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Preliminaries

This course is the second course on Quantum Field Theory o↵ered in Part III of the Maths

Tripos, so I’ll feel free to assume you’ve already taken the first course in Michaelmas Term

(or else an equivalent course elsewhere). You’ll also find it helpful to know about groups

and representation theory, say at the level of the Symmetries, Fields and Particles course

last term. Last term’s General Relativity and Statistical Field Theory courses may also be

helpful, but I won’t assume you attended these.

There may be some overlap between this course and certain other Part III courses

this term. In particular, I’d expect the material here to complement the courses on The

Standard Model and on Applications of Di↵erential Geometry to Physics very well. In

turn, I’d also hope this course is useful preparation for courses on Supersymmetry and

String Theory.

Books & Other Resources

There are many (too many!) textbooks and reference books available on Quantum Field

Theory. Di↵erent ones emphasize di↵erent aspects of the theory, or applications to di↵erent

branches of physics or mathematics – indeed, QFT is such a huge subject nowadays that

it is probably impossible for a single textbook to give an encyclopedic treatment (and

absolutely impossible for a course of 24 lectures to do so). Here are some of the ones I’ve

found useful while preparing these notes; you might prefer di↵erent ones to me.

• Nair, V.P., Quantum Field Theory: A Modern Perspective, Springer (2005).

Although it isn’t so well known, this is perhaps my favourite QFT book. It begins

with a clear, concise discussion of all the standard perturbative material you’ll find

in any QFT course. However, unlike many books, it also makes clear that there’s

far more to QFT than just perturbation theory. Contains excellent discussions of

the configuration space of field theories, ambiguities in quantization, approaches to

strong coupling limits in QCD, and QFT at finite temperature.

This next list contains the stalwart QFT textbooks. You will certainly want to consult (at

least) one of these repeatedly during the course. They’ll also be very helpful for people

taking the Standard Model course.

• Peskin, M. and Schroeder, D., An Introduction to Quantum Field Theory,

Addison–Wesley (1996).

An excellent QFT textbook, containing extensive discussions of both gauge theories

and renormalization. Many examples worked through in detail, with a particular

emphasis on applications to particle physics.

• Schwartz, M., Quantum Field Theory and the Standard Model, CUP (2014).

The new kid on the block, honed during the author’s lecture courses at Harvard. I re-

ally like this book – it strikes an excellent balance between formalism and applications

(mostly to high energy physics), with fresh and clear explanations throughout.
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• Srednicki, M., Quantum Field Theory, CUP (2007).

This is also an excellent, very clearly written and very pedagogical textbook, with

clearly compartmentalised chapters breaking the material up into digestible chunks.

However, our route through QFT in this course will follow a slightly di↵erent path.

• Zee, A., Quantum Field Theory in a Nutshell, 2nd edition, PUP (2010).

QFT is notorious for containing many technical details, and its easy to get lost. This

is a great book if you want to keep the big picture of what QFT is all about firmly

in sight. It will put you joyfully back on track and remind you why you wanted to

learn the subject in the first place. It’s not the best place to work through detailed

calculations, but that’s not the point.

There are also a large number of books that are more specialized. Many of these are rather

advanced, so I do not recommend you use them as a primary text. However, you may well

wish to dip into them occasionally to get a deeper perspective on topics you particularly

enjoy. This list is particularly biased towards my (often geometric) interests:

• Banks, T. Modern Quantum Field Theory: A Concise Introduction, CUP (2008).

I particularly enjoyed its discussion of the renormalization group and e↵ective field

theories. As it says, this book is probably too concise to be a main text.

• Cardy, J., Scaling and Renormalization in Statistical Physics, CUP (1996).

A wonderful treatment of the Renormalization Group in the context in which it

was first developed: calculating critical exponents for phase transitions in statistical

systems. The presentation is extremely clear, and this book should help to balance

the ‘high energy’ perspective of many of the other textbooks.

• Coleman, S., Aspects of Symmetry, CUP (1988).

Legendary lectures from one of the most insightful masters of QFT. Contains much

material that is beyond the scope of this course, but so engagingly written that I

couldn’t resist including it here!

• Costello, K., Renormalization and E↵ective Field Theory, AMS (2011).

A pure mathematician’s view of QFT. The main aim of this book is to give a rigorous

definition of (perturbative) QFT via path integrals and Wilsonian e↵ective field the-

ory. Another major achievement is to implement this for gauge theories by combining

BV quantization with the ERG. Repays the hard work you’ll need to read it – for

serious mathematicians only.

• Deligne, P., et al., Quantum Fields and Strings: A Course for Mathematicians,

vols. 1 & 2, AMS (1999).

Aimed at professional mathematicians wanting an introduction to QFT. They thus

require considerable mathematical maturity to read, but most certainly repay the

e↵ort. Almost everything here is beyond the level of this course, but I can promise

you’re appreciation of QFT will be deepened immeasurably by reading the lectures
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of Deligne & Freed on Classical Field Theory (vol. 1), Gross on the Renormalization

Group (vol. 1), Gadwezki on CFTs (vol. 2), and especially Witten on Dynamics of

QFT (vol. 2). (I recommend you read Witten on anything.)

