
4 The Heat Equation

Our next equation of study is the heat equation. In the first instance, this acts on functions

Φ defined on a domain of the form Ω× [0,∞), where we think of Ω as ‘space’ and the half–

line [0,∞) as ‘time after an initial event’. The equation is

∂Φ

∂t
= K∇2Φ (4.1)

where ∇2 is the Laplacian operator on Ω and K is a real, positive constant known as the

diffusion constant. For example, in the simplest case of one dimension where Ω = [a, b] the

equation becomes just ∂Φ/∂t = K ∂2Φ/∂x2 where x ∈ [a, b].

The heat equation genuinely is one of my favourite equations. It’s range of applications

is utterly mind–boggling. As the name suggests, it was originally constructed by Fourier in

trying to understand how heat flows through a body from a hotter region to a cooler one,

but it goes far, far beyond this. It describes the transport of any quantity that diffuses

(i.e., spreads out) as a consequence of spatial gradients in its concentration, such as drops

of dye in water. The heat equation was used by Black and Scholes to model the behaviour

of the stock market, and it underlies Turing’s explanation of how the cheetah got its spots

and the zebra its stripes. In pure maths, it plays a starring role in the derivation of the

Atiyah–Singer index theorem relating topology to geometry, while a modification of the heat

equation known as Ricci flow was used by Perelman to affirm the Poincaré conjecture, giving

him chance to decline a Fields Medal. And, in the guise of something called renormalization,

it’s the best answer we have to the questions ‘why can we understand physics at all?’ or

‘why is the Universe comprehensible?’19. Let’s get started!

4.1 The fundamental solution

The first important property of the heat equation is that the total amount of heat is

conserved. That is, if Φ solves the heat equation on Ω × [0,∞), then by differentiating

under the integral sign

d

dt

(∫

Ω
ΦdV

)
=

∫

Ω

∂Φ

∂t
dV = K

∫

Ω
∇2ΦdV = K

∫

∂Ω
n · ∇ΦdS , (4.2)

where n is the outward normal to the boundary ∂Ω of the spatial region. In particular, if

n · ∇Φ|∂Ω = 0, which says that no heat flows out of our region, then

d

dt

(∫

Ω
ΦdV

)
= 0 (4.3)

and the total amount of heat in Ω is conserved. The heat equation moves heat around,

but it doesn’t just get ‘lost’. (Notice that if Ω were non–compact, we’d have to demand

that |∇Φ| decays sufficiently quickly as we move out to infinity in the spatial directions for

these integrals to be well–defined.)

19Sadly, I won’t be able to explain this to you in this course. But come to the Part III AQFT course and

be amazed...
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The second property we’ll mention is that if Φ(x, t) solves the heat equation for (x, t)

in Rn × [0,∞), then so too do the translated function

Φ1(x, t) ≡ Φ(x− x0, t− t0)

and the rescaled function

Φ2(x, t) ≡ AΦ(λx, λ2t) ,

where A, λ and t0 are real constants and where x0 ∈ Rn. The proof of this is an easy

exercise that I’ll leave to you. Let’s try to choose the constant A so that the total amount

of heat in the solution Φ2 is the same as in our original solution Φ. We have
∫

Rn
Φ2 d

nx = A

∫

Rn
Φ(λx, λ2t) dnx = Aλ−n

∫

Rn
Φ(y, λ2t) dny (4.4)

where y = λx. If we choose A = λn then the total heat in Φ2 at time t will be the same as

the total heat in Φ at time λ2t. But the total heat is conserved, so they are the same at

all times.

The rescaling property is useful because it says there is nothing really new about the

time variable t compared to the spatial variables. In other words, although Φ(x, t) looks

as though it depends on n spatial variables and one time variable, we can always rescale so

as to eliminate one of these variables. In particular, in 1+1 dimensions the heat equation

becomes simply
∂Φ

∂t
= K

∂2Φ

∂x2
(4.5)

and, choosing λ = 1/
√
Kt nothing is really lost by considering solutions of the form

Φ(x, t) =
1√
Kt

F (x/
√
Kt, 1) =

1√
Kt

F (η) (4.6)

where we have introduced the similarity variable

η ≡ x√
Kt

. (4.7)

The similarity variable is a dimensionless parameter that is invariant under further rescal-

ings (x, t) → (λx, λ2t). We’ll see that it characterizes the linear–time spread of heat.

