x − ξ) by

Y ∗
m(x), integrating from a to b and using the orthogonality of the Sturm–Liouville eigenfunc-

tions with weight function w. Thus we have recovered the eigenfunction expansion (7.37)

of the Green’s function. Note that the expression (7.37) requires that all eigenvalues λn be

non–zero. This means that the homogeneous equation Ly = 0 — which is the eigenfunction

equation when λ = 0 — should have no non–trivial solutions satisfying the boundary con-

ditions. The existence of such solutions would certainly be problematic for the concept of

a Green’s function: If such solutions exist, then the inhomogeneous equation Ly = f does

not have a unique solution, because if y is any solution then so too is y+ y0. The operator

L is thus not invertible, and the Green’s function cannot exist. This is just the infinite
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dimensional analogue of the familiar situation of a system of linear equations Mu = f with

non–invertible coefficient matrix M. Indeed a matrix is non–invertible iff it has nontrivial

eigenvectors with eigenvalue zero.

Since the Green’s function is the unique solution to LG(x, ξ) = δ(x − ξ) that obeys

G(a, ξ) = G(b, ξ) = 0, it must be that the two expressions (7.36) and (7.37) are the same.

To see that this is true, we first notice that for a self–adjoint operator (in Sturm–Liouville

form) the first two coefficient functions in

L = α(x)
∂2

∂x2
+ β(x)

∂

∂x
+ γ(x)

are related by β = dα/dx. In this case, the denominator α(ξ)W (ξ) in equation (??) for

the Green’s function is necessarily a (non–zero) constant. To show this, note that

d

dx
(αW ) = α′W + αW = β(y1y

′
2 − y2y

′
1) + α(y1y

′′
2 − y2y

′′
1)

= y1Ly2 − y2Ly1 = 0 .
(7.42)

Being constant, α(x)W (x) is independent of where we evaluate it and in particular is

independent of ξ. We thus set α(x)W (x) = c and rewrite equation (7.36) as

G(x, ξ) =
1

c
[Θ(ξ − x) y1(x)y2(ξ) +Θ(x− ξ) y2(x)y1(ξ)] . (7.43)

Like the eigenfunction expansion, this expression is now symmetric under exchange of x

and ξ, so that G(x; ξ) = G(ξ;x).

Going further in general requires a rather tedious procedure of expanding the step

functions and solutions y1(x) and y2(x) (which we recall obey y1(a) = y2(b) = 0) in terms

of the eigenfunctions. Instead, we’ll content ourselves with an example and for lack of

imagination we again take Ly = −y′′ − y on [a, b] = [0, 1], with boundary conditions

y(0) = y(1) = 0. The normalized eigenfunctions and corresponding eigenvalues are easily

calculated to be

Yn(x) =
√
2 sinnπx with λn = n2π2 − 1 (7.44)

and the Green’s function is given in terms of these eigenfunctions by

G(x, ξ) = 2
∞∑

n=1

sinnπx sinnπξ

n2π2 − 1
. (7.45)

On the other hand, in a previous example we constructed the expression

G(x, ξ) =
1

sin 1
[Θ(x− ξ) sin(1− x) sin ξ +Θ(ξ − x) sinx sin(1− ξ)] (7.46)

using homogeneous solutions. Standard trigonometric addition formulæ for sin(1−x) allow

us to write this as

G(x, ξ) = Θ(x− ξ) cosx sin ξ +Θ(ξ − x) sinx cos ξ − cot 1 sinx sin ξ . (7.47)
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Viewing x as the independent variable and ξ as a parameter, we expand this function as a

Fourier sine series

Θ(x− ξ) cosx sin ξ +Θ(ξ − x) sinx cos ξ − cot 1 sinx sin ξ =
∞∑

n=1

ĝn(ξ) sinnπx . (7.48)

As usual, the Fourier coefficients are given by

ĝn(ξ) = 2

∫ 1

0
sinnπx [Θ(x− ξ) cosx sin ξ +Θ(ξ − x) sinx cos ξ − cot 1 sinx sin ξ] dx

(7.49)

and a direct (though rather tedious calculation — try it as an exercise if you really must)

gives

ĝn(ξ) =
2 sinnπξ

n2π2 − 1
. (7.50)

Comparing this to the eigenfunction expansion (7.45) we see that the two expressions for

the Green’s function agree, as expected.

