
3 QFT in one dimension (= QM)

In one dimension there are two possible compact (connected) manifolds M : the circle S1

and the interval I. We will parametrize the interval by t 2 [0, T ] so that t = 0 and t = T

are the two point–like boundaries, while we will parametrize the circle by t 2 [0, T ) with

the identification t ⇠= t + T .

The most important example of a field on M is a map x : M ! N to a Riemannian

manifold (N, G) which we will take to have dimension n. That is, for each point t on our

‘space–time’ M , x(t) is a point in N . It’s often convenient to describe N using coordinates.

If an open patch U ⇢ N has local co-ordinates xa for a = 1, . . . , n, then we let xa(t) denote

the coordinates of the image point x(t). More precisely, xa(t) are the pullbacks to M of

coordinates on U by the map x.

With these fields, the standard choice of action is

S[x] =

Z

M


1

2
Gab(x)ẋaẋb + V (x)

�
dt , (3.1)

where Gab(x) is the pullback to M of the Riemannian metric on N , t is worldline time, and

ẋa = dxa/dt. We’ve also included in the action a choice of function V : N ! R, or more

precisely the pullback of this function to M , which is independent of worldline derivatives

of x. Finally, when writing this action we chose the flat Euclidean metric �tt = 1 on M ;

we’ll examine other choices of metric on M in section 3.4.

Under a small variation �x of x the change in the action is

�S[x] =

Z

M


Gab(x) ẋa ˙�x

b
+

1

2

@Gab(x)

@xc
�xc ẋaẋb +

@V (x)

@xc
�xc

�
dt

=

Z

M


� d

dt
(Gac(x)ẋa) +

1

2

@Gab(x)

@xc
ẋaẋb +

@V (x)

@xc

�
�xc dt + Gab(x) ẋa �xb

���
@M

.

(3.2)

Requiring that the bulk term vanishes for arbitrary �xa(t) gives the Euler–Lagrange equa-

tions
d2xa

dt2
+ �a

bcẋ
bẋc = Gab(x)

dV

dxb
(3.3)

where �a
bc = 1

2Gad (@bGcd + @cGbd � @dGbc) is the Levi–Civita connection on N , again

pulled back to the worldline. If M has boundary, then the boundary term is the sym-

plectic potential on the space of maps, where we note that pa = �L/�ẋa = Gab(x)ẋb is the

momentum of the field.

3.1 Worldline quantum mechanics

The usual interpretation of all this is to image an arbitrary map x(t) describes a possible

trajectory a particle might in principle take as it travels through the space N . (See figure 4.)

In this context, N is called the target space of the theory, while M (or its image x(M) ⇢
N) is known as the worldline of the particle. The field equation (3.3) says that when

V = 0, classically the particle travels along a geodesic in (N, G). V itself is then interpreted

as a (non–gravitational) potential through which this particle moves. The absence of a
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Figure 4: The theory (3.1) describes a map from an abstract worldline into the Rieman-

nian target space (N, G). The corresponding one–dimensional QFT can be interpreted as

single particle Quantum Mechanics on N .

minus sign on the rhs of (3.3) is probably surprising, but follows from the action (3.1).

This is actually the correct sign with a Euclidean worldsheet, because under the Wick

rotation t ! it back to a Minkowski signature worldline, the lhs of (3.3) acquires a minus

sign. In other words, in Euclidean time F = �ma!

From this perspective, it’s natural to think of the target space N as being the world in

which we live, and computing the path integral for this action will lead us to single particle

Quantum Mechanics, as we’ll see below. However, we’re really using this theory as a further

warm–up towards QFT in higher dimensions, so I also want you to keep in mind the idea

that the worldline M is actually ‘our space–time’ in a one–dimensional context, and the

target space N can be some abstract Riemannian manifold unrelated to the space we see

around us. For example, at physics of low–energy pions is described by a theory of this

general kind, where M is our Universe and N is the coset manifold (SU(2)⇥SU(2))/SU(2).

3.1.1 The quantum transition amplitude

The usual way to do Quantum Mechanics is to pick a Hilbert space H and a Hamiltonian

H, which is a Hermitian operator H : H ! H. In the case relevant above, the Hilbert

space would be L2(N), the space of square–integrable functions on N , and the Hamiltonian

would usually be

H = �~2

2
�+ V , where � :=

1p
G

@

@xa

✓p
GGab @

@xb

◆
(3.4)

is the Laplacian acting on functions in L2(N). The amplitude for the particle to travel

from an initial point y0 2 N to a final point y1 2 N in Euclidean time T is given by

KT (y0, y1) = hy1|e�HT/~|y0i , (3.5)

which is known as the heat kernel. (Here I’ve written the rhs in the Heisenberg picture,

which I’ll use below. In the Schrödinger picture where states depend on time we would

instead write KT (y0, y1) = hy1, T |y0, 0i.) The heat kernel is a function on I ⇥N ⇥N which
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may be defined to be the solution of the pde28

~ @
@t

Kt(x, y) + HKt(x, y) = 0 (3.6)

subject to the initial condition that K0(x, y) = �(x � y), the Dirac �-function on the

diagonal N ⇢ N ⇥N . (I remind you that we’re in Euclidean worldline time here. Rotating

to Minkowski signature by sending t 7! it, the heat equation becomes

i~ @
@t

Kit(x, y) = HKit(x, y) (3.7)

which we recognize as Schrödinger’s equation with Hamiltonian H.)

In the simplest example of (N, G) ⇠= (Rn, �) with vanishing potential V ⌘ 0, the

Hamiltonian is just

H = �~2

2

@2

@xa@xa
(3.8)

and the heat kernel takes the familiar form

Kt(x, y) =
1

(2⇡~t)n/2
exp

✓
�kx � yk2

2~t

◆
(3.9)

where kx � yk is the Euclidean distance between x and y. More generally, while the heat

kernel on a Riemannian manifold (N, G) is typically very complicated, it can be shown

that for small times it always has the asymptotic form

lim
�t!0

K�t(x, y) ⇠ 1

(2⇡~�t)n/2
a(x) exp

✓
�d(x, y)2

2~�t

◆
, (3.10)

where d(x, y) is the distance between x and y measured along a geodesic of the metric G,

and where

a(x) ⇠
p

G(x) [1 + RicG(x) + · · · ] (3.11)

is an expression constructed from the Riemann curvature of G in a way that we won’t need

to be specific about.

Feynman’s intuition was that the amplitude for a particle to be found at y0 at t = 0

and at y1 at t = T could be expressed in terms of the product of the amplitude for it to start

at y0 at t = 0, then be found at some other location x at an intermediate time t 2 (0, T ),

before finally being found at y1 on schedule at t = T . Since we did not measure what

the particle was doing at the intermediate time, we should sum (i.e. integrate) over all

possible intermediate locations x in accordance with the linearity of quantum mechanics.