Plugging the form (4.6) into the heat equation we obtain

∂Φ

∂t
= −1

2

1√
Kt3

F (η) +
1√
Kt

∂η

∂t
F ′(η) = −1

2

1√
Kt3

(F + ηF ′)

K
∂2Φ

∂x2
=

√
K

t

∂

∂x

(
∂η

∂x
F ′

)
=

1

t

∂η

∂x
F ′′ =

1√
Kt3

F ′′
(4.8)

so the heat equation pde reduces to the ode

0 = 2F ′′ + ηF ′ + F . (4.9)

Noting that the rhs of this equation is (2F ′ + ηF )′ we see that 2F ′ + ηF = D for some

constant D. We can set D to zero by requiring that our solution obeys F ′(0) = 0, and
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one then finds F (η) = Ce−η2/4 for some further constant C. It is standard to fix this new

constant by normalizing the total amount of heat to be 1. We have20

1 =

∫ ∞

−∞
Φ(x, t) dx =

C√
Kt

∫ ∞

−∞
e−x2/4Kt dx = 2C

∫ ∞

−∞
e−u2

du = 2C
√
π . (4.10)

Therefore our normalized solution is

Φ(x, t) = G(x, t) ≡ 1√
4πKt

exp

(
− x2

4Kt

)
(4.11)

It follows from the translation argument above that

G(x− x0, t− t0) =
1√

4πK(t− t0)
exp

(
− (x− x0)2

4K(t− t0)

)
(4.12)

also solves the (1+1)–dimensional heat equation. This class of solutions is known as the

heat kernel, or sometimes as the fundamental solutions of the heat equation. It is also

straightforward to show (or just to verify) that

Γ(x− x0, t− t0) ≡
1

(4πK(t− t0))n/2
exp

(
− |x− x0|2

4K(t− t0)

)
(4.13)

is the fundamental soluton of the heat equation in n+ 1 dimensions, Rn × (t0,∞).

The heat kernel is a Gaussian centred on x0. The rms width (standard deviation) of

the Gaussian is
√
K(t− t0) while the height of the peak at x = x0 is 1/

√
4πK(t− t0).

This means that as t → ∞ this fundamental solution becomes flatter and flatter, with its

value at any fixed x ∈ Ω approaching zero exponentially rapidly. On the other hand, if we

trace the behaviour of the fundamental solution backwards in time then as t approaches

the initial time t0 from above, the Gaussian becomes more and more sharply peaked near

its centre x0, and the height of the curve tends to infinity. The actual limit at t = t0 is

known as the Dirac δ–function, though it’s not really a function at all. We’ll meet it again

in detail later. Plots of the heat kernel in 1+1 dimensions for various fixed times can be

found in figure 4.1.

We have obtained the heat kernel as a solution to the heat equation within the domain

Rn× [0,∞) without imposing any particular boundary conditions. However, one use of the

heat kernel is as any early time approximation to heat flow problems in an arbitrary finite

domain Ω near to interior points x ∈ Ω where the initial concentration of heat Φ(x, 0) has a

sharp, highly localized spike. Intuitively, this is because it takes some time for this strongly

localized interior profile to ‘feel the influence’ of the boundary conditions. For example, we

may be interested in the effect of a sudden blast of heat perhaps coming from a blowtorch

that is suddenly turned on, then immediately extinguished. at the centre of a furnace. The

spread of heat is constrained by the boundary condition that it cannot penetrate the thick

brick walls of the furnace, but at very short times this is irrelevant.

20The final integral can be performed by a trick: Let I =
∫
R e

−u2
du. Then

I2 =

∫

R2
e−(u2+v2) du dv = 2π

∫ ∞

0

e−r2r dr = π [−e−r2 ]∞0 = π .

Therefore I =
√
π, with the positive square root taken because I is the integral of a non–negative function.

– 51 –



Figure 8. Plots of the heat kernel (4.11) in one space and one time dimension, drawn at successive
times t > t0 = 0. For simplicity we have set K = 1. The curve is a Gaussian whose height increases
without bound as t → 0+. Since the total heat is conserved, the area under the graph is constant,
and equal to 1 by our normalization condition.

4.2 Heat flow as a smoothing operation

The smoothing we observed in the fundamental solution – moving from a sharp spike to

a flat line as t → ∞ – is the generic behaviour of functions under heat flow, and is in

accordance with our intuition that heat flows from hotter places to cooler ones. This

smoothing property is one of the most important properties of the heat equation. Let’s see

it more generally.

First, we note that if ψ : Ω → C is an eigenfunction of the Laplacian (with weight 1)

so that ∇2ψ = −λψ for some constant λ, then provided ψ obeys suitable conditions on

∂Ω, the eigenvalue λ is non-negative. This follows because

− λ

∫

Ω
|ψ|2 dV =

∫

Ω
ψ∗∇2ψ dV =

∫

∂Ω
ψ∗∇ψ · dS−

∫

Ω
∇ψ∗ · ∇ψ dV (4.14)

where dV = dx1 dx2 · · · dxd is the standard measure on Ω. Since both
∫
Ω |ψ|2 dV and∫

Ω |∇ψ|2 dV are the integrals of non-negative functions, we see that provided the boundary

term vanishes

λ =

∫
Ω |∇ψ|2 dV
∫
Ω |ψ|2 dV

≥ 0 . (4.15)

In particular all the eigenvalues of a Laplacian on a closed, compact space (so that ∂Ω = ∅)
are non-negative.

