
3 Laplace’s Equation

In the previous chapter, we learnt that there are a set of orthogonal functions associated

to any second order self-adjoint operator L, with the sines and cosines (or complex ex-

ponentials) of Fourier series arising just as the simplest case L = −d2/dx2. While this

is true, the important – or at least commonly occurring – such functions arise not from

Sturm–Liouville operators with randomly chosen (real) coefficient functions p(x) and q(x),

but from those SL operators that have some special geometric significance. This is what

we’ll investigate over the next few chapters.

We’ll start by considering Laplace’s equation,

∇2ψ ≡
d∑

i=1

∂2

∂x2i
ψ = 0 (3.1)

where d is the number of spatial dimensions. The Laplace equation is one of the most

fundamental differential equations in all of mathematics, pure as well as applied. A function

ψ : M → R obeying ∇2ψ = 0 is called harmonic, and harmonic analysis is a huge area

of study (particularly when M is a smooth manifold or a compact group). In theoretical

physics, Laplace’s equation is ubiquitous throughout both electromagnetism and gravity.

In particular, whenever we have a conservative force F = −∇ψ obeying Gauss’ law that

the flux of the force through any closed surface is proportional to the net charge contained

within that surface, then in empty space ψ satisfies Laplace’s equation. In this context, ψ is

known as a potential for the force. If that wasn’t enough, Laplace’s equation also arises as a

limiting case of both the heat and wave equations, ∂ψ/∂t = K∇2ψ and ∂2ψ/∂t2 = c2∇2ψ,

when ψ is independent of time.

We’ll meet some of these applications later, but for now we’ll concentrate just on

solving Laplace’s equation everywhere within a bounded domain Ω ⊂ Rd subject to some

condition on the behaviour of our solution at the boundary ∂Ω of our domain. In the case

of Dirichlet boundary conditions, we require that our solution takes some pre-determined

shape on the boundary. So in this case we’re given a function f : ∂Ω → R and we require

that

ψ(x) = f(x) at each point x ∈ ∂Ω . (3.2)

If we can find such a solution, then it must be unique, because if ψ1 and ψ2 both obey

Laplace’s equation in Ω and ψ1|∂Ω = ψ2|∂Ω = f , then setting δψ ≡ ψ1−ψ2 and integrating

by parts we have

0 =

∫

Ω
δψ∇2δψ dV = −

∫

Ω
(∇δψ) · (∇δψ) dV +

∫

∂Ω
δψ n · (∇δψ) dS . (3.3)

The boundary term vanishes because δψ|∂Ω = 0 by assumption. The rhs is thus the integral

of a non–negative quantity (∇δψ)·(∇δψ), and so the only way the integral can be zero is

for ∇δψ = 0 throughout Ω. Hence δψ = const. Finally, since δψ vanishes on the boundary,

this constant must be zero so that ψ1 = ψ2 everywhere and our solution is unique.
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The other case to consider is that of Neumann boundary conditions. Here, we in-

stead require that the normal derivative ∂ψ/∂n = n · ∇ψ takes some specific form on the

boundary. That is, we are given a function g : ∂Ω → R and we ask that

n · ∇ψ(x) = g(x) at each point x ∈ ∂Ω , (3.4)

where n is the outward normal. Notice that the same uniqueness argument as above still

shows that δψ = const., but that now the boundary conditions no longer force this constant

to vanish. Thus imposing Neumann boundary conditions determines our solution only up

to the addition of a constant.

3.1 Laplace’s equation on a disc

In two dimensions, a powerful method for solving Laplace’s equation is based on the fact

that we can think of R2 as the complex plane C. For (x, y) ∈ R2 we introduce z = x+ iy

and z̄ = x− iy, whereupon Laplace’s equation becomes

∂2ψ

∂z ∂z̄
= 0 . (3.5)

The general solution of this is ψ(x, y) = φ(z) + χ(z̄) where φ(z) is holomorphic (i.e.

∂φ/∂z̄ = 0) and χ(z̄) is antiholomorphic (∂χ/∂z = 0).

Suppose that we wish to solve Laplace’s equation inside the unit disc |z| ≤ 1, subject

to the condition that ψ is regular throughout this disc and obeys ψ = f(θ) on the boundary

of the disc, where f(θ) is some choice of function f : S1 → C that we assume is sufficiently

well–behaved that its Fourier expansion exists. Noting that when |z| = 1 we can write einθ

both as zn and z̄−n, this Fourier expansion is

f(θ) =
∑

n∈Z
f̂n e

inθ = f̂0 +
∞∑

n=1

f̂n z
n

∣∣∣∣∣
|z|=1

+
∞∑

n=1

f̂−n z̄
n

∣∣∣∣∣
|z|=1

. (3.6)

The advantage of writing the Fourier series in this second form is that it may now be

extended throughout the unit disc; since no negative powers of z or z̄ arise, the extended

function remains finite throughout the disc. Furthermore, the extension of the rhs is

manifestly of the form of the sum of a holomorphic and an antiholomorphic function (the

constant f̂0, being both holomorphic and antiholomorphic, may be included with either).

Therefore we find our desired solution to be

ψ(x, y) = f̂0 +
∞∑

n=1

(
f̂n z

n + f̂−n z̄
n
)

= f̂0 +
∞∑

n=1

(
f̂n e

inθ + f̂−n e
−inθ

)
rn .