Iterating this procedure, as in figure 5 we break the time interval [0, T ] into N chunks, each

28Like the factor of 1/2 in front of the Laplacian in (3.4), I’ve included a factor of ~ in this equation for

better agreement with the conventions of quantum mechanics, rather than Brownian motion. If you wish,

you can imagine we’re studying the usual heat equation in a medium with thermal conductivity ~/2.
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Figure 5: Feynman’s approach to quantum mechanics starts by breaking the time evolution

of a particle’s state into many chunks, then summing over all possible locations (and any

other quantum numbers) of the particle at intermediate times.

of duration �t = T/N . We then write

hy1|e�HT/~|y0i = hy1|e�H�t/~ e�H�t/~ · · · e�H�t/~|y0i

=

Z
dnx1 · · · dnxN�1 hy1|e�H�t/~|xN�1i · · · hx2|e�H�t/~|x1i hx1|e�H�t/~|y0i

=

Z N�1Y

i=1

dnxi K�t(y1, xN�1) · · · K�t(x2, x1) K�t(x1, y0) .

(3.12)

In the second line here we’ve inserted the identity operator
R

dnxi |xiihxi| on H in between

each evolution operator; in the present context this can be understood as the concatenation

identity

Kt1+t2(x3, x1) =

Z
dnx2 Kt2(x3, x2) Kt1(x2, x1) (3.13)

obeyed by convolutions of the heat kernel.

This more or less takes us to the path integral. The virtue of splitting up the time

interval [0, T ] into many chunks is that we can now use the asymptotic form (3.10) to write

hy1|e�HT/~|y0i ⇠ 1

(2⇡~�t)n/2

Z N�1Y

i=1

dnxi

(2⇡~�t)n/2
a(xi) exp

"
�1

~

NX

i=0

�t

2

✓
d(xi+1, xi)

�t

◆2
#

.

(3.14)

We now consider take the limit that N ! 1 with T fixed (so �t ! 0). We might then

hope that we can define our path integral measure to be

Dx
?

:= lim
N!1

✓
1

2⇡~�t

◆nN

2
N�1Y

i=1

dnxi a(xi) (3.15)

as an integral over the values of the fields xa(t) at each time t 2 [0, T ]. Similarly, if

the limiting trajectory is at least once di↵erentiable then as �t ! 0, (d(xi+1, xi)/�t)2
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converges to gab ẋaẋb while the sum can be replaced by an integral, so we would have

lim
N!1

"
NX

i=0

�t

2

✓
d(xi+1, xi)

�t

◆2
#

?
=

Z T

0

1

2
Gab(x) ẋaẋb dt . (3.16)

This recovers the action (3.1), with V = 0. (A more general heat kernel can be used to

incorporate a non–zero potential.) We’ll investigate these limits further below; accepting

them for now, combining (3.15) & (3.16) allows us to represent the heat kernel as an integral

hy1|e�HT/~|y0i = KT (y0, y1) =

Z

CT [y0,y1]
Dx e�S[x]/~ (3.17)

taken over a space CT [y0, y1] of maps x : [0, T ] ! N that are constrained to obey the

boundary conditions x(0) = y0 and x(T ) = y1. A given map is called a path and the

integral over all such paths is the path integral. We’ll investigate exactly what sort of

maps we should allow (smooth? di↵erentiable? continuous?) in more detail below. Note

that from our d = 1 QFT perspective, the path integral gives the amplitude for a field

configuration x = y0 on an initial codimension-1 slice (i.e. the point t = 0) to evolve

through M = [0, T ] and emerge as the field configuration x = y1 on the final codimension-1

slice (i.e. the point T ). Thus, it’s a sort of scattering amplitude y0 ! y1 in our one

dimensional universe. (The name ‘path integral’ is also used in higher dimensional QFT.)

3.1.2 The partition function

In the operator approach to quantum mechanics, the partition function is defined to be

the trace of the time evolution operator over the Hilbert space:

Z(T ) = TrH(e�TH) . (3.18)

In the case of a single particle moving on Rn, we can take the position eigenstates |yi to

be a (somewhat formal) ‘basis’ of H = L2(Rn, dny), in which case the partition function

becomes

Z(T ) =

Z
dny hy|e�HT |yi =

Z

N
dny

Z

CT [y,y]
Dx e�S (3.19)

where the last equality uses out path integral expression (3.17) for the heat kernel. Because

we’re taking the trace, the path integral here should be taken over maps x : [0, T ] ! N

such that the endpoints are both mapped to the same point y 2 N . We then integrate y

everywhere over N29, erasing the memory of the particular point y. As long as we’re being

vague about the degree of di↵erentiability of our map, this is (plausibly) the same thing as

integrating over maps x : S1 ! N where the worldline has become a circle of circumference

T . This shows that

ZS1 [T ] = TrH(e�TH) =

Z

C
S1

Dx e�S/~ , (3.20)

29In flat space, the heat kernel (3.9) obeys KT (y, y) = KT (0, 0) so is independent of y. Thus if N ⇠= Rn

with a flat metric, this final y integral does not converge. This is an ‘infra-red’ e↵ect that arises because

(Rn
, �) is non-compact. The partition function does converge if N is compact, which we can achieve by

imposing that we live in a large box, or on a torus etc., whilst still keeping a flat metric.
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which was our earlier definition of the partition function on the compact universe M = S1.

In higher dimensions this formula will be the basis of the relation between QFT and

Statisical Field Theory, and is really the origin of the name ‘partition function’ for Z in

physics.

3.1.3 Operators and correlation functions

As in zero dimensions, we can also use the path integral to compute correlation functions

of operators. A local operator is one which depends on the field only at one point of the

worldline. The simplest type of local operator comes from a function on the target space.

If O : N ! R is a real–valued function on N , let Ô denote the corresponding operator

on H. That is, O depends only on the local coordinates xa and Ô = O(x̂a) is the same

function of the position operator x̂a acting on H. Then for any fixed time t 2 (0, T ) we

have

hy1|e�HT/~ Ô(t)|y0i = hy1|e�H(T�t)/~ Ô e�Ht/~|y0i (3.21)

in the Heisenberg picture. Inserting a complete set of position eigenstates, this is
Z

dnx hy1|e�H(T�t)/~ O(x̂)|xi hx|e�Ht/~|y0i =

Z
dnx O(x) hy1|e�H(T�t)/~|xi hx|e�Ht/~|y0i

=

Z
dnx O(x) KT�t(y1, x) Kt(x, y0) ,

(3.22)

where we note that in the final two expressions O(x) is just a number; the eigenvalue of

the operator Ô acting on the state |xi.
Using (3.17), everything on the rhs of this equation can now be written in terms of

path integrals. We have

hy1|e�H(T�t)/~ Ô e�Ht/~|y0i =

Z
dnxt

"Z

CT�t[y1,xt]
e�S[x]/~ ⇥ O(xt) ⇥

Z

Ct[xt,y0]
e�S[x]/~

#

=

Z

CT [y1,y0]
Dx e�S[x]/~ O(x(t)) ,

(3.23)

where to reach the second line we again note that integrating over all continuous maps

x : [0, t] ! N with endpoint x(t) = xt, then over all continuous maps x : [t, T ] ! N with

initial point x(t) again fixed to xt and finally integrating over all points xt 2 N , is the same

thing as integrating over all continuous maps x : [0, T ] ! N with endpoints y0 and y1.