Now, suppose a certain function Φ : Ω× [0,∞) → C evolves in time according to the

heat equation ∂Φ/∂t = ∇2Φ, where ∇2 is the Laplacian on the closed, compact space Ω

and t ∈ [0,∞) denotes the time. To reduce clutter, we’ve also set the diffusion constant to

unity. If Φ looks initially like some function f : Ω → C, so that Φ(x, 0) = f(x), then at

finite later times t we have (somewhat formally)

Φ(x, t) = exp
(
t∇2

)
Φ(x, 0) . (4.16)
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But given a basis {ψI} of eigenstates of ∇2 on Ω, we can expand f in this basis as

Φ(x, 0) = f(x) =
∑

I

cI ψI(x) (4.17)

for some coefficients cI . (When dimΩ > 1 the index ‘I’ really stands for a whole collection

of indices, each one of which is being summed over. For example, if Ω = T 2 = S1×S1 then

we will have two indices, each denoting the Fourier components around one of the circles.

The sum over I is supposed to indicate a sum over all values of each of these indices, with

independent coefficients.) Finally, if ∇2ψI = −λIψI then inserting this into equation (4.16)

and using the linearity of the Laplacian gives

Φ(x, t) = exp
(
t∇2

)
[
∑

I

cI ψI

]
=

∑

I

cI e
−λI t ψI(x)

≡
∑

I

cI(t)ψI(x) .

(4.18)

In the final line I’ve introduced the time–dependent coefficients cI(t) ≡ e−λI tcI . Thus, since

the eigenvalues are non-negative, the coefficients decay exponentially with time. We saw

earlier21 that the rate at which the coefficients in an eigenfunction expansion decay as one

goes out to very high eigenvalues tells us something about the smoothness of the function

we’re expanding. The important observation is under evolution by the heat equation, that

coefficients of eigenfunctions corresponding to the largest values of |λI | decay most rapidly.

Thus, in accordance with our intuition, heat flow smooths our function in accordance with

our intuition. In fact, the smoothing is so effective that a function that is discontinuous at

t = 0 becomes continuous for all t > 0 if it evolves by the heat equation.

Not only does Φ become smoother, it’s also easy to see that the norm of Φ over Ω

decreases rapidly. At a fixed time t ≥ 0 we have

(Φ,Φ) =

∫

Ω
Φ∗ΦdV =

∑

I,J

[
c∗I(t) cJ(t)

∫

Ω
ψ∗
I (x)ψJ(x) dV

]

=
∑

I

|cI(t)|2 ≤
∑

I

|cI(0)|2
(4.19)

using orthonormality of the eigenfunctions ψI .

Incidentally, I hope you now see the reason I’ve emphasized that the time variable t in

the heat equation takes values on the half–line [0,∞) rather than t ∈ R. If we try to follow

heat flow backwards in time, then the convergence of our series becomes exponentially

worse, with the eigenfunctions having greater and greater |λI | rapidly becoming more and

more important. In fact, if we start from a generic smooth function and trace its evolution

back in time, then it’s a theorem that we’ll arrive at an arbitrarily badly singular function

in finite time. Setting the diffusion constant to 1 for simplicity, we sometimes say that

21We saw this just in the special case of Fourier series in one dimension, but something similar is true

quite generally.
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the operators e t∇
2
form a semigroup, because for t1 and t2 both ≥ 0 we have the group

multiplication law

e(t1+t2)∇2
= e t1∇

2
e t2∇

2

while setting t = 0 gives the identity operator. However, we’re not allowed to consider heat

flow for negative times because we’d meet too singular functions, so the inverse operators

do not exist and heat flow is a one–way street.

The fact that evolution via the heat equation smears out sharp features can be both a

blessing and a curse, as the following two examples illustrate:

4.2.1 The transatlantic cable

In 1858 the first telegraph cable was laid under the Atlantic, with Great Britain and the

United States both looking forward to the benefits this new form of communication could

bring to trade and governance. The first message to be sent was a 98 word greeting from

Queen Victoria to President Buchanan. The British telegraph operators dutifully tapped

out the message in Morse code and sent it on its way. But by the time the signal made

landfall in Newfoundland, it had degraded so as to be barely detectable, let alone readable.

