
5 The Wave Equation

Waves are extremely common in the physical world. Examples include surface disturbance

of a body of fluid, vibration of string instruments and pressure perturbations in air that

convey sound. In all these cases, if the amplitude of the disturbance is sufficiently small, the

perturbation variable φ(x, t) characterising the disturbance will satisfy the wave equation:

∂2φ

∂t2
= c2∇2φ (5.1)

where c is the (phase) speed of propagation of maxima and minima of a sinusoidal wave

form. In these examples, extra non-linear terms will need to be introduced if the distur-

bance becomes large, and the wave equation is only a kind of lowest order approximation.

This is entirely analogous to the behaviour of a point particle in mechanics, that is trapped

in a local minimum of some potential function and performing small motions: regardless

of the overall form of the potential, to lowest order approximation (e.g. in Taylor series ex-

pansion) any (suitably differentiable) function appears quadratic around a local minimum,

and the particle will thus execute simple harmonic motion if the amplitude is small. But

the wave equation also has genuinely fundamental significance in other areas: for example

in electromagnetic theory, Maxwell’s equations imply the the electromagnetic potentials

must satisfy the wave equation in regions free of sources, and this lead to the understand-

ing of (classical) light as an electromagnetic phenomenon – a truly awesome discovery at

the time.

5.1 Vibrations of a uniform string

To bring the discussion down to earth, let’s think of the example of a violin string of length

L. So we take the spatial region Ω to just be the interval [0, L] with x ∈ [0, L] denoting

the location along the string.

We’ll start by illustrating the physical origin of the wave equation in this example.

Consider a small transverse oscillation of our string with ends fixed at x = 0 and x = L.

To keep things simple, let’s assume that the string is uniform with constant mass per

unit length µ and is perfectly elastic. That’s pretty much true of a well–made violin string.

We’ll also assume that the string only performs small transverse oscillations φ(x, t), so that

we only need to work to first order in φ. Consider a small element δs of string between x

(point A) and x + δx (point B) having mass µδx. Let θA, θB be the angles at the ends

and let TA, TB be the outward pointing tangential tension forces acting on δs. Since the

motion is transverse, the total force along the string is zero so

TA cos θA = TB cos θB = T = constant . (5.2)

In the transverse direction, Newton’s second law gives

µδx
∂2φ

∂t2
= TB sin θB − TA sin θA (5.3)

Dividing through by the quantities in equation (5.2) gives

µδx

T

∂2φ

∂t2
=

TB sin θB
TB cos θB

− TA sin θA
TA cos θA

= tan θA − tan θB . (5.4)
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Now

tan θB − tan θA =
∂φ

∂x

∣∣∣∣
B

− ∂φ

∂x

∣∣∣∣
A

≈ ∂2φ

∂x2
δx ,

so that after dividing through by µ δx/T , equation (5.4) becomes

∂2φ

∂t2
= c2

∂2φ

∂x2
, where c2 = T/µ. (5.5)

Thus we have derived the wave equation in 1+1 dimensions. The constant c has units

of a velocity and is called the phase speed. Note that from the role of Newton’s law in

the above derivation, for a unique solution (in addition to the BCs of fixed endpoints

φ(0, t) = φ(L, t) = 0 for all t) we would expect to have to provide both the initial position

φ(x, 0) and the initial velocity ∂φ/∂t(x, 0) for 0 < x < L of all points along the string.

We’ll say more about uniqueness in section 5.2.

We now wish to solve the 1+1 dimensional wave equation subject to the boundary

conditions

φ(0, t) = φ(L, t) = 0 (5.6)

and initial conditions

φ(x, 0) = f(x) ,
∂φ

∂t
(x, 0) = g(x) (5.7)

for some given functions f and g, representing the string’s initial shape and velocity. Sep-

aration of variables φ(x, t) = X(x)T (t) leads to the o.d.e.s

X ′′ = −λX T ′′ = −c2λT (5.8)

in terms of a separation constant λ. These are solved by sines and cosines, and the boundary

conditions φ(0, t) = φ(L, t) = 0 enforce require that

λ =
n2π2

L2
for some n ∈ N. (5.9)

Consequently our individual solution is

φn(x, t) = sin
nπx

L

[
An cos

nπct

L
+Bn sin

nπct

L

]
(5.10)

which, for a fixed value of n is known as a normal mode of the oscillation. In particular,

the lowest non–trivial value n = 1 is known as the fundamental mode. We see that all the

frequencies of oscillation ωn = nπc/L are integer multiples of the fundamental frequency

ω1.

