
4 Exact Properties of the Path Integral

In this chapter we begin our study of Quantum Field Theory proper: we take the dimension

d of our space to be generic (certainly d > 1, and typically d = 4). Now, as you’re

no doubt aware, these theories are typically rather complicated. Except in very special

circumstances, we can usually only hope to find a perturbative approximation to the path

integral (or else we must seek to evaluate it numerically). As in the d = 0 example earlier,

such perturbative expansions provide us with an asymptotic series that approximates the

true path integral arbitrarily accurately as ~ ! 0.

Given this situation, it’ll be valuable to know what can be said without making any

perturbative approximations. We’ll start by taking a look at the role of symmetry in QFT

and understanding how we can use it to constrain correlation functions — symmetries

constrain the possible forms correlation functions may take exactly.

4.1 Symmetries of the quantum theory

One of the most important results in classical mechanics and classical field theory is

Noether’s theorem, stating that local symmetries of the action corresponds to a conserved

charge. Let’s recall how to derive this.

Consider the transformation

�✏�(x) = ✏f(�, @µ�) (4.1)

where ✏ is an infinitesimal parameter, and f(�, @µ�) is some function of the fields and their

derivatives. The transformation is local if the function f depends on the values of the field

and its derivatives only at the point x 2 M , in which case you can think of it as being

generated by the vector

Vf :=

Z

M
ddx

p
g f(�, @�)

�

��(x)
(4.2)

acting on the infinite dimensional space of fields. The transformation (4.1) is a symmetry

if the action is invariant, �S[�] = 0, whenever the parameter ✏ is constant. Because it is

invariant when ✏ is constant, if ✏ is now allowed to depend on position the change in the

action must be proportional to the derivative of ✏. In other words13

�✏S[�] = �
Z

M
⇤j ^ d✏ = �

Z

M
gµ⌫ jµ(x) @⌫✏(x)

p
g ddx (4.3)

for some function jµ(x) known as the current.

However, when the equations of motion hold, the action is invariant under any small

change in the fields. In particular, on the support of the equations of motion,

�✏S[�] = 0 (4.4)

13The minus sign is a convention, included for later convenience. The first expression here is written in

the language of di↵erential forms, where we treat j 2 ⌦1

M is a 1-form and where ⇤ : ⌦p
M ! ⌦d�p

M is the

Hodge star on the d-dimensional Riemannian manifold (M, g). The second expression is just the same thing

written in a local coordinate patch. Below, I’ll often work in the sleeker language of forms, but I’ll be sure

to give the main results both ways. If you’re uncomfortable with di↵erential geometry, I recommend you

repeat the derivations for yourself in the case (M, g) = (Rd, �).
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6.4.1NaiveFeynmanRules

WewanttodeterminetheFeynmanrulesforthistheory.Forfermions,therulesare
thesameasthosegiveninSection5.Thenewpiecesare:

•Wedenotethephotonbyawavyline.Eachendofthelinecomeswithani,j=

1,2,3indextellingusthecomponentof�A.Wecalculatedthetransversephoton

propagatorin(6.33):itisandcontributesDtr
ij=

i

p2+i�

✓
�ij�pipj

|�p|2
◆

•Thevertexcontributes�ie�i.Theindexon�icontractswiththe

indexonthephotonline.

•Thenon-localinteractionwhich,inpositionspace,isgivenby
xy

contributesafactorof
i(e�0)2�(x0�y0)

4�|�x��y|

TheseFeynmanrulesarerathermessy.Thisisthepricewe’vepaidforworkingin

Coulombgauge.We’llnowshowthatwecanmassagetheseexpressionsintosomething
muchmoresimpleandLorentzinvariant.Let’sstartwiththeo�endinginstantaneous
interaction.SinceitcomesfromtheA0componentofthegaugefield,wecouldtryto

redefinethepropagatortoincludeaD00piecewhichwillcapturethisterm.Infact,it
fitsquitenicelyinthisform:ifwelookinmomentumspace,wehave