More generally, we can insert several such operators. If 0 < t1 < t2 < . . . < tn < T

then exactly the same arguments give

hy1|Ôn(tn) · · · Ô2(t2) Ô1(t1)|y0i

= hy1|e�H(T�tn)/~On(x̂) · · · O2(x̂) e�H(t2�t1)/~ O1(x̂) e�Ht1/~|y0i

=

Z

CT [y0,y1]
Dx e�S[x]/~

nY

i=1

Oi(x(ti))

(3.24)
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for the n–point correlation function. The hats on the Ôi remind us that the lhs involves

operators acting on the Hilbert space H (which we may or may not choose to describe using

the position representation). By contrast, the objects Oi inside the path integral are just

ordinary functions, evaluated at the points x(ti) 2 N30.

Notice that in order to run our argument, it was very important that the insertion times

ti obeyed ti < ti+1: we would not have been able to interpret the lhs in the Heisenberg

picture had this not been the case31. On the other hand, the insertions Oi(x(ti)) in the

path integral are just functions and have no notion of ordering. Thus the expression on

the right doesn’t have any way to know which insertion times was earliest. For this to be

consistent, for a general set of times {ti} 2 (0, T ) we must actually have

Z

CT [y0,y1]
Dx

 
e�S[x]/~

nY

i=1

Oi(x(ti))

!
= hy1|T {

Y

i

Ôi(ti)}|y0i (3.25)

where the symbol T on the rhs is defined by

T Ô1(t1) := O1(t1) ,

T {Ô1(t1) Ô2(t2)} := ⇥(t2 � t1) Ô2(t2) Ô1(t1) +⇥(t1 � t2) Ô1(t1) Ô2(t2)
(3.26)

and so on, where ⇥(t) is the Heaviside step function and the operators are in the Heisen-

berg picture. By construction, these step functions mean that the rhs is now completely

symmetric with respect to a permutation of the orderings. However, for any given choice

of times ti, only one term on the rhs can be non–zero. In other words, insertions in the

path integral correspond to the time–ordered product of the corresponding operators

in the Heisenberg picture.

The derivative terms in the action play an important role in evaluating these correla-

tion functions. For suppose we’d chosen our action to be just a potential term
R

V (x(t)) dt,

independent of derivatives ẋ(t). Then, regularizing the path integral by dividing M into

many small intervals as before, we’d find that neighbouring points on the worldline com-

pletely decouple: unlike in (3.14) where the geodesic distance d(xi+1, xi)2 in the heat

kernel provides cross–terms linking neighbouring points together, we would obtain simply

a product of independent integrals at each time step. Inserting functions Oi(x(ti)) that

are likewise independent of derivatives of x into such a path integral would not change this

conclusion. Thus, without the derivative terms in the action, we’d find

hO1(t1) O2(t2)i = hO1(t1)i hO2(t2)i (3.27)

for all such insertions. In other words, there would be no possible non–trivial correlations

between objects at di↵erent points of our (one–dimensional) Universe. This would be a

very boring world: without derivatives, the number of people sitting in the lecture theatre

30A more precise statement would be that they are functions on the space of fields CT [y0, y1] obtained

by pullback from a function on N by the evaluation map at time ti.
31It’s a good exercise to check you understand what goes wrong if we try to compute hy1|e

+tH/~
|y1i with

t > 0.
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would have nothing at all to do with whether or not a lecture was actually going on, and

what you’re thinking about right now would have nothing to do with what’s written on

this page.

This conclusion is a familiar result in perturbation theory. The kinetic terms in the

action allow us to construct a propagator, and using this in Feynman diagrams enables

us to join together interaction vertices at di↵erent points in space–time. As the name

suggests, we interpret this propagator as a particle traveling between these two space–time

interactions and the ability for particles to move is what allows for non–trivial correlation

functions. Here we’ve obtained the same result directly from the path integral.

So far, we’ve just been considering insertions that are functions of position only. A

wider class of local path integral insertions depend not just on x but also on its worldline

derivatives ẋ, ẍ etc.. In the canonical framework, with Lagrangian L we have

pa =
�L

�ẋa
= Gabẋ

b (3.28)

where the last equality is for our action (3.1). Thus we might imagine replacing a general

operator O(x̂a, p̂b) in the canonical quantization framework by the function O(xa, Gbc(x)ẋc)

of x and its derivative in the path integral. From the path integral perspective, however,

something smells fishy here. Probably the first thing you learned about QM was that

[x̂a, p̂b] 6= 0. If we replace x̂a and p̂b by xa and Gbcẋc in the path integral, how can these

functions fail to commute, even when Gab = �ab? To understand what’s going on, we’ll

need to look into the definition of our path integral in more detail.

By the way, we should note that there’s an important other side to this story, revealing

ambiguities in the canonical approach to quantum mechanics. Suppose we’re given some

function O(xa, pb) on a classical phase space, corresponding to some observable quantity .

If we wish to ‘quantize’ this classical system, it may not be obvious to decide what operator

to use to represent our observable as the replacement

O(xa, pb) ! O(x̂a, p̂b)

is plagued by ordering ambiguities. For example, if we represent pa by32 �~@/@xa, then

should we replace

xapa ! �xa ~ @

@xa

or should we take

xapa ! �~ @

@xa
xa = �~n � xa ~ @

@xa

or perhaps something else? According to Dirac, if two classical observables f and g have

Poisson bracket {f, g} = h for some other function h, then we should quantize by finding

a Hilbert space on which the corresponding operators f̂ and ĝ i) act irreducibly and ii)

obey [f̂ , ĝ] = i~ ĥ. Unfortunately, even in flat space quantum mechanics with (N, G, V ) =

(Rn, �, 0), the Groenewald–Van Hove theorem states that we cannot generally achieve this,

even for functions that are polynomial in position and momenta, of degree higher than 2.

32The absence of a factor of i on the rhs here is again a consequence of having a Euclidean worldline.
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(We can make progress if some extra structure is present, such as if the operators represent

the action of some finite dimensional Lie group, or if the phase space is provided with

a complex structure, making it a Kähler manifold.) The idea of ‘quantizing’ a classical

system thus remains ambiguous in general.