Summing over possible separation constants, the general solution is a sum over the

normal modes

φ(x, t) =
∞∑

n=1

sin
nπx

L

[
An cos

nπct

L
+Bn sin

nπct

L

]
. (5.11)
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As usual, the constants An and Bn are fixed by the inhomogeneous initial conditions to be

An =
2

L

∫ L

0
sin

nπx

L
f(x) dx , Bn =

2

nπc

∫ L

0
sin

nπx

L
g(x) dx . (5.12)

For example, if we pluck the string, pulling it back to height h in the middle and releasing

it from rest, then we have the initial conditions

f(x) =

{
2hx/L 0 ≤ x ≤ L/2

2h(L− x)/L L/2 ≤ x/leqL

while g(x) = 0. We computed the Fourier coefficients of this plucked string function f(x)

in the problem sets, finding

f̂n =





(−1)(n+1)/2 8h

n2π2
when n is odd

0 else.
(5.13)

Using this result we have

φ(x, t) =
8h

π2

∞∑

n=1

(−1)n+1

(2n− 1)2
sin

[
(2n− 1)πx

L

]
sin

nπct

L
. (5.14)

It’s a good idea to check that this does indeed satisfy the wave equation, boundary condi-

tions and initial conditions.

5.2 Energetics and uniqueness

It will be helpful to derive an expression for the energy contained in the string’s motion.

Since the string has mass per unit length µ, its total kinetic energy at time t is

K(t) =
1

2

∫ L

0
µ

(
∂φ

∂t

)2

dx . (5.15)

The string is under tension, so it will also have some potential energy whenever its profile

is non–constant. Considering a small element δs of the string we have

T × (extension) = T (δs− δx) = T




√

1 +

(
∂φ

∂x

)2

− 1



 δx (5.16)

and integrating this along the length of the string gives a potential energy contribution at

time t

V (t) = T

∫ L

0




√

1 +

(
∂φ

∂x

)2

− 1



 dx ≈ T

2

∫ L

0

(
∂φ

∂x

)2

dx . (5.17)

In the final approximation we used the fact that the oscillations are small. Using the fact

that c2 = T/µ we see that the total energy of the string is

E(t) =
µ

2

∫ L

0

[(
∂φ

∂t

)2

+ c2
(
∂φ

∂x

)2
]
dx . (5.18)
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It’s a useful exercise to evaluate this energy function for the explicit solution (5.11). You

should find that the kinetic and potential energies are

K(t) =
µπ2c2

4L

∞∑

n=1

n2

[
An sin

(
nπct

L

)
−Bn cos

(
nπct

L

)]2

V (t) =
µπ2c2

4L

∞∑

n=1

n2

[
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)]2 (5.19)

so that the total energy is

E(t) =
µ2c2π2

4L

∞∑

n=1

n2 (A2
n +B2

n) . (5.20)

Notice in particular that this total energy is independent of time; just like in simple har-

monic motion, PE and KE are continuously inter–converted during the motion so that the

total energy is conserved. Also notice that, in accordance with our intuition, given two

modes with equal amplitudes the higher mode has the higher energy. Finally, recall that

the period of oscillation (i.e. the period of the fundamental mode) is

T =
2π

ω
= 2π

L

πc
=

2L

c
. (5.21)

and we can average over a period to get

K =
c

2L

∫ 2L
c

0
K(t) dt = V =

c

2L

∫ 2L
c

0
V (t)dt =

E

2
, (5.22)

so there is an equipartition of energy between average potential and kinetic energies.

The energy provides a good way to prove uniqueness of solutions to the wave equation

in general, provided they are subject to appropriate boundary and initial conditions. To

see this, let M ∼= Ω× [0,∞) and let φ : M → R be a solution of the wave equation24 in the

interior of M , that obeys the conditions

φ|Ω×{0} = f(x) (initial condition on φ itself)

∂tφ|Ω×{0} = g(x) (initial condition on time derivative of φ)

φ|∂Ω×(0,∞) = h(x) (Dirichlet boundary condition at ∂Ω)

(5.23)

Notice that, as above, we have two initial conditions: at time t = 0 we prescribe the values

both of φ itself and its first time derivative everywhere over space Ω. We also impose

Dirichlet boundary conditions at the boundary of our compact region Ω that hold for all

times.