(3.7)

Note that since r ≤ 1 everywhere on the unit disc, this expansion will certainly converge

throughout the domain whenever the Fourier expansion of the boundary function f(θ)

converges.
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If instead we’d asked for a solution just in the annulus a ≤ |z| ≤ b, then we would

require information about the behaviour of ψ at each boundary in order to decide how to

split up the sum into holomorphic and antiholomorphic pieces. You’ll learn much more

about the isomorphism R2 ∼= C in both the Complex Methods and Complex Analysis

courses next term. The amazing power of complex analyticity is one of the true jewels of

mathematics.

3.2 Separation of variables

The use of complex variables is very pretty, but beyond two dimensions it isn’t generically

available16. Suppose Ω is the three dimensional region

Ω = {(x, y, z) ∈ R3 : 0 ≤ x ≤ a, 0 ≤ y ≤ b, z ≥ 0 } (3.8)

and that we wish to find a function ψ : Ω → R that obeys Laplace’s equation ∇2ψ = 0

throughout the interior of Ω, and that satisfies the Dirichlet boundary conditions

ψ(0, y, z) = 0 ψ(a, y, z) = 0

ψ(x, 0, z) = 0 ψ(x, b, z) = 0

ψ(x, y, 0) = f(x, y) ψ(x, y, z) → 0 as z → ∞
(3.9)

for some given function f : [0, a]× [0, b] → R.
The fundamental idea that allows us to make progress is to assume that ψ takes the

form

ψ(x, y) = X(x)Y (y)Z(z) . (3.10)

This is known as separation of variables. Inserting this ansatz into Laplace’s equation we

find 0 = ∇2ψ = Y (y)Z(z)X ′′(x) + X(x)Z(z)Y ′′(y) + X(x)Y (y)Z ′′(z), where the primes

denote differentiation with respect to the arguments. At any point (x, y, z) ∈ Ω where

ψ ,= 0, we can divide Laplace’s equation by ψ to find

X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)
= 0 . (3.11)

The key point is that each ratio here depends on only one of the variables, and a different

one in each case. So in order for the equation to hold as we move around in Ω, it must

be that they are each constant. For example, we could choose to move out along the x-

direction while staying at constant y and z. The terms Y ′′/Y and Z ′′/Z cannot change

along this path, because they don’t depend on x. But then since X ′′/X = −Y ′′/Y −Z ′′/Z

it must be that X ′′/X is also independent of x and hence constant. Arguing similarly for

the other terms, we have

X ′′ = −λX , Y ′′ = −µY , Z ′′ = (λ+ µ)Z (3.12)

16In fact, there is a version in four dimensions, which is one way of viewing what Penrose’s twistor theory

is about. And no, it doesn’t have much to do with quaternions.
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for some constants λ and µ17. Note that the final constant here is not independent because

they must all sum to zero by Laplace’s equation.

These equations are simple to solve. If λ < 0 there are no solutions obeying the

boundary conditions. When λ ≥ 0 then X(x) = a sin(
√
λx) + b cos(

√
λx) solves X ′′ = λX

and similarly Y (y) = c sin(
√
µy) + d cos(

√
µy) while Z = re−z

√
λ+µ + s e+z

√
λ+µ. Thus,

after relabelling the constants,

ψ(x, y, z) = A
(
sin(

√
λx) +B cos(

√
λx)

)(
sin(

√
µy) + C cos(

√
µy)

)(
e−z

√
λ+µ +D e+z

√
λ+µ

)

(3.13)

is a solution of Laplace’s equation for arbitrary λ and µ. We will assume ψ does not vanish

everywhere, so that A ,= 0.

We must now try to impose the boundary conditions. We’ll begin with the homoge-

neous ones (i.e. those that don’t involve f(x, y).) The condition ψ(0, y, z) = 0 tells us that

B = 0. The condition ψ(a, y, z) = 0 now tells us that
√
λ = nπ/a for18 n ∈ Z∗, or in other

words that λ must take one of the values

λn ≡ n2π2

a2
, n = 1, 2, 3, . . . . (3.14)

Likewise, the boundary condition ψ(x, 0, z) = 0 tells us that C = 0 while the condition

ψ(x, b, z) = 0 restricts µ to be

µm ≡ m2π2

b2
, m = 1, 2, 3, . . . . (3.15)

The condition that ψ falls to zero as z → +∞ immediately tells us that D = 0.

At this point, we have a family of solutions

ψn,m(x, y, z) ≡ sin
(nπx

a

)
sin

(mπy

b

)
exp

(
−πz

√
n2

a2
+

m2

b2

)
(3.16)

labelled by the pair of integers (n,m), all of which obey the boundary conditions we’ve so

far considered. Since Laplace’s equation is linear and the boundary conditions we’ve so

far imposed are homogeneous, any linear combination of these solutions is also a solution.

Thus our general solution is

ψ(x, y) =
∞∑

n,m=1

An,m sin
(nπx

a

)
sin

(mπy

b

)
exp

(
−πz

√
n2

a2
+

m2

b2

)
(3.17)

for some constants An,m.

The final step is to try to choose the An,m so as to obey the final boundary condition.