�(x0�y0)

4�|�x��y|=

Z
d4p

(2�)4

eip·(x�y)

|�p|2(6.83)

sowecancombinethenon-localinteractionwiththetransversephotonpropagatorby
defininganewphotonpropagator

Dµ⌫(p)=

�
�����

�����

+
i

|�p|2µ,�=0

i

p2+i�

✓
�ij�pipj

|�p|2
◆

µ=i6=0,�=j6=0

0otherwise

(6.84)

Withthispropagator,thewavyphotonlinenowcarriesaµ,�=0,1,2,3index,with
theextraµ=0componenttakingcareoftheinstantaneousinteraction.Wenowneed

tochangeourvertexslightly:the�ie�iabovegetsreplacedby�ie�µwhichcorrectly
accountsforthe(e�0)2pieceintheinstantaneousinteraction.
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Figure 5: Classically, the charge (4.6) associated to a local symmetry is independent of

the hypersurface over which it is integrated.

under the change (4.1) even if the parameter ✏ depends on position. Integrating by parts

and choosing our function ✏(x) to have compact support, we find that

d ⇤ j = 0 or equivalently @⌫(
p

g gµ⌫j⌫) = 0 (4.5)

whenever the equations of motion are satisfied.

We define the charge Q corresponding to this transformation by

Q[N ] :=

Z

N
⇤j =

Z

N
jµnµp

gN dd�1x (4.6)

where N is any codimension–one hypersurface in the space–time M , nµ is a unit normal

vector to N (so g(n, n) = 1 and g(n, v) = 0 for any v 2 TN), gN denotes the restriction of

the metric on M to N , and thus
p

gN dd�1x is the (d � 1)–dimensional volume element on

N . If N0,1 are two such hypersurfaces bounding a region M 0 ⇢ M of our space, then

Q[N1] � Q[N0] =

Z

N
1

⇤j �
Z

N
0

⇤j =

Z

@M 0
⇤j =

Z

M 0
d ⇤ j = 0 (4.7)

where the third equality is Stokes’ theorem and the final equality follows by the conservation

equation (4.5). Thus Q[N ] depends on the choice of N only through its homology class.

The most common application of this result is to take the surfaces N1,0 to be constant time

slices of Minkowski space–time14, as in figure 5. The statement that Q[N1] = Q[N0] then

becomes the statement that the charge Q is conserved under time evolution.

As a simple example, consider the action

S[�] =
1

2

Z

M
d�̄ ^ ⇤d�+ ⇤V (|�|2) (4.8)

14Since the constant time slices N
0,1 are non–compact in this case, for our derivation to hold we should

ensure that the current j decays su�ciently rapidly as we head towards spatial infinity so that the integrals

defining Q[N
0,1] converge.
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for a complex scalar field. This action is invariant under the U(1) transformation � 7! ei↵�

that rotates the phase of � by a constant amount ↵. Taking ↵ to be infinitesimally small,

we have

�� = i↵� , ��̄ = �i↵�̄ (4.9)

The corresponding current is jµ = i
�
@µ�̄ �� �̄ @µ�

�
and so the charge associated with a

hypersurface N is

Q[N ] = i

Z

N
⇤(d�̄ �� �̄ d�) . (4.10)

In particular, if we are in flat space–time (M, g) = (R1,3, ⌘) and the fields decay rapidly as

we approach spatial infinity, then the charge on a constant time hypersurface is

Q = i

Z
(@0�̄ �� �̄ @0�) d3x (4.11)

From the original action we have that the momentum conjugate to the field is

⇡ =
�L
�@0�

= @0�̄ and ⇡̄ =
�L
�@0�̄

= @0� (4.12)

and hence the charge can be written as

Q = i

Z
(�⇡ � �̄⇡̄) d3x (4.13)

which indeed generates the transformations (4.9) via Poisson brackets.