Absorbing a factor of µ into the scaling of φ, we define the energy Eφ(t) of this wave

at time t ∈ (0,∞) to be the integral

Eφ(t) ≡
1

2

∫

Ω

(
∂φ

∂t

∂φ

∂t
+ c2∇φ ·∇φ

)
dV (5.24)

24For simplicity, I’ll only consider real–valued functions here. What I say generalizes to complex–valued

waves easily – have a go!
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over the spatial region Ω. This is a natural generalization of the energy of our violin string,

involving a kinetic term involving the rate ∂tφ at which each point in Ω is oscillating, and

a potential term involving the tension due to spatial gradients in the wave. Differentiating

under the integral and using the fact that partial derivatives commute one finds

dEφ

dt
=

∫

Ω

[
∂φ

∂t

∂2φ

∂t2
+ c2∇

(
∂φ

∂t

)
·∇φ

]
dV

=

∫

Ω

∂φ

∂t

[
∂2φ

∂t2
− c2∇2φ

]
dV + c2

∫

∂Ω

∂φ

∂t
(n·∇φ) dS

= c2
∫

∂Ω

∂φ

∂t
n·∇φ dS

(5.25)

where in going to the second line we integrate by parts in the spatial variables, and in

going to the last line we used the fact that φ solves the wave equation. Thus, if either

n ·∇φ|∂Ω = 0 or ∂tφ|∂Ω = 0 so that no energy is flowing out of the region Ω, then evolution

via the wave equation preserves Eφ(t).

Now we’re ready for our uniqueness theorem. Suppose φ1 and φ2 are two solutions

of the wave equation inside M that each obey the boundary conditions (5.23). Then

ψ ≡ φ1 − φ2 solves the wave equation subject to

ψ|Ω×{0} = ∂tψ|Ω×{0} = ψ|∂Ω×(0,∞) = 0 . (5.26)

In particular, the fact that ψ|∂Ω = 0 for all times means that ∂tψ|∂Ω = 0 so that dEψ/dt = 0

and therefore that

Eψ(t) =
1

2

∫

Ω

(
∂ψ

∂t

∂ψ

∂t
+ c2∇ψ ·∇ψ

)
dV

remains constant. But since both ∂tψ and ψ itself vanish throughout Ω at t = 0, evaluating

this integral at the initial time gives

Eψ(t) = Eψ(0) = 0 . (5.27)

Finally, since E(t) is the integral of a sum of non–negative quantities, the only way for

E(t) to vanish is if ∂tψ and ∇ψ each vanish separately throughout Ω at all times. Thus

ψ is constant on Ω × [0,∞) and since the initial value of ψ is zero, ψ is everywhere zero.

Hence our two solutions φ1 and φ2 are in fact the same.

This result is useful: it says that if we manage to find a solution satisfying boundary

and initial conditions as in (5.23) by any means (e.g. separation of variables), then we’ve

found the only solution and we’re done. As usual, if we replace the Dirichlet condition

on the boundary of the spatial region Ω by a Neumann condition n · ∇φ|∂Ω = h(x) the

uniqueness argument goes through unchanged up to the last step, where we conclude that

our two solutions can differ at most by a constant.

5.3 Vibrations of a circular membrane

For our next example, we’ll consider the vibrations of a circular drum. Let’s take Ω to be

the unit disc {(r, θ) ∈ R2 : r ≤ 1} and write the wave equation in cylindrical coordinates
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as
1

c2
∂2φ

∂t2
= ∇2φ =

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
(5.28)

We’ll suppose the drum’s membrane it held fast at the boundary, so φ|r=1 = 0 for all times

t. Writing φ(r, θ, t) = R(r)Θ(θ)T (t) we find

T ′′ = −c2λT , Θ′′ = −µΘ , r(rR′)′ + (r2λ− µ)R = 0 (5.29)

The T and Θ equations have the usual sinusoidal and cosinusoidal solutions, and to ensure

our solution is single–valued as θ → θ + 2π we must take µ = m2 for some m ∈ N. The

radial equation becomes r(rR′)′ + (r2λ−m2)R = 0, which is Bessel’s equation of order m.

As in section 3.4.1, the solutions are

R(r) = amJm
(√

λr
)
+ bmYm

(√
λr

)
(5.30)

where we take bm = 0 to ensure regularity at the origin. To satisfy the boundary condition

at r = 1, we must choose the separation constant λ to be one of the

λ = k2mi where Jm(kmi) = 0 (5.31)

so that kmi is the ith root of the mth Bessel function Jm(r).