Setting z = 0 we require ψ(x, y, 0) =
∑∞

m,n=1An,m sin
(
nπx
a

)
sin

(mπy
b

)
to equal the given

function f(x, y), or in other words that

f(x, y) =
∞∑

m,n=1

An,m sin
(nπx

a

)
sin

(mπy

b

)
, (3.18)

17The signs here are purely for later convenience with the given boundary conditions: check for yourself

that nothing changes at the end of the day if you don’t include them.
18Here Z∗ denotes the non-zero integers {· · · ,−2,−1,+1,+2, . . .}.
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This looks just like a Fourier (sine) series expansion – in both x and y – for the boundary

function f(x, y)! Using orthogonality relations
∫ a

0
sin

(mπx

a

)
sin

(nπx
a

)
dx =

a

2
δm,n (3.19)

we see that the constants An,m are fixed to be

An,m =
4

ab

∫

[0,a]×[0,b]
sin

(nπx
a

)
sin

(mπy

b

)
f(x, y) dx dy (3.20)

in equation (3.17). We note (in passing!) that the function f(x, y) should be smooth

enough so that this Fourier series both converges and is (at least) twice differentiable, so

that it does indeed define a solution of the Laplace equation.

As a simple example, suppose f(x, y) = 1. Then we have

An,m =
4

ab

∫

[0,a]×[0,b]
sin

(nπx
a

)
sin

(mπy

b

)
dx dy =






16

π2

1

mn
if n and m are both odd,

0 otherwise.

(3.21)

Therefore, the solution satisfying these boundary conditions is

ψ(x, y, z) =
16

π2

∞∑

k=1

∞∑

%=1

sin
[
(2k−1)πx

a

]

(2k − 1)

sin
[
(2%−1)πy

b

]

(2)− 1)
exp [−sk,% πz] (3.22)

where s2k,% =
(2k−1)2

a2 + (2%−1)2

b2 . We see that at fixed z, the function ψ(x, y, z) is larger near

the middle of the region [0, a]× [0, b], and that for large z the lowest harmonics – where k

and ) are small – dominate.

Note that in this example, we obtained a Fourier sine series because of the homogeneous

Dirichlet boundary conditions on x and y. If instead we’d imposed Neumann boundary

conditions ∂ψ/∂x = 0 at y = 0, b and ∂ψ/∂y = 0 at x = 0, a, then we would instead find

Fourier cosine series. Finally if, instead of allowing our domain Ω to extend to infinity in

the z direction, we had imposed a boundary conditon ψ(x, y, c) = g(x, y) at some finite

location z = c, then both the positive and negative exponential terms in the function Z(z)

would contribute.

To summarize, the method of separation of variables starts by writing ψ as a product

of functions that depend only on one variable each. We use this ansatz to reduce Laplace’s

PDE to a system of ODEs that depend on a number of constants (here λ and µ). Since

Laplace’s equation was a second order linear equation, these ODEs will always be of Sturm–

Liouville type; the constants will appear as eigenvalues of the SL equation and the equations

will be solved by the eigenfunctions of the SL operator. After solving these SL equations,

we use the homogeneous boundary conditions to impose restrictions on the possible values

of the eigenvalues. The solution for a fixed permissible choice of the eigenvalues is known

as a normal mode of the system. By linearity, the general solution is a linear combination

of these normal modes. The final step is to use the inhomogeneous boundary conditions to

determine which linear combination we should take; this will require using the orthogonality

property of the eigenfunctions of the SL operator.
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3.3 The Laplacian in spherical polar coordinates

In the previous example, our Sturm–Liouville equations were of the form X ′′ = −λX, and

we were led to the Fourier expansion of f(x, y) on the boundary z = 0. This occurred

because the domain of that example was a (non-compact) rectangular cuboid, and it was

natural to treat this using Cartesian coordinates. We’re now going to consider Laplace’s

equation in spherical polar coordinates. Separation of variables now leads to a more inter-

esting SL equation with a non–constant coefficient function p(x).

Recall that a point p ∈ R3 with position vector r may be described in terms of polar

coordinates (r, θ, φ). The radial coordinate r = |r| is the distance of point p from the

origin. In particular r ≥ 0. Whenever r > 0 we define θ to be the angle that r makes with

the (chosen) positive z axis, and take 0 ≤ θ ≤ π. Finally, whenever r > 0 and 0 < θ < π

we define φ to be the angle that the projection of r into the plane z = 0 makes with the

positive x axis, measured counterclockwise. Thus 0 ≤ φ < 2π. It follows from the above

that

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ (3.23)

and hence that the volume element is

dV = dx dy dz = r2 sin θ dr dθ dφ (3.24)

in spherical polar coordinates.

The Laplacian operator becomes

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(3.25)

as you check by the chain rule. In this course, for simplicity, we’ll restrict attention to

axisymmetric situations where all our functions are assumed independent of the angle φ.

In these circumstances we can omit the final term in the Laplacian (3.25), but you can

read about the more general situation in e.g. Arfken & Weber or Boas’ books.

We now seek solutions of Laplace’s equation ∇2ψ(r, θ) = 0 in the interior of the

spherical domain Ω = {(r, θ, φ) ∈ R3 : r ≤ a} for some constant a, where we’ll demand

that our solution remains finite everywhere in Ω. Once again we separate variables by

writing ψ(r, θ) = R(r)Θ(θ) and by our now standard argument find that Laplace’s equation

is equivalent to the system of ordinary differential equations

d

dθ

(
sin θ

dΘ

dθ

)
+ λ sin θΘ =0

d

dr

(
r2

dR

dr

)
− λR = 0

(3.26)

where λ ∈ R is our separation constant. Each of these equations is of Sturm–Liouville

type. Let’s examine them in more detail.
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3.3.1 Legendre polynomials

We’ll start with the angular equation. We can simplify its form with the substitution

x = cos θ, although note that this x is nothing to do with our original Cartesian coordinate

in R3. Since 0 ≤ θ ≤ π we have −1 ≤ x ≤ 1 and

d

dθ
= − sin θ

d

dx
.