4.1.1 Ward identities

The derivation of Noether’s theorem used the classical equations of motion, so we must re–

examine this in quantum theory. Suppose that some local field transformation � ! �0(�)

leaves the product of the action and path integral measure invariant, i.e.,

D� e�S[�] = D�0 e�S[�0] . (4.14)

In most cases, the symmetry transformation will actually leave both the action and measure

invariant separately, but the weaker condition (4.14) is su�cient (and necessary).

In practice, we have much more familiarity with classical actions that with path integral

measures, so one tends to look for symmetries of the action first and then hope these can

be extended to symmetries of the measure. For example, if some action S[�] depends on a

field only through its derivatives @r� with r � 1, then this action is invariant under shifts

of the field

�(x) ! �(x) + �0 (4.15)

where �0 is constant over M . Näıvely, the path integral measure D� instructs us to in-

tegrate over all continuous maps � 2 C0(M, R) and we’d expect such an instruction not

to care about a constant translation. However, to actually define what we mean by D�

we must first pick a regularization and if we wish (4.14) to be valid under (4.15) then

this regularization procedure must also be compatible with constant field translations. For
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example, if M = T d we might expand �(x) in terms of a Fourier series, and declare that

we are only going to integrate over finitely many Fourier coe�cients. The constant trans-

lation (4.15) only a↵ects the lowest Fourier mode, and our regularized measure integrates

over all values of this coe�cient, so indeed (4.14) will hold.

As a further example, a theory living on (M, g) = (T d, �) will be invariant under SO(d)

rotations

x ! Lx , �(x) ! �0(x) = �(Lx) (4.16)

if the action is built from SO(d) invariant combinations of the fields and their derivatives.

We can regularize the path integral by integrating over all Fourier modes with the SO(d)-

invariant quantity pµpµ is less than some chosen cut-o↵15. However, if we chose instead to

regularize our theory by replacing space by a simple cubic lattice ⇤ ⇢ T d and integrating

over the values of the fields at each lattice site, then SO(d) invariance would be broken to

the discrete group of lattice symmetries.

When a symmetry of the classical action is broken by the regularized path integral

measure, there are two possible outcomes. In the one hand, it may be that some regular-

ization procedure that would have preserved the symmetry does exist — it’s just that we

didn’t use it, whether through choice or ignorance. This was the case above with, where

SO(d) transformations were broken by the lattice, but not by the cut–o↵ regularization.

In this case, it turns out that if one computes any physical object such as a correlation

function or scattering amplitude and then removes the regularization at the end of the

calculation16, then the symmetry will be restored. Exactly this situation occurs for lattice

treatments of gauge theories such as QCD. The only di�culty is in the intermediate steps

of the calculations, where the symmetries are absent.

On the other hand, it may turn out that no regularization procedure which preserves

the symmetry exists. In this case, the symmetry of the classical field theory is genuinely

absent at the quantum level. Such symmetries are said to be anomalous; we’ll consider

them in more detail at the end of the course17. For now, we’ll assume we’ve found a

regulator that preserves our classical symmetry, so that (4.14) holds.

One of the main uses of symmetry is to deduce important restrictions on correlation

functions. Consider a class of operators whose only variation under the transformation

� ! �0 comes from their dependence on � itself (such as scalar operators under rotations).

Such operators transform as O(�) ! O(�0). At least on a compact manifold M we have
Z

D� e�S[�] O1(�(x1)) · · · On(�(xn)) =

Z
D�0 e�S[�0] O1(�

0(x1)) · · · On(�0(xn))

=

Z
D� e�S[�] O1(�

0(x1)) · · · On(�0(xn))
(4.17)

The first equality here is a triviality: we’ve simply relabeled � by �0 as a dummy variable in

the path integral. The second equality is non–trivial and uses the assumed symmetry (4.14)

15In Minkowski signature, the corresponding statements for SO(1, d � 1) go through in essentially the

same way for massive particles, but are more subtle when massless states are present.
16We’ll understand later how, and in which circumstances, this can be done.
17Time permitting!
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under the transformation � ! �0. We see that the correlation function obeys

hO1(�(x1)) · · · On(�(xn))i = hO1(�
0(x1)) · · · On(�0(xn))i (4.18)

so that it is invariant under the transformation.