Combining the pieces, we have the general solution

φ(r, θ, t) =
∞∑

i=1

[A0i sin(k0ict) + C0i cos(k0ict)] J0(k0ir)

+
∞∑

m=1

∞∑

i=1

[Ami cosmθ +Bmi sinmθ] sin(kmict) Jm(kmir)

+
∞∑

m=1

∞∑

i=1

[Cmi cosmθ +Dmi sinmθ] cos(kmict) Jm(kmir)

(5.32)

which is admittedly a bit of a mouthful. Pictures of some of the normal modes of oscillation

can be seen in figure 9. If the drum’s surface has initial profile and velocity

φ(r, θ, 0) = f(r, θ) ∂tφ(r, θ, 0) = g(r, θ) (5.33)

then the constants {Ami, Bmi, Cmi, Dmi}may be fixed by expanding both f and g in Fourier

series in θ and Bessel functions in r. We recall that the Bessel functions of order m obey

a Sturm–Liouville differential equation and are thus orthogonal for different values of kmi.

Explicitly, ∫ 1

0
Jm(kmir) Jm(kmj) r dr =

1

2
δij [Jm+1(kmi)]

2 (5.34)

as you showed in one of the problems.

As an example, suppose that the drum is initially quiet with φ = 0 but at t = 0 is

suddenly struck in the centre, so that

φ(r, θ, 0) = 0 , ∂tφ(r, θ, 0) = g(r) , (5.35)
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Figure 9. Various normal modes of oscillation of a circular drum. In the left column the modes
(m, i) = (0, 1) and (0, 3) are shown, the middle column shows the modes (m, i) = (1, 1) and (1, 3)
and the right column shows the modes (m, i) = (2, 1) and (2, 3). These figures are taken from this
Wikipedia page, where you can find animated versions.

where the initial velocity is a function of r only. The solution is then also independent of

the angle θ and the only non–vanishing constants are A0i. (The C0i must vanish since we

need φ|t=0 = 0. The general solution (5.32) reduces to

φ(r, θ, t) =
∞∑

i=1

A0i sin(k0ict) J0(k0ir) (5.36)

where the remaining constants A0i are given by

A0i =
2

ck0i

1

[J1(k0i)]
2

∫ 1

0
J0(k0ir) g(r) r dr . (5.37)

Interestingly, the fundamental frequency for a drum of general radius a is k01c/a ∼ 4.8c/a,

which is higher than the fundamental frequency πc/a of a string of length a. Also, the

fundamental response of the drum is just a Bessel function, so our ears experience these

functions rather frequently even if they seem unfamiliar to our brains.

5.4 Can one hear the shape of a drum?

I’m sure you can spot my non–examinable sections by now, but just in case: this is one.

We’ve seen that the normal modes of a violin string oscillate at frequencies that are

integer multiples of the fundamental frequency πc/L and it’s easy to see that the fun-

damental frequencies of a rectangular membrane with sides of lengths L1 and L2 will be

cπ
√

m2/L2
1 + n2/L2

2 for m,n ∈ N if the membrane is held fast along its four edges. (If this

isn’t clear to you – work it out!) On the other hand, for a circular membrane of radius a

the frequencies of the normal modes are kmic/a where kmi are the irregularly spaced roots

of the mth Bessel functions. Given a membrane of an arbitrary shape, fixed in place around

its boundary, it can be a difficult problem to determine exactly what the normal modes

are, particularly in higher dimensions.
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Figure 10. These two shapes, constructed by Gordon, Webb & Wolpert following a method of
Sunada, share all their eigenvalues of the Laplacian, so perfect drums made in these shapes would
sound identical. Both polygons have the same area and same perimeter.

In 1966, Mark Kac turned the question around. Instead of asking “Given a membrae,

can we find its frequencies of oscillation?” he asked instead “Suppose we are given the

complete set {ωI} of frequencies of the normal modes of oscillation of some membrane,

where I takes values in some indexing set. Can we use these to work out the domain

Ω ⊂ Rn spanned by the membrane?”. More poetically, the question can be phrased “Can

one hear the shape of a drum?”.

As put, the answer to this question is “No”. In other words, we now know that there

do exist two different shapes all of whose eigenvalues of the Laplacian coincide. Such

shapes are said to be isospectral. The first example to be found was, remarkably enough,

in sixteen (!) dimensions and these two 16-dimensional isospectral shapes each turn out

to play an important rôle in modern string theory: They’re each responsible for one of

the two weakly–coupled heterotic string theories, one of which was found by Prof. Michael

Green here in Cambridge, together with Prof. John Schwarz in Caltech. The fact that they

are isospectral is in fact important for consistency of the two theories. Later, more and

more examples of isospectral shapes were found; the simplest known pair in two spatial

dimensions is shown in figure 10.