• Polyakov, A., Gauge Fields and Strings, Harwood Academic (1987).

A very original and very deep perspective on QFT, building a form of synthesis

of Polyakov’s approach to strongly coupled QCD. Several of the most important

developments in theoretical physics over the past couple of decades have been (directly

or indirectly) inspired by ideas in this book.

• Schweber, S., QED and the Men Who Made It: Dyson, Feynman, Schwinger and

Tomonaga, Princeton (1994).

Not a textbook, but a tale of the times in which QFT was born, and the people who

made it happen. It doesn’t aim to dazzle you with how very great these heroes were1,

but rather shows you how puzzled they were, how human their misunderstandings,

and how tenaciously they had to fight to make progress. Inspirational stu↵.

• Vafa, C., and Zaslow, E., (eds.), Mirror Symmetry, AMS (2003).

A huge book comprising chapters written by di↵erent mathematicians and physicists

with the aim of understanding Mirror Symmetry in the context of string theory.

Chapters 8 – 11 give an introduction to QFT in low dimensions from a perspective

close to the one we will start with in this course. The following chapters could well

be useful if you’re taking the String Theory Part III course.

• Weinberg, S., The Quantum Theory of Fields, vols. 1 & 2, CUP (1996).

Penetrating insight into everything it covers and packed with many detailed examples.

The perspective is always deep, but it requires strong concentration to follow a story

that sometimes plays out over several chapters. Weinberg’s thesis is that QFT is the

inevitable consequence of marrying Quantum Mechanics, Relativity and the Cluster

Decomposition Principle (that distant experiments yield uncorrelated results). In

this telling, particles play a primary role, with fields coming later; for me, that’s

backwards.

• Zinn–Justin, J. Quantum Field Theory and Critical Phenomena,

4th edition, OUP (2002).

Contains a very insightful discussion of the Renormalization Group and also a lot

of information on Gauge Theories. Most of its examples are drawn from either

Statistical or Condensed Matter Physics.

Textbooks are expensive. Fortunately, there are lots of excellent resources available freely

online. I like these:

• Dijkgraaf, R., Les Houches Lectures on Fields, Strings and Duality,

http://arXiv.org/pdf/hep-th/9703136.pdf

1I should say ‘are’; even now in 2017, Freeman Dyson still works at the IAS almost every day.
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An modern perspective on what QFT is all about, and its relation to string theory.

For the most part, the emphasis is on more mathematical topics (e.g. TFT, dualities)

than we will cover in the lectures, but the first few sections are good for orientation.

• Hollowood, T., Six Lectures on QFT, RG and SUSY,

http://arxiv.org/pdf/0909.0859v1.pdf

An excellent mini–series of lectures on QFT, given at a summer school aimed at end–

of–first–year graduate students from around the UK. They put renormalization and

Wilsonian E↵ective Theories centre stage. While the final two lectures on SUSY go

beyond this course, I found the first three very helpful when preparing the current

notes. We’ll follow parts of these notes closely.

• Neitzke, A., Applications of Quantum Field Theory to Geometry,

https://www.ma.utexas.edu/users/neitzke/teaching/392C-applied-qft/

Lectures aimed at introducing mathematicians to Quantum Field Theory techniques

that are used in computing Seiberg–Witten invariants. I very much like the per-

spective of these lectures, and we’ll Neitzke’s notes closely for the first part of the

course.

• Osborn, H., Advanced Quantum Field Theory,

http://www.damtp.cam.ac.uk/user/ho/Notes.pdf

The lecture notes for a previous incarnation of this course, delivered by Prof. Hugh

Osborn. They cover similar material to the current ones, but from a rather di↵erent

perspective. If you don’t like the way I’m doing things, or for extra practice, take a

look here!

• Polchinski, J., Renormalization and E↵ective Lagrangians,

http://www.sciencedirect.com/science/article/pii/0550321384902876

• Polchinksi, J., Dualities of Fields and Strings,

http://arxiv.org/abs/1412.5704

The first paper gives a very clear description of the ‘exact renormalization group’

and its application to scalar field theory. The second is a recent survey of the idea of

‘duality’ in QFT and beyond. We’ll explore this if we get time.

• Segal, G., Quantum Field Theory lectures,

YouTube lectures

Recorded lectures aiming at an axiomatization of QFT by one of the deepest thinkers

around. I particularly recommend the lectures “What is Quantum Field Theory?”

from Austin, TX, and “Three Roles of Quantum Field Theory” from Bonn (though

the blackboards are atrocious!).

• Tong, D., Quantum Field Theory,

http://www.damtp.cam.ac.uk/user/tong/qft.html

The lecture notes from the Michaelmas QFT course in Part III. If you feel you’re
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missing some background from last term, this is an excellent place to look. There

are also some video lectures from when the course was given at Perimeter Institute.