What went wrong? Because seawater is a much better conductor than air, the signal

traveling along the submerged cable obeyed the heat equation, not the wave equation22

as it would for an overland telegraph wire. The form of the fundamental solution of

equation (4.11) shows that an initially sharp spike traveling along a (one–dimensional!)

cable of length L in accordance with the heat equation will emerge as a broad pulse spread

over a time T ∼ L2. The precise dots and dashes of Morse code had been smeared out so

much that it took the American engineers 16 hours to decipher the message.

Desperate to please his employers, the chief engineer tried to make the signal more

distinct by increasing the voltage to 2000V. This promptly fried the cable’s protective

cover somewhere in the mid Atlantic, destroying the cable. The chief engineer was sacked.

Following the advice of his replacement, a further cable was laid with thicker insulation

and higher quality copper wire (thus increasing the conductivity K). It was driven at low

voltage with a sensitive ‘mirror galvanometer’ used to detect the incoming signal. The new

cable was a resounding success.

The first engineer’s name was Wildman Whitehouse – you’ve never heard of him.

His replacement William Thomson was rewarded with the title of Lord Kelvin, grew an

impressive beard and became very wealthy.

4.2.2 The Atiyah–Singer index theorem

The index theorem of Atiyah & Singer provides a fundamental link between topological

information about a (closed, compact) space Ω to local information, such as how curved

the space is near some point. A beautiful proof of this theorem was provided by Atiyah &

Bott. Their proof uses properties we know about the heat equation.

The point is that under heat flow, a function spreads out and ultimately smears itself

all over the compact space Ω, giving us access to global information about the topology

22We’ll see in the next chapter that signals propagating via the wave equation preserves their integrity.
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of Ω. More specifically, if we follow the behaviour of some Φ(x, t) under heat flow right

through to arbitarily late times, then from equation (4.18) we find

lim
t→∞

Φ(x, t) = lim
t→∞

∑

I

cI e
−tλI ψI(x) =

∑

I :λI=0

cI ψI(x) , (4.20)

where the final sum is over only those eigenfunctions of the Laplacian whose eigenvalues

are zero. This always includes the constant function, but on a manifold with interesting

topology there may be non–trivial functions that nonetheless have zero eigenvalue23. How-

ever, if at t = 0 we choose Φ to have support just inside some small compact region R ⊂ Ω,

then for early times Φ remains exponentially small outside R.

Heat flow from t = 0 to t → ∞ thus provides a natural link between local and global

properties of Ω. The idea of Atiyah & Bott was to find a quantity – known as the “index

of a Dirac operator” – that can be proved to be independent of time and track it during

heat flow. At early times one finds the index can be computed in terms of local, geometric

information while at late times it depends only on topological properties of Ω.

4.3 Brownian motion and the existence of atoms

The fact that heat always flows from a hotter to a cooler body – just the smoothing

property we examined above – posed a challenge to the Newtonian, mechanical view of

the world. According to the hypothesis that matter is fundamentally made up of atoms

(dating back in some form to the ancient Greeks), heat is simply the kinetic energy of these

atoms as they jiggle around. The problem is that at the microscopic level, Newton’s laws

of motion are time reversible: for forces such as electromagnetism, gravity, or collisions

between hard particles, F = ma is invariant under the replacement t .→ −t. Philosophers

such as Mach and chemists such as Ostwald thought that this microscopic time reversibility

was incompatible with the macroscopic arrow of time inherent in heat flow, and concluded

that atoms did not exist.

Einstein realized that the apparently random motion of small dust particles observed by

the botanist Robert Brown must be due to their random collisions with water molecules. To

construct a one–dimensional model of this problem, assume that our dust particle is jostled

at regular time intervals ∆t. We let p(y) be the probability that the dust particle moves

through a displacement y at each time step, with
∫∞
−∞ p(y) dy = 1. The key assumption

is that p(y) is independent of which time step we’re considering. That is, the process is

memoryless – the probability p(y) does not depend on the previous motion of the particle.

This is also known as a Markov process. We further assume that p(y) is homogeneous, so

that it does not depend on the actual location of the dust particle. Finally, we’ll assume

that p(y) is an even function of y so that the mean value 〈y〉 is zero. This just means that

there is no preference for the particle to drift either to the left or right; it’s easy to drop

this final assumption.

