
2 QFT in zero dimensions

We’ll embark on our journey from the simplest possible starting point: we’ll study QFT

in a space–time with zero dimensions. That’s a very drastic simplification, and much

of the richness of QFT will be absent here. Indeed, I expect many of the ideas in this

chapter will be things you’ve met (long) before, although perhaps in a di↵erent context.

Still, you shouldn’t sneer. We’ll see that even this simple case contains baby versions of

ideas we’ll study more generally later in the course, and it will provide us with a safe

playground in which to check we understand what’s going on. Furthermore, it has been

seriously conjectured that full, non-perturbative string theory is itself a zero–dimensional

QFT (though admittedly with infinitely many fields).

2.1 Partition functions and correlation functions in d = 0

If our space–time M is zero–dimensional and connected, then it must be just a single point:

M = {pt} . (2.1)

In zero dimensions, there are no lengths, so there is no notion of a metric. Similarly, the

Lorentz group is trivial, hence all its representations are trivial. In other words, all fields

must be scalars: there is no notion of the ‘spin’ of a field, simply because there is no notion

of a Lorentz transformation.

In the simplest case, a ‘field’ on M is a map � : {pt} ! R, or in other words just a

real variable. The space C of all field configurations is also easy to describe: it’s again just

R, because our entire universe M is just one point, so we completely specify what the field

looks like by giving its value at this one point.

Now let’s choose our action. In zero dimensions, there are no space–time directions

along which we could di↵erentiate our ‘field’, so there can be no kinetic terms. Thus, the

action is just a function S(�) of this one real variable. All that really matters is that S is

chosen so that the partition function (2.2) converges, but we’ll typically take S(�) to be a

polynomial (with highest term of even degree), such as

S(�) =
m2

2
�2 or perhaps S(�) =

m2

2
�2 +

�

4!
�4 .

The coupling constants are just the coe�cients of the various powers of � in the action.

The coe�cients of �p with p = 0, 1, 2 have a slightly special status, and are known as the

vacuum energy, the tadpole and the mass of the field, respectively, although they are

also just coupling constants from our general point of view.

Because C ⇠= R, the path integral measure D� becomes just the standard (Lebesgue)

measure d� on R and the partition function

Z =

Z

R
d� e�S(�)/~ , (2.2)

is just a standard integral over the real line. Similarly, correlation functions are

hfi :=
1

Z

Z

R
d� f(�) e�S(�)/~ (2.3)
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where we’ve inserted some other function f(�) into the basic integral. We’ll assume that

f is su�ciently well-behaved that the integral (2.3) still exists. In particular, f should

not grow so rapidly as |�| ! 1 as to overcome the decay of e�S(�)/~. In practice, we’ll

restrict ourselves to the case that f is just a polynomial. In this dim(M) = 0 case, so long

as the action S(�) is real, e�S/~ � 0 so we really can think of e�S/~/Z as a probability

density on the space of fields, with the factor of 1/Z ensuring that the probability measure

is normalized. The correlation function (2.3) is just the expectation value hfi of f(�)

averaged over the space of fields with this measure.

As before, what we get for Z depends on which action we picked, so the partition

function depends on the values of the coupling constants

Z = Z(m2,�, · · · ) . (2.4)

Correlation functions depend on the coe�cients of the polynomial f(�) as well as the

couplings in the action. Again, we can think of the correlator as probing the response

of the partition function to an infinitesimal change in the couplings in the action. For

example, in the simplest case that f(�) = �p is monomial, we have formally

1

p!
h�pi = � ~

Z
@

@�p
Z(m2,�i)

����
⇤

(2.5)

where �p is the coupling to �p/p! in the general action, and ⇤ is the point in theory space

where the couplings are set to their values in the specific action that appears in (2.3).

Finally, as a piece of notation, I’ll often write Z0 for the partition function in the free

theory, where the couplings of all but the term quadratic in the field(s) are set to zero.

2.2 Free field theory

The simplest QFTs are free, meaning that the action is (at most) quadratic in the fields.

As an example, suppose we have n fields �a with a = 1, . . . , n, thought of as a map

� : {pt} ! Rn. We choose the action to be the quadratic function

S(�) =
1

2
M(�,�) =

1

2
Mab �

a�b , (2.6)

where M : Rn ⇥Rn ! R is represented by a real, positive–definite, symmetric matrix. The

partition function of this free, zero–dimensional QFT is the basic Gaussian integral

Z0 =

Z

Rn

dn� e�M(�,�)/2~ (2.7)

with the standard (Lebesgue) measure dn� on the space of fields, which is now just Rn. To

evaluate this, note that since M is a real symmetric matrix, its eigenvectors are orthogonal

so M can be diagonalized by some orthogonal transformation O : Rn ! Rn. The path

integral measure is the standard measure dn� on Rn, which is invariant under such an

orthogonal transformation. In the basis of eigenvectors, the integral is just a product of n

independent Gaussian integrals

Z

R
d� e�m�2/2~ =

r
2⇡~
m

, (2.8)
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where m is the eigenvalue of M . Multiplying all the contributions, we obtain

Z0 =

Z

Rn

dn� e�M(�,�)/2~ =
(2⇡~)n/2

p
det M

, (2.9)

where we have written the product of eigenvalues more invariantly as the determinant.

Note that M being positive–definite ensures that det M > 0 and the integral exists.

We also want to compute the partition function in the presence of a source for �. Thus,

we include a linear source term Ja�a in the action:

S(�) =
1

2
M(�,�) + J · � . (2.10)

Completing the square, we have

1

2
M(�,�) + J · � =

1

2
M(�̃, �̃) � 1

2
M�1(J, J) (2.11)

where �̃ := � + M�1(J, · ) are some translated coordinates on Rn. (Our assumption that

M was positive–definite also guarantees that M�1 exists.) Since �̃ di↵ers from � by a

translation, the measure dn�̃ = dn�. Therefore, in the presence of the source J the

partition function is

Z(J) =

Z

Rn

dn� exp

✓
�1

~

✓
1

2
M(�,�) + J · �

◆◆

= exp

✓
1

2~M�1(J, J)

◆ Z

Rn

dn�̃ e�M(�̃,�̃)/2~ = exp

✓
1

2~M�1(J, J)

◆
Z0

(2.12)

where Z0 is the original partition function (2.9).

To see how this generalization allows us to compute correlation functions, suppose

hP (�)i is a polynomial P : Rn ! R. By linearity of the integral, evaluation of the correla-

tion function hP (�)i reduces to the case that P is a product of linear factors `(�) = ` · �,

so we just need to compute

h`1(�) · · · `p(�)i =
1

Z0

Z

Rn

dn� e�M(�,�)/2~
pY

i=1

`i(�) . (2.13)

If p is odd, then the integrand is an odd function of (at least one direction of) �, so vanishes

when integrated over Rn. Let’s evaluate the remaining case p = 2k. We have that

h`1(�) · · · `2k(�)i =
1

Z0

Z

Rn

dn�
2kY

i=1

`i(�) e�M(�,�)/2~�J(�)/~

�����
J=0

=
(�~)2k

Z0

Z

Rn

dn�
2kY

i=1

`i ·
@

@J

h
e�M(�,�)/2�J(�)/~

i�����
J=0

=
2kY

i=1

`i ·
@

@J


~2k

Z0

Z

Rn

dn� e�M(�,�)/2�J(�)/~
������

J=0

= ~2k
2kY

i=1

`i ·
@

@J

h
eM�1(J,J)/2~

i�����
J=0

(2.14)
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The first line is a triviality: we want to know the correlation function in the original theory

where J = 0. In going to the second line here we di↵erentiated the action wrt J to bring

down each factor of �, in going to the third line we note that the integrand is absolutely

convergent so the order of integration and di↵erentiation may safely be exchanged, and the

final line uses the result (2.12).

Let’s first think about this formula in the important special case k = 1, where it

reduces to

h`1(�) `2(�)i = ~ M�1(`1, `2) or equivalently h�a�bi = ~ (M�1)ab . (2.15)

This says that (in this free theory) the two–point function is just the inverse of (minus)

the quadratic term in the exponential. In dimensions d > 0, we’ll consider correlation

functions where the fields are inserted at di↵erent points in our space–time. In this case, the

coe�cient M of the term quadratic in the fields is a di↵erential operator, whose inverse M�1

is the Green’s function or propagator of the theory. We can think of the propagator as

representing the response of one field insertion to the presence of another. It’ll be useful

to represent this result by the picture with the solid line keeping track of the fact that the

= +

=

+

+

· · ·

· · ·
~

m2
e�

�4~2

2m6
e�

�

1

2
h�2i

�a �b ~ (M�1)ab==h�a�bi

field insertions are joined by a copy of M�1. This picture is a (rather trivial) example of

Feynman diagram.

