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Michaelmas 2016 1B Methods

1B Methods — Example Sheet 2

Please email me with any comments, particularly if you spot an error. Problems marked with
an asterisk (%) are optional; only attempt them if you have time.

. If yn, and y,, are real eigenfunctions of the Sturm-Liouville equation

% (p(@ji) +A=qz)y=0 for a<z<b

satisfying the normalisation condition ff Y2, dx = f; y2 dz = 1, show that (subject to bound-
ary conditions which you should state)

b
/ (p y;n y;L + qymyn) dx = Apdmn
a

(no summation). With P, a Legendre polynomial, use this result to evaluate

1
/ (1—22)P! (2)P.(2) dz.

-1

. Show that

n

= Z Py(cos ) P,,_y(cosb).
=0

sin (n + 1)6
sin 6

. Show that whenever r # 1/, the function 1/|r — r’| satisfies Laplace’s equation. Find the

potential inside a spherical region bounded by two (conducting) hemispheres upon which
the potential takes the values £V respectively. [Hint: Recall the orthogonality relation

f_ll Pg(l’) Pm(w) dr = ﬁéém]

. The potential ¢ satisfies Laplace’s equation inside the unit disc D = {(r,0) € R?|r < 1},

with boundary condition

¢(r:170):{ﬂ/2 0<f<m,

—7m/2 w<0<2r.
Using the method of separation of variables show that

sin(2n — 1)0

B0y =23
n=1

Sum the series using the substitution z = re?. Interpret your solution geometrically in terms
of the angle between the lines to the two points on the boundary where the data jumps.

Suppose ¥ : Q — R obeys Laplace’s equation throughout a domain 2 C R”, and that
is continuous over 0. Also let B,(z) be a ball of radius r, centred on z, that is entirely
contained inside 2.
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(a) By writing the integral
1

— V2 dx
VOI(B,«) /Br (z)

as a boundary term, show that ¢ (z) equals its average value over the sphere 0B, (x).
(This is the mean value theorem for Laplace’s equation.)

(b) Let M = max{y(y)|y € 0Q}. By considering the integral

1 n,,
vol(B;) /BT(;,;) () - M]d

show that ¥ (x) < M at all points inside 2, with equality iff ¢ is constant everywhere.
[Hint: look for a contradiction.] (This is the mazimum principle for Laplace’s equation.)

(c) Show also that () > m = min{¢y(y) |y € 0Q} whenever z is inside Q.

. Consider the unit disc, with initial temperature distribution (7, 8). Require the boundary
of the disc to be held at (wlog) zero temperature 1(1,6,t) = 0 for all ¢ > 0. By assuming that
the temperature satisfies the diffusion equation in the disc (with unit diffusion coefficient)
show that the solution is

o0 o0
Y= Z Z Cnk Jn(]nkr) exp[inﬁ - jikt]a
n=—00 k=1
where j,j is the k" smallest (positive) zero of the n'" order Bessel function of the first kind,
(i-e. Jn(jnk) = 0). Present an appropriate expression for ¢, showing explicitly that
VaGn)l® _ s Tnsa Unk)

= 0

1
/ TnGnser) nGuar e = 52 .
0

Suppose now that the initial temperature ¢y(r,0) = ¥y is constant for all » < 1. Show that

the only non-zero coefficients are
20

~ JokJ1(ow)
What is the spatial structure of the temperature distribution as t — co?
[Hint: The recursion relations [277J,(2)] = —z VJ,41(2) and [z"T1),41(2)] = 21, (2)

may be useful.]

Cok

. A uniform string of line density p and tension 7" undergoes small transverse vibrations of
amplitude y(z,t). The string is fixed at x = 0 and = = L, and satisfies the initial conditions

y(z,0) =0
oy 4V
W 20) = 2V (- 2

for 0 < x < L. Using the fact that y(x,t) is a solution of the wave equation, find the
amplitudes of the normal modes and deduce the kinetic and potential energies of the string
at time t.
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. A uniform stretched string of length L, density per unit length g and tension T = uc? is

fixed at both ends. The motion of the string is resisted by the surrounding medium, the
resistive force on unit length being —2ku (Oy/0t), where y is the transverse displacement and
the constant k = wc/L.

(a) Show that the equation of motion of the string is

O’y 0%y Ay
2

Z 9 _ 29492
oz~ o TRy

and find y(z,t), given that

Jy

y(x,0) = Asin(rz/L) and 5

(z,0)=0.

(b) If an extra transverse force Fysin(mz/L)cos(met/L) per unit length acts on the string,
find the resulting forced oscillation. [Hint: You may find it useful to guess a particular
solution to combine with the general homogeneous solution that you derived in (i).]

A string of uniform density is stretched along the z-axis under tension T and undergoes small
transverse oscillations in the (x,y) plane so that its displacement y(x,t) satisfies

0%y

(’92y
— 7 = 2 -
oz~ ¢ ox2’ (+)

where ¢ is a constant.

(a) Show that if a mass M is fixed to the string at = 0 then its equation of motion can be

written
Moyl _ byl Oy
T ot|,_, - Oz v=0, 0 |,_o
(b) Suppose that a wave exp[iw(t — x/c)] is incident from z = —oo. Obtain the amplitudes

and phases of the reflected and transmitted waves, and comment on their values when
A = Muwc/T is large or small.

The displacement y(z,t) of a uniform string stretched between the points x = 0 and x = L
satisfies the wave equation (x) given above, but with the boundary conditions

y(0,t) = y(L,t) =0.

For t < 0 the string oscillates in its fundamental mode and y(z,0) = 0. A musician strikes
the midpoint of the string impulsively at time ¢ = 0 so that the change in dy/0t at t = 0 is
Ao(x — L/2). Find y(z,t) for t > 0.
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