7.5 Application of Green’s functions to initial value problems

Green’s functions can also be used to solve initial value problems. Let’s take the indepen-

dent variable to be time t, and suppose we wish to find the function y : [t0,∞) → R that

obeys the differential equation

Ly = f(t) (7.51)

subject to the initial conditions y(t0) = 0 and y′(t0) = 0. The method for construction of

the Green’s function in this initial value problem is similar to the previous method in the

case of a boundary value problem. As before, we want to find G such that LG = δ(t−τ), so

that for each value of τ , the Green’s function G(t, τ) will solve the homogeneous equation

LG = 0 whenever t #= τ . We proceed as follows

– Construct G for t0 ≤ t < τ as a general solution of the homogeneous equation,

so G = Ay1(t) + By2(t). Here {y1(t), y2(t)} is any basis of linearly independent

homogeneous solutions.

– In contrast to the boundary value problem, we now apply both initial conditions to

this solution. That is, we enforce

Ay1(t0) +By2(t0) = 0 ,

Ay′1(t0) +By′2(t0) = 0 .
(7.52)

This pair of linear equations for A and B can be written as
(
y1(t0) y2(t0)

y′1(t0) y′2(t0)

)(
A

B

)
= 0 (7.53)

and since y1 and y2 are linearly independent, the determinant of the matrix (the

Wronskian) is non-zero. Thus the only way to impose both initial conditions is to set

A = B = 0. This implies that G(t, τ) = 0 identically whenever t ∈ [a, τ)!
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– For t > τ , again construct the Green’s function as a general solution of the homoge-

neous equation, so G = Cy1(t) +Dy2(t).

– Finally, we apply the continuity and jump conditions at t = τ . Since G = 0 for t < τ

we obtain
Cy1(τ) +Dy2(τ) = 0

Cy′1(τ) +Dy′2(τ) =
1

α(τ)

(7.54)

where, as usual, α(t) is the coefficient of the second derivative in the differential

operator L. These simultaneous equations determine C(τ) andD(τ), thus completing

the construction of the Green’s function G(t; τ).

We can again use our Green’s function to solve the forced problem (7.51) as

y(t) =

∫ ∞

t0

G(t, τ) f(τ) dτ =

∫ t

t0

G(t, τ) f(τ) dτ . (7.55)

Here, in the second equality we have used the fact that G(t, τ) vanishes for τ > t. This

equation shows that the solution obeys a causality condition: the value of y at time t

depends only on the behaviour of the forcing function for earlier times τ ∈ [t0, t].

As an example, consider the problem

d2y

dt2
+ y = f(t), y(0) = y′(0) = 0 (7.56)

with initial conditions y(0) = y′(0) = 0. Following our procedure above we get

G(t, τ) = Θ(t− τ) [C(τ) cos(t− τ) +D(τ) sin(t− τ)] , (7.57)

where we’ve chosen the basis of linearly independent solutions to be {cos(t− τ), sin(t− τ)}
purely because they make it easy to impose the initial conditions. Continuity demands

that G(τ, τ) = 0, so C(τ) = 0. The jump condition (with α(τ) = 1 then enforces D(τ) = 1.

Therefore, the Green’s function is

G(t, τ) = Θ(t− τ) sin(t− τ) (7.58)

and the general solution to Ly = f(t) obeying y(0) = y′(0) = 0 is

y(t) =

∫ t

0
sin(t− τ) f(τ) dτ . (7.59)

Again, we see that this solution knows about what the forcing function was doing only at

earlier times.
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7.6 Higher order differential operators

We briefly mention that there is a natural generalization of Green’s functions to higher

order differential operators (and indeed to PDEs, as we shall see in the last part of the

course). If L is a nth-order ODE on [a, b], with n > 2 then the general solution to the

forced differential equation Ly = f(x) obeying the homogeneous boundary conditions

y(a) = y(b) = 0 is again given by

y(x) =

∫ b

a
G(x; ξ) f(ξ) dξ , (7.60)

where G still obeys LG = δ(x− ξ) subject to homogeneous boundary conditions G(a, ξ) =

G(b, ξ) = 0, but where now both G and its first n− 2 derivatives are continuous at x = ξ,

while
∂(n−1)G

∂x(n−1)

∣∣∣∣∣
x=x+

− ∂(n−1)G

∂x(n−1)

∣∣∣∣∣
x=x−

=
1

α(ξ)
(7.61)

where we again assume that α(x) is the coefficient function of the highest derivative in L.
An example can be found on problem sheet 3.
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