Now let’s return to the general case of (2.14). For every derivative ~ ` · @/@J that acts

on the exponential we get a factor of M�1(`, J). Because we’ll set J = 0 at the end of the

calculation, we can get a non–vanishing contribution to (2.14) only when exactly half the

derivatives bring down such factors, while the other half then removes the J dependence in

front of the exponential. We’ll then be left with a product of k factors of M�1, contracted

into `’s (or having free indices) in a way that depends on how we paired up the way the

derivatives act. Let � be a way of joining the elements of the set {1, 2, . . . , 2k} into pairs,

and let ⇧2k denote the set of all possible (complete) pairings. Then the correlation function

is

h`1(�) · · · `2k(�)i = ~k
X

�2⇧2k

Y

i2{1,...,2k}/�

M�1(`i, `�(i)) , (2.16)

in other words, a sum over products of all inequivalent ways of connecting pairs of `i using

M�1.

We can use our Feynman diagrams to help keep track of the possible pairings. For

example, the 4-point function

h�a�b�c�di = ~2
⇣
(M�1)ab(M�1)cd + (M�1)ac(M�1)db + (M�1)ad(M�1)bc

⌘
(2.17)

can be represented by the Feynman diagrams
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2 3

41

2 3

4

In general, there are |⇧2k| = (2k)!/(2kk!) ways of joining 2k elements into pairs, so the

2k-point function receives (2k)!/(2kk!) contributions. In particular, we find

h(`·�)2ki =
(2k)!

2kk!

�
~M�1(`, `)

�k
(2.18)

when all of the `i’s are the same.

Our result (2.16) for the correlation function is known as Wick’s theorem in QFT,

though in the d = 0 context of Gaussian distributions it’s called Isserlis’ theorem by

probabalists. You met Wick’s theorem last term from the point of view of canonical quan-

tization, where it arose from decomposing the field operator � into creation and annihilation

operators, and commuting these operators past one another. Of course, in d = 0, there’s no

sense in which the fields ‘propagate’ anywhere, so the Feynman diagrams are just a nifty

way to keep track of the combinatorics. Also, since we’re currently thinking just about free

theory, our diagrams have no (internal) vertices at present.

2.3 Perturbation theory

Interesting theories involve interactions, so that the action S(�) is not merely quadratic.

In this case, integrals such as Z

Rn

dn� f(�) e�S(�)/~ (2.19)

become transcendental, even for simple actions S(�) – including most of physical interest

– and simple choices of f(�). Typically, we do not know how to evaluate such integrals

analytically. We may hope to approximate such integrals perturbatively by expanding

around the classical limit ~ ! 0. However, our integral cannot have a Taylor expansion

around ~ = 0, since any such Taylor expansion would have to converge for all ~ in a disc

D ⇢ C centered on the origin. But if the action is chosen so that the integral converges

whenever ~ > 0, then (2.19) surely diverges if we formally attempt continue into the region

Re(~) < 0. Barring numerical methods, the best we can do is to obtain an asymptotic

expansion for such path integrals. (Recall that a series
P

n an~n is asymptotic to a

function I(~) if, for all N 2 N,

lim
~!0+

1

~N

�����I(~) �
NX

n=0

an~n

����� = 0 . (2.20)

In other words, with fixed N , for su�ciently small ~ 2 R�0 the first N terms of the series

di↵er from the exact answer by less than ✏�N for any ✏ > 0. (The di↵erence is o(N)). We
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write12

I(~) ⇠
1X

n=0

an~n as ~ ! 0 (2.21)

to mean that the series on the right is an asymptotic expansion of I(~) as ~ ! 0. It’s

important to remember that the true function may di↵er from its asymptotic series by

transcendental terms; for example, the function e�1/~2 ⇠ 0 as ~ ! 0, but clearly e�1/~2 6= 0.

Thus, if we instead fix a value of ~, however small, and include more and more terms in the

sum, we will eventually get worse and worse approximations to the answer. Perturbation

theory thus tells us important, but not complete, information about our QFT.

Now suppose S(�) is a smooth function that has a unique global minimum at a unique

point � = �0 2 Rn, so that the Hessian matrix @a@bS|�0 is positive–definite. Then (2.19)

has an asymptotic expansion

Z

Rn

dn� f(�) e�S(�)/~ ⇠ (2⇡~)n/2 f(�0) e�S(�0)/~
p

det(@a@bS|�0)
�
1 + ~A1 + ~2A2 + · · ·

�
(2.22)

as ~ ! 0+. The proof of this is known as steepest descent and should be familiar if

you’ve taken a course such as Part II Asymptotic Methods13. The leading term in this

12In this course, all the asymptotic expansions we consider will be valid as ~ ! 0, so we’ll usually take

this limit as understood.
13In case you didn’t take such a course, here’s an outline of a proof in the case of a single field: Let

A(~) = e+S(�0)/~
p

~

Z
b

a

e�S(�)/~
f(�) d�

and let ✏ 2 (0, 1
2 ). Define B(~) in the same way as A(~), but where the integral is taken over the range

[�0 � ~ 1
2�✏

,�0 + ~ 1
2�✏]. As ~ ! 0, we have that A(~) � B(~) is smaller than ~N for any N 2 N. (We say

the di↵erence is rapidly decaying in ~.) Now let � = (�� �0)/
p

~, so

B(~) =
Z ~✏

�~✏
e(S(�0)�S(�0+�

p
~))/~

f(�0 + �

p

~) d� .

Provided the action S(�) and insertion f(�) were smooth, the integrand of this expression is a smooth

function of
p

~ when ~ � 0. Let C(~) be the same integral as for B(~), but with the integrand replaced by

its Taylor expansion around 0 in
p

~, modulo terms of order ~N . Then

|B(~)� C(~)|  K ~N�✏

for some constant K � 0. Finally, let D(~) be the same as C(~), but where the limits of the integral are

�1 and 1. Then D(~) is a polynomial in
p

~, while C(~)�D(~) is rapidly decaying in ~. Since D(~) is a
polynomial in

p
~, it admits a Taylor expansion in

p
~ modulo ~N�✏. Also, the coe�cients of odd powers of

p
~ in D(~) are given by integrals of an odd function of � over all of R, and hence vanish. Finally, we have

D(0) =

Z

R
e�@

2
S|�0

�
2
/2

f(�0) d� =

p
2⇡ f(�0)p
@2S|�0

.

Putting all these facts together shows that

Z

R
e�S(�)/~

f(�) d� = e�S(�0)/~p~A(~) ⇠
p

2⇡~e
�S(�0)/~

f(�0)p
@2S|�0

1X

n=0

An~n
,

where A0 = 1. This proves (2.22) in the case of a single field. The generalization to finitely many fields �a

is straightforward. But don’t worry, neither of these proofs are examinable for this course.
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expansion is known as the semi-classical term. In particular, expanding � around the

classical solution �0 as �a = �a
0 + ��a, we have

S(�) = S(�0) +
1

2
@a@bS|�0��a ��b + · · · (2.23)

so that the leading term

Z0 = (2⇡~)n/2 e�S(�0)/~
p

det(@a@bS|�0)
(2.24)

in the asymptotic series of the partition function is just what we’d obtain as the partition

function of a theory a purely quadratic theory. We’ll see that it arises in perturbation

theory from the 1-loop approximation, while terms at higher order in ~ in the series (2.22)

arise from multi-loop diagrams.

Let’s understand how this works in an example. Consider the d = 0 QFT with a

single scalar field � and action S(�) = m2�2/2 + ��4/4!. We need to take � > 0 for the

partition function to converge, and we’ll also assume m2 > 0 so that the action has a

unique minimum at �0 = 0. Then the leading term in our asymptotic expansion is

(2⇡~)1/2 e�S(�0)/~
p
@2S|�0

=

p
2⇡~
m

, (2.25)

since S(�0) = 0 and @2S|�0 = m2. As claimed, this is just the partition function Z(m, 0)

of the free theory. Going further, since

Z(m2,�) =

Z

R
d� e

� 1
~

⇣
m

2

2 �2+ �

4!�
4
⌘

=

Z

R
d�

"
e�m2�2/2~

1X

n=0

1

n!

✓
��
4!~

◆n

�4n

#
, (2.26)

we obtain an asymptotic series for Z(m2,�) by truncating to the first N + 1 terms of this

expansion, whereupon

Z(m2,�) ⇠
Z

R
d�

"
e�m2�2/2~

NX

n=0

1

n!

✓
��
4!~

◆n

�4n

#

=

p
2~

m

NX

n=0

1

n!

✓
�~�
3! m4

◆n Z 1

0
dx e�x x2n+ 1

2�1

=

p
2~

m

NX

n=0

1

n!

✓
�~�
3! m4

◆n

�

✓
2n +

1

2

◆
.

(2.27)

In going to the second line we substituted x = m2�2/2~ and exchanged the order of the

finite summation and integration. Note that it would not be legitimate to exchange the

order of the integral and the infinite sum in (2.26), because the original integral does

not converge if ~ < 0. The final line recognizes the integral as a representation of the

gamma function. (Somewhat more laboriously, this integral can be computed by repeated
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integration by parts.) Using the value of �(z) at positive half-integers we have finally

Z(m2,�) ⇠
p

2⇡~
m

NX

n=0

(�)n ~n�n

m4n

1

(4!)n n!