For example, consider again the phase transformation

� ! �0 = ei↵� , �̄ ! �̄0 = e�i↵�̄ (4.19)

that we examined above. The path integral measure will be invariant under this symmetry

provided we integrate over as many modes of �̄ as we do of �. The Ward identity then

implies that correlation functions built from local operators of the form Oi = �ri �̄si must

obey

hO1(x1) · · · On(xn)i = ei↵
Pn

i=1

(ri�si) hO1(x1) · · · On(xn)i .

Allowing ↵ to take di↵erent (constant) values shows that this correlator vanishes unlessP
i ri =

P
i si. The symmetry thus imposes a selection rule on the operators we can

insert if we wish to obtain a non–zero correlator.

For a second example, suppose (M, g) = (Rd, �) and consider a space–time translation

x 7! x0 := x � a where a is a constant vector. Under this translation, we have

�(x) 7! �0(x) := �(x � a) . (4.20)

If the action and path integral measure are translation invariant and the operators Oi

depend on x only via their dependence on �(x), then the Ward identity gives

hO1(x1) · · · On(xn)i = hO1(x � a) · · · On(xn � a)i

for any such vector a. Thus, having carried out the path integral, we’ll be left with a

function f(x1, x2, . . . , xn) that depends only on the relative positions (xi � xj). Similarly,

if the action & measure are invariant under rotations (or Lorentz transformations) x ! Lx

then a correlation function of scalar operators will obey

hO1(x1) · · · On(xn)i = hO1(Lx1) · · · On(Lxn)i .

Combining this with the previous result shows that the correlator can depend only on the

rotational (or Lorentz) invariant distances (xi � xj)2 between the insertion points.

4.1.2 Currents and charges

As in the classical theory, any continuous symmetry comes with an associated current.

Suppose that � ! �0 = �+�✏� is a symmetry of the path integral when ✏ is an infinitesimal

constant parameter. Then, as in Noether’s theorem, the variation of the action and path

integral measure must be proportional to @µ✏ when ✏ depends on position, so that

Z =

Z
D�0 e�S[�0] =

Z
D� e�S[�]


1 �

Z

M
⇤j ^ d✏

�
(4.21)
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to lowest order. Notice that the current here may include possible changes in the path

integral measure as well as in the action. The zeroth order term agrees with the partition

function on the left, so the first order term must vanish and we have

0 = �
Z

M
⇤hj(x)i ^ d✏ =

Z

M
✏(x) d ⇤ hj(x)i , (4.22)

if either @M = 0 or the fields decay su�ciently rapidly that there is no boundary contri-

bution. For this to hold for arbitrary ✏ we must have @µhjµ(x)i = 0 so that the expectation

value of the current obeys a conservation law, just as in classical physics.

Now let’s see how the current insertions a↵ect more general correlation functions.

Consider a class of local operators that transform under � 7! �0 := �+ ✏�� as

O(�) 7! O(�+ ✏��) = O(�) + ✏�O (4.23)

to lowest order in ✏, where we’ve defined �O := �� @O/@�. Then, accounting for both the

change in the action and measure as well as in the operators,
Z

D� e�S[�]
nY

i=1

Oi(�(xi)) =

Z
D�0 e�S[�0]

nY

i=1

Oi(�
0(xi))

=

Z
D� e�S[�]


1 �

Z

M
⇤j ^ d✏

�2

4
nY

i=1

Oi(xi) +
nX

i=1

✏(xi)�Oi(xi)
Y

j 6=i

Oj(xj)

3

5 .