• Weinberg, S., What Is Quantum Field Theory, and What Did We Think It Is?,

http://arXiv.org/pdf/hep-th/9702027.pdf

• Weinberg, S., E↵ective Field Theory, Past and Future,

http://arXiv.org/pdf/0908.1964.pdf

These two papers provide a fascinating account of the origins of e↵ective field the-

ories in current algebras for soft pion physics, and how the Wilsonian picture of

Renormalization gradually changed our whole perspective of what QFT is about.

• Wilson, K., and Kogut, J. The Renormalization Group and the ✏-Expansion,

Phys. Rep. 12 2 (1974),

http://www.sciencedirect.com/science/article/pii/0370157374900234

One of the first, and still one of the best, introductions to the renormalization group

as it is understood today. Written by somone who changed the way we think about

QFT. Contains lots of examples from both statistical physics and field theory.

That’s a huge list, and only a real expert in QFT would have mastered everything on it.

I provide it here so you can pick and choose to go into more depth on the topics you find

most interesting, and in the hope that you can fill in any background you find you are

missing.
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1 Introduction

Quantum Field Theory is, to begin with, exactly what it says it is: the quantum version of

a field theory. But this simple statement hardly does justice to what is the most profound

description of Nature we currently possess. As well as being the basic theoretical framework

for describing elementary particles and their interactions (excluding gravity), QFT also

plays a major role in areas of physics and mathematics as diverse as string theory, condensed

matter physics, topology, geometry, combinatorics, astrophysics and cosmology. It’s also

extremely closely related to statistical field theory, probability and from there even to

(quasi–)stochastic systems such as finance.

1.1 Choosing a QFT

To build a QFT, we start by picking the space on which it lives. Usually, this will be some

smooth, Riemannian (or pseudo–Riemannian) manifold (M, g) of dimension dim(M) = d.

For example, for most applications to particle physics, we’d choose (M, g) = (R4, ⌘) where

⌘ is the Minkowski metric. However, this is far from being the only interesting choice.

For many applications in condensed matter, one sets either (M, g) = (R3, �) with � the

flat Euclidean metric, or perhaps M = U ⇢ R3 to study field theory living in a sample of

material that occupies some region U . As a further example, the worldsheet description of

string theory involves a QFT living on a Riemann surface (⌃, [g]) where only the conformal

class

[g] = {g 2 Met(⌃) with g ⇠ e2�g for � : ⌃ ! R}

of the metric needs to be specified, while applications of QFT to topological problems such

as knot invariants make use of a certain gauge theory (known as Chern–Simons theory)

living on an arbitrary orientable three–manifold M with no metric at all. Whatever choice

we make, in QFT the metric g is regarded as fixed – studying what happens when the

metric itself has quantum fluctuations requires quantum gravity.

Having decided which universe we live in, our next choice is to pick which objects we

wish to study. That is, we must choose the fields. The simplest choice is a scalar field,

which is just a function on M . It’ll often be useful to think of this a map

� : M ! R, C, . . . ,

according to whether the scalar is real– or complex–valued. More generally, � could describe

a map

� : M ! N

from our space to some other (Riemannian) manifold (N, G), known as the target space.

For example, we’ll see that we can think of ordinary non–relativistic Quantum Mechanics

in terms of a d = 1 QFT living on an interval I = [0, 1] known as the worldline, where the

fields describe a map � : I ! R3. In particle physics, the pion field ⇡(x) describes a map

M ! G/H where M is our Universe and G and H are Lie groups. (In the specific case of

pions in the Standard Model, it turns out that G/H = (SU(2)⇥SU(2))/SU(2).) In string
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Figure 1: String Theory involves a QFT describing maps from a Riemann surface ⌃ to a

Calabi–Yau manifold.

theory, some of the worldsheet fields are scalars describing a map � : ⌃ ! N embedding

the worldsheet in a certain special type of Riemannian manifold N called a Calabi–Yau

manifold.

There are many further options. In a gauge theory, as we’ll see in chapter 8, the basic

field is a connection r on a principal G-bundle P ! M . We could also choose to include

charged matter, described mathematically in terms of sections of vector bundles E ! M

associated to P ! M by a choice of representation. For example, scalar QED involves a

photon Aµ and a scalar �, defined up to the gauge transformations

Aµ ⇠ Aµ + @µ� � ⇠ ei��

This is just the local description of a connection on a principal U(1) bundle, together with

a section of a rank one complex vector bundle E ! M whose fibres are equipped with a

Hermitian metric. As you learned if you took the General Relativity course, Riemannian

manifolds naturally come along with various bundles, such as the tangent and cotangent

bundles TM and T ⇤M . Under mild topological conditions, we might also be able to define

spin bundles over M . In physics, we’d think of sections of these bundles as being fields that

transform non-trivially under Lorentz transformations; i.e. they carry non–zero ‘spin’ and

are described (at least locally) by functions such as V µ,  ↵̇, B[µ⌫] and �↵̇
µ with various types

of vector and/or spinor indices. I don’t want to get into any details in the introduction

— we’ll explore these objects and what the mathematical words mean in detail as we go

along. My only point here is there’s lots of choice in what type fields we might like to

include in our QFT, and that all the most common choices (certainly all the ones I expect

you to have heard of so far, and all the ones we’ll meet in this course) are very natural

geometrical objects.