(4n)!

4n(2n)!

= Z0


1 � ~�

8m4
+

35

384

~2�2

m8
+ · · ·

� (2.28)

as our asymptotic series for the partition function, where Z0 = Z(m2, 0) =
p

2⇡~/m.

Let me make a couple of remarks. Firstly, the fact that each term in the expansion

of Z(m2,�)/Z0 is proportional to (�~�/m4)2 is essentially fixed by dimensional analysis.

The coe�cient
1

(4!)n n!

(4n)!

4n(2n)!

can be understood as a product of the factor 1
(4!)nn! that comes straightforwardly from

expanding the �4 term in the exponential, and the remaining factor (4n!)/4n(2n)! is the

number of ways of joining 4n elements (the � insertions) into distinct pairs; indeed, we

saw in the discussion of Wick’s theorem that the integral
R

e��2/2 �4 d� had a combinatoric

interpretation in terms of pairings. Note that we can see the divergence of the perturbation

series directly from these coe�cients: From Stirling’s approximation n! ⇡ en ln n, we see

that
1

(4!)n n!

(4n)!

4n(2n)!
⇡ en ln n

for large n. Thus these coe�cients asymptotically grow faster than exponentially with n,

so the series (2.28) has zero radius of convergence. It’s interesting to ask whether it is

possible to recover the exact value of Z(m2,�) from its asymptotic series. Remarkably, a

technique known as Borel resummation allows one to achieve this, at least in certain

circumstances. You’re invited to explore it for this example in the problem sheets.

As a second remark, observe that Z(m2,�) itself should exist even if m2 < 0, pro-

vided ~ and � are strictly positive, because the exponential enhancement from the factor

e+|m2|�2/2~ at small � is eventually suppressed by the quartic term in the action. However,

the asymptotic series (2.28) is not valid in this case, as we can see from the fact that

the (Gaussian) integrals in the second line of (2.27) require m2 > 0 to converge. More

fundamentally, the problem is that when m2 < 0, the point � = 0 which we took to give

the dominant contribution to the integral is now a (local) maximum of the action, the

global minima being at �0 = ±
p

6m2/�. In physics terminology we are expanding around

the wrong vacuum. Particles with m2 < 0 are called tachyons, and they always signal

an instability. Whether or not this instability is just due to a poor choice of perturbative

expansion (as here), or whether the whole theory is unstable (meaning Z(m2,�) does not

exist for m2 < 0) is not always clear. The situation where the minimum of the action

involves a non–zero value for some field is often associated with spontaneous symmetry

breaking. You can learn more about this e.g. in the Part III course on the Standard

Model.
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2.3.1 Feynman diagrams

Above, we gave a combinatoric interpretation of the numerical coe�cients of the asymptotic

series

Z(m2,�)/Z0 ⇠
NX

n=0

(�)n ~n�n

m4n

1

(4!)n n!

(4n)!

4n(2n)!
(2.29)

in terms of ways of pairing up the � insertions in the integral. Let’s now reconsider this

from the point of view of Feynman diagrams. With the action S(�) = m2�2/2 + ��4/4!

the ingredients of our Feynman diagrams are
)

�1

�2

�3

�4

+1

+1

�1

�

h(�)

�1

T1 T2

T3

x y
z

~
m2

��

~

for the propagator and vertex. Note again that the propagator is just a constant since we

are in zero dimensions, while the minus sign in the vertex comes from the fact that we are

expanding e�S/~.

To compute perturbation series in this theory, Feynman tells us to start by constructing

all possible graphs (not necessarily connected) using this propagator and vertex. In the

case of the partition function, we want vacuum graphs, i.e., those with no external14 edges.

Let Dn be the set of all labelled vacuum graphs containing n vertices, and let there be |Dn|
elements in this set. By a labelled graph, I mean that individual vertices carry their own

unique ‘label’, so that we can tell them apart. Likewise, each of the four legs emanating

from a given vertex carries its own label.

Since each end of every edge in a vacuum graph is attached to a vertex, and the vertex

is 4-valent in this theory, every graph in Dn must contain precisely 2n edges. Thus, using

the propagator and vertex given above, every graph in Dn contributes a term proportional

to (�~�/m4)n, as indeed we saw in (2.29). For example, in this theory the set D1 consists

of the three graphs

)
�1

�2

�3

�4

corresponding to the three possible ways to join up the four � fields into pairs. Thus, the

term proportional to � receives contributions from these three individual graphs.

Joining up our labelled vertices in every possible way means that the set Dn may

contain several elements that are identical as unlabelled topological graphs, but di↵er just

in the labelling of their vertices or edges. For example, all three graphs displayed above

are equivalent as topological graphs. Identical topological graphs correspond to identical

14An internal edge of a graph is one in which both ends of the edge are attached to vertices, which may

be distinct vertices or the same. An external edge is an edge that is not internal, and so has at least one

end not attached to a vertex.

– 21 –



physical processes15, and the original integral knew nothing of our choice of labels, so in

working out the perturbation series we need to remove this overcounting. To do so, observe

that Dn is naturally acted on by the group Gn = (S4)n o Sn that permutes each of the

four fields present at a given vertex (n copies of the permutation group S4 on 4 elements)

and also permutes the labels of each of the n vertices (the permutation group Sn)16. This

group has order |Gn| = (4!)nn!, which is the same factor we saw before from expanding

e�S/~ in powers of �. Thus the asymptotic series (2.29) may be rewritten as

Z
Z0

⇠
NX

n=0

✓
��
m4

◆n |Dn|
|Gn| . (2.30)

In detail, the power (��)n is the contribution of the coupling constants in each graph,

the power of (1/m2)2n comes from the fact that any vacuum diagram with exactly n 4–

valent vertices must have precisely 2n edges, each of which contributes a factor of 1/m2.

The factor |Dn|/|Gn| is the number of diagrams that contribute at this order, counting as

equivalent those diagrams that merely permute the labels of the fields at a given vertex,

or the labelling of the vertices.

There’s another way to think of |Dn|/|Gn| that is sometimes convenient17. An orbit

� of Gn in Dn is a set of labeled graphs in Dn that are identical except for a relabelling

of their fields and vertices, so that we can move from one labelled graph to another in

the orbit using an element of Gn (i.e. by permuting these labels). Thus an orbit � is a

topologically distinct graph in Dn. Let On be the set of such orbits �; that is On is the

set of topologically distinct vacuum graphs on n vertices. The orbit stabilizer theorem

says that18

|Dn|
|Gn| =

X

�2On

1

|Aut �| , (2.31)

where Aut � is the stabilizer of any element in � in Gn, i.e., the elements of the per-

mutation group Gn that don’t alter the labelled graph. For example, if a graph in Dn

contains an edge both of whose edges are attached to the same vertex, then exchanging the

labelling of those fields doesn’t change the labelled graph. Similarly, if a pair of vertices

are connected by two (or more) propagators, then exchanging the labels of the two (or

more) legs on each vertex that are joined to these propagators does not change the labelled

15For this statement to hold true, we need to be careful to account for all the quantum numbers, and to

give precise meaning to ‘topological equivalence’. For example, we often draw Feynman graphs representing

matrix–valued fields as graphs whose edges are thickened into ribbons. Graphs that would be equivalent

as line graphs but that di↵er by twisting of the ribbons should be counted separately (they correspond to

di↵erent ways to tie up the matrix indices of the fields), and the relevant notion of topological equivalence

is called ambient isotopy.
16Exercise: why is the full group the semi-direct product of these two subgroups?
17In practice, at least for the simple graphs we’ll meet in this course, it’s often just as quick to think

through the possible ways a given topological graph � may be obtained by expanding out the vertices in

e�S/~ and joining pairs of fields by propagators, as to work out the symmetry factor |Aut�|. I’ll leave it to

your taste.
18If you don’t know this already, you can find a nicely explained proof on Gowers’s Weblog.
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graph. Finally then, we can rewrite our asymptotic series (2.29) as

Z
Z0

⇠
1X

n=0

"✓
�~�
m4

◆n X

�2On

1

|Aut �|

#

=
X

�

~|e(�)|�|v(�)|

|Aut �|
(��)|v(�)|

(m2)|e(�)| ,

(2.32)

in terms of a sum over Feynman graphs �, where |v(�)| and |e(�)| are respectively the

number of vertices and edges of the graph �. The factor |Aut �| is often known as the

symmetry factor of the graph.