23To come clean, I’ll admit that Φ should really be something more general than a ‘function’ here, and

we need to be careful about what we mean by the Laplacian in this more general context. Believe it or not,

the case relevant to the Atiyah–Singer index theorem is where Φ is the quantum mechanical wavefunction

describing a type of relativistic electron.
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If we now let P (x, t) be the probability density that the dust particle is located at

some position x ∈ R at time t, then we have

P (x; t+∆t) =

∫ ∞

−∞
p(y)P (x− y; t) dy . (4.21)

This equation says that the probability the particle is located at x at time t + ∆t is the

product of the probability it was some amount y away at the previous time interval, times

the probability it stepped through exactly y, for any choice of y. Expanding P (x− y; t) as

a Taylor series in y we have

P (x; t+∆t) =

∫ ∞

−∞
p(y)

(
P (x; t)− y

∂P

∂x
(x; t) +

1

2
y2

∂2P

∂x2
(x; t) + · · ·

)
dy

=
∞∑

r=0

〈yr〉
r!

∂rP

∂xr
(x; t)

(4.22)

where by 〈yr〉 we mean simply the average value
∫∞
−∞ yr p(y) dy of yr. By our assumption,

〈y〉 = 0. Furthermore, if the motion of the particle is small so that p(y) is concentrated

near y = 0, then 〈yr〉 will drop rapidly as r increases. Keeping only the leading non–trivial

term we have

P (x; t+∆t)− P (x; t) =
1

2
〈y2〉∂

2P

∂x2
(x; t) . (4.23)

In the limit of small time steps ∆t → 0 we find that P (x, t) satisfies the heat equation

∂P

∂t
= K

∂2P

∂x2
(4.24)

where the diffusion constant K can be identified as 〈y2〉/2∆t.

THIS SECTION NEEDS MORE WORK!! NOT YET RELATED TO EX-

ISTENCE OF ATOMS

4.4 Boundary conditions and uniqueness

Let M ≡ Ω × [0, T ] where Ω ⊂ Rn is a compact domain with boundary ∂Ω, and where

[0, T ) is the time direction. We’d now like to check whether there is a unique solution to

the heat equation ∂ψ/∂t = K∇2ψ in the interior of M that obeys the Dirichlet conditions

ψ|Ω×{0} = f(x) (initial condition)

ψ|∂Ω×[0,T ] = g(x, t) (boundary condition)
(4.25)

for some given functions f : Ω → R and g : ∂Ω× [0, T ] → R.
As in the case of Laplace’s equation, suppose on the contrary that ψ1 and ψ2 are two

such solutions, each obeying the boundary conditions (4.25). Then if δψ ≡ ψ1 − ψ2 we

have

0 =

∫

Ω
δψ

(
∂δψ

∂t
−K∇2δψ

)
dV (4.26)
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where the integral is over the spatial region Ω at some arbitrary fixed time t. Hence

differentiating the integral with respect to time we have

1

2

d

dt

∫

Ω
δψ2 dV =

∫

Ω
δψ

∂δψ

∂t
= K

∫

Ω
δψ∇2δψ

= −K

∫

Ω
(∇δψ) · (∇δψ) dV +K

∫

∂Ω
δψ∇δψ · dS

(4.27)

The boundary term vanishes since ψ1 and ψ2 agree on ∂Ω at all times, and the remaining

term is −K times the integral of a non–negative function. Therefore

d

dt

(∫

Ω
δψ2 dV

)
≤ 0 . (4.28)

The quantity E(t) ≡
∫
Ω δψ2 dV is the integral of a non–negative function, which by (4.28)

can never increase. Since E(0) = 0 by our initial conditions, we must have E(t) = 0 at all

times t for which the heat equation holds. This is only possible if δψ = 0 everywhere in Ω

and at all times t ∈ [0, T ], so that the solutions ψ1 and ψ2 agree everywhere in M .

There’s an important caveat to the above argument: Compactness of Ω in all spatial

directions is important. If, for example, we replaced the compact region Ω by the semi–

infinite bar {(x, y, z) ∈ R3 : 0 ≤ x ≤ a , 0 ≤ y ≤ b , z ≥ 0} then our argument above might

be invalid, because it could be that the integrals over the spatial region now diverge. This

is not just a technical nicety: it’s really true that, when Ω has non–compact directions,

solutions to the heat equation are not unique unless we impose a limit of the rate of growth

of ψ as we head out towards infinity in Ω. In the case of the semi–infinite bar, the correct

limit turns out to be |ψ| ≤ Aeλ|z|
2
as z → ∞, for some constants A and λ, although I won’t

prove that here.

4.5 Heat conduction in a plane medium

After the above, rather formal, considerations, in the next few sections we’ll return to

actually solving the heat equation in the presence of boundary and initial conditions.