Whatever fields we pick, I’ll let C denote the space of field configurations on M .

That is, every point � 2 C corresponds to a configuration of the field – a picture of what

(every component of) the field looks like across the whole universe M . Since we allow

our fields to have arbitrarily small bumps and ripples, C is typically an infinite dimensional

function space. Trying to understand the geometry and topology of this infinite dimensional
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space of fields, and then trying to do something useful with it is fundamentally what makes

QFT di�cult, but it’s also what makes it interesting and powerful.

The next ingredient we need is to specify the action for our theory. This is a function

S : C ! R (1.1)

on the space of fields. In other words, given a field configuration, the action produces

a real number. We often write S[�] for this number, as opposed to S(�), and say the

action is a functional. The word is just to remind us that the domain C of S is itself and

infinite–dimensional function space. The critical set2

Crit C(S) = {� 2 C | �S[�] = 0} (1.2)

correspond to fields that solve the classical field equations, the Euler–Lagrange equations.

In the simplest circumstances, these critical points are isolated.

When setting up our QFT, we often assume that S[�] is local, meaning that it can be

written as

S[�] =

Z

M
ddx

p
g L(�(x), @�(x), . . .) (1.3)

where the Lagrangian3 L depends on the value of � and finitely many derivatives at just a

single point in M . As a consequence, the classical field equations become nonlinear pdes

of an order determined by the number of derivatives of � appearing in L.

You’ve doubtless been writing down local actions for so long – motivated by either

classical mechanics or classical field theories such as electromagnetism – that you now do

it without thinking. However, it’s worth pointing out that, purely from the point of view

of functions on C, locality on M is actually a very strong restriction. Even a monomial

function on C generically looks like
Z

M⌦n

ddx1 ddx2 · · · ddxn ⇤(x1, x2, . . . , xn)�(x1)�(x2) · · ·�(xn)

involving the integral of the field at many di↵erent points, with some choice of function

⇤ : M⌦n ! R. (You can think of this as an infinite dimensional analogue of a monomial

X

ijk···l
⇤ijk...lz

izjzk · · · zl

2Here, � is properly viewed as the exterior derivative on C and obeys �2 = 0. Thus � =
R
M

��(x) �/��(x)

where ��(x) is a one-form on C and the derivative �/��(x) on C acts e.g. as

�

��(x)
�(y) = �

d(x� y) ,
�

��(x)

Z

M

dd
y �(y)2 = 2�(x) ,

�

��(x)

Z

M

dd
y @

µ
�@µ� = 2

Z

M

dd
y @

µ
�
d(x� y) @µ� = �22�(x)

(the last example holding in the case that there is no boundary term).
3What I’m calling the Lagrangian here is really the Lagrangian density, with the Lagrangian itself being

the integral L over a Cauchy surface in M . The abuse of terminology is standard.
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in finitely many variables zi, with the function ⇤(x1, x2, . . . , xn) playing the role of the

‘coe�cients’.) Locality means that we restrict to ‘functions’ ⇤ of the form

⇤(x1, x2, . . . , xn) = �(x) @(p1)�d(x1 � x2) @
(p2)�d(x2 � x3) · · · @(pn�1)�d(xn�1 � xn) (1.4)

that are supported on the main diagonal M ⇢ M⌦n, with finitely many derivatives allowed

to act on the �–functions. Integrating by parts if necessary, these derivatives can be made

to act on the fields, leaving us with an expression of the general form
Z

M
ddx �(x) @(q1)�(x) @(q2)�(x) · · · @(qn)�(x)

of a monomial of degree n in the fields, acted on again by some derivatives, with all

fields and derivatives evaluated at the same x 2 M . The only remnant of the original

⇤ : M⌦n ! R is the function � : M ! R. If this monomial is higher than quadratic

in the fields, it leads to a non–linear term in the classical field equations, meaning we no

longer have superposition of solutions (i.e. the space of solutions to the Euler–Lagrange

equations will no longer be expected to be a vector space). Physically, we interpret this

as an interaction, either between several di↵erent fields or between a field and itself. In

many cases, we restrict further and choose the functions � to be constant, �(x) = � with

the constant � known as a coupling constant.

If we were to allow multi-local terms in our action, the resulting classical field equations

would be integro–di↵erential equations, so the behaviour of our field at one point x 2 M

would depend what the field configuration looks like across all of M . This ‘action at a

distance’ is usually thought to be unphysical, at least in classical physics. However, we’ll

see later that QFT forces us to consider certain non-local terms even if we try to rule them

out when setting up the theory.

1.2 What do we want to compute?

In this course, the main tools we’ll use to study QFT are path integrals. Heuristically,

these are integrals such as Z

C
[D�] exp

✓
�1

~S[�]

◆
(1.5)

that are taken over the infinite dimensional space of fields C, with some sort of measure

[D�] e�S[�]/~ that weights the contribution of each field configuration � 2 C by e�S/~. The

vague idea of this measure is for the exponential to suppress field configurations that are

‘wild’, so that for example we might optimistically hope that configurations in which �

jumps around rapidly between very di↵erent values (perhaps even being discontinuous, or

worse) play a ‘negligible’ role.