We’ve rederived the Feynman rule that we should weight each topologically distinct

graph by |v(�)| powers of (minus) the coupling constant ��/~ and |e(�)| powers of the

propagator ~/m2, then divide by the symmetry factor |Aut �| of the graph. Thus, the

asymptotic expansion of the partition function is given by the Feynman diagrams

(N, g)

0 T

x(t)

��

y

1/(k2 + M2)

x

1/(k2 + m2)

; + ++ + + · · ·

= 1 ++ + + · · ·

=Z/Z0

~�

8m4
� ~2�2

48m8

~2�2

16m8

~2�2

128m8

where we include both connected and disconnected graphs, with the contribution of a

disconnected graph being the product of the contributions of the two connected graphs.

Notice that this requires that we assign a factor 1 to the trivial graph ; (no vertices or

edges), which is also included as the zeroth–order term in the sum.

More generally, our theory may involve a di↵erent types of field, each associated with a

propagator 1/Pa. These fields could interact via various di↵erent vertices v↵, either joining

di↵erent types of field or di↵erent powers of the same field. Let’s suppose that a vertex

of type ↵ (where ↵ labels the types and multiplicities of the fields at this vertex) has a

coupling constant �↵ in the action. Then a graph � containing |ea(�)| edges representing

propagators of the type a field and |v↵(�)| vertices of type ↵ is associated with a weight

factor

F (�) =
Y

a,↵

(��↵)|v↵(�)|

(Pa)|ea(�)| (2.33)

by the Feynman rules. Let |e(�)| =
P

a |ea(�)| and |v(�)| =
P

↵ |v↵(�)| be the total

number of edges and vertices in the graph, and let

b(�) = |e(�)| � |v(�)| (2.34)

be the di↵erence. Since each propagator contributes a factor of ~ and each vertex a factor

of 1/~, a graph with |e(�)| edges and |v(�)| vertices, � comes with a power ~|b(�)|. Thus

the partition function has the perturbative expansion

Z
Z0

⇠
X

�

1

|Aut �|~
b(�)F (�) (2.35)
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as ~ ! 0, where we sum this expression over both connected and disconnnected vacuum

graphs, including the trivial graph with no vertices. In particular, if our action includes

sources J , then the Feynman diagrams may involve a vertex which joins the fields to these

external sources. If J couples to a single power of the field, then the vertex is 1-valent and

is associated with a Feynman rule
= +

=

+

+

· · ·

· · ·
~

m2
e�

�4~2

2m6
e�

�

1

2
h�2i

�a �b ~ (M�1)ab==h�a�bi

J �J/~

whereas if J sources a composite operator involving pa powers of the field of type a, then

this vertex will be (
P

a pa)-valent, absorbing pa factors of �a. We include such vertices in

what we mean by a ‘vacuum’ graph, so edges that terminate on a (green) source are not

considered external.

2.4 E↵ective actions

In this section I want to introduce the very important notion of an e↵ective action, which

will help us to develop a better feel for the partition function. We’ll see that there are (at

least) two distinct definitions that are related to eachother by a Legendre transform, very

much analogous to the relation between the Helmholz (F ) and Gibbs (G) free energies in

statistical physics.

These e↵ective actions will turn out to be central to our understanding of QFT in

higher dimensions. The ‘Helmholz’ version plays a key role in Wilson’s approach to renor-

malization, first developed in condensed matter systems, whereas the ‘Gibbs’ version is

more closely related to the approach of Goldstone, Salam, Weinberg and Jona-Lasinio that

was developed in parallel with high energy physics in mind.19

2.4.1 Connected graphs and a loop expansion

We start with a pragmatic observation: In computing the asymptotic expansion of Z, we

needed to take both connected and disconnected graphs into account. For example, in

computing the partition function of the theory S(�) = m2�2/2 + ��4/4! above, both

(N, g)

0 T

x(t)

��

y

1/(k2 + M2)

x

1/(k2 + m2)

; + ++ + + · · ·

= 1 ++ + + · · ·

=Z/Z0

~�

8m4
� ~2�2

48m8

~2�2

16m8

~2�2

128m8

and

appeared (and higher powers of this and all other diagrams would occur further down the

perturbative expansion). This is a duplication of e↵ort – a disconnected graph is made

up of several connected graphs, each of whose contributions we’ve already included. We’ll

now show that

W = �~ ln Z , (2.36)

is given asymptotically by a sum of connected Feynman graphs, avoiding this extra e↵ort.

In QFT, W is known as the Wilsonian e↵ective action, and as I mentioned it’s closely

19I’d love you to already have profound physical insight and a strong mathematical grasp of the uses and

definitions of F vs G, but I’m a realist, so we’ll try to develop these as we go along.
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analogous to the Helmholz free energy in statistical physics. Knowing W is equivalent to

knowing Z, so of course W also depends on all the choices we made in setting up our QFT

and in particular may depend on the sources.

To understand how W involves only connected graphs, suppose {�j} is the set of all

possible connected vacuum graphs we can build using our propagators and vertices, where

the label j tells us the topology of the graph. We define the product �1�2 of any two

graphs �1, �2 to be their disjoint union, and similarly we interpret (�j)n as the disjoint

union of n copies of the same connected graph �j . Any disconnected graph � is specified

by a set of numbers {nj} (with each nj 2 N0) telling us how many copies of the connected

graph �j it contains.

Now, the symmetry factor of a disconnected graph consisting of n1 copies of �1, n2

copies of �2 etc. is

|Aut(�n1
1 �n2

2 · · · �nk

k )| =
kY

j=1

(nj !) |Aut(�j)|nj , (2.37)

because this is just a product of all the symmetry factors for the individual graph compo-

nents, times a factor of nj ! arising because we get an identical disconnected graph if we

exchange any of the nj copies of graph �j . Also,

F

0

@
Y

j

�
nj

j

1

A =
Y

j

F (�j)
nj and b

0

@
Y

j

�
nj

j

1

A =
X

j

njb(�j) , (2.38)

since the vertices and propagators contribute multiplicatively to an individual graph.

Putting these facts together, we can write the partition function as

Z
Z0

⇠
X

� 2 disconn

~b(�)

|Aut �|F (�) =
X

{nj}

~b
⇣Q

j
�
nj

j

⌘

���Aut
⇣Q

j �
nj

j

⌘���
F

0

@
Y

j

�
nj

j

1

A

=
X

{nj}

Y

j

1

nj !

~njb(�j)

|Aut(�j)|nj

F (�j)
nj =

Y

j

0

@
1X

nj=0

1

nj !

 
~b(�j)

|Aut(�j)|
F (�j)

!nj

1

A

=
Y

j

exp

 
~b(�j)

|Aut(�j)|
F (�j)

!
= exp

 
X

� 2 conn

~b(�)

|Aut(�)|F (�)

!
.

(2.39)

Comparing with the definition (2.36) we have shown that the Wilsonian e↵ective action is

given by

W ⇠ W0 � ~
X

� 2 conn

~b(�)

|Aut(�)|F (�) , (2.40)

where W0 = �~ ln Z0. As promised, the e↵ective action has an asymptotic expansion in

terms of connected graphs built from the same propagators and vertices as the partition

function itself.
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Euler’s theorem tells us that, for a connected graph,

b(�) = |e(�)| � |v(�)| = `(�) � 1 (2.41)

where `(�) is the number of loops20 in the graph. Comparing to (2.40) shows that an

`-loop connected Feynman graph contributes a term of order ~` to the expansion of the

Wilsonian e↵ective action. For this reason, the asymptotic expansion of the partition

function is often known as the loop expansion of the QFT. We can say more by doing a

little more elementary graph theory: If a vertex v↵(�) involves n↵a fields of type a, then

for vacuum graphs

2|ea(�)| =
X

↵

n↵a|v↵(�)| , (2.42)

because each end of every edge must be attached to some vertex. Let’s also suppose that

these vertices all represent genuine interactions, so
P

a n↵a > 2 as at least three fields

(possibly of di↵erent types) meet at each vertex. Then

`(�) = 1 +
X

a

|ea(�)| �
X

↵

|v↵(�)| = 1 +
X

↵

 
�1 +

X

a

n↵a

2

!
|v↵(�)| > 1 . (2.43)

In other words, if all our vertices are at least 3-valent, then every non–trivial vacuum graph

contains at least 2 loops.

Using the definition (2.24) of Z0, this shows that

W ⇠ S(�0) +
~
2

ln det(@a@bS|�0) �
X

� 2 conn

~`(�)

|Aut(�)|F (�) , (2.44)

where `(�) � 2 in each term in the final sum. We see that the leading term in W, of order ~0,

is just the original classical action evaluated at its minimum �0. In (2.24) we saw that the

term of order ~ came from expanding the action to quadratic order around the minimum,

and integrating over the fluctuations. We’ll see shortly that this can indeed be interpreted

as a (sum of) 1-loop diagrams; as a quick plausibility check note that @a@bS|�0��a ��b

can be interpreted as action consisting of purely 2-valent vertices of the form @a@bS|�0 , and

that (2.43) says that if all n↵a = 2, we can only construct 1-loop graphs. As we said before,

the higher order terms in the asymptotic series correspond to multi-loop diagrams21.