One of Fourier’s original motivations for introducing his series was to study the prob-

lem of heat flow through a plane medium. In particular, he wanted to study how the

temperature Θ of the soil at a depth x ≥ 0 beneath the surface was affected by the regular

heating and cooling of the daily cycle. For simplicity, we’ll assume that the earth is flat

and that ground level may be represented by the plane x = 0. If the sun’s rays strike the

earth evenly, then the problem may be modeled by the heat equation

∂Θ

∂t
(x, t) = K

∂2Θ

∂x2
(x, t) (4.29)

in 1+1 dimensions, where K is the thermal diffusivity of the soil. The boundary conditions

are that the temperature decays to a constant as x → +∞ (deep under the surface of the

earth) and that at x = 0 the temperature oscillates both daily and annually as

Θ(0, t) = Θ0 +A cos (2πt/tD) +B cos (2πt/tY) (4.30)
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where tD is the length of one day, and tY the length of one year in whatever units we’re

using to measure time. The constants A and B govern the size of the daily and annual

variation around the average temperature Θ0.

We again separate variables, writing Θ = T (t)X(x), and discover that the heat equa-

tion (4.29) becomes

T ′ = λT , X ′′ =
λ

K
X (4.31)

for some constant λ. Noting that we want oscillatory behaviour in time, with an eye on

the boundary condition at x = 0 we set λ = iω with ω ∈ R. The heat equation is then

solved by

Θ = Θω ≡ eiωt
(
aω e−x

√
iω/K + bω ex

√
iω/K

)
(4.32)

for some choice of ω and constants aω, bω. By linearity, we can add solutions with different

values of the separation constant ω. Since
√
iω = (1 + i)

√
|ω|/2 for ω > 0 and

√
iω =

(i− 1)
√

|ω|/2 for ω < 0, the boundary condition that Θ decays to a constant as x → +∞
shows that we must take bω = 0 when ω > 0 and aω = 0 when ω < 0. Writing the boundary

condition at x = 0 as

Θ(0, t) = Θ0 +
A

2

(
eiωDt + e−iωDt

)
+

B

2

(
eiωYt + e−iωYt

)
(4.33)

we see that we should choose aω = bω = 0 for all ω except

ω = ±ωD ≡ ±2π/tD , ω = ±ωY ≡ ±2π/tY , and ω = 0 .

The case ω = 0 just gives the constant Θ0. For the remaining cases we have

aωD = b−ωD =
A

2
, aωY = b−ωY =

B

2
(4.34)

so that the general solution obeying the boundary condition becomes

Θ(x, t) = Θ0 + A exp

(
−
√

ωD

2K
x

)
cos

(
ωDt−

√
ωD

2K
x

)

+ B exp

(
−
√

ωY

2K
x

)
cos

(
ωDt−

√
ωY

2K
x

)
.

(4.35)

It is a worthwhile exercise to check that this does indeed obey the heat equation (4.29).

The solution we’ve found tells us how the temperature of the soil at a depth x and time

t responds to the sun’s warmth. Examining it, we see that both temperature variations

decay exponentially rapidly with increasing depth, so that the diurnal and annual cycles

have little effect on the temperature Θ0 deep underground. Note however that the fall–off

of the higher frequency, daily variation is far more rapid than that of the annual variation.

We also see there is a depth–dependent phase delay of (ωD/K)1/2 x for the daily,

and (ωY/K)1/2 x for the annual temperature variation. Thus, at some depths beneath

the surface of the earth the temperature can be completely out of step with that on the

surface. The depth at which this occurs depends on the heat conductivity K of the soil,

but for reasonable soil types one finds that at a depth of around 2 to 3 metres, the ground

is warmer in winter and cooler in summer. That’s why it’s a good idea to store food and

wine in cellars.
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4.6 Steady heat conduction in a finite rod

As a small variation of this problem, suppose we have a bar of length 2L. We’ll look for a

function ψ that solves the heat equation ∂ψ/∂t = K∂2ψ/∂x2 everywhere inside the domain

[−L,L]× [0,∞) and subject to the initial condition

ψ(x, 0) = Θ(x) ≡
{
1 0 < x ≤ L

0 −L ≤ x < 0 ,
(4.36)

as well as the boundary condition

ψ(L, t) = 1 , ψ(−L, t) = 0 (4.37)

so that each end of the bar is kept at a (different) fixed temperature for all time.

The most important thing to note about this example is that neither the initial nor the

boundary condition is homogeneous. Thus if we try to seperate variables immediately, we’ll

find there are no homogeneous boundary conditions to impose, and we will not find any

constraint on the allowed separation constants. To get around this, we first look for any

particular solution ψs of the wave equation that obeys the boundary condition (4.37), but

not necessarily the initial condition (4.36). Any other solution obeying the same boundary

conditions will differ from this one by a solution φ obeying the homogeneous boundary

conditions

φ(−L, t) = 0 , φ(L, t) = 0 (4.38)

and so may be found via separation of variables.