However, it’s very far from clear that this hope will be realised. Even if you have only

an anecdotal knowledge of functional analysis, you likely know that there are vastly more

discontinuous functions than continuous ones, vastly more continuous than continuously

di↵erentiable, vastly more functions that are Ck than there are functions that are Ck+1,
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and vastly more smooth functions than analytic ones4. Going in the other direction, there

are vastly more distributions than even discontinuous functions. Despite the best e↵orts

of the suppression factor e�S/~, the contribution of the enormous variety of ‘wild’ field

configurations can easily overwhelm the much smaller set of ‘nice’ (e.g. smooth) fields.

This idea is familiar in statistical mechanics, where the contribution of any given

configuration (e.g. the spin state of electrons located at each site of a lattice) is weighted

by e��E(�) with � the inverse temperature of the system. However, there are typically

many more ‘disordered’ states (e.g. with random alignments of neighbouring spins) than

ordered ones (e.g. all spins aligned) and, depending on the details of the model (e.g.

types of interactions allowed between nearby / distant spins, and the dimensionality and

connectivity of the lattice on which they sit) there can be a complicated structure of phase

transitions as parameters such as the temperature ��1 is varied. In the poetic words of

Bryce de Witt, the balance between the tendency of the exponential factor to suppress

rapidly varying configurations and the fact that there are simply many more of them is

“the eternal struggle between energy and entropy”.

In a field theory, the fact that we’re dealing with infinite–dimensional spaces makes

path integrals such as (1.5) even more delicate to study. Since we’re integrating over an

infinite dimensional space, it’s far from obvious that we can get any sort of finite answer out

of a path integral at all. Indeed, much of the hard work we need to do in this course is about

understanding how to achieve this (even at low orders in perturbation theory). However,

living on the edge is exciting, and when a path integral exists it has a rich character that

is often goes far beyond what one can see in the classical action.

Incidentally, I’ve chosen the argument of the exponential in (1.5) to be �S[�]/~, as ap-

propriate when (M, g) is Riemannian (such as Euclidean space). For a pseudo–Riemannian

manifold (such as Minkowski space) we’d instead use iS[�]/~. It should be clear already

that any di�culties we have in making sense of the doubtfully convergent integral (1.5) are

only going to be worse for a doubtfully–conditionally convergent integral. For this reason,

we’ll mostly stick to Riemannian signature spaces in this course5.

1.2.1 The partition function

Let’s now take a look at the path integral in a little more detail, though still completely

heuristically. If M is closed and compact (such as a sphere Sd or torus T d = S1 ⇥ S1 ⇥
· · · ⇥ S1), the most important object to compute in any QFT is the partition function

Z(M,g)(�, · · · ) =

Z

C
[D�] exp

✓
�S[�]

~

◆
. (1.6)

4Recall that a function on M is in C
k(M) if, at every p 2 M , the function and its first k derivatives

exist and are each continuous. A continuous function is said to be in C
0(M). A function is in C

1(M)

(smooth) if it is in C
k(M) for all k. It is C! (analytic) if its Taylor expansion around any point converges

to the function itself.
5You’ll find that most QFT textbooks do too: even though they may claim to start out writing things

in Minkowksi space, before any real calculation is done they will ‘Wick rotate’ to Euclidean space. Working

in Euclidean space is also essentially the same thing as studying Statistical Field Theory, except here we’ll

take d = dim(M) to be the total space–time dimension.
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As we’ve indicated here, the partition function depends on all the choices we made in

setting up our theory, such as the space (M, g) on which the theory lives and the values

of the couplings �, as well as of course on ~. Note however that Z does not depend on

the fields! These are just dummy variables that we’ve integrated out in computing the

partition function.

1.2.2 Correlation functions

After the partition function, the most important objects we wish to compute in any QFT

are correlation functions. These are path integrals with further insertions, of the general

form Z

C
[D�] exp

✓
�S[�]

~

◆ nY

i=1

Oi[�] (1.7)

where the insertions Oi are again functions on C. We sometimes normalise the correlation

functions by the partition function, writing
*

nY

i=1

Oi[�]

+
=

1

Z

Z

C
[D�] exp

✓
�S[�]

~

◆ nY

i=1

Oi[�] . (1.8)

The idea of this normalisation (as we’ll see in detail later) is both to ensure that h1i = 1 and

to separate out the e↵ect of inserting the operator O into the path integral from e↵ects that

are there in the basic partition function already. Mathematically, normalised correlation

functions compute various moments of the probability distribution [D�] e�S/~/Z. From

the point of view of physics, we choose the functions we insert to correspond to some

quantity of physical interest that we wish to measure; perhaps the energy of the quantum

field in some region, or the total angular momentum carried by some electrons, or perhaps

temperature fluctuations in the CMB at di↵erent angles on the night sky.