I stress that the counting given above is valid for vacuum graphs in which all the

vertices are at least trivalent; Feynman diagrams associated to scattering amplitudes or

correlation functions, or those involving external sources corresponding to a 1-valent vertex,

may come with di↵erent powers of ~ depending on the number of external states, number

of field insertions in the correlator, or number of vertices involving the external source.
20A ‘loop’ is an independent 1-cycle in the sense of homology of the graph.
21I’m sorry to break the bad news, but in studying tree diagrams throughout last term’s course, you

weren’t really doing any quantum field theory at all. Rather, the tree diagrams you drew were just a

perturbative way to evaluate the classical action on a solution to the equations of motion. (Feynman tree

diagrams are very closely related to Picard iteration, a standard perturbative technique to solve non-

linear di↵erential equations.) Unlike our example above, you found S(�0) 6= 0 because you were working

on a non-compact space R3,1 and demanded the fields were non–trivial in the distant past and future: i.e.,

you computed a scattering amplitude. Nonetheless, the tree amplitude you obtained was purely classical —

indeed, QFT should agree with classical field theory as ~ ! 0.
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2.4.2 Integrating out fields

Having seen that it’s computed using just connected graphs, let’s now try to get a feel for

the physical meaning of W. To begin, suppose we have two real–valued fields � and �, so

that the space of fields is R2, and let the action be

S(�,�) =
m2

2
�2 +

M2

2
�2 +

�

4
�2�2 (2.45)

so that � provides a coupling between the two fields. The Feynman rules are

= + + + +h�2i

1

m2 � �

2m4M2 +
�2

4m6M4
+

�2

2m6M4
+

�2

4m6M4
=

+ ++=

= + +

ln


Z
Z0

�

� ~�

4m2M2

~2�2

16m4M4

~2�2

16m4M4

~2�2

8m4M4
+

� �

~/m2 ~/M2 ��/~

and we may use these to compute perturbative expressions for correlation functions such

as

hfi =
1

Z

Z

R2
d� d� e�S(�,�)/~ f(�,�)

in the usual way. For example, we have

+ ++

= + +� ~�

4m2M2

~2�2

16m4M4

~2�2

16m4M4

~2�2

8m4M4
+

�~�1W ⇠

� �

~/m2 ~/M2 ��/~

= + + + +h�2i

=
~

m2

�~2

2m4M2

�2~3

4m6M4

�2~3

2m6M4

�2~3

4m6M4
+ + +�

as the sum of connected vacuum diagrams, and also

+ ++=

= + +

ln


Z
Z0

�

� ~�

4m2M2

~2�2

16m4M4

~2�2

16m4M4

~2�2

8m4M4
+

� �

~/m2 ~/M2 ��/~

= + + + +h�2i

=
~

m2

�~2

2m4M2

�2~3

4m6M4

�2~3

2m6M4

�2~3

4m6M4
+ + +�

where the insertion of each power of � is represented by a blue dot.

I want to arrive at this result in a di↵erent way. Suppose we first perform the integral

over � whilst holding � fixed. In higher dimensions this step might be appropriate if,

for example, M � m so that our experiment isn’t powerful enough to observe real �

production so can only measure � directly. If we have no idea what � is doing, we perform

its path integral first, i.e., we average over the behaviour of � at each fixed �. From this

point of view, whilst performing the � integral, the coupling �2�2 acts as a background

source J = �2 for the composite operator �2. The � path integral then yields a W(�) that

depends on this source:

e�W(�)/~ =

Z

R
d� e�S(�,�)/~ . (2.46)

Once we’ve found this W(�), we can use it in the remaining � integral to compute hfi
for any observable f that depends only on � – i.e. the only quantities our low–energy
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experiment is able to probe. Of course there’s nothing mysterious here, we’re simply

choosing in which order to do our integrals, writing

hf(�)i =
1

Z

Z
d� d� e�S(�,�)/~ f(�) =

1

Z

Z
d� e�W(�)/~f(�) . (2.47)

Note that indeed W(�) plays the role of an e↵ective action for the � field – one in which

all the quantum e↵ects of � are taken into account.

In general, computing W(�) has to be done perturbatively in terms of a sum of con-

nected Feynman diagrams in the presence of the source J = �2. However, in our toy

example it’s straightforward to find W(�) exactly:

Z

R
d� e�S(�,�)/~ = e�m2�2/2~

s
2⇡~

M2 + ��2/2
(2.48)

and therefore

W(�) =
1

2
m2�2 +

~
2

ln


1 +

�

2M2
�2

�
+

~
2

ln
M2

2⇡~ . (2.49)

This is exactly what we expect from above. At constant �, the original action has a

unique minimum at �0 = 0, where S(�,�0) = m2�2/2, the leading term in W(�). The

logarithms comes from the � integral, which is our example is purely Gaussian. The final

term in (2.49) is independent of the field �; such field–independent terms are irrelevant in

QFT, for example, they will cancel when we compute any correlation function normalized

by the partition function of the free (� = 0) theory. We will drop this term henceforth,

but note that the fact the constant term in the action changes as we integrate out fields is

actually the origin of the notorious cosmological constant problem.

Expanding the remaining logarithm, we write W(�) as an infinite series

W(�) =

✓
m2

2
+

~�
4M2

◆
�2 � ~�2

16M4
�4 +

~�3

48M6
�6 + · · ·

=
m2

e↵

2
�2 +

�4

4!
�4 +

�6

6!
�6 + · · · .

(2.50)

Thus the e↵ect of integrating out the ‘high energy’ field � is to change the structure of the

action seen by �. In particular, the mass term of the � field has been shifted

m2 ! m2
e↵ = m2 +

~�
2M2

. (2.51)

Even more strikingly, we’ve generated an infinite series of new coupling terms

�4 = �3~
2

�2

M4
, �6 = 15~ �3

M6
, �2k = (�1)k+1~ (2k)!

2k+1k

�k

M2k
(2.52)

describing self–interactions of �. It’s important to observe that the � mass shift and new

� self–interactions all vanish as ~ ! 0; they are quantum e↵ects. Notice also that they’re

each suppressed by powers of the (high) mass M .
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Following our general story above, it’s useful to think in a little more detail about how

these new couplings arise. We can perform the � path integral using Feynman graphs,

using the ingredients

~
M2 ���2

2~

+ + + +

+

=

=

· · ·

· · ·�1

2

��2

2M2
�1

4

�2�4

4M4
� 1

3!

�3�6

8M6�S(�)

~

�W(�)

~

which involve the same � propagator as before, but now account for the fact that we are

treating the interaction as a source, which takes the value ���2/2 from the point of view of

the � integral. These ingredients lead to the following perturbative construction of W(�)22:

~
M2 ���2

2~

+ + + + · · ·W(�) ⇠ �~
 

+= · · ·S(�) +
1

2

~�

2M2
�2 1

4

~�2

4M4
�4 1

3!

~�3

8M6
�6+�

where in the first term S(�) = S(�, 0) is the part of the original action that came straight

out of the � integral. Again since �~�1W(�) is the logarithm of the � integral, only

connected diagrams appear.

Just as we expected, the diagrammatic expansion reveals that the new interactions in

W are generated by the � field running around a loop, interacting with the ‘source’ as it

goes. In our e↵ective description that knows only about the behaviour of the � field, we can

no longer ‘see’ the � field ‘circulating’ around the loop. Instead, we perceive this just as a

new interaction vertex for �. As promised, the fact that � appears only quadratically in the

original action (2.45) means that in this example we can only construct 1-loop diagrams

from our propagator and 2-valent vertex. All these 1-loop diagrams sum up to give the

logarithm we obtained by direct integration. Starting from a more generic initial action

with higher valent vertices, we’d obtain contributions from higher loop graphs, each coming

with a factor of ~`(�).

Using this e↵ective action, we find

�a �b ~ (M�1)ab==h�a�bi

J �J/~

+

=

+

+

⇠ · · ·

· · ·
~

m2
e�

�4~2

2m6
e�

�

h�2i =
1

Z

Z
d� e�W(�)/~ �2

where the propagator and vertices here are the ones appropriate for the e↵ective action

W(�). Using the definition (2.51)-(2.52) of the new couplings in terms of the original � and

22In evaluating these Feynman diagrams, I’ve kept the symmetry factors separate from the vertices and

propagators – check you understand them.
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M , this unsurprisingly agrees with our answer before, correct to order �2. However, once

we had the e↵ective action, we arrived at this answer using just two diagrams, whereas

previously it required five. If we only care about a single correlation function then the

work involved in first computing W(�) and then using the new set of Feynman rules to

compute the low–energy correlator is roughly the same as just using the original action

to compute this correlator directly. On the other hand, if we wish to compute many

low–energy correlators then we’re clearly better o↵ investing a little time to work out the

e↵ective action first.