Therefore the angular part of Laplace’s equation becomes

− sin θ
d

dx

[
sin θ

(
− sin θ

dΘ

dx

)]
+ λ sin θΘ = 0 , (3.27)

or in other words
d

dx

[
(1− x2)

dΘ

dx

]
= −λΘ . (3.28)

This is known as Legendre’s equation. It is a standard Sturm–Liouville eigenfunction

problem on Ω = [−1, 1], with coefficient functions p(x) = (1−x2) and q(x) = 0, and where

the weight function w(x) = 1. When we checked in chapter 2 whether a Sturm–Liouville

operator L on the domain [−1, 1] was self–adjoint, we met the condition

(f,Lg) = (Lf, g) +
[
p(x)(f∗′g − f∗g′)

]1
−1

.

In the case of Legendre’s equation we see that p(x) = 0 at x = ±1, so the boundary

condition required for self–adjointness is simply that the functions and their derivatives

remain regular on ∂Ω.

Let’s now look for a regular solution of (3.28) throughout the interior of Ω that obeys

the boundary condition that it remains regular on ∂Ω. We seek a power series solution

to (3.28) of the form Θ(x) =
∑∞

n=0 an x
n, where only non–negative powers of x appear

since we want the solution to be regular at the origin. Substituting this into (3.28) gives

0 = (1− x2)
∞∑

n=2

an n(n− 1)xn−2 − 2
∞∑

n=1

an nx
n + λ

∞∑

n=0

xn (3.29)

which must hold it must hold for each power of x separately as it must hold throughout the

open set x ∈ (−1, 1). This implies that the coefficients must obey the recursion relation

0 = an+2(n+ 2)(n+ 1)− an n(n− 1)− 2an n+ λan ,

or equivalently

an+2 =

[
n(n+ 1)− λ

(n+ 1)(n+ 2)

]
an . (3.30)

The recursion relation relates an+2 to an, so we can pick a0 and a1 freely and write

Θ(x) = a0Θ0(x) + a1Θ1(x) , (3.31)
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where

Θ0(x) = 1 +
(−λ)

2!
x2 +

(−λ)(6− λ)

4!
x4 +

(−λ)(6− λ)(20− λ)

6!
x6 + · · ·

Θ1(x) = x+
(2− λ)

3!
x3 +

(2− λ)(12− λ)

5!
x5 + · · · .

(3.32)

Note that Θ0(−x) = Θ0(x) while Θ1(−x) = −Θ1(x). Thus, for any value of λ, we’ve found

two independent solutions of Legendre’s second order equation.

We now consider the boundary conditions. The recurrence relation (3.30) shows that

as n becomes large
an+2

an
= 1− 2

n
+

4− λ

n2
. (3.33)

Thus, by the ratio test the series will always converge for |x| < 1. However, for generic

values of λ the series diverges at x = ±1, violating our boundary condition19. The only

way to avoid this divergence is if the power series for Θ(x) somehow terminates. Looking

back at the recurrence relation, this will occur iff λ takes the form

λ = )()+ 1) for ) ∈ Z≥0 . (3.34)

Only for these eigenvalues will (both) the series we found in (3.32) terminate, leaving

us with a Θ(x) that is polynomial of degree ). The situation is exactly analogous to

our familiar sines and cosines. For any λ ∈ R, we can solve y′′ = −λy on [−1, 1] as

y = A sin
√
λx + B cos

√
λx, but if we impose the boundary condition y(−1) = y(1) then

the eigenvalue must be restricted to λ = (2πn)2 for some n ∈ Z.

The polynomials we’ve found are known as Legendre polynomials of order ), and de-

noted by P%(x). One can show using the series (3.32) that the first four Legendre polyno-

mials are given by

P0(x) = 1 , P1(x) = x , P2(x) =
1

2
(3x2 − 1) , P3(x) =

1

2
(5x3 − 3x) .

where we’ve fixed the overall factor by requiring P%(1) = 1. You can find plots of the first

few Legendre polynomials in figure 3. It turns out that they can be usefully represented as

P%(x) =
1

2%)!

d%

dx%
(x2 − 1)% , (3.35)

which is known as Rodrigues’ formula. The numerical prefactor ensures that P%(1) = 1; to

see this use Leibnitz’ rule to compute

P%(x) =
1

2%)!

d%

dx%
(x2 − 1)% =

1

2%)!

d%

dx%

[
(x− 1)%(x+ 1)%

]

=
1

2%)!

[
)!(x+ 1)% + terms proportional to (x− 1)

] (3.36)

19Since limn→∞
an+2

an
= 1, the ratio test is inconclusive and we must examine the higher order terms.

Gauss’ test for convergence states that if the ratio of successive coefficients behaves at large n like 1+ h
n + Cn

n2

with Cn bounded and h < 1 then the series will diverge. So the infinite series Θ0(x) and Θ1(x) do indeed

diverge at x = ±1. A proof of Gauss’ test can be found here.
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Figure 3. Plots of the first five Legendre polynomials P!(x) for x ∈ [−1, 1]. Note that P!(x) is even
(odd) if ) is even (odd), that P!(1) = 1, and that P!(x) has ) real roots in between x = −1 and 1.

and evaluate at x = 1. Notice also that since (x2 − 1)% is a polynomial in x of degree 2)

containing only even powers of x, P%(x) is a polynomial of degree ) that is an even (odd)

function of x when ) is even (odd), in agreement with the expectation from our recurrence

relation.