In the QFT context, we often call these extra functions operator insertions in the

path integral, for reasons that will become apparent. The most common examples of

operator insertions are local operators that depend on the value of the field (and perhaps

finitely many derivatives) at a single point in M . Examples include

Oi(xi) = �4(xi) , O(xj) = �3 @µ�@µ�(x) , O(xk) = e�(xk)

and very many more. It’s also perfectly possible to have operator insertions such as
Z

M
ddx (@µ�@µ�)2

that depend on the value of the field over all of M . For example, if you take the Part III

String Theory course, you’ll often compute correlation functions of a mixture of operator

insertions, some of which are inserted at points x 2 M = ⌃, and others that are integrated

over all of the worldsheet ⌃. As you’ll learn, these correlation functions correspond to

dynamical processes in the target space of the string. We can also have operators that

depend on the value of the field along a curve � ⇢ M , or some other subspace K ⇢ M .

Indeed, the operator

W�[A] = tr P exp

✓
�

I
A

◆
,
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that depends on the value of gauge field A = Aµ dxµ along a curve � is one of the most

fundamental operators present in any gauge theory, known to physicists as a Wilson loop

and to mathematicians as the trace of the holonomy of the connection. Note again that

although the operator insertions depend on the values of the fields, the correlation functions

themselves do not. Rather, our correlators are functions

F(M,g)(x1, . . . , xn;�, · · · ) =

*
nY

i=1

Oi(xi)

+

that depend on all the same data as the partition function Z, together with any extra

choices (such as the choice of points xi 2 M or subspaces �i, or Ki and general form of

the operator) that were made in choosing which correlator to compute.6

Because local operators also appear in the action S[�], correlation functions are closely

related to the partition function. Indeed, if the action includes a term

O = �

Z

M
�4(x) ddx

with coupling constant �, then di↵erentiating formally7 we get

� ~
Z

@

@�
Z = � ~

Z
@

@�

✓Z

C
[D�] e�S[�]/~

◆
=

1

Z

Z

C

✓
[D�] e�S[�]/~

Z

M
�4 ddx

◆

= hOi ,

(1.9)

so that the normalised correlator is (�~ times) the derivative of ln Z with respect to the

coupling. Thus, knowing Z as a function of the all couplings in the action is equivalent to

knowing all the correlators of operators appearing in the action.

The operators that appear in the action are integrated over all of M . It’s often con-

venient to extend the idea above so as to obtain correlators of local operators O(x) that

depend on the value of � (and perhaps finitely many derivatives) just at one point x 2 M .

To do this, we include source terms such as

S[�] ! S[�] +

Z

M
ddx Ji(x)Oi(x)

in the action. The source Ji(x) is, like the field �, a function on M . Really, this is just

another case of the choices we made in picking our (local) action, allowing the coupling

6Skipping very far ahead of our story, if our real interest is in objects such as these functions, which

are independent of any fields, we might hope to avoid our troubles in actually defining the path integral

by instead trying to give some other, perhaps axiomatic, way to compute and manipulate such functions.

This turns out to be successful in various special cases such as topological QFT and minimal models (a

special class of conformal field theory in two dimensions), but despite much e↵ort no one has yet come up

with a set of axioms that are rich and flexible enough to allow the great variety of phenomena we see in

QFTs, whilst still being useful enough that we can actually calculate with them. The path integral is the

best description we have.
7That is, without worrying about whether the di↵erentiation and integration commute. Since we haven’t

properly defined our path integral and don’t even know yet whether it actually exists, there’s no point in

worrying about this seriously at this stage anyway.
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‘constant’ � ! �(x) to still vary over M , but the name ‘source’ and use of the letter J(x)

is conventional.

We do not integrate over J in performing the path integral, so the partition function

itself becomes a functional

Z ! Z(M,g)[Ji]

depending on the choice of functions Ji in addition to the other data. Varying this partition

function wrt the value of the source at some point xi 2 M , we obtain formally

�~ �

�Ji(xi)
Z[Ji] =

Z

C

✓
[D�] e�(S[�]+

R
JjOj)/~ �

�Ji(xi)

Z

M
ddy Ji(y)Oi(y)

◆

=

Z

C

⇣
[D�] e�(S[�]+

R
JjOj)/~ Oi(xi)

⌘
,

(1.10)

and thus

hO1(x1) O2(x2) · · · On(xn)i =
(�~)n

Z
�nZ[J ]

�J1(x1) �J2(x2) · · · �Jn(xn)

����
J=0

. (1.11)

Probably the most common use of this formula is when the sources couple to single

powers of the field, such as

S[�] ! S[�] +

Z

M
ddx J(x)�(x) (1.12)

for just one field. Computing Z[J ] here is equivalent to knowing all the correlation functions

h�(x1)�(x2) · · · �(xn)i =
(�~)n

Z
�nZ[J ]

�J(x1) �J(x2) · · · �J(xn)

����
J=0

. (1.13)

of the field itself. However, there’s no reason we can’t choose the source to couple to a

composite operator – i.e. a non–linear function of the fields. For example, since we

chose a Riemannian metric g to define our QFT, we could vary the partition function with

respect to the value of this metric. You should recall from last term’s QFT lectures (or

any course on classical field theory) that the stress tensor Tµ⌫(x) is defined by

�gS[�] =
1

2

Z

M
Tµ⌫(x) �gµ⌫(x)

p
g ddx (1.14)

in terms of the variation of the (matter part of the) action wrt the metric. The stress

tensor is indeed a non-linear function of the fields and their derivatives. Varying inside the

path integral we obtain

� ~ �g(ln Z(M,g)) =
1

2

Z

M
hTµ⌫(x)i �gµ⌫(x)

p
g ddx (1.15)

and hence

� 2~
p

g(x)

� ln Z(M,g)

�gµ⌫(x)
= hTµ⌫(x)i(M,g) (1.16)

where on the rhs we emphasize that the correlation function is computed using the original

metric g.