However, the real point I wish to make is this: the way we experience the world is

always through an e↵ective action. Naively at least, we have no idea what new physics may

be lurking just out of reach of our most powerful accelerators; there may be any number

of new, hitherto undiscovered species of particle, or new dimensions of space–time, or even

wilder new phenomena. However, when describing low–energy physics, we should only seek

to describe the behaviour of the degrees of freedom (fields) that are relevant and accessible

at the energy scale at which we’re conducting our experiments, even if we happen to know

what the more fundamental description is. For example, a glass of water certainly consists

of very many H2O molecules, these molecules are bound states of atoms, each of which

consist of many electrons orbiting around a central nucleus. In turn, this nucleus comprises

of protons and neutrons stuck together by a strong force mediated by pions, and all these

hadrons are themselves seething masses of quarks and gluons. But it would be very foolish

to imagine we should describe the properties of water that are relevant in everyday life by

starting from the Lagrangian for QCD.

Let me make one final comment. In the example above, we started from a very simple

action in equation (2.45) and obtained a more complicated e↵ective action (2.50) after

integrating out the unobserved degree of freedom �. A more generic case would start from

a general action (invariant under � ! �� and � ! �� for simplicity)

S0(�,�) =
X

i,j

�i,j

(2i)! (2j)!
�2i�2j (2.53)

in which all possible even monomials in � and � are allowed. For example, we may have

arrived at this action by integrating out some other field that was unknown in our above

considerations. In this generic case, the e↵ect of integrating out � will not generate new

interactions for � — all possible even self–interactions are included anyway — but rather

the values of the coupling constants �i,0 will get shifted, just as for the mass shift we saw

above. In addition, because the � path integral would now be very complicated, we can

only reasonably expect to describe the shifted couplings as an asymptotic series in ~, rather

than the single power of ~ we obtained above. Nonetheless, the main lesson to remember

is that integrating out degrees of freedom changes the values of the coupling constants in

the e↵ective action for the remaining fields.

2.4.3 The 1PI e↵ective action

Wilson’s e↵ective action is motivated by the idea of averaging over quantum fluctuations of

high energy fields that are beyond the reach of our experimental observations, and provides
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us with a new action for the remaining, low energy degrees of freedom. The quantum e↵ects

of the remaining fields still need to be computed. We’d now like to construct a new type

of e↵ective action that takes account of the quantum fluctuations of the whole system.

You might think that this should just be W(J) itself: we couple our fields to sources,

integrate out all the quantum fields to obtain W(J) and then di↵erentiate wrt J to obtain

correlation functions. This point of view is indeed useful if our quantum system is immersed

in some background (the choice of sources) that we are able to vary. However, for an isolated

quantum system (such as the whole Universe, or a scattering experiment performed in

CERN) there is no obvious background.

We include a source term J� in the original action and let

� =
@W
@J

= � ~
Z(J)

@

@J

Z
d� e�(S+J�)/~

�

=
1

Z(J)

Z
d� e�(S+J�)/~ � = h�iJ ,

(2.54)

so that � is the average value of the field �, including all quantum e↵ects. I emphasise

that this average is computed in the presence of a source J for � itself – i.e., we do not set

J = 0 after taking the derivative. Clearly, this means that � depends on what we choose

for J and, conversely, if we specify a value of � we want to obtain then the source is fixed

(at least if the relation �(J) is invertible).

We define the quantum e↵ective action �(�) as the Legendre transformation

�(�) = W(J) � �J (2.55)

of the Wilsonian e↵ective action. Note that

@�

@�
=
@W
@�

� J � �
@J

@�
=
@W
@J

@J

@�
� J � �

@J

@�
= �J . (2.56)

The relations

� =
@W
@J

and J = � @�

@�
(2.57)

allow us to transform between W(J) and �(�): If we are given W(J) as a function of

J , we define � by @W/@J as above and inverting23 this gives us J(�). Then �(�) =

W(J(�)) � � J(�) is a function of �. On the other hand, if we are presented with a

function �(�), we define J to be �@�/@�. Inverting gives �(J) and hence we reconstruct

W(J) = �(�(J)) + �(J) J as a function of J .

To understand the role of �(�), first note that

@�

@�

����
J=0

= 0 (2.58)

so that the possible quantum averaged values for � in the absence of a source are just the

extrema of �(�). This is one sense in which �(�) is an e↵ective action – the extrema of

23The Legendre transform requires that the functions W(J) and �(�) are convex, which ensures the

derivatives are monotonically non-decreasing, so that these relations are invertible. This is known to be the

case in statistical mechanics, but is much less clear in the infinite dimensional context of QFT.
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�(�) correspond to equations of motion (which, in our current d = 0 context will just be

algebraic) with all the quantum corrections taken into account.

Let’s go even further and consider a quantum theory defined via a (path) integral over

� where we let �(�) play the role of the classical action. We define a quantity W�(J, g) by

e�W�(J)/g =

Z
d� e�(�(�)+J�)/g , (2.59)

where the parameter g plays the role of ~ – I wish to keep g separate from the original

parameter ~ that is still present in the vertices of �(�). It follows from our previous results

that W�(J) can be computed in terms of a series of connected Feynman graphs, now built

using the propagators and vertices that follow from �(�), rather than the original classical

action S(�). As before, an `-loop diagram will contribute a term to W� that is proportional

to g`, so we can expand

W�(J) =
1X

`=0

g` W(`)
� (J) (2.60)

where W(`)
� (J) is the sum of all `-loop connected Feynman graphs present in (2.59). In

particular, the tree graphs we can construct using the propagators and vertices of the

quantum e↵ective action all appear in W(0)
� (J). To extract these tree graphs, we take

the limit g ! 0. In this limit, by the method of steepest descent we know that the

integral (2.59) will be dominated by the minimum of the argument of the exponential, i.e.

the value of � for which
@�

@�
= �J (2.61a)

and that, to leading order,

W�(J) = W(0)
� (J) = �(�) + J� (2.61b)

evaluated at this extremum. These are exactly the same equations as (2.55) & (2.57), so

we see that the tree level term W(0)
� (J) is nothing other than W(J). In other words, the

sum of connected diagrams W(J) built from the classical action S(�) + J� can also be

obtained as a sum of tree diagrams using the e↵ective action �(�) + J�.

To understand how this can be possible, note that any connected graph can be viewed

as a tree whose ‘vertices’ are all possible one particle irreducible graphs. (An edge e

Figure 2: Any connected graph can be viewed as a tree whose vertices are 1PI graphs.
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in a connected graph � is a bridge if �\e is disconnected. A connected graph is said to

be one particle irreducible, or 1PI, if it does not contain any bridges.) This is simple to

see: start from any connected graph and remove all bridges. The result is a product of

1PI graphs, which may be taken as vertices of a tree – see figure ?? for an example. This

tells us how to compute �(�) perturbatively from the original action: �(�) consists of all

possible 1PI Feynman graphs that may be constructed using the propagators and vertices

in S(�). These graphs may have arbitrarily many external lines, with each external line

associated with a factor of �. The number of external lines in a given 1PI graph thus tells

us the valency of a vertex in �(�).

As a check on this formalism, suppose we have several fields �a, each with sources Ja

and let e�W(Ja)/~ =
R

dn� e�(S(�a)+Ja�a)/~. Then

�~ @2W
@Ja @Jb

= �~ @

@Ja


1

Z(J)

Z
dn� e�(S(�c)+Jc�c)/~ �b

�

=
1

Z(J)

Z
dn� e�(S(�)+J�)/~ �a�b

� 1

Z(J)2

Z
dn� e�(S(�c)+Jc�c)/~ �a

� Z
dn� e�(S(�c)+Jc�c)/~ �b

�
,

(2.62)

where the terms in the final line come from letting the second derivative operator act on

1/Z(J). In keeping with the fact that W(J) involves only connected graphs, we see that

expression is the connected two–point function of the fields

h�a�biconn
J = h�a�biJ � h�aiJ h�biJ , (2.63)

since any contribution to h�a�biJ coming from a Feynman graph that does not somehow join

together the two � insertions will cancel against identical Feynman graphs in h�aiJh�biJ :

�a

�b

�a

�b

+h�a�bi = = h�a�biconn + h�ai h�bi

We can thus view h�a�biconn
J=0 as an expression for the exact propagator in the interacting

theory, including not just the inverse of the kinetic term in S(�), but also corrections due

to interactions.