The Legendre polynomials P%(x) are the basic orthogonal polynomials on [−1, 1] with

weight function w(x) = 1. They have many beautiful properties. To prove some of them,

it is helpful to first note that if ) ≥ r ≥ 0 then (dr/dxr)(x2 − 1)% = (x2 − 1)%−r Q%,r(x)

where Q%,r(x) is some polynomial of degree r. This follows by induction: it is true when

r = 0, and assuming it is true for some r then differentiating r + 1 times

dr+1

dxr+1
(x2 − 1)% =

d

dx

[
(x2 − 1)%−r Q%,r

]

= (x2 − 1)%−r−1
[
2x()− r)Q%,r(x) + (x2 − 1)Q′

%,r(x)
]
.

If Q%,r(x) is a polynomial of degree r then Q′
%,r(x) is a polynomial of degree r − 1 and the

content of the square brackets is a polynomial of degree r + 1. Thus the claim holds at

r + 1. A consequence of this lemma is that

dr

dxr
(x2 − 1)%

∣∣∣∣
x=±1

= 0 (3.37)

whenever r < ) (but r ≥ 0). This fact is useful in showing that functions P%(x) defined

in (3.35) are orthogonal for different values of ). Explicitly, in considering
∫ 1
−1 Pm(x)P%(x) dx

for m ,= ) then without loss of generality we can assume that m < ). Then repeatedly
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integrating by parts m+ 1 times we have

2%+m)!m!

∫ 1

−1
Pm(x)P%(x) dx =

∫ 1

−1
Pm(x)

d%

dx%
(x2 − 1)% dx

=

[
Pm(x)

d%−1

dx%−1
(x2 − 1)%

]1

−1

−
∫ 1

−1

d

dx
Pm(x)

d%−1

dx%−1
(x2 − 1)% dx

= −
∫ 1

−1

dm+1

dxm+1
Pm(x)

d%−m−1

dx%−m−1
(x2 − 1)% dx

= 0

(3.38)

where in performing the integrations by parts we note that all the boundary terms vanish by

our lemma (3.37), and in going to the final line we use the fact that Pm(x) is a polynomial

of degree m. Thus Legendre polynomials with different eigenvalues are indeed orthogonal

on [−1, 1] in agreement with the general results of Sturm–Liouville theory.

To fix the normalization we similarly note that

22%()!)2
∫ 1

−1
P%(x)P%(x) dx =

∫ 1

−1
P%(x)

d%

dx%
(x2 − 1)% dx

= −
∫ 1

−1
(x2 − 1)%

d%

dx%
P%(x) dx = −

∫ 1

−1
(x2 − 1)%

d2%

dx2%
(x2 − 1)% dx

(3.39)

The only term in (x2 − 1)% that survives being differentiated 2) times is the highest power

x2% and since (dr/dxr)xr = r! we have

22%()!)2
∫ 1

−1
P%(x)P%(x) dx = (2))!

∫ 1

−1
(x2 − 1)% dx ≡ (2))! I% . (3.40)

Yet again integrating by parts we find that for ) > 0

I% ≡
∫ 1

−1
(x2 − 1)% dx =

[
x(x2 − 1)%

]1
−1

− 2)

∫ 1

−1
x2(x2 − 1)%−1 dx

= −2) I% + 2) I%−1 ,

(3.41)

or in other words I% =
2%

2%+1I%−1. Since I0 = 2 we find inductively that

I% = (−1)%
2%+1)!

∏%
r=0(2r + 1)

.

Using this in equation (3.39) gives finally

∫ 1

−1
Pm(x)P%(x) dx =

2

2)+ 1
δm,% (3.42)

as the orthogonality relations among the Legendre polynomials.

Any degree ) polynomial has ) complex roots, but in fact all ) roots of P%(x) are real,

and remarkably they all lie in x ∈ (−1, 1). To see this, assume for a contradiction that

it’s false. Then P%(x) has only k < ) real roots in between −1 and 1. Suppose these are
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at points x1, x2, . . . , xk and construct the polynomial Qk(x) ≡
∏k

r=1(x − xr). Then for

x ∈ [−1, 1] the product P%(x)Qk(x) is either always positive or always negative, because

by our assumptions P%(x) and Qk(x) change sign simultaneously. Thus, on the one hand

∫ 1

−1
P%(x)Qk(x) dx ,= 0

since the integrand always has definite sign. On the other hand, we can always expand as

Qk(x) =
∑k

r=0 Q̂rPr(x) in a basis of Legendre polynomials. Since k < ) by assumption

each term in this sum is orthogonal to P%(x), so the above integral must vanish, giving a

contradiction.

The Legendre polynomials have many other curious properties, some of which you

will explore in the problem sets and many of which are explained in Arfken & Weber or

in Boas. I recommend that you browse through a few of these, but the most important

thing to remember is simply that the Legendre polynomials are the solutions of Legendre’s

equation (3.28) with eigenvalue λ = )()+1) for ) ∈ Z≥0. By standard SL theory they form

a complete set of orthogonal functions on x ∈ [−1, 1] or equivalently on θ ∈ [0, π] where

x = cos θ.

3.3.2 The Cosmic Microwave Background

In 1964, Arno Penzias and Robert Wilson were trying to clean their radio telescope of

various pigeon droppings. They were hoping this was the cause of an annoying background

noise that was stymying their attempts to measure weak radio waves bouncing off various

satellite balloons NASA had launched into the upper atmosphere. But the noise did not go

away. They asked around their friends and colleagues to find out if anyone had a clue what

could be causing this mysterious microwave background, that seemed to be come evenly

from all directions and constant in time.