3.2 The continuum limit

In this section, we’ll take a closer look at the origin of non–commutativity of xa and pb

from the path integral perspective. Doing so will lead to a deeper understanding of the

subtleties involved in taking the naive continuum limit of the path integral measure and

action.

3.2.1 Discretization and non–commutativity

Non–commutativity is present in quantum mechanics right from the beginning, so it will

su�ce to consider the simplest case of a free particle travelling in one dimension. We thus

pick (N, G) = (R, �) and V = 0. Then if 0 < t� < t < t+ < T we have
Z

CT [y0,y1]
Dx e�S[x]/~ x(t) ẋ(t�) = hy1|e�H(T�t)/~ x̂ e�H(t�t�)/~ p̂ e�Ht�/~|y0i , (3.29a)

when the insertion of p̂ is earlier than that of x̂, and
Z

CT [y0,y1]
Dx e�S[x]/~ x(t) ẋ(t+) = hy1|e�H(T�t+)/~ p̂ e�H(t+�t)/~ x̂ e�Ht/~|y0i (3.29b)

when p̂ is inserted at a later time than x̂. Taking the limits t+ ! t from above and t� ! t

from below, the di↵erence between the rhs of (3.29a) & (3.29b) is

hy1|e�H(T�t)/~ [ x̂, p̂ ] e�Ht~|y0i = ~ hy1|e�HT /~|y0i (3.30)

which does not vanish. By contrast, the di↵erence of the lhs seems to be automatically

zero. What have we missed?

In handling the lhs of (3.29a)-(3.29b) we need to be careful. Our arguments allowed

us to be confident of the relation between the canonical and path integral approaches only

when working with some discretization of M = [0, T ]. Taking the continuum limit to obtain

a path integral measure Dx and action S[x] was a formal operator and we did not check

that these limits actually make sense.

To stay on safe ground, let’s regularize the path integrals in (3.29a)-(3.29b) by chopping

[0, T ] into many chunks, each of width �t. With this discretization, we cannot pretend we

are bringing the x and ẋ insertions any closer to each other than �t without also taking

account of the discretization of the whole path integral. Thus we replace

lim
t�" t

[x(t) ẋ(t�)] � lim
t+# t

[x(t) ẋ(t+)]

by the discretized version

xt
xt � xt��t

�t
� xt

xt+�t � xt

�t
(3.31)
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where we stop the limiting procedure as soon as x coincides with any part of the discretized

derivative. As always with path integrals, the order of the factors of xt and xt±�t here

doesn’t matter; they’re just ordinary integration variables.

Now consider the integral over xt. Apart from the insertion of (3.31), the only depen-

dence of the discretized path integral on this variable is in the heat kernels K�t(xt+�t, xt)

and K�t(xt, xt��t) that describe the evolution from neighbouring chunks of our discretized

worldline. Using the explicit form (3.9) of these kernels in flat space we have
Z

dxt K�t(xt+�t, xt)

✓
xt

xt � xt��t

�t
� xt

xt+�t � xt

�t

◆
K�t(xt, xt��t)

= �~
Z

dxt xt
@

@xt

✓
K�t(xt+�t, xt) K�t(xt, xt��t)

◆

= ~
Z

dxt K�t(xt+�t, xt) K�t(xt, xt��t) = ~ K2�t(xt+�t, xt��t)

(3.32)

where the first step recognizes the two insertions as being ~ times the xt derivatives of

K�t(xt+�t, xt) and K�t(xt, xt��t), respectively. The second step is a simple integration

by parts and the final equality uses the concatenation property (3.13). The integration over

xt thus removes all the insertions from the path integral, and the remaining integrals can

be done using concatenation as before. We are thus left with ~ KT (y1, y0) = ~ hy1|e�HT |y0i
in agreement with the operator approach.

There’s an important point to notice about this calculation. If we’d assumed that,

in the continuum limit, our path integral included only maps x : [0, T ] ! N whose first

derivative was everywhere continuous, then the limiting value of (3.31) would necessarily

vanish when �t ! 0, contradicting the operator calculation. Non–commutativity arises in

the path integral approach to quantum mechanics precisely because we’re forced to include

non–di↵erentiable paths, i.e. our map x 2 C0(M, N) but x /2 C1(M, N). In fact, since we

want to recover the non–commutativity no matter at which time t we insert x̂ and p̂, we

need path that are nowhere di↵erentiable.

This non–di↵erentiability is the familiar stochastic (‘jittering’) behaviour of a particle

undergoing Brownian motion. It’s closely related to a very famous property of random

walks: that after a time interval t, one has moved through a net distance proportional top
t rather than / t itself. More specifically, averaging with respect to the one–dimensional

heat kernel

Kt(x, y) =
1p

2⇡~t
e�(x�y)2/2~t ,

in time t, the mean squared displacement is

h(x � y)2i =

Z 1

�1
Kt(x, y) (x � y)2 dx =

Z 1

�1
Kt(u, 0) u2 du = ~ t (3.33)

so that the rms displacement from the starting point after time t is /
p

t. Similarly, our

regularized path integrals yield a finite result because the average value of

xt+�t
xt+�t � xt

�t
� xt

xt+�t � xt

�t
= �t

✓
xt+�t � xt

�t

◆2

,
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Figure 6: Stimulated by work of Einstein and Smoluchowski, Jean–Baptiste Perron made

many careful plots of the locations of hundreds of tiny particles as they underwent Brownian

motion. Understanding their behaviour played a key role in confirming the existence of

atoms. A particle undergoing Brownian motion moves an average (rms) distance of
p

t in

time t, a fact that is responsible for non–trivial commutation relations in the (Euclidean)

path integral approach to Quantum Mechanics.

which for a di↵erentiable path would vanish as �t ! 0, here remains finite.

The importance of nowhere–di↵erentiable paths has a further very important conse-

quence. Since we cannot assign any sensible meaning to

lim
�t!0

xt+�t � xt

�t
,

we cannot sensibly claim that

lim
N!1

exp

"
��t

~

NX

i=0

1

2

✓
xti+1 � xti

�t

◆2
#

??
= exp


�1

~

Z T

0

1

2
ẋ2 dt

�

and thus we do not really have any continuum action. Naively, we might have thought that

the presence of e�S[x]/~ damps out the contribution of wild field configurations. However,

this cannot be the case: nowhere–di↵erentiable paths are essential if we wish our path

integral to know about even basic quantum properties.

3.2.2 The path integral measure

Having realized that we need to include nowhere–di↵erentiable fields, and that the contin-

uum action does not exist — even for a free particle — we now return to consider the limit

of the measure. You probably won’t be surprised to hear that this doesn’t exist either.