(4.24)

Again, the first equality is a triviality and the second follows upon expanding both D�0 e�S[�0]

and the operators to first order in the variable parameter ✏(x). The ✏-independent term

on the rhs exactly matches the lhs, so the remaining terms must cancel. To first order in

✏ this gives

Z

M
✏(x) ^ d ⇤

*
j(x)

nY

i=1

Oi(xi)

+
= �

nX

i=1

*
✏(xi)�Oi(xi)

Y

j 6=i

Oj(xj)

+
, (4.25)

after an integration by parts with ✏(x) of compact support. Note that the derivative on

the lhs hits the whole correlation function.

We’d like to strip o↵ the parameter ✏(x) and obtain a relation purely among the

correlation functions themselves. In order to do this, we must handle the fact that the

operator variations on the rhs are located only at the points {x1, . . . , xn} 2 M . We thus

write18

✏(xi)�Oi(xi) =

Z

M
⇤ �d(x � xi) ✏(x) �Oi(xi) =

Z

M
�d(x � xi) ✏(x) �Oi(xi)

p
g ddx

as an integral, so that all terms in (4.25) are proportional to ✏(x). Since this may be chosen

arbtrarily, we obtain finally

d ⇤
*

j(x)
nY

i=1

Oi(xi)

+
= � ⇤

nX

i=1

�d(x � xi)

*
�Oi(xi)

Y

j 6=i

Oj(xj)

+
, (4.26)

18Here, for an open set U ⇢ M in curved space, my �-function is defined to obey
R
U
�d(x�xi)

p
g ddx = 1

if xi 2 U and 0 else, with an integration measure including the factor of
p
g.
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or equivalently

@µ

 
gµ⌫pg

*
jµ(x)

nY

i=1

Oi(xi)

+!
= �

nX

i=1

�d(x � xi)

*
�Oi(xi)

Y

j 6=i

Oj(xj)

+
(4.27)

in terms of local co-ordinates on (M, g). This is known as the Ward identity for the

symmetry represented by � ! � + ��. It states that the divergence of a correlation

function involving a current jµ vanishes everywhere except at the locations of other operator

insertions, and is the modification of the conservation law d⇤hj(x)i = 0 for the expectation

value of the current itself. Again, note that the divergence is taken after computing the

path integral.

Let’s integrate the Ward identity over some region M 0 ✓ M with boundary @M 0 =

N1 � N0, just as we studied classically. We’ll first choose M 0 to contain all the points

{x1, . . . , xn} so that the integral receives contributions from all of the terms on the rhs

of (4.26). Then

hQ[N1]
Y

i

Oi(xi)i � hQ[N0]
Y

i

Oi(xi)i = �
nX

i=1

h�Oi(xi)
Y

j 6=i

Oj(xj)i (4.28)

where the charge Q[N ] =
R
N ⇤j just as in the classical case. In particular, if M 0 = M and

M is closed (i.e., compact without boundary) then we obtain

0 =
nX

i=1

h�Oi(xi)
Y

j 6=i

Oj(xj)i (4.29)

telling us that if we perform the symmetry transform throughout space–time then the

correlation function is simply invariant, �h
Q

i Oii = 0. This is just the infinitesimal version

of the result we had before in (4.18).

On the other hand, if only one some of the xi lie inside M 0, then only some of the

�-functions will contribute. In particular, if I ✓ {1, 2, . . . , n} then we obtain

hQ[N1]
nY

i=1

Oi(xi)i � hQ[N0]
nY

i=1

Oi(xi)i =
X

i2I

h�Oi(xi)
Y

j 6=i

Oj(xj)i . (4.30)

whenever xi 2 M 0 for i 2 I. Only those operators enclosed in M 0 contribute to the changes

on the rhs.