Using the connecting relations (2.57) we can also express this as

h�a�biconn
J = �~ @2W

@Ja @Jb
= �~@�b

@Ja
= �~

✓
@Ja

@�b

◆�1

= ~
✓

@2�

@�b @�a

◆�1

. (2.64)

This shows that the exact propagator in our interacting theory is indeed given by ~ times

the inverse of the quadratic term in the quantum e↵ective action. Di↵erentiating further

allows us to see that the connected n–point functions h�a�b · · ·�diconn
J of the fields are

exactly the tree graphs we obtain by connecting the 1PI vertices in �(�) with these exact

propagators. (We’re usually interested in the case that there is no background source, so

we set Ja = 0 at the end of the day.)
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2.5 Fermions and Grassmann variables

Realistic theories contain fermions. In higher dimensions, the spin–statistics theorem says

that for a unitary theory, fermions must have half–integral spin. However, in d = 0 there

is no notion of spin, much less a spin–statistics theorem, and fermionic ‘fields’ are simply

Grassmann numbers. These are a set of n elements {✓a} obeying the algebra

✓a✓b = �✓b✓a and ✓a�b = �b✓a for all �b 2 C . (2.65)

Thus, Grassmann variables anticommute with eachother and commute with any bosonic

variable. In particular, this implies ✓a✓a = �✓a✓a = 0 for each a (no sum). This property

means that any function of a finite number of Grassmann variables has a finite expansion

F (✓) = f + ⇢a ✓
a +

1

2!
ga1a2 ✓

a1✓a2 + · · · +
1

n!
ha1a2···an

✓a1✓a2 · · · ✓an , (2.66)

where we can take the coe�cients to be totally antisymmetric, e.g. ga1a2 = �ga2a1 .

We can also define di↵erentiation and integration for Grassmann variables. For di↵er-

entiation we have
@

@✓a
✓b + ✓b @

@✓a
= �b

a (2.67)

so that the derivative operator itself anticommutes with the variables. Since any function

of a single Grassmann variable ✓ is of the form f + ⇢ ✓, we only have to define
R

d✓ andR
d✓ ✓. We ask that our definition be translationally invariant, so that

Z
d✓ (✓ + ⌘) =

Z
d✓ ✓ (2.68)

and this implies Z
d✓ 1 = 0 . (2.69a)

We then choose to normalise our integration measure such that
Z

d✓ ✓ = 1 . (2.69b)

These rules are often known as Berezin integration. Note that these definitions imply
Z

d✓
@

@✓
F (✓) = 0 (2.70)

since the derivative removes the single power of ✓ that can appear in F (✓). This allows us

to integrate by parts, provided due care is taken of signs.

If we have n Grassmann variables ✓a, repeated application of the above rules shows

that the only non–vanishing integral is one whose integrand involves exactly one power of

every ✓a. Specifically, we have
Z

dn✓ ✓1✓2 · · · ✓n�1✓n =

Z
d✓n d✓n�1 · · · d✓1 ✓1✓2 · · · ✓n = 1 (2.71)
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and, in general Z
dn✓ ✓a1✓a2 · · · ✓an = ✏a1a2···an (2.72)

with the sign coming from ordering the ✓s. Suppose we write ✓0a = Na
b✓

b for some N 2
GL(n; C). Then, by linearity

Z
dn✓ ✓0a1✓0a2 · · · ✓0an = Na1

b1
Na2

b2
· · · Nan

bn

Z
dn✓ ✓b1✓b2 · · · ✓bn

= Na1
b1

Na2
b2

· · · Nan

bn
✏b1b2···bn

= det(N) ✏a1a2···an = det N

Z
dn✓0 ✓0a1✓0a2 · · · ✓0an .

(2.73)

Thus we see that for Berezin integration

✓0a = Na
b✓

b ) dn✓ = det(N) dn✓0 (2.74)

where the Jacobian of the change of variables appears upside down (and without a modulus

sign) compared to the standard, bosonic rule dn� = dn�0/| det N | if �0a = Na
b�

b.

2.5.1 Fermionic free field theory

Let’s suppose our d = 0 QFT involves two fermionic fields, {✓1, ✓2}. The action is a bosonic

quantity, so each term has to involve and even number of fermions. Consequently, the only

non–constant action we can write down is

S(✓) =
1

2
A✓1✓2 , (2.75)

because since (✓1)2 = 0 = (✓2)2 there is no way to introduce a non–trivial interaction. The

partition function is then

Z0 =

Z
d2✓ e�S(✓)/~ =

Z
d2✓

✓
1 � A

2~✓
1✓2

◆
= � A

2~ (2.76)

using the fact that the expansion of e�S(✓)/~ truncates at the first non–trivial term, and

the rule (2.71) of Berezin integration. More generally, if we have 2m fermionic fields ✓a

described by the quadratic action

S(✓) =
1

2
Aab✓

a✓b (2.77)

where A is an antisymmetric matrix, the partition function is given by the Berezin integral

Z0 =

Z
d2m✓ e�A(✓,✓)/2~ =

Z
d2m✓

mX

n=0

(�)n

(2~)nn!
(Aab✓

a✓b)n

=
(�)m

(2~)mm!

Z
d2m✓ Aa1a2Aa3b4 · · · Aa2m�1a2m ✓

a1✓a2 · · · ✓a2m�1✓a2m

=
(�)m

(2~)mm!
✏a1a2···a2m�1a2mAa1a2 · · · Aa2m�1a2m ,

(2.78)
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where we note that only the mth term of the expansion can contribute. The Pfa�an of a

2m ⇥ 2m antisymmetric matrix A is given by24

Pfa↵(A) =
1

2mm!
✏a1a2···a2m�1a2mAa1a2 · · · Aa2m�1a2m (2.79)

and in the first problem set, I ask you to use Grassmann variables to show that (Pfa↵ A)2 =

det A.

In summary, the partition function of n = 2m free fermions can be written as

Z0 = ±
r

det(A)

~n
, (2.80)

whereas for n free bosons we had Z0 =
p

(2⇡~)n/ det(M) with M a symmetric matrix.

Except for a numerical factor (which we could in any case include in the normalization of

the measure), the fermionic result is just the inverse of the bosonic one. We’ll see various

important consequences of this fact later.

We may also consider the partition function in the presence of sources. Since we want

the action to be bosonic, the source itself must now be fermionic and we denote it by ⌘.

Let

S(✓, ⌘) =
1

2
Aab✓

a✓b + ⌘a✓
b . (2.81)

Completing the square as before gives25

S(✓, ⌘) =
1

2

�
✓a + ⌘c(A

�1)ca
�
Aab

⇣
✓b + ⌘d(A

�1)db
⌘

+
1

2
⌘a(A

�1)ab⌘b , (2.82)

so using the translational invariance of the measure dn✓, the partition function in the

presence of sources is

Z0(⌘) = exp

✓
� 1

2~A�1(⌘, ⌘)

◆
Z0(0) . (2.83)

As before this allows us to compute correlation functions of the fermion fields. As an

example, the two–point function

h✓a✓bi =
~2

Z0(0)

@2Z0(⌘)

@⌘a@⌘b

����
⌘=0

= ~ (A�1)ab . (2.84)

which is just the inverse of the kinetic term for the ✓s and plays the role of the ‘propagator’

in this d = 0 theory. Notice that this propagator is the same (not the inverse) of the

propagator we’d obtain in the bosonic theory, except that for fermions the matrix A (and

hence A�1) must be antisymmetric, whereas for bosons M�1 was symmetric.

The fact that functions of a finite number of Grassmann variables can always be

represented as polynomials means that in d = 0, we never need use perturbation theory

24For example, Pfa↵

 
0 a

�a 0

!
= a .

25It’s a good exercise to go through this and check you’re comformtable with all the signs, both here and

in the calculation of the two–point function below.
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to evaluate fermionic path integrals: It’s always possible to perform finitely many Berezin

integrations exactly. Nonetheless, for a nonlinear theory such as

S(✓) =
1

2
Aab✓

a✓b +
1

4!
�abcd ✓

a✓b✓c✓d (2.85)

we can, if we choose, construct Feynman diagrams with propagator ~A�1 and vertex

��abcd/~. We then construct Feynman diagrams with these ingredients in just the same

way as for the bosonic theory. In higher dimensional QFT, fermions will be described by

Grassmann valued fields, so we’ll have infinitely many Grassmann variables over which

to integrate (we’ll understand this better later). With infinitely many Grassmann vari-

ables, the situation for fermions is really no di↵erent from bosons, in the sense that in

both cases it is usually necessary to work perturbatively and compute an asymptotic series

approximation to the full path integral.

2.5.2 Supersymmetry and localization

For a generic QFT, the asymptotic series is as good a representation of the partition

function (or correlation functions) as we can hope for, barring numerics. However, if the

action is of a very special type, it may sometimes possible to evaluate the partition function

and even certain correlation functions exactly. There are many mechanisms by which this

might happen; this section gives a toy model of one of them, known as localization in

supersymmetric theories.

Let’s take a theory where that in addition to our bosonic field �, we have two fermionic

fields  1 and  2. With a zero–dimensional space–time, the space of fields is just R1|2. Given

an action S(�, i) the partition function is, as usual,

Z =

Z
d� d 1 d 2p

2⇡
e�S(�, i) (2.86)

where I’ve thrown a factor of 1/
p

2⇡ into the measure for later convenience. Generically,

we’d have to be content with a perturbative evaluation of Z, using Feynman diagrams

formed from edges for the � and  i fields, together with vertices from all the di↵erent

vertices that appear in our action. For a complicated action, even low orders of the per-

turbative expansion might be di�cult to compute in general.