First recall that for vector space V of finite dimension D, dµ is a Lebesgue measure

on V if

i) it assigns a strictly positive volume vol(U) =
R
U dµ > 0 to every non–empty open set

U ⇢ V ,
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Figure 7: In a D–dimensional vector space, an open hypercube of finite linear dimension

L contains 2D open hypercubes of linear dimension L/2 � ✏ for any L/2 > ✏ > 0. We

choose the side length to be slightly less than half the original length to ensure these smaller

hypercubes are open and non–overlapping.

ii) vol(U 0) = vol(U) whenever U 0 may be obtained from U by translation, and

iii) for every p 2 V there exists at least one open neighbourhood Up, containing p, for

which vol(Up) < 1.

The standard example of a Lebesgue measure is of course dµ = dDx on V = RD.

Now let’s return to consider the path integral measure. To keep things simple, we again

work just with the case that the target space N = Rn with a flat metric. In the continuum,

the space of fields is naturally an infinite dimensional vector space, where addition is given

by pointwise addition of the fields at each t on the worldline. In the previous section

we identified this infinite dimensional space as the space C0(M, Rn) of continuous maps

x : M ! Rn. We certainly want our measure to be strictly positive, since (in Euclidean

signature) it has the interpretation of a probability measure. Also, we used translational

invariance of the measure throughout our discussion in earlier chapters, for example in

completing the square and shifting � ! �̃ = �+ M�1(J, · ) to write the partition function

in the presence of sources as Z(J) = eM�1(J,J)/2~Z(0). So we’d like our measure Dx to be

translationally invariant, too.

But it’s easy to prove that there is no non–trivial Lebesgue measure on an infinite

dimensional vector space. Let Cx(L) denote the open (hyper)cube centered on x and of

side length L. This cube contains 2D smaller cubes Cxn
(L/2 � ✏) of side length L/2 � ✏,

all of which are disjoint (see figure 7). Then

vol(Cx(L)) �
2DX

n=1

vol(Cxn
(L/2 � ✏)) = 2D vol(Cx(L/2 � ✏)) (3.34)

where the first inequality uses the fact that the measure is positive–definite and the

smaller hypercubes are open and non–overlapping, and the final equality uses transla-

tional invariance. We see that as D ! 1, the only way the rhs can remain finite is if
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vol(Cx(L/2 � ✏)) ! 0 for any finite L. So the measure must assign zero volume to any

infinite dimensional hypercube of finite linear size. Finally, provided our vector space V

is of countably infinite dimension (which the discretizes path integral makes plain), we can

cover any open U ⇢ V using at most countably many such cubes, so vol(U) = 0 for any U

and the measure must be identically zero. In particular, the limit

Dx
??
= lim

N!1

NY

i=1


dnxi

(2⇡~�t)n/2

�

does not exist, and there is no measure Dx in the continuum limit of the path integral.

In fact, in one dimension, while neither Dx nor e�S[x]/~ themselves have any continuum

meaning, the limit

dµW := lim
N!1

"
NY

i=1

dnxti

(2⇡�t)n/2
exp

"
��t

2

✓
xti+1 � xti

�t

◆2
##

(3.35)

of the standard measures dnxti on Rn at each time–step together with the factor e�Si does

exist as a measure on C0(M, Rn). The limit dµW is known as the Wiener measure and,

as you might imagine from our discussion above, it plays a central role in the mathematical

theory of Brownian motion. The presence of the factor e�Si/~ means that this measure

is Gaussian, rather than translationally invariant in the fields, avoiding the above no–go

theorem. However tempting it may be to interpret this as ‘obviously’ the product of a

Gaussian factor and a usual Lebesgue measure, we know from above that this cannot be

true in the continuum limit (though it is true before taking the limit).

Thus far, we’ve considered only the path integral for a free particle travelling in Rn.

Kac was able to show that the Wiener measure could also be used to provide a rigorous

definition of Feynman’s path integral for interacting quantum mechanical models. That

is, suppose our quantum particle feels a potential V : Rn ! R which contributes to its

Hamiltonian. Then, provided V is su�ciently nice33, as a path integral we have

(e�TĤ/~  )(x0) =

Z

Cx0 ([0,T ];Rn)
exp


�1

~

Z T

0
V (x(s)) ds

�
 (x(T )) dµW , (3.36)

where Cx0([0, t]; Rn) is the space of continuous maps x : [0, t] ! Rn with x(0) = x0, and

where dµW is the Wiener measure on C([0, t]; Rn). I won’t prove this result here, but if

you’re curious you can consult e.g. B. Simon, Functional Integration and Quantum Physics,

2nd ed, AMS (2005), or B. Hall, Quantum Theory for Mathematicians, Springer (2013),

which also gives a fuller discussion of many of the issues we’ve considered in this section.

Note that, when evaluating an asymptotic series for the path integral using Feynman

graphs, all we ever really needed was the Gaussian measure describing the free theory: all

interaction vertices or operator insertions were treated perturbatively and evaluated using

integration against the path integral measure of the free theory.

33Technically, V must be the sum of a function in L
2(Rn

, dn
x) and a bounded function.
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3.3 E↵ective quantum mechanics and locality

We’ve seen that näıve interpretations of path integrals over infinite dimensional spaces can

be very misleading. Rather than try to deal directly with the infinite dimensional space

of continuous maps C0(M, N) (and the even larger, wilder spaces that arise in QFT in

d > 1) it may seem safer to always work with a regularized path integral, delaying taking

the continuum limit until the end of the calculation. However, there are any number of

finite dimensional approximations to an infinite dimensional space, and it’s far from clear

exactly which of these we should choose to define our regularized integral.

Up until now, we’ve reduced the path integral to a finite dimensional integral by

discretising our worldline M , but there many other ways to regularize. For example, even

if our field x(t) is nowhere di↵erentiable, we can represent it as a Fourier series

xa(t) =
X

k2Z
x̃a

k e2⇡ikt/T .

We might choose to regularize by truncating this series to a finite sum with |k|  N . The

(free) action for the truncated field is

SN (x̃k) =
2⇡

T

X

|k|N

k2 �ab x̃a
k x̃b

�k (3.37a)

and we can take the path integral over these finitely many Fourier coe�cients with measure

DxN =
NY

k=�N

dnx̃k

(2⇡)n/2
(3.37b)

If we try to include all infinitely many Fourier modes, then the sum (3.37a) will diverge

and the measure (3.37b) ceases to exist. However, with a finite cuto↵ N , we will obtain

perfectly sensible answers.

The problem, of course, is that these answers will depend on the details of how we

chose to regularize. This is not just the question of how they depend on the precise value

of N , or the precise scale of the discretization. Rather, how can we be sure whether the

results we obtain by discretizing our universe are compatible with those we’d obtain by

instead imposing a cut-o↵ on the Fourier modes of the fields? Or with any other way of

regularizing that we might dream up? The answer to this will be the subject of (Wilsonian)

renormalization in the next chapter, but we can get some flavour of it even here in d = 1.