To keep our lives simple, we can look for a particular solution φs(x) that is independent

of time – known as a steady state solution. Since the time–independent heat equation

becomes φ′′
s(x) = 0 we have φs(x) = ax + b and to satisfy the boundary condition (4.37)

we must choose the constants so that

φs(x) =
x+ L

2L
. (4.39)

We now look for a function φ(x, t) = ψ(x, t)− φs(x) obeying the heat equation subject to

the conditions

φ(±L, t) = 0 (homogeneous boundary condition)

φ(x, 0) = Θ(x)− x+ L

2L
(adjusted initial condition)

(4.40)

that reflect the effect of our particular solution.

We now proceed as usual. Write φ(x, t) = X(x)T (t) and find

T ′ = −KλT , X ′′ = −λX (4.41)

for some separation constant λ ∈ R. We can solve these as

X(x)T (t) =
[
a sin(

√
λx) + b cos(

√
λx)

]
e−Kλt .
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The initial condition φ(x, 0) = Θ(x)− (x+L)/2L is an odd function, so we anticipate that

we can set b = 0. The homogeneous boundary conditions φ(±L, 0) = 0 shows that the

general solution is then

ψ(x, t) =
∞∑

n=1

an sin
(nπx

L

)
e−Kt

√
nπ/L . (4.42)

The last step is to choose the coefficients an so as to obey the inhomogeneous initial

condition. This will be achieved if we set

an =
1

L

∫ L

−L
sin

nπx

L

[
Θ(x)− x+ L

2L

]
dx =

1

nπ
, (4.43)

where the last equality requires a short calculation (please check!). Finally therefore, the

solution to the heat equation obeying the original boundary conditions (4.36)-(4.37) is

ψ(x, t) =
x+ L

2L
+

1

π

∞∑

n=1

1

n
sin

nπx

L
e−Kt

√
nπ/L . (4.44)

Note once more that the convergence of this infinite sum improves rapidly as t increases,

and that

lim
t→+∞

ψ(x, t) = φs(x) (4.45)

so that φs(x) does indeed emerge as the late time equilibrium solution of our problem.

4.7 Cooling of a uniform sphere

At the end of the nineteenth century, one of the most apparently serious problems faced

by Darwinian evolution was that the evolutionary process was so slow that the Earth had

not been around for long enough for the observed diversity of life to have arisen. The main

proponent of this argument was Kelvin (again) whose argument was as follows.

Kelvin knew the temperature at which rock melts (typically in the range 1000±300◦C

for most types of rock) and it seemed reasonable to assume that life could not have been

present at the time when the whole surface of the earth was molten magma. He also knew

from Fourier’s results of section 4.5 that, while the temperature of the surface of the Earth

undergoes wide daily and annual variations, the sun’s influence diminishes rapidly once

one heads more than a few hundred metres down into the ground. He thus felt justified in

ignoring the sun’s influence and took as a boundary condition that the temperature at the

surface of the Earth was zero, appropriate for outer space.

The stage was set. If Kelvin could determine how long it would take a sphere, initially

heated uniformly to around 1000◦C, to cool into outer space so as to form a temperature

gradient near its surface of the size then observed, then this time would set an upper limit

on the time available for evolution.

Let’s make the rough assumption that the Earth is a homogeneous ball of radius R

formed from rock with thermal diffusivity K. Under our homogeneity assumptions we

expect the solution to be spherically symmetric, so we let Θ(r, t) denote the temperature
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at a radius r from the centre of the Earth, at time t. The behaviour of Θ will be governed

by the heat equation
∂Θ

∂t
= K∇2φ = K

1

r2
∂

∂r

(
r2

∂Θ

∂r

)
. (4.46)

We want to solve this equation inside the Earth, subject to the initial condition and bound-

ary condition
Θ(r, 0) = Θ0 for all r < R

Θ(R, t) = 0 for all t > 0 ,
(4.47)

where Θ0 is the temperature of molten rock.

We can solve this using our standard method of separation of variables. Making the

usual ansatz Θ(r, t) = R(r)T (t) the heat equation reduces to the two o.d.e.s

d

dr

(
r2

dR

dr

)
= −λ2r2R ,

dT

dt
= −λ2KT (4.48)

for some separation constant λ. The second equation is uniquely solved by T = Aλ e−λ2Kt

for some constant Aλ, whereas the radial equation is solved by

R(r) = Bλ
sin(λr)

r
+ Cλ

cos(λr)

r
. (4.49)