Note that the condition that M be closed cannot be relaxed lightly. On a manifold

with boundary, to define the path integral we must specify some boundary conditions for

the fields. The transformation � 7! �0 may now a↵ect the boundary conditions, which lead

to further contributions to the rhs of the Ward identity. For a relatively trivial example, the

condition that the net charges of the operators we insert must be zero becomes modified

to the condition that the di↵erence between the charges of the incoming and outgoing

states (boundary conditions on the fields) must be balanced by the charges of the operator

insertions.
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A much more subtle example arises when the space–time is non–compact and has

infinite volume. In this case, the required boundary conditions as |x| ! 1 are that our

fields take some constant value �0 which lies at the minimum of the e↵ective potential.

Because of the suppression factor e�S[�], such field configurations will dominate the path

integral on an infinite volume space–time. However, it may be that the (global) minimum

of the potential is not unique; if V (�) is minimized for any � 2 M and our symmetry

transformations move � around in M the symmetry will be spontaneously broken.

You’ll learn much more about this story if you’re taking the Part III Standard Model

course.

4.1.3 The Ward–Takahashi identity in QED

Ward identities can be derived for any symmetry transformation, but the name is often

associated to the transformations

 7!  0 := ei↵ ,  ̄ 7!  ̄0 := e�i↵ ̄ , Aµ 7! A0
µ := Aµ (4.31)

which for constant ↵ are symmetries of the QED action

SQED[A, ] =

Z
d4x


1

4
Fµ⌫Fµ⌫ +  ̄(i /D � m) 

�
. (4.32)

This was the case originally considered by Ward and Takahashi. The regularized path

integral measure is also invariant under these transformations, i.e.,

D D ̄ 7! D 0 D ̄0 = D D ̄ (4.33)

provided our regularized measure involves integrating over an equal number of  and  ̄

modes. Thus these transformations are indeed symmetries of the path integral.

As above, we now promote ↵ to a position–dependent parameter ↵(x), — this is

not a gauge transformation because the gauge field Aµ itself remains una↵ected. The

path integral measure depends only on the fields  and  ̄, not their derivatives, so if

our regularized measure also preserves the local symmetry19, the only contribution to the

current will come from the action. One finds jµ =  ̄�µ , which of course is just the charged

current to which the photon couples in QED.

Now consider the correlation function h (x1) ̄(x2)i. Since � /  the Ward identity

becomes

@µhjµ(x) (x1) (x2)i = ��d(x � x1)h (x1) ̄(x2)i + �d(x � x2)h (x1) ̄(x2)i (4.34)

so that the vector fµ(x, x1, x2) = hjµ(x) (x1) ̄(x2)i is divergence free everywhere except

at the insertions of the electron field.
19Note that in any case, the change in the measure here will be field independent.
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The identity (4.40) is traditionally viewed in momentum space. We Fourier transform

the two-point function of the electron field:
Z

d4x1 d4x2 eik
1

·x
1 e�ik

2

·x
2 h (x1) ̄(x2)i

=

Z
d4x1 d4x2 eik

1

·(x
1

�x
2

) ei(k
1

�k
2

)·x
2 h (x1 � x2) ̄(0)i

= �4(k1 � k2) S(k1)

(4.35)

where the first equality follows from translational invariance of the correlation function.

Note that (unlike a Feynman diagram for scattering amplitudes) there’s no requirement

that the momenta here are on–shell; they’re just the Fourier transforms of the insertion

points. The previous equation defines the exact electron propagator,

S(k) :=

Z
d4x eik·xh (x) ̄(0)i (4.36)

in momentum space. In perturbation theory, it represents the sum of all possible con-

nected20 Feynman diagrams that can be drawn in connecting the   ̄ insertions together.

(Thus, like the 2–point function h  ̄i, S(k) carries a pair of Dirac spinor indices, which

we’ve suppressed in the notation.) Specifically,

where the first line contains all possible connected contributions to the two–point function,

and the second line writes these in terms of one particle irreducible (1PI) graphs: those

connected graphs which cannot be turned into a disconnected graph by cutting any single

internal line. The sum of such 1PI contributions is usually called the electron self–energy

and denoted ⌃(/k). (This is also a matrix in spin space.) The exact electron propagator is

related to ⌃(/k) by

S(k) =
1

i/k + m � ⌃(/k)
(4.37)

by summing the geometric series above.