We imagine we have two di↵erent fields x and y on the same worldline M , that I’ll

take to be a circle. We’ll start with the action

S[x, y] =

Z

S1


1

2
ẋ2 +

1

2
ẏ2 + V (x, y)

�
dt (3.38)

where the potential

V (x, y) =
1

2
(m2x2 + M2y2) +

�

4
x2y2 . (3.39)
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In terms of the one–dimensional QFT, x and y look like interacting fields with masses m

and M , while from the point of view of the target space R2 you should think of them as

two harmonic oscillators with frequencies m and M , coupled together in a particular way.

Of course, this coupling has been chosen to mimic what we did in section 2.4.2 in zero

dimensions. If we’re interested in perturbatively computing correlation functions of (local)

operators, then we could proceed by directly using (3.38) to construct Feynman diagrams.

We have the momentum space Feynman rules (with ~ = 1)

��

y

1/(k2 + M2)

x

1/(k2 + m2)

where k is the one–dimensional worldline momentum, which on a circle of circumference T

is quantized in units of 2⇡/T .

However, if we’re interested purely in correlators of operators that depend only on

the field x, such as hx(t2) x(t1)i, then we saw in section 2.4.2 that it’s expendient to first

integrate out the y field, obtaining an e↵ective action for the x that takes the quantum

behaviour of y into account. Let’s repeat that calculation here. As in zero dimensions, we

expect our e↵ective action will contain infinitely many new self–interactions of x. As far

as the path integral over y(t) is concerned, x is just a fixed background field so we have

formally

Z
Dy exp


�1

2

Z

S1
y

✓
� d2

dt2
+ M2 +

�

2
x2

◆
y

�
=


det

✓
� d2

dt2
+ M2 +

�

2
x2

◆��1/2

,

(3.40)

where (for fixed x(t)) the determinant of the di↵erential operator can be understood as

Accordingly, the e↵ective action for x is

Se↵ [x] =

Z

S1


1

2
ẋ2 +

m2

2
x2

�
dt +

1

2
ln det

✓
� d2

dt2
+ M2 +

�

2
x2

◆
. (3.41)

Note the factor of 1/2 in front of the logarithm, which comes because we got a square root

when performing the Gaussian integral over each mode of the real field y(t). Note also

that because the e↵ective action is defined by e�Se↵ [x]/~ =
R

Dy e�S[x,y]/~ the fact that the

square root of the determinant appeared in the denominator after performing the Gaussian

integral over y means that the logarithm contributes positively to the e↵ective action. Had

we integrated out a fermionic field, following the rules of Berezin integration would lead to

a determinant in the numerator, which thus contributes negatively to Se↵ .

Now let’s try to understand the e↵ect of this term. First, using

ln det(AB) = ln(det Adet B) = ln det A + ln det B = tr ln A + tr ln B

we write

ln det

✓
� d2

dt2
+ M2 +

�

2
x2

◆
= tr ln

✓
� d2

dt2
+ M2

◆
+ tr ln

 
1 � �

2

✓
d2

dt2
� M2

◆�1

x2

!
.

(3.42)
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The first term on the rhs is independent of the field x; it will drop out if we normalize our

calculations by the partition function of the free (� = 0) theory. As in d = 0, this term is

related to the cosmological constant problem and we will consider it further later, but for

now our main interest is in the second, x-dependent term.

To make sense of this second term, let G(t, t0) be the worldline propagator (or Green’s

function), defined by ✓
d2

dt2
� M2

◆
G(t, t0) = �(t � t0) , (3.43)

so that G(t, t0) is the inverse of the free kinetic operator d2/dt2 � M2 on the worldline.

Then  ✓
d2

dt2
� M2

◆�1

x2

!
(t) =

Z

S1
G(t, t0) x2(t0) dt0 (3.44)

Explicitly, the Green’s function is

G(t, t0) =
1

2M

X

r2Z
e�M |t�t0+rT | (3.45)

where the sum over r 2 Z allows the propagator to travel r times around the circle on

its way from t0 to t. With this understanding of the inverse of the di↵erential operator

(d2/dt2 � M2) we can expand the second term in (3.42) as an asymptotic series valid as

� ! 0. From the standard Taylor series of ln(1 + ✏) we have

tr ln

 
1 � �

2

✓
d2

dt2
� M2

◆�1

x2

!

⇠ �
1X

n=1

�n

2nn

Z

(S1)⇥n

dt1 · · · dtn G(tn, t1) x2(t1) G(t1, t2) x2(t2) · · · G(tn�1, tn) x2(tn)

= ��
2

Z

S1

dt G(t, t) x2(t) � �2

8

Z

S1⇥S1

dt dt0 G(t0, t) x2(t) G(t, t0) x2(t0) + · · ·

(3.46)

As expected, integrating out y has generated both a new contribution to the quadratic

term in x2 and also an infinite series of new interactions, just as it did in d = 0. However,

here there’s a new feature: except for the leading O(�) term, these interactions are now

non–local. They involve the value of the field x integrated over several (or infinitely many)

copies of the worldline.

It’s instructive to see why this non–locality arises. The first two terms in the se-

ries (3.46) represent the Feynman diagrams

�1/M2 �m2 ��

=
1

2
h�2i +

=
1

m2
e�

� �4

2m6
e�

+ + + +

+�m2

2
�2 � �

4M2
�2 +

�2

16M4
�4 � �3

48M6
�6

=

=

�W(�) · · ·

· · ·

��

2
x2(t) ��

2
x2(t) ��

2
x2(t�)

G(t, t)

G(t, t�)

G(t�, t)
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that arise in the perturbative evaluation of the y path integral. (In these diagrams, the

green dot represents the vertex ��x2/2 with x treated as a fixed ‘source’ just as we did in

zero dimensions. Just as before, the second diagram comes with a symmetry factor of 1/2,

as the two propagators are interchangeable.) Unlike the trivial case of zero dimensions,

here the y field is dynamical; the worldline propagator G(t, t0) allows it to move around,

and the insertions of x2 are at independent points in our one–dimensional universe.

Non–locality is generally bad news in physics: the equations of motion we’d obtain

from Se↵ [x] would be integro–di↵erential equations stating that in order to work out the

behaviour of the field x here, we first have to add up what it’s doing everywhere else in the

(one–dimensional) Universe. But we don’t want the results of our experiment in CERN to

depend on what Ming the Merciless may or may not be having for breakfast over on the

far side of the Galaxy.

So how bad is it here? From the explicit form (3.45) of the Green’s function we see

that G(t, t0) decays exponentially quickly when t 6= t0, with a scale set by the inverse mass

M�1 of y. This suggests that the e↵ects of non–locality will be small provided we restrict

attention to fields that vary slowly on scales ⇠ M�1. More specifically, expanding x(t0)

around t0 = t, the second term in (3.46), involving a total of four powers of the field x,

becomes
Z

dt dt0 G(t, t0)2 x2(t) x2(t0)

=

Z
dt dt0 G(t, t0)2 x2(t)

⇥
x2(t) + 2x(t)ẋ(t)(t0 � t) +

�
ẋ2(t) + x(t)ẍ(t)

�
(t0 � t)2 + · · ·

⇤

=

Z
dt


↵

M3
x4(t) +

�

M5

✓
x2ẋ2 +

1

2
x3ẍ

◆
+

�

M7
(four-derivative terms) + · · ·

�
.

