1B Methods – Example Sheet 2

Please email me with any comments, particularly if you spot an error. Problems marked with an asterisk (*) are optional; only attempt them if you have time.

1. If y_m and y_n are real eigenfunctions of the Sturm-Liouville equation

$$\frac{d}{dx}\left(p(x)\frac{dy}{dx}\right) + (\lambda - q(x))y = 0 \quad \text{for} \quad a < x < b$$

satisfying the normalisation condition $\int_a^b y_m^2 dx = \int_a^b y_n^2 dx = 1$, show that (subject to boundary conditions which you should state)

$$\int_{a}^{b} (p y'_{m} y'_{n} + q y_{m} y_{n}) dx = \lambda_{m} \delta_{mn}$$

(no summation). With P_n a Legendre polynomial, use this result to evaluate

$$\int_{-1}^{1} (1-x^2) P'_m(x) P'_n(x) \, dx \, .$$

2. Show that

$$\frac{\sin{(n+1)\theta}}{\sin{\theta}} = \sum_{\ell=0}^{n} P_{\ell}(\cos{\theta}) P_{n-\ell}(\cos{\theta}) \,.$$

- 3. Show that whenever $\mathbf{r} \neq \mathbf{r}'$, the function $1/|\mathbf{r} \mathbf{r}'|$ satisfies Laplace's equation. Find the potential inside a spherical region bounded by two (conducting) hemispheres upon which the potential takes the values $\pm V$ respectively. [*Hint:* Recall the orthogonality relation $\int_{-1}^{1} P_{\ell}(x) P_m(x) dx = \frac{2}{2\ell+1} \delta_{\ell m}$.]
- 4. The potential ϕ satisfies Laplace's equation inside the unit disc $D = \{(r, \theta) \in \mathbb{R}^2 | r \leq 1\}$, with boundary condition

$$\phi(r=1,\theta) = \begin{cases} \pi/2 & 0 \le \theta < \pi \,, \\ -\pi/2 & \pi \le \theta < 2\pi \,. \end{cases}$$

Using the method of separation of variables show that

$$\phi(r,\theta) = 2\sum_{n=1}^{\infty} r^{2n-1} \frac{\sin(2n-1)\theta}{2n-1}$$

Sum the series using the substitution $z = re^{i\theta}$. Interpret your solution geometrically in terms of the angle between the lines to the two points on the boundary where the data jumps.

5*. Suppose $\psi : \Omega \to \mathbb{R}$ obeys Laplace's equation throughout a domain $\Omega \subset \mathbb{R}^n$, and that ψ is continuous over $\partial \Omega$. Also let $B_r(x)$ be a ball of radius r, centred on x, that is entirely contained inside Ω .

(a) By writing the integral

$$\frac{1}{\operatorname{vol}(B_r)} \int_{B_r(x)} \nabla^2 \psi \ d^n x$$

as a boundary term, show that $\psi(x)$ equals its average value over the sphere $\partial B_r(x)$. (This is the *mean value theorem* for Laplace's equation.)

(b) Let $M = \max\{\psi(y) | y \in \partial\Omega\}$. By considering the integral

$$\frac{1}{\operatorname{vol}(B_r)} \int_{B_r(x)} [\psi(x) - M] \, d^n x$$

show that $\psi(x) \leq M$ at all points inside Ω , with equality iff ψ is constant everywhere. [*Hint*: look for a contradiction.] (This is the *maximum principle* for Laplace's equation.)