20Recall that our correlation functions are normalized by the partition function, which is the sum of all

vacuum diagrams.
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In a similar way, we introduce the exact electromagnetic vertex �µ(k1, k2) by the

Fourier transform
Z

d4x d4x1 d4x2 eip·x eik
1

·x
1 e�ik

2

·x
2 hjµ(x) (x1) ̄(x2)i

=

Z
d4x d4x1 d4x2 eip·(x�x

2

) eik
1

·(x
1

�x
2

) ei(p+k
1

�k
2

)·x
2 hjµ(x � x2) (x1 � x2) ̄(0)i

=: �4(p + k1 � k2) S(k1)�µ(k1, k2)S(k2) .
(4.38)

Let’s understand this definition. h (x1)jµ(x) ̄(x2)i will be given by the sum of all Feynman

graphs connecting the electron field insertions at x1,2 to the current at x. Recalling that

jµ =  ̄�µ , we see that the leading contribution will simply come from a pair of propagators

connecting  (x1) to  ̄(x), and  (x) to  ̄(x2) respectively. Further contributions will come

from diagrams that correct each of these free propagators, turning them into the exact

electron propagators on each side; i.e.

h (x1)jµ(x) ̄(x2)i � h (x1) ̄(x)i �µ h (x) ̄(x2)i . (4.39)

These diagrams tell us nothing new about the vertex; they’re already part of the exact

electron propagator. We thus include factors of S(k1) and S(k2) in our definition.

The remaining contributions are the ones we care about. They involve graphs that

connect the two exact electron propagators together in some way. For example, at leading

order, we have the diagram

This class of diagrams is what contributes to �µ(k1, k2), so

�µ(k1, k2) = �µ + quantum corrections , (4.40)

where we note that all the corrections to �µ come from loop diagrams.

Now let’s return to our Ward identity (4.40). Taking the Fourier transform of the

complete equation, we obtain

(k1 � k2)µ S(k1)�
µ(k1, k2)S(k2) = iS(k1) � iS(k2) (4.41)

or equivalently

(k1 � k2)µ �µ(k1, k2) = iS(k2)
�1 � iS(k1)

�1 (4.42)
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by acting with S�1(k1) on the left and S�1(k2) on the right. This identity was obtained

by Takahashi; taking the limit k2 ! k1 gives

�µ(k, k) = �i
@

@kµ
S�1(k) (4.43)

which was the form originally obtained by Ward.

In previous chapters, we’ve seen that integrating out (high–energy) fields generically

shifts the values of couplings in the (low–energy) e↵ective action. Anticipating our story

slightly, in QED, we’d expect that we can generate new contributions to both the electron

kinetic term
R

i ̄/@ d4x and the electron–photon vertex
R
 ̄ /A d4x (as well as the electron

mass term). The significance of the Ward identity is that, provided the regulated path

integral measure is compatible with the symmetry (4.37), the quantum corrections to these

two terms must be related. In particular, using (4.43) in (4.48) we have

(k1 � k2)µ�µ(k1, k2) = i (i /k2 + m � ⌃(/k2) � i /k1 � m + ⌃(/k1))

= (k1 � k2)µ�
µ + i(⌃(/k1) � ⌃(/k2))

(4.44)

where we note that the ‘inverse electron propagator’ S�1(k) is nothing but the electron

kinetic term in the action, written in momentum space. The fact that quantum corrections

treat the whole covariant derivative
R

i ̄ /D d4x together is important in ensuring that the

quantum theory respects gauge transformations, as you’ll explore further in the problem

sets. In the early days of QED, before renormalization was systematically understood,

the Ward identity provided a good check that the regularized theory was compatible with

gauge invariance.
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