(One way to convince yourself of this is to substitute in S(r) ≡ r R(r) whereupon the radial

equation reduces to S′′ = −λ2S.) We insist that our solution remains regular at r = 0 and

so we set Cλ = 0. The boundary condition that Θ(R, t) = 0 then forces

λ =
nπ

R
, n ∈ Z (4.50)

so our general solution obeying this boundary condition is

Θ(r, t) =
1

r

∑

n∈Z
An sin

(nπr
R

)
exp

(
−n2π2

r2
Kt

)
. (4.51)

We must now choose the separation constants An to enforce the inhomogeneous initial

condition Θ(r, 0) = Θ0. Setting t = 0 and multiplying through by r we have

rΘ0 =
∑

n∈Z
An sin

(nπr
R

)
(4.52)

and therefore

An = Θ0

∫ R

0
sin

(nπr
R

)
r dr = (−1)n+1Θ0R

nπ
(4.53)

as follows from integration by parts. Thus our solution at all times is

Θ(r, t) =
Θ0R

πr

∑

n∈Z
(−1)n+1 1

n
sin

(nπr
R

)
exp

(
−n2π2

r2
Kt

)
for r ≤ R. (4.54)

Incidentally, this solution would be valid for arbitrarily large values of r in some fictitious

problem where the Earth extends forever, but with r = R held fixed at zero temperature.
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In the real situation, the thermal diffusivity K abruptly changes at the surface of the Earth

from its value for rock to its value for air, then empty space (where K = 0). Thus we do

not believe our solution for r > R. However, within the Earth’s surface the solution (4.54)

is good: we have found a solution that satisfies both the boundary and initial conditions

and our uniqueness theorem guarantees it is the only one.

Miners had long reported the presence of the geothermal gradient – a temperature

increase of around 25◦C/km as one moves deeper underground – and Kelvin used this

information to fix a timescale. From the solution (4.54) we find

∂Θ

∂r

∣∣∣∣
r=R

= −Θ0

R

∑

n∈Z
exp

(
−n2π2

R2
Kt

)
(4.55)

where the minus sign indicates the fact that Θ increases as we head towards the centre of

the Earth. To go further, notice that the very fact that the rocks do indeed get considerably

hotter as one goes deeper – we still have volcano eruptions! – suggests that the Earth’s

age is not so very great that the exponential term has yet had much effect, since if it had

then Θ(r, t) would itself be vanishingly small. But if Kt/R2 1 1 (actually true in our case)

then we may approximate

∑

n∈Z
exp

(
−n2π2

R2
Kt

)
≈

∫ ∞

−∞
exp

(
−x2π2

R2
Kt

)
dx =

√
R2

πKt

Combining all the pieces we find that there will be a geothermal gradient of order G at a

time of order

t0 ∼
Θ2

0

G2

1

πK
. (4.56)

Plugging in his numbers, Kelvin found that it would have taken the Earth not more than

100 million years to cool from its molten beginnings to the present temperature. This,

Darwin knew, was not nearly enough time for the current diversity of species to have

evolved by natural selection.

Darwin was tremendously worried by Kelvin’s conclusions, more than by any other

argument proposed against his Theory of Evolution. Kelvin’s mathematics was impeccable,

so what’s going on? We now know that radioactivity – a source of energy unknown to

Kelvin – primarily from Uranium deposits deep under the Earth’s mantle is responsible

for heating the Earth from within. This extra source of heat generation was unaccounted

for in the calculation above, and has kept our planet warm for 41
2 billion years. Evolution

reigns triumphant.

– 62 –


	Fourier Series
	Vectors
	Spaces of functions as infinite dimensional vector spaces
	Fourier series
	Reality conditions

	Fejér's theorem
	Functions with discontinuities
	Integration vs. differentiation
	The rate of convergence
	Pragmatism
	Parseval's identity

	Sturm–Liouville Theory
	Self-adjoint matrices
	Differential operators
	Self-adjoint differential operators
	Eigenfunctions and weight functions
	Some examples
	Inhomogeneous equations and Green's functions
	Parseval's identity II
	Least squares approximation

	Laplace's Equation
	Laplace's equation on a disc
	Separation of variables
	The Laplacian in spherical polar coordinates
	Legendre polynomials
	The Cosmic Microwave Background
	Laplace's equation on the sphere
	Multipole expansions

	Laplace's equation in cylindrical polar coordinates
	Bessel functions
	Boundary value problems in cylindrical coordinates


	The Heat Equation
	The fundamental solution
	Heat flow as a smoothing operation
	The transatlantic cable
	The Atiyah–Singer index theorem

	Brownian motion and the existence of atoms
	Boundary conditions and uniqueness
	Heat conduction in a plane medium
	Steady heat conduction in a finite rod
	Cooling of a uniform sphere

	The Wave Equation
	Energetics and uniqueness
	Violins
	Energy of a vibrating string

	Drums
	Spectral geometry
	Wave reflection and transmission