One of them recalled a recent paper of Dicke, Peebles and Wilkinson which predicted

that, had the Universe started in a hot, dense state then some radiation from that time

should be around now and would be redshifted down to microwave frequencies. This Cosmic

Microwave Background would be, to excellent approximation, homogeneous and isotropic

and provided the perfect explanation for the blackbody spectrum of temperature ∼ 3K

measured by Penzias and Wilson.

The discovery and measurement of the CMB is one of the key pieces of evidence we

have for the Big Bang. But it’s not completely isotropic. The CMB anisotropies were first

measured by the COBE satellite in the early 1990s and have been intensively studied by

many telescopes ever since. The best one to date is the Planck satellite – orbiting right

now – which has a strong Cambridge involvement. These satellites produce detailed maps

of the CMB, a (low resolution) example being shown in figure 4.

To understand what these pictures are trying to tell us, we need to process it a little.

Cosmologists are particularly interested in the two–point function

C(θ) ≡
〈δT
T

(r̂1)
δT

T
(r̂2)

〉
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Figure 4. A map of the CMB, produced by the WMAP satellite. The picture depicts fluctuations
around the average temperature T = 2.725K in different directions in the sky, with red and yellow
being hotspots while blue and purple are cold. The fluctuations are very small, with δT/T ∼ 10−5.

defined as the temperature difference of the CMB when looking out in different directions

r̂1 and r̂2 with r̂1 · r̂2 = cos θ, averaged over all points on the sky. The resulting function

depends on θ ∈ [0, π] and so you can expand it in Legendre polynomials as

C(θ) =
1

4π

∞∑

%=0

(2)+ 1)C% P%(cos θ) . (3.43)

If you do this you’ll find the graph shown in figure 3.3.2. The peaks and troughs of this

graph contain a vast wealth of information about the history of the very early universe. If

you want to know more, take the Part II Cosmology course.

3.3.3 Laplace’s equation on the sphere

After this long interlude, let’s return to our problem of finding the general regular, axisym-

metric solution to Laplace’s equation ∇2ψ = 0 on the spherical domain Ω = {r ≤ a} ⊂ R3.

Using separation of variables we found ψ(r, θ) = R(r)Θ(θ) where R and Θ obey the

odes (3.26). We’ve just seen that for a regular solution, we require the separation constant

λ = )() + 1) for ) ∈ Z≥ and that in this case Θ = P%(cos θ). Notice that regularity at

x = ±1, necessary for self–adjointness of the Sturm–Liouville operator in Legendre’s equa-

tion, amounts to regularity of Θ at θ = 0 and π, or in other words along the z-axis of our

– 42 –



Figure 5. The CMB power spectrum |C!|2 plotted against ) (called the multipole moment).

original problem in R3. If we want a solution regular everywhere in the interior of r ≤ a

then it certainly needs to be regular along the z-axis!

The remaining equation to consider is the radial equation, which with λ = )() + 1)

becomes

(r2R′
%)

′ = )()+ 1)R . (3.44)

Trying a solution of the form R(r) ∝ rα for some power α we learn that

α(α+ 1) = )()+ 1) (3.45)

whose roots are α = ) and α = −()+ 1). Thus our general solution takes the form

ψ(r, θ) =
∞∑

%=0

(
A% r

% +
B%

r%+1

)
P%(cos θ) (3.46)

where for each ) the A% and B% are (generically complex) constants. Note that we’re now

treating the Legendre polynomials as functions of θ; they are polynomials in cos θ. Since

we require the solution to be regular everywhere inside r = a, we must set B% = 0 for all ).

(If we were interested in solving Laplace’s equation everywhere outside the sphere r = a,

then for regularity as r → ∞ we’d need A% = 0 for ) > 0. And, of course, if we wish for

a regular solution valid inside the spherical shell a ≤ r ≤ b then both the A% and B% can

generically be present.)

As always, to pin down the remaining constants A% we must impose some boundary

condition at r = a. For example, if we demand that ψ(a, θ) = f(θ) for some axisymmetric
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function f on the sphere, then by the general results of Sturm–Liouville theory f has an

expansion in terms of the Legendre polynomials as

f(θ) =
∞∑

%=0

F% P%(cos θ) where F% =
2)+ 1

2

∫ π

−π
P%(θ) f(θ) sin θ dθ .

Note the presence of the factor (2) + 1)/2 in front of the integral; this comes from the

normalization condition (3.39) of the Legendre polynomials. Laplace’s equation is thus

solved by

ψ(r, θ) =
∞∑

%=0

F%

(r
a

)%
P%(cos θ) . (3.47)

with the choice A% = F% a−% ensuring that our boundary condition ψ(a, θ) = f(θ) is met.

3.3.4 Multipole expansions

Consider the function
1

|r− k| =
1√

1 + r2 − 2r cos θ
. (3.48)

where k is a unit vector in the z-direction. You can check (exercise!) that this function

satisfied Laplace’s equation for all r ,= k and that in particular it is regular at the origin

r = 0. So from what we’ve said above, it must be possible to expand it in terms of Legendre

polynomials. That is, we must have

1

|r− k| =
∞∑

%=0

a% r
% P%(cos θ) (3.49)

for some coefficients a%. It’s simple to determine these coefficients: Set θ = 0 in equa-

tion (3.48) so that r also points along the z-axis, and Taylor expand to find

1√
1 + r2 − 2r

=
1

1− r
=

∞∑

%=0

r% whenever r < 1 . (3.50)