(3.47)

In going to the last line we’ve performed the t0 integral, noting that terms that are odd in

(t � t0) will not contribute. The remaining terms are obtained by noting that the Green’s

function G(t, t0) involves an explicit factor of 1/M , and depends on t0 only through the

dimensionless combination u = M(t0 � t). Thus, if we replace the factor (t0 � t)p in the

pth order term in the Taylor expansion by (u/M)p and change variables dt0 = du/M to

integrate over the dimensionless quantity u, the remaining integrals will just yield some

dimensionless numbers ↵,�, �, · · · . (The precise values of these constants don’t matter for

the present discussion.)

The important point is that every new derivative of x in these vertices is suppressed

by a further power of the mass M of the y field. Thus, so long as ẋ, ẍ,
...
x , . . . are all small

in units of M�1, we should have a controllable expansion. Similarly, terms further down

the expansion in (3.46) that involve higher powers of x also come with further powers of

G(ti, tj) and further integrals, and so are again suppressed by higher powers of M . If we

truncate at any finite order both the expansion (3.46) itself and the derivative expansion

of each term in (3.46), we’ll regain an apparently local e↵ective action. This truncation is

justified provided we restrict to processes where the momentum of the x field is ⌧ M .

However, once we start to probe energies ⇠ M something will go badly wrong with

our truncated theory. Assuming the original action (3.38) defined a unitary theory (with
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a Minkowski signature worldline M = [0, T ]), simply performing the exact path integral

over y must preserve unitary. This is because we haven’t yet made any approximations,

just taken the first step to performing the full Dx Dy path integral. All the possible states

of the y field are still secretly there, encoded in the infinite series of non–local interactions

for x. However, the approximation to keep just the first few terms in Se↵ can’t be unitary,

because we’re rejecting by hand various pieces of Feynman diagrams: we’re throwing away

some of the things y might have been doing.

The weak interactions are responsible for many important things, from the formation

of light elements such as deuterium in the early Universe, to powering stars such as our Sun,

to the radioactive �-decay of 14C used in radiocarbon dating. Since the 1960s physicists

have known that these weak interactions are mediated by a field called the W–boson and

in 1983, the UA1 experiment at CERN discovered this field and measured its mass to be

MW ' 80 GeV. Typically, �-decay takes place at much lower energies, so to describe them

it makes sense to integrate out the dynamics of the W boson leaving us with an e↵ective

action for the proton, neutron, electron and neutrino that participate in the interaction.

This e↵ective action contains an infinite series of terms, suppressed by higher and higher

powers of the large mass MW. Truncating this infinite e↵ective action to its first few terms

leads to Fermi’s theory of �-decay which gives excellent results at low energies. However,

if ones extrapolates the results obtained using this truncated action to high energies, one

finds a violation of unitarity. The non–unitarity in Fermi’s theory is what lead physicists

to suspect the existence of the W–boson in the first place.

3.4 Quantum gravity in one dimension

The heat kernels, partition functions and correlation functions we’ve computed depend on

the choices we made in setting up our theory, including in particular the worldline metric

g. So far, we’ve fixed this to be g = �, but it’s interesting to see what happens if we also

allow ourselves to couple to a general worldline metric. Even more

We start by rewriting our original action (3.1) describing maps x : (M, g) ! (N, G) in

a way that makes it invariant under di↵eomorphisms of the worldline M . We have

S[g, x] =

Z

M

p
g


1

2
Gab(x) gtt(t) @tx

a @tx
b +

1

2
V (x)

�
dt (3.48)

where we’ve emphasized that this action now depends on the wordline metric g. Note that

gtt(t) is a 1 ⇥ 1 positive symmetric matrix, so is specified by just a single positive function

e2 : M ! R>0. We have
p

g = |e| and gtt = e�2. Also, there is no notion of Riemann

curvature since [rt, rt] ⌘ 0 as we only have one direction. Thus there is no analogue of

the Einstein-Hilbert term
R
M

p
g Ric(g) which provides the kinetic terms for the metric, so

gravity in d = 1 is non–dynamical. Varying the action (3.48) with respect to g we obtain

the Einstein equation

Ttt :=
2

p
g

�(
p

gL)

�gtt
=

1

|e|

h
Gab(x) ẋaẋb � e2(t)V (x)

i
= 0 (3.49)
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which just says that the worldline stress tensor must vanish. In particular, this Einstein

equation fixes the metric to be

gtt(t) = e2(t) =
1

V (x)
Gab(x) ẋaẋb (3.50)

which is positive definite provided V (x) > 0 and (N, G) is Riemannian. Since the metric is

non–dynamical, we can use this equation to eliminate it from the action (3.48) obtaining

S[x] =
p

V0

Z

M

q
Gab(x) ẋaẋb dt (3.51)

in the special case that V (x) = V0 is constant. We recognize this as just the proper length

of the image curve x(M) ⇢ N , which is the most geometrically natural action in d = 1.

With the action (3.48) the momentum conjugate to the field xa is

pa =
�L
�ẋa

=
1

|e|Gab(x)ẋb (3.52)

and consequently the Einstein equation (3.49) says that

Gab(x)papb + V (x) = 0 (3.53)

under canonical quantization pa ! �@/@xa this becomes

(�⌘ab@a@b + m2) (x) = 0 (3.54)

which is just the Klein–Gordon equation for a particle of mass m.

Let’s consider the case (N, G) = (Rn�1,1, ⌘) and V (x) = m2, a constant which plays

the role of a cosmological constant in our d = 1 universe. By inserting complete sets of

momentum eigenstates, we have

hy|e�HT/~|xi =

Z
dnp dnq hy|pi hp|e�HT/~|qi hq|xi

=

Z
dnp

(2⇡~)n
eip·(x�y)/~ e�T (p2+m2)/2

(3.55)

and so the path integral over the matter fields becomes
Z

CI [x,y]
Dx e�S[x]/~ =

Z
dnp

(2⇡~)n
eip·(x�y)/~ e�T (p2+m2)/2 . (3.56)

(An alternative way to obtain the same result is to write the flat space heat kernel (3.9) as

its inverse Fourier transform.)