Relations such as these show the close connection between correlation functions and

the partition function. We see that correlators probe the response of the partition function

to a change in the background structures we chose in setting up the theory.
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1.2.3 Boundaries and Hilbert space

If M has boundaries, say @M = [iBi, then to specify the path integral we must choose

some boundary conditions for the fields on each component of @M . We’ll see below that

on each boundary component Bi, the possible configurations of the field naturally form a

Hilbert space Hi. Thus, on a manifold with boundary the path integral really defines a

map

⌦i Hi ! C . (1.17)

To compute this object, the idea is that once we decide what our fields look like on each Bi

(in other words once we pick a state in each Hi) we obtain a complex number by performing

the path integral Z

�|Bi
= 'i

D� e�S[�]/~ (1.18)

over those fields on M that agree with our chosen profiles 'i on each boundary component.

As a very important special case, suppose M = N ⇥ I, where N is some d � 1 dimensional

manifold and I is just an interval of length T with respect to the metric g on M . In this

case the path integral gives us a map8

U(T ) : H ! H (1.19)

from the Hilbert space associated to the incoming boundary of M to that associated to the

outgoing boundary, where

h'1|U(T )|'0i =

�|N⇥{T}='1Z

�|N⇥{0}= '0

D� e�S[�]/~ . (1.20)

evaluates the map acting on |'0i 2 H and ending on |'1i 2 H.

The fact that Hilbert spaces are associated to boundaries of M is completely natural

– we’ll see that it’s exactly what happens in the path integral approach to Quantum

Mechanics as well as QFT9. An important hint of this can already be seen in classical

mechanics. In the case that @M = [iBi, varying the classical action leads to10

�S[�] = (bulk eom) ��+
X

i

Z

Bi

nµ
i

�L
�(@µ�)

��
p

g dd�1x (1.21)

where (unlike usual) I haven’t assumed the variation obeys ��|@M = 0. We define the call

the field momentum ⇡ conjugate to � along Bi as the variation

⇡ =
p

g nµ
i �L/�(@µ�) (1.22)

8In fact, in Minkowskian signature, this map is unitary. Unitarity is di�cult to see from the path

integral perspective and is why you spent time studying canonical quantization last term.
9It’s also the starting point for Atiyah’s axiomatic approach to topological QFTs, and to Segal’s approach

to d = 2 CFTs.
10In the boundary term, nµ

i
is the outward–pointing normal to the boundary component Bi; ‘normal’

means wrt g.
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of the Lagrangian. The standard example you’re probably most used to is when @M is

a constant time slice of flat Minkowski space, and
p

g nµ�L/�(@µ�) = �L/��̇, but the

statement holds more generally.

Suppose M = N ⇥I so that @M has just two components. Like any exterior derivative,

the exterior derivative � on the space of fields obeys �2 = 0. Thus, if the classical equations

of motion are satisfied,

0 = �2S[�]
��
eom

=

Z

N⇥{T}
�⇡ ^ �� dd�1x �

Z

N⇥{0}
�⇡ ^ �� dd�1x (1.23)

showing that the quantity

⌦ =

Z

N
�⇡ ^ �� dd�1x (1.24)

is conserved under evolution via the classical equations. (The minus sign arises because the

natural orientation of nµ points into M at one end, and out at the other.) ⌦ is a 2-form on

the space of boundary field configurations C[N ] and is obviously closed. It is a symplectic

form on the space of fields, and the fact that it is conserved is the usual fact that

in classical field theory (as in classical mechanics) time evolution is symplectic. It is this

symplectic structure on the space of fields that we wish to quantise in QFT, exactly as you

quantised the symplectic structure (R2n,!) with ! = dpi ^ dxi in quantum mechanics.

Note that (for eoms that are 2nd order), specifying boundary values of � and ⇡ deter-

mines a unique solution to the classical field equations, so the space of boundary values

(�|N ,⇡) is isomorphic to the space of classical solutions (at least in a small neighbour-

hood of N). This is why, when studying canonical quantisation on (R4, ⌘) last term, you

expanded fields in terms of modes

�(x) =

Z
d3p

(2⇡)3/2

1p
2E

h
eipµxµ

a(p) + e�ipµxµ

a†(p)
i

(1.25)

that satisfied the equations of motion. In fact, since you were working perturbatively, fields

satisfied the free equations of motion, meaning in the relativistic context that their energy

was fixed in terms of their mass and momentum by E =
p

p2 + m2. It’s also why, when

you introduced commutation relations

[�(x),�(y)] = 0 = [⇡(x),⇡(y)]

[�(x),⇡(y)] = i �3(x � y)
(1.26)

for the fields and their momenta, these were defined only when the fields were evaluated

at equal time; the symplectic structure ⌦ whose form they reflect is only defined on a

co-dimension 1 slice of M (such as a boundary).