If we recall that P%(1) = 1 for all ), then this is compatible with the expansion (3.49) iff

a% = 1, showing that
1

|r− k| =
∞∑

%=0

r%P%(cos θ) (3.51)

at general locations r. More generally, for any vector r′ we have

1

|r− r′| =
1

r′

∞∑

%=0

( r

r′

)%
P%(r̂ · r̂′) (3.52)

whenever r′ > r. This is known as the multipole expansion, with the ) = 0 term known

as the monopole term and the ) = 1 term known as the dipole. In electrostatics, q times

the monopole term 1/r′ is the potential experienced at r′ due to a point charge q at the

origin. The dipole term r/(r′)2 cos θ = r · r′/(r′)3 is likewise proportional to the potential

experienced at r′ due to two charges ±a placed at a separation r from eachother.
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3.4 Laplace’s equation in cylindrical polar coordinates

The final case we’ll consider in this course is problems with cylindrical symmetry. Here,

separation of variables leads to a SL equation that has a non–constant weight function as

well as a non–constant SL coefficient function p(x).

Recall that in cylindrical polar coordinates (x, y, z) = (r cos θ, r sin θ, z) the Laplacian

operator

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (3.53)

Suppose we’re interested in solving Laplace’s equation ∇2ψ = 0 on the cylinder Ω =

{(r, θ, z) ∈ R3 : r ≤ a , z ≥ 0}, subject to the Dirichlet boundary conditions that ψ(r)

is single valued and finite throughout Ω and decays as z → ∞. We also assume that ψ

vanishes on the curved edge r = a of the cylinder, but that ψ(r, θ, 0) = f(r, θ) for some

given function f on the base of the cylinder.

Again we try separating variables by writing ψ = R(r)Θ(θ)Z(z), learning that

(
R′′

R
+

1

r

R′

R

)
+

1

r2
Θ′′

Θ
+

Z ′′

Z
= 0 (3.54)

wherever ψ ,= 0. We now argue that since Z ′′/Z depends only on z but cannot vary as z

is changed with (r, θ) held fixed, in fact Z ′′/Z = µ for some constant µ. This being so, we

can now multiply (3.54) through by r2 and notice that by the same argument, Θ′′/Θ = −λ

must also be constant. Therefore, in cylindrical coordinates Laplace’s equation reduces to

the system of ODEs
Θ′′ = −λΘ Z ′′ = µZ

0 = r2R′′ + rR′ + (µr2 − λ)R
(3.55)

If we want ψ(r) to be single valued, then we must have Θ(θ + 2π) = Θ(θ), so λ must be

one of the values λn ≡ n2 for n ∈ Z, whereupon we have the usual solution

Θ(θ) = Θn(θ) ≡ an sinnθ + bn cosnθ . (3.56)

(Note that if λ = 0 then the equation Θ′′ = 0 is solved by Θ = a0θ+b0. Periodicity requires

a0 = 0 and the remaining constant term is just what we’d find by putting n = 0 in (3.56).)

The equation for Z(z) is equally straightforward. If µ < 0 we’d again find solutions in

terms of sines and cosines, but let’s suppose that µ > 0 and that we require ψ(r) → 0 as

z → ∞. Then the only possibilities are Z(z) = Zµ(z) ≡ cµ exp
(
−z

√
µ
)
for some µ ∈ R+,

where cµ is a constant.
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3.4.1 Bessel functions

We now turn to the radial equation. Multiplying this through by r and noting that rR′′ +

R′ = (rR′)′ we obtain the standard Sturm–Liouville form

d

dr

(
r
dR

dr

)
− n2

r
R = −µrR (3.57)

where the SL coefficients are p(r) = r and q(r) = −λn/r = −n2/r, while the weight

function

w(r) = r (3.58)

multiplies the eigenvalue−µ. We can actually eliminate µ from this equation by introducing

the rescaled radial coordinate20 x = r
√
µ whereupon we find

x2
d2R

dx2
+ x

dR

dx
+ (x2 − n2)R = 0 (3.59)

This equation is known as Bessel’s equation of order n. As with any second order ODE,

this equation has two linearly independent solutions. They’re denoted Jn(x) and Yn(x) and

are respectively known as Bessel functions of the first (second) kind, or order n, or often

just ‘Bessel functions’ for short. The first few Bessel functions are plotted in figures 6–7.

You should think of them as analogues of sines and cosines for the radial equation (3.59)

instead of for the Cartesian equation X ′′ = −λX.

Bessel functions of the first kind Jn(x) are regular at the origin x = 0, and in fact all

but J0(x) actually vanish at the origin. By contrast, the Bessel functions of the second

kind Yn(x) are singular at the origin. This property means that if we are interested in

solutions to Laplace’s equation that are well–behaved within some radius r0, then the Yn
functions cannot arise. On the other hand, if we’re interested not in a solid cylinder, but

in a cylindrical shell r0 ≤ r ≤ r1 then both types of Bessel functions generically do occur.

In the eighteenth century, winters were long and there was no Facebook, so people

spent their time working out all sorts of properties of these Bessel functions. Here are

some of the more prominent ones, none of which I’m going to prove and none of which I

expect you to remember:

– Using the Frobenius method of power series, one can show

Jn(x) =
(x
2

)n
∞∑

k=0

(−1)k

k!(k + n)!

(x
2

)2k

whenever n is a non-negative integer. In fact Bessel’s equation is of Sturm–Liouville

type even if n ∈ R rather than n ∈ Z. This formula still holds provided we replace

the factorials by Gamma functions as k!(k + n)! ! Γ(k + 1)Γ(k + n+ 1).

