
Michaelmas 2016 1B Methods

1B Methods – Example Sheet 2

Please email me with any comments, particularly if you spot an error. Problems marked with

an asterisk (∗) are optional; only attempt them if you have time.

1. If ym and yn are real eigenfunctions of the Sturm-Liouville equation

d

dx

(
p(x)

dy

dx

)
+ (λ− q(x))y = 0 for a < x < b

satisfying the normalisation condition
∫ b
a y

2
m dx =

∫ b
a y

2
n dx = 1, show that (subject to bound-

ary conditions which you should state)∫ b

a
(p y′m y′n + q ymyn) dx = λmδmn

(no summation). With Pn a Legendre polynomial, use this result to evaluate∫ 1

−1
(1− x2)P ′m(x)P ′n(x) dx .

2. Show that
sin (n+ 1)θ

sin θ
=

n∑
`=0

P`(cos θ)Pn−`(cos θ) .

3. Show that whenever r 6= r′, the function 1/|r − r′| satisfies Laplace’s equation. Find the

potential inside a spherical region bounded by two (conducting) hemispheres upon which

the potential takes the values ±V respectively. [Hint: Recall the orthogonality relation∫ 1
−1 P`(x)Pm(x) dx = 2

2`+1δ`m.]

4. The potential φ satisfies Laplace’s equation inside the unit disc D = {(r, θ) ∈ R2 | r ≤ 1},
with boundary condition

φ(r = 1, θ) =

{
π/2 0 ≤ θ < π ,

−π/2 π ≤ θ < 2π .

Using the method of separation of variables show that

φ(r, θ) = 2
∞∑
n=1

r2n−1
sin(2n− 1)θ

2n− 1
.

Sum the series using the substitution z = reiθ. Interpret your solution geometrically in terms

of the angle between the lines to the two points on the boundary where the data jumps.

5*. Suppose ψ : Ω → R obeys Laplace’s equation throughout a domain Ω ⊂ Rn, and that ψ

is continuous over ∂Ω. Also let Br(x) be a ball of radius r, centred on x, that is entirely

contained inside Ω.
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(a) By writing the integral
1

vol(Br)

∫
Br(x)

∇2ψ dnx

as a boundary term, show that ψ(x) equals its average value over the sphere ∂Br(x).

(This is the mean value theorem for Laplace’s equation.)

(b) Let M = max{ψ(y) | y ∈ ∂Ω}. By considering the integral

1

vol(Br)

∫
Br(x)

[ψ(x)−M ] dnx

show that ψ(x) ≤ M at all points inside Ω, with equality iff ψ is constant everywhere.

[Hint: look for a contradiction.] (This is the maximum principle for Laplace’s equation.)

(c) Show also that ψ(x) ≥ m = min{ψ(y) | y ∈ ∂Ω} whenever x is inside Ω.

6. Consider the unit disc, with initial temperature distribution ψ0(r, θ). Require the boundary

of the disc to be held at (wlog) zero temperature ψ(1, θ, t) = 0 for all t > 0. By assuming that

the temperature satisfies the diffusion equation in the disc (with unit diffusion coefficient)

show that the solution is

ψ =
∞∑

n=−∞

∞∑
k=1

cnk Jn(jnkr) exp[inθ − j2nkt],

where jnk is the kth smallest (positive) zero of the nth order Bessel function of the first kind,

(i.e. Jn(jnk) = 0). Present an appropriate expression for cnk, showing explicitly that∫ 1

0
Jn(jnkr)Jn(jnlr)rdr = δkl

[J ′n(jnk)]
2

2
= δkl

J2
n+1(jnk)

2
.

Suppose now that the initial temperature ψ0(r, θ) = Ψ0 is constant for all r < 1. Show that

the only non-zero coefficients are

c0k =
2Ψ0

j0kJ1(j0k)
.

What is the spatial structure of the temperature distribution as t→∞?

[Hint: The recursion relations [z−νJν(z)]′ = −z−νJν+1(z) and [zν+1Jν+1(z)]
′ = zν+1Jν(z)

may be useful.]

7. A uniform string of line density µ and tension T undergoes small transverse vibrations of

amplitude y(x, t). The string is fixed at x = 0 and x = L, and satisfies the initial conditions

y(x, 0) = 0

∂y

∂t
(x, 0) =

4V

L2
x(L− x)

for 0 < x < L. Using the fact that y(x, t) is a solution of the wave equation, find the

amplitudes of the normal modes and deduce the kinetic and potential energies of the string

at time t.
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8. A uniform stretched string of length L, density per unit length µ and tension T = µc2 is

fixed at both ends. The motion of the string is resisted by the surrounding medium, the

resistive force on unit length being −2kµ (∂y/∂t), where y is the transverse displacement and

the constant k = πc/L.

(a) Show that the equation of motion of the string is

c2
∂2y

∂x2
=
∂2y

∂t2
+ 2k

∂y

∂t
,

and find y(x, t), given that

y(x, 0) = A sin(πx/L) and
∂y

∂t
(x, 0) = 0 .

(b) If an extra transverse force F0 sin(πx/L) cos(πct/L) per unit length acts on the string,

find the resulting forced oscillation. [Hint: You may find it useful to guess a particular

solution to combine with the general homogeneous solution that you derived in (i).]

9. A string of uniform density is stretched along the x-axis under tension T and undergoes small

transverse oscillations in the (x, y) plane so that its displacement y(x, t) satisfies

∂2y

∂t2
= c2

∂2y

∂x2
, (?)

where c is a constant.

(a) Show that if a mass M is fixed to the string at x = 0 then its equation of motion can be

written
M

T

∂2y

∂t2

∣∣∣∣
x=0

=
∂y

∂x

∣∣∣∣
x=0+

− ∂y

∂x

∣∣∣∣
x=0−

.

(b) Suppose that a wave exp[iω(t − x/c)] is incident from x = −∞. Obtain the amplitudes

and phases of the reflected and transmitted waves, and comment on their values when

λ = Mωc/T is large or small.

10. The displacement y(x, t) of a uniform string stretched between the points x = 0 and x = L

satisfies the wave equation (?) given above, but with the boundary conditions

y(0, t) = y(L, t) = 0 .

For t < 0 the string oscillates in its fundamental mode and y(x, 0) = 0. A musician strikes

the midpoint of the string impulsively at time t = 0 so that the change in ∂y/∂t at t = 0 is

λ δ(x− L/2). Find y(x, t) for t > 0.
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