States in which the fields take definite values on the boundary are the analogue of

position eigenstates in Quantum Mechanics. Just as |xi represents a quantum mechanical

state in which the particle is definitely located at x, so |'ii represents a state in quantum

field theory in which the field on the boundary component Bi definitely takes some profile

'i. In quantum mechanics we can have more general states, written in Dirac notation as

| i =

Z
dnx |xihx| i , (1.27)
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where  (x) = hx| i 2 L2(Rn, dnx) is a wavefunction. So too in QFT we can have more

general states

| i =

Z

C[B]
[d'] |'ih'| i (1.28)

where the integral is taken over the space C[B] of all possible boundary field configurations,

and  ['] = h'| i is, heuristically, a wavefunction on this space of fields.

Again, you saw this already in last term’s course when studying canonical quantisation

of a field theory. There, rather than general functions [�] you studied polynomials on C[N ],

with a monomial Z

N⌦n

 (x1, . . . ,xn)�(x1) · · · �(xn)

of degree n in the fields being interpreted as an n-particle state. Via (1.25), in canoni-

cal quantisation the fields themselves were written in terms of creation and annihilation

operators, whilst the ‘co-e�cients’ of  (x1, . . . ,xn) this monomial were interpreted as the

wavefunction of an n-particle quantum mechanical state. Indeed, if V is the Hilbert space

associated to a single particle, then you decomposed the Hilbert space H of QFT as11

H = C � V � Sym2V � Sym3V � · · ·

=
1M

n=0

SymnV .
(1.29)

where C represents the vacuum state, V the one–particle state, Sym2V the two–particle

state, and so on. This is known as the Fock basis of H.

Restricting to polynomials is somewhat like expanding a general state of the quantum

harmonic oscillator in Hermite polynomials, which are square–integrable wrt to a Gaussian

measure (i.e. they form a basis of the Hilbert space L2(R, e�x2/2 dx)). The di�culties

of defining what we mean by the infinite–dimensional path integral are reflected in the

canonical quantisation approach to QFT in the di�culties of defining what is meant by the

‘Hilbert space’ L2(C[B], dµ) for functions on the infinite–dimensional space of boundary

field configurations C[B].

1.2.4 Scattering amplitudes

If M is non–compact then there may be a region that is asymptotically far away in the

metric g, such as the region kxk ! 1 in Rd, or the asymptotic past and future in Minkowski

space. On a non–compact manifold case, to define the path integral we have to specify

asymptotic values of the fields, and the result of the path integral then depends on our

choice of these asymptotic values. The simplest choice is just to ask that � ! 0 in this

asymptotic region, and we use this to define the partition function Z on a non–compact

space. Another standard example is the case of Minkowski space, where we choose initial

11Sym means symmetric power, e.g. a⌦b+b⌦a 2 Sy2
V ⇢ V ⌦V . I’m assuming the field is bosonic so that

the wavefunction of identical particles is symmetrized; multi-particle fermion states involve antisymmetric

powers of V .
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and field profiles
� ! �i as t ! �1
� ! �f as t ! +1

in the asymptotic past and future, and obtain a path integral written as

h�f |�ii =
1

Z

Z

C(�i,�f)
[D�] eiS[�]/~ (1.30)

taken over the space of fields that approach these asymptotic profiles, normalised by the

partition function computed again using the ‘trivial’ profiles. This is known as the scat-

tering amplitude, and represents the quantum amplitude for a state that initially looks

like the field is �i to evolve throughout space–time and emerge looking like �f .

Of course, even on a non–compact manifold we can still define correlation functions,

where we assume � ! 0 in the asymptotic region. More generally still form factors,

which are simply correlation functions taken in the presence of non–trivial asymptotic con-

ditions on the fields (and thus are a sort of mixture of scattering amplitudes and correlation

functions). Remarkably, as we’ll learn later in the course, scattering amplitudes are them-

selves related to correlation functions of the form h�(x1)�(x2) · · · �(xn)i through the LSZ

theorem. This is a very useful theorem, as it’s typically easier to understand correlation

functions than to work with boundary conditions on the path integral.

Naively, you might think it’s easier to work with a QFT on Rd than on a compact

space M , particularly if we just require � ! 0 as kxk ! 1. Whilst there’s some truth in

this (and we’ll certainly mostly just consider (M, g) = (Rd, �) in this course), you should

be aware that putting QFT on a non–compact space introduces new di�culties in defining

the path integral, in part associated with infra–red divergences. The issue is somewhat like

an infinite–dimensional analogue of the fact that convergence of Fourier integrals is even

more subtle than convergence of Fourier series.
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