20This x of course has nothing to do with a Cartesian coordinate on the original R3.
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– At small x, one finds

Jn(x) =
1

n!

(x
2

)n
+O(xn+2) when n ∈ Z≥0.

Y0(x) = O(lnx)

Yn(x) = O(x−n) when n ∈ Z≥0.

– At large x, the asymptotic behaviour of the Bessel functions is

Jn(x) =

(
2

πx

)1/2

cos
[
x− nπ

2
− π

4

]
+O(x−3/2)

Yn(x) =

(
2

πx

)1/2

sin
[
x− nπ

2
− π

4

]
+O(x−3/2)

In particular, this shows that both Jn(x) and Yn(x) have an infinite number of zeros

and turning points. If we recall that x =
√
µr, where r was the radial coordinate in

Laplace’s equation, then we see that the location of these zeros in the radial direction

of R3 depends on the eigenvalue µ.

You can find derivations of these and many more properties of Bessel functions in the

books by Arfken & Weber or by Boas that I recommended earlier. As with the Legendre

polynomials, I recommend you take a look through some of these, but again the most

important fact about the nth order Bessel functions are simply that they are eigenfunctions

of a Sturm–Liouville operator that arises from the Laplacian in cylindrical polar coordinates

when the angular equation Θ′′ = −n2Θ has eigenvalue n2.

3.4.2 Boundary value problems in cylindrical coordinates

Armed with the Bessel functions, we now return to our boundary value problem. We’ve

found

ψµ,n(r, θ, φ) = (an sinnθ + bn cosnθ)) e
−z

√
µ (Jn(r

√
µ) +BnYn(r

√
µ))

for n ∈ Z≥0 and µ ∈ R+ provides a solution of Laplace’s equation that decays as z → +∞.

Since we want the solution to be regular throughout the cylinder, in particular along the

z-axis, we must set Bn = 0. The boundary condition that ψ(r) = 0 at r = a requires

Jn(a
√
µ) = 0. Thus, for any given n, this fixes µ to be one of the values

√
µ =

kni
a

for i = 1, 2, 3, . . . (3.60)

where i labels the roots Jn(kni) = 0 of the nth Bessel function. This is just like we found

for the sinusoidal case: the homogeneous boundary conditions fix the allowed eigenvalues.

Since we’ve so far imposed only the homogeneous boundary conditions, we can consider an

arbitrary linear combination of these normal modes. Relabelling constants, we have

ψ(r, θ, z) =
∞∑

n=0

∞∑

i=1

(Ani sinnθ +Bni cosnθ) Jn(knir/a) e
−kniz/a (3.61)
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Figure 6. Plots of some Bessel functions of the first kind Jn(x), for order n = 0, 1, 2. The location
of the first zero in x > 0 increases as the order of the Bessel function increases, and Jn(x) is falling
as it passes through this zero. Note that the zeros are not evenly spaced. J0(0) = 1 while all other
Jn(x) vanish at the origin.
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Figure 7. Plots of some Bessel functions of the second kind Yn(x), for order n = 0, 1, 2. Again,
the location of the first zero increases as the order of the Bessel function, but now Yn(x) rises as it
passes through zero. All the Yn(x) are singular at the origin.

as our general solution.

The final step is to fix the constants Ani and Bni by imposing the inhomogeneous
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boundary condition ψ(r, θ, 0) = f(r, θ) when z = 0. Again, this is done using the Sturm–

Liouville orthogonality conditions

∫ a

0
Jn(kmjr/a) Jn(knir/a) r dr =

a2

2
δi,j

[
J ′
n(kni)

]2
=

a2

2
δi,j [Jn+1(kni)]

2 (3.62)

for the Bessel functions. There are two things to note about this orthogonality relation.

First, in (3.58) we identified the weight function in Bessel’s equation as w(r) = r; it appears

here. The second point note is that the Bessel functions Jn(knir) satisfy orthogonality

relations for each fixed n, but between different values i, j of the index labelling the roots.

You’ll derive this relation in the problems sheets, and it’s just what we need here. We can

use the orthogonality relations

1

π

∫ π

−π
sinmθ sinnθ dθ = δm,n ,

1

π

∫ π

−π
cosmθ cosnθ dθ = δm,n ,

1

π

∫ π

−π
sinmθ cosnθ dθ = 0

among the trigonometric functions to fix a value of the n index, determining which order

of Bessel function we’re considering. For example, setting z = 0 and integrating (3.61)

against cosmθ gives

1

π

∫ π

−π
cosmθ f(r, θ) dθ =

∞∑

i=1

Bmi Jm(kmir/a) (3.63)

involving only the mth order Bessel function of the first kind, but with kmi still summed

over all the roots. The orthogonality condition (3.62) for the Bessel functions then gives

Bmj =
2

πa2
1

[J ′
m(kmj)]2

∫ a

0

[
Jm(kmjr/a)

∫ π

−π
cosmθ f(r, θ) dθ

]
r dr (3.64)

which fixes the constants Bmj in terms of the function f in the boundary condition. The

Bmj are determined similarly.

As an example, let’s suppose f(r, θ) = C, a constant. Since this is in particular

independent of θ, we see immediately from (3.64) that Bmj = 0 whenever m ,= 0. (The

Amj are similarly all zero.) The only non-zero coefficients are thus B0j , multiplying a

function with trivial angular dependence. These are

B0j =
2C

a2
1

[J1(k0j)]2

∫ a

0
J0(k0jr/a) r dr =

2C

k0j

1

J1(k0j)
(3.65)

where the second equality is something you’ll prove in the problem sets.
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