However, let’s suppose the action takes the special form

S(�, 1, 2) =
1

2
(@h)2 �  1 2 @

2h (2.87)

where h(�) is some (R-valued) polynomial in � and @h is its derivative wrt �. Note that

there can’t be any terms in S involving only one of the fermion fields since this term would

itself be fermionic. There also can’t be higher order terms in the fermion fields since  2
i = 0

for a Grassmann variable, so the only thing special about this action is the relation between

the purely bosonic piece and the second term involving  1 2.

Now consider the transformations

�� = ✏1 1 + ✏2 2 , � 1 = ✏2@h , � 2 = �✏1@h (2.88)
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where ✏i are fermionic parameters. These are supersymmetry transformations in this zero–

dimensional context; take the Part III Supersymmetry course to meet supersymmetry in

higher dimensions. The most important property of these transformations is that they are

nilpotent26. Under (2.88) the action (2.87) transforms as

�S = @h @2h(✏1 1 + ✏2 2) � (✏2@h) 2 @
2h �  1(�✏1@h)@2h = 0 (2.89)

and is thus invariant — this is what the special relation between the bosonic and fermionic

terms in S buys us. (To obtain this result we used the fact that Grassmann variables

anticommute.) It’s also true that the integral measure d� d2 is likewise invariant; I’ll

leave this too as an exercise.

Supersymmetric QFTs are drastically simpler than generic ones, especially in zero

dimensions. Let �O be the supersymmetry variation of some operator O(�, i) and consider

the correlation function h�Oi. Since �S = 0 we have

h�Oi =
1

Z0

Z
d� d2 e�S �O =

1

Z0

Z
d� d2 �

�
e�SO

�
. (2.90)

The supersymmetry variation here acts on both � and the fermions  i in e�SO. But if it

acts on a fermion  i then the resulting term does not contain that  i and hence cannot

contribute to the integral because
R

d 1 = 0 for Grassmann variables. On the other hand,

if it acts on � then while the resulting term may survive the Grassmann integral, it is a

total derivative in the � field space. Thus, provided O does not disturb the decay of e�S

as |�| ! 1, any such correlation function must vanish, h�Oi = 0.

In particular, if we choose Og = @g  1 for some g(�), then setting the parameters

✏1 = �✏2 = ✏ we have

0 = h�Ogi = ✏h@g @h � @2g  1 2i . (2.91)

The significance of this is that the quantity @g @h � @2g  1 2 is the first–order change in

the action under the deformation h ! h+g, again so long as g does not alter the behaviour

of h as |�| ! 1. The fact that h�Ogi = 0 tells that the partition function Z[h], which

we might think depends on all the couplings in the vertices in the polynomial h, is in

fact largely insensitive to the detailed form of h because we can deform it by any other

polynomial of the same degree or lower. The most important case is if we choose g to be

proportional to h, then our deformation just rescales h ! (1 + �)h and so we see that

Z[h] is independent of the overall scale of h. By iterating this procedure, we can imagine

rescaling h by a large factor so that the bosonic part of the action (@h)2/2 ! ⇤2(@h)2/2.

As ⇤ ! 1, the factor e�S exponentially suppresses any contribution to Z except from an

infinitesimal neighbourhood of the critical points of h where @h = 0. This phenomenon is

known as localization of the path integral.

It’s now straightforward to work out the partition function. Near any such critical

point �⇤ we have

h(�) = h(�⇤) +
c⇤
2

(�� �⇤)
2 + · · · (2.92)

26That is, �21 = 0, �22 = 0 and [�1, �2] = 0, where �1 is the transformation with parameter ✏2 = 0, etc..

You should check this from (2.88) as an exercise!
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Figure 3: The supersymmetric path integral receives contributions just from infinitesimal

neighbourhoods of the critical points of h(�). These alternately contribute ±1 according to

whether they are minima or maxima.

where c⇤ = @2h(�⇤), so the action (2.87) becomes

S(�, i) =
c2
⇤
2

(�� �⇤)
2 + c⇤ 1 2 + · · · . (2.93)

The higher order terms will be negligible as we focus on an infinitesimal neighbourhood

of �⇤. Expanding the exponential in Grassmann variables the contribution of this critical

point to the partition function is

1p
2⇡

Z
d� d2 e�c2⇤(���⇤)2/2 [1 � c⇤ 1 2] =

c⇤p
2⇡

Z
d� e�c2⇤(���⇤)2/2

=
c⇤p
c2
⇤

= sgn
�
@2h|⇤

�
.

(2.94)

Summing over all the critical points, the full partition function thus becomes

Z[h] =
X

�⇤ : @h|�⇤= 0

sgn
�
@2h|�⇤

�
(2.95)

and, as expected, is largely independent of the detailed form of h. In fact, if h is a

polynomial of odd degree, then @h = 0 must have an even number of roots with @2h being

alternately > 0 and < 0 at each. Thus their contributions to (2.95) cancel pairwise and

Z[hodd] = 0 identically. On the other hand, if h has even degree then it has an odd number

of critical points and we obtain Z[hev] = ±1, with the sign depending on whether h ! ±1
as |�| ! 1. (See figure 3.)

The fact that the partition function is so simple in this class of theories is a really

remarkable result! To reiterate, we’ve found that for any form of polynomial h(�), the

partition function Z[h] is always either 0 or ±1. If we imagined trying to compute Z[h]

perturbatively, then for a non–quadratic h we’d still have to sum infinitely diagrams us-

ing the vertices in the action. In particular, we could certainly draw Feynman graphs �

with arbitrarily high numbers of loops involving both � and  i fields, and these graphs
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would each contribute to the coe�cient of some power of the coupling constants in the

perturbative expansion. However, by an apparent miracle, we’d find that these graphs al-

ways cancel themselves out; the net coe�cient of each such loop graph would be zero with

the contributions from graphs where either � or  1 2 run around the loop contributing

with opposite sign. The reason for this apparent perturbative miracle is the localization

property of the supersymmetric integral.

In supersymmetric theories in higher dimensions, complications such as spin mean the

cancellation can be less powerful, but it is nonetheless still present and is responsible for

making supersymmetric quantum theories ‘tamer’ than non–supersymmetric ones. As an

important example, diagrams where the Higgs particle of the Standard Model runs around

a loop can have the e↵ect of destabilizing the mass of the Higgs, sending it up to a very

high scale. (We’ll understand this later on.) Until very recently, many physicists believed

in the existence of a hypothesized supersymmetric partner to the Higgs that would cancel

these dangerous loop diagrams, protecting the mass of the Higgs and thereby providing a

rationale why the natural energy scale of the weak interactions is so much lower than the

Planck scale. The ultimate mechanism for this cancellation would be just what we’ve seen

above, though it’s power is filtered through the layers of a much more complicated theory.

Experiment has now shown that supersymmetry – if it is relevant to Nature at all – is not

responsible for looking after the Higgs mass in this way27.

I also want to point out that localization is useful for calculating much more than just

the partition function. For i 2 {1, 2, 3, . . .} suppose that Oi(�, i) is an operator that obeys

�Oi = 0, i.e. each operator is invariant under supersymmetry transformations (2.88). Then

the (unnormalized) correlation function

*
Y

i

Oi

+
=

Z
d� d2 p

2⇡
e�S

Y

i

Oi (2.96)

again localizes to the critical points of h. Once again, this is because deforming h ! h + g

leaves the correlator invariant since the deformation a↵ects the correlation function as
*
Y

i

Oi

+
h!h+g�!

*
�Og

Y

i

Oi

+
=

*
�

 
Og

Y

i

Oi

!+
= 0 (2.97)

which vanishes by the same arguments as before. Here, we used the fact that �Oi = 0 to

write the operator on the rhs as a total derivative.

Of course, if any of the Oi are already of the form �O0, so that this Oi is itself the

supersymmetry transformation of some O0, then h
Q

Oii = 0 which is not very interesting.

The interesting operators are those which are �-closed (�O = 0) but not �-exact (O 6= �O0).

These operators describe the cohomology of the nilpotent operator �. This is the starting–

point for much of the mathematical interest in QFT: we can build supersymmetric QFTs

that compute the cohomology of interesting spaces. For example, Donaldson’s theory of

27Whether anything protects the Higgs mass, or whether it is just fine-tuned, is currently one of the

outstanding mysteries of Beyond the Standard Model physics.
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invariants of 4–manifolds that are homeomorphic but not di↵eomorphic, and the Gromov–

Witten generalization of intersection theory can both be understood as examples of (higher–

dimensional) supersymmetric QFTs where the localization / cancellation is precise. In the

absence of experimental evidence for a supersymmetric extension of the Standard Model,

the close connections between supersymmetric QFTs and deep mathematics and the fact

that supersymmetry helps tame otherwise intractable path integrals now provide the main

reasons for studying supersymmetry.

Finally, let me remark that we’ll also meet essentially the same localization idea again

in a slightly di↵erent context later in this course when we study BRST quantization of

gauge theories.
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