Not being put off by this negative result, people then asked whether the question could

be answered ‘yes’ under special conditions. For example, it’s known that if the membrane

is convex25 and has boundary specified by a real–analytic function, then one can hear its

shape. More generally, you might wonder exactly how much information about Ω can be

retrieved from knowing all the frequencies ωI . For example, Weyl showed that the total

area A(Ω) of the surface of a drum is given by

A(Ω) = 4π2 lim
λ0→∞

N(λ0)

λ0
, (5.38)

where N(λ0) is the number of eigenfrequencies less than the scale λ0. Thus the area is

related to the asymptotic growth of the number of eigenvalues. Weyl also generalized this

25A region Ω ⊂ Rn is convex if, given any pair of points x1, x2 ∈ Ω the straight line segment joining x1

to x2 is also entirely contained in Ω.
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formula to n+ 1 dimensions, and conjectured that the subleading terms in this limit were

related to the perimeter of the drum (or the volume of ∂Ω in higher dimensions).

The whole field of studying the geometry of some Ω by studying its eigenfrequencies

is known as spectral geometry. You can take a course on it in Part III.

5.5 Wave reflection and transmission

If the medium through which the wave is propagating has spatially varying properties,

then the properties of the wave will change too, with for example the possibility of partial

reflection at an interface.

Suppose we have an (infinite) string with density µ = µ− for x < 0 and µ = µ+ for

x > 0 and consider small transverse deflections. Resolving forces horizontally as before, we

see that the tension τ must remain constant (even with density variations) and so the wave

speed c± ≡
√

τ/µ± differs on either side of x = 0. Consider an incident wave propagating

to the right from x = −∞. The most general form is

φI(x, t) = AI cos[ω(t− x/c−) + ξI ] (5.39)

with frequency ω, amplitude AI and phase shift ξI ; the subscript I denotes that this is the

“incident” wave. It is convenient to represent such waves in terms of a complex exponential

φI(x, t) = Re (I exp [iω (t− x/c−)]) , (5.40)

where Re denotes the real part. Here, we’ve introduced the complex number I whose

modulus is the amplitude AI and whose phase is the phase shift ξI of (5.39). Again, the

use of the capital letter I reminds us that this is the incident wave; we’ll soon meet complex

numbers R and T denoting the “reflected” and “transmitted” waves. If necessary, we’ll

use lowercase r and i to denote the real and imaginary parts of these quantities, so that

I = Ir + iIi for example.

On arrival at x = 0 some of the incident wave will be transmitted and so continue to

propagate to the right into x > 0, while some will be reflected and so propagate back to

the left. Both of these waves may have different amplitudes and phases than those of the

incident wave. However, they must have the same frequencies if the string is to stay together

at all times (in particular at the point x = 0). Using subscripts T for “transmitted” and

R for “reflected” we write

φT (x, t) = Re

(
T exp

[
iω

(
t− x

c+

)])

φR(x, t) = Re

(
R exp

[
iω

(
t+

x

c−

)]) (5.41)

The complex coefficients T and R define the new amplitudes and phases via their mod-

uli and arguments. These coefficients are determined by the following physical matching

conditions at x = 0:
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– We assume the string does not break, so the displacement at x = 0 must be continuous

for all time. That is,

φI |x=0− + φR|x=0− = φT |x=0+ .

Using the fact that if Re
(
Aeiωt

)
= Re

(
Beiωt

)
for all t then A = B as complex

numbers, we get

I +R = T . (5.42)

– The point x = 0 has no inertia (compare with a different situation in probs. 2!) and

thus the total vertical force at x = 0 vanishes. Hence

τ
∂φ

∂x

∣∣∣∣
x=0−

= τ
∂φ

∂x

∣∣∣∣
x=0+

,

or in other words
R

c−
− I

c−
= − T

c+
. (5.43)

Equations (5.42) & (5.43) suffice to fix the two complex numbers R and T in terms of I.

Solving we get

R =

(
c+ − c−
c+ + c−

)
I and T =

(
2c+

c+ + c−

)
I . (5.44)

This solution has several interesting properties. Firstly, we see that Ri/Rr = Ti/Tr = Ii/Ir
so there is a simple relationship between the phases of the waves. Secondly, if µ+ = µ− so

that c+ = c−, we find that R = 0 and T = I as expected: in the absence of any change

in µ, the wave travels on unhindered. On the other hand, if the string to the right is very

much heavier so that µ+ - µ−, then c+ . c− and we find T ∼ 0. As expected, almost

all the wave is reflected. Note however that the reflected wave has phase shift π compared

to the incident wave, since R ≈ −I. Finally, if the string to the right x > 0 is very much

lighter µ+ . µ−, then c+ - c− and we find T ∼ 2I and R ∼ I. In this case there is no

phase shift, and we get a large amplitude of disturbance to the right. However most of the

energy is still reflected (as the mass is very low on the right) so in both the asymmetrical

limiting cases, most of the energy is reflected.
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