If we’re doing quantum gravity, we should now integrate this expression over all possible

metrics on M , chosen upto di↵eomorphisms, which plays the role of gauge equivalence in

General Relativity.34 Under a general coordinate transformation t 7! t0(t) the worldline

metric

gtt(t) 7! g0
t0t0(t

0) =
dt

dt0
dt

dt0
gtt(t) =

✓
dt

dt0

◆2

gtt(t) . (3.57)

34In general for a gauge theory, we always take the path integral over the space of gauge fields considered

upto gauge transformations, as we’ll see in more detail in chapter ??.
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Thus we can always find a di↵eomorphism that rescales the value of the metric to anything

we like at each t. In particular, we are always free to choose g = � locally in one dimension.

However, we cannot quite erase all trace of the original metric, because the total volume

T =

Z

I
dt

p
gtt =

Z

I
dt0

p
gt0t0 (3.58)

is unchanged by di↵eomorphisms. (In fact, since there is no notion of curvature, this total

volume is the only invariant of a d = 1 Riemannian manifold.) Consequently, the space

Met(I)/Di↵(I) of metrics upto di↵eomorphism is simply the space of possible total lengths

of our worldline, or in other words all possible values T 2 [0, 1). Rather grandly, this is

known as the moduli space of Riemannian metrics on the interval I and, in this context,

the proper length T is sometimes known as a Schwinger parameter. Integrating the

result (3.56) of the matter path integral over this moduli space thus gives

Z 1

0
dT

Z
dnp

(2⇡~)n
eip·(x�y)/~ e�T (p2+m2)/2 = 2

Z
dnp

(2⇡~)n

eip·(x�y)/~

p2 + m2
(3.59)

which we recognise as (twice) the Euclidean space propagator D(x, y) for a scalar field �(x)

of mass m on the target space Rn. In other words, the position space propagator can be

written

D(x, y) =

Z

Met(I)/Di↵(I)

Dg

Z

CI [x,y]

Dx e�S[x,g]/~ (3.60)

as a path integral in worldline quantum gravity. Choosing more elaborate matter content

(e.g. fermions) for our worldline QFT similarly leads to propagators for particles of dif-

ferent spin in the target space (N, G). We’ll meet this way of thinking about field theory

propagators again in chapter 7, where we put it to work calculating propagators in the

presence of background fields.

Feynman realized that one could describe several such particles interacting with one

another if one replaced the worldline I by a worldgraph �. For example, to obtain a

perturbative evaluation of the r–point correlation function

h�(x1)�(x2) . . .�(xr)i

of a massive scalar field �(x) in ��4 theory on Rn, one could start by considering a 1–

dimensional QFT living on a 4–valent graph � with r end–points. This QFT is described

by the action (??), where x is constrained to map each end–point of the graph to a di↵erent

one of the � insertion points xi 2 Rn. We assign independent Schwinger parameters Te to

each edge e of the graph and take the path integral over all maps x : � ! Rn as well as

integrating over all the Schwinger parameters.

Part of what is meant by an ‘integral over all maps x : � ! Rn’ includes an integral

over the location in Rn to which each vertex of � is mapped. When we perform this

integral, the factors of eip·(x�y) in the path integral (3.56) for each edge lead a to target

space momentum conserving �–function at each vertex. As in (3.59), integrating over the

Schwinger parameters generates a propagator 1/(p2+m2) for each edge of the graph. Thus,
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after including a factor of (��)|v(�)| and dividing by the symmetry factor of the graph, our

1–dimensional QFT has generated the same expression as we would have obtained from

Feynman rules for ��4 on Rn.

For example, the 4–valent graph with two end–points shown here:

T1 T2

T3

x y
z

corresponds to the path integral expression

��
4

Z 1

0
dT1

Z

CT1 [x,z]
Dx e�S ⇥

Z 1

0
dT2

Z

CT2 [y,z]
Dx e�S ⇥

Z 1

0
dT3

Z

CT3 [z,z]
Dx e�S

=
��
4

Z
dnz

dnp

(2⇡)n

dnq

(2⇡)n

dn`

(2⇡)n

eip·(x�z)

p2 + m2

eiq·(y�z)

q2 + m2

ei`·(z�z)

`2 + m2

=
��
4

Z
dnp

(2⇡)n

dn`

(2⇡)n

eip·(x�y)

(p2 + m2)2 (`2 + m2)
.

(3.61)

This is the same order � contribution to the 2–point function h�(x)�(y)i that we’d obtain

from (Fourier transforming) the momentum space Feynman rules for ��4 theory, with the

graph treated as a Feynman graph in Rn rather than a one–dimensional Universe.

To obtain the full perturbative expansion of h�(x1)�(x2) · · ·�(xn)i we now sum over

all graph topologies appropriate to our 4–valent interaction. Thus

h�(x1)�(x2) · · ·�(xn)i =
X

�

(��)|v(�)|

|Aut�|

Z 1

0
d|e(�)|T

Z

C�[x1,x2,...,xn]
D� e�S�[�] , (3.62)

where |e(�)| and |v(�)| are respectively the number of edges and vertices of �.

Thus, the integral over the lengths of all the edges of our graph in (3.62) is best thought

of as an integral over the space of all possible Riemannian metrics on �, up to di↵eomor-

phism invariance. Furthermore, in summing over graphs � we were really summing over

the topological type of our one dimensional Universe. Notice that the vertices of our graphs

are singularities of the one–dimensional Riemannian manifold, so we’re allowing our Uni-

verse to have such wild (even non–Hausdor↵) behaviour. So for fixed lengths Te the path

integral over x(t) is the ‘matter’ QFT on a fixed background space �, while the integral

over the lengths of edges in � together with the sum over graph topologies is Quantum

Gravity.

This worldline approach to perturbative QFT is close to the way Feynman originally

thought about the subject, presenting his diagrams at the Pocono Conference of 1948. The

relation of this approach to higher (four) dimensional QFT as we usually think about it

was worked out by Dyson a year later, long before people used path integrals to compute

anything in higher dimensions. Above, we’ve described just the simplest version of this

picture, relevant for a scalar theory on the target space. There are more elaborate d = 1

QFTs that would allow us to obtain target space Quantum Mechanics for particles with
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spin, and we could also allow for more interesting things to happen at the interaction

vertices of our worldgraphs. In this way, one can build up worldline approaches to many

perturbative QFTs. This way of thinking can still be useful in practical calculations today,

and still occasionally throws up conceptual surprises, but we won’t pursue it further in this

course.

This picture is also very close to perturbative String Theory. There, as you’ll learn

if you’re taking the Part III String Theory course, the worldgraph � is replaced by a two

dimensional worldsheet (Riemann surface) ⌃, the d = 1 worldline QFT replaced by a d = 2

worldsheet CFT35. Likewise, the integral over the moduli space of Riemannian metrics on

� becomes an integral over the moduli space of Riemann surfaces, and finally the sum over

graphs is replaced by a sum over the topology of the Riemann surface. We know that the

worldgraph approach to QFT only captures some aspects of perturbation theory, and in

the following chapters we’ll see that deeper insight is provided by QFT proper. Asking

whether there’s a similarly deeper approach to String Theory