- (c) Show also that $\psi(x) \ge m = \min\{\psi(y) \mid y \in \partial\Omega\}$ whenever x is inside Ω .
- 6. Consider the unit disc, with initial temperature distribution $\psi_0(r,\theta)$. Require the boundary of the disc to be held at (wlog) zero temperature $\psi(1,\theta,t) = 0$ for all t > 0. By assuming that the temperature satisfies the diffusion equation in the disc (with unit diffusion coefficient) show that the solution is

$$\psi = \sum_{n=-\infty}^{\infty} \sum_{k=1}^{\infty} c_{nk} J_n(j_{nk}r) \exp[in\theta - j_{nk}^2 t],$$

where j_{nk} is the k^{th} smallest (positive) zero of the n^{th} order Bessel function of the first kind, (*i.e.* $J_n(j_{nk}) = 0$). Present an appropriate expression for c_{nk} , showing explicitly that

$$\int_0^1 J_n(j_{nk}r)J_n(j_{nl}r)rdr = \delta_{kl}\frac{[J'_n(j_{nk})]^2}{2} = \delta_{kl}\frac{J^2_{n+1}(j_{nk})}{2}$$

Suppose now that the initial temperature $\psi_0(r,\theta) = \Psi_0$ is constant for all r < 1. Show that the only non-zero coefficients are

$$c_{0k} = \frac{2\Psi_0}{j_{0k}J_1(j_{0k})}$$

What is the spatial structure of the temperature distribution as $t \to \infty$?

[*Hint:* The recursion relations $[z^{-\nu}J_{\nu}(z)]' = -z^{-\nu}J_{\nu+1}(z)$ and $[z^{\nu+1}J_{\nu+1}(z)]' = z^{\nu+1}J_{\nu}(z)$ may be useful.]

7. A uniform string of line density μ and tension T undergoes small transverse vibrations of amplitude y(x,t). The string is fixed at x = 0 and x = L, and satisfies the initial conditions

$$y(x,0) = 0$$

$$\frac{\partial y}{\partial t}(x,0) = \frac{4V}{L^2}x(L-x)$$

for 0 < x < L. Using the fact that y(x,t) is a solution of the wave equation, find the amplitudes of the normal modes and deduce the kinetic and potential energies of the string at time t.

- 8. A uniform stretched string of length L, density per unit length μ and tension $T = \mu c^2$ is fixed at both ends. The motion of the string is resisted by the surrounding medium, the resistive force on unit length being $-2k\mu (\partial y/\partial t)$, where y is the transverse displacement and the constant $k = \pi c/L$.
 - (a) Show that the equation of motion of the string is

$$c^2 \frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial t^2} + 2k \frac{\partial y}{\partial t} \,,$$

and find y(x,t), given that

$$y(x,0) = A\sin(\pi x/L)$$
 and $\frac{\partial y}{\partial t}(x,0) = 0$.

- (b) If an extra transverse force $F_0 \sin(\pi x/L) \cos(\pi ct/L)$ per unit length acts on the string, find the resulting forced oscillation. [*Hint:* You may find it useful to guess a particular solution to combine with the general homogeneous solution that you derived in (i).]
- 9. A string of uniform density is stretched along the x-axis under tension T and undergoes small transverse oscillations in the (x, y) plane so that its displacement y(x, t) satisfies

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} \,, \tag{(\star)}$$

where c is a constant.

(a) Show that if a mass M is fixed to the string at x = 0 then its equation of motion can be written

$$\frac{M}{T} \left. \frac{\partial^2 y}{\partial t^2} \right|_{x=0} = \left. \frac{\partial y}{\partial x} \right|_{x=0_+} - \left. \frac{\partial y}{\partial x} \right|_{x=0_-}$$

- (b) Suppose that a wave $\exp[i\omega(t x/c)]$ is incident from $x = -\infty$. Obtain the amplitudes and phases of the reflected and transmitted waves, and comment on their values when $\lambda = M\omega c/T$ is large or small.
- 10. The displacement y(x,t) of a uniform string stretched between the points x = 0 and x = L satisfies the wave equation (\star) given above, but with the boundary conditions

$$y(0,t) = y(L,t) = 0.$$

For t < 0 the string oscillates in its fundamental mode and y(x,0) = 0. A musician strikes the midpoint of the string impulsively at time t = 0 so that the change in $\partial y/\partial t$ at t = 0 is $\lambda \delta(x - L/2)$. Find y(x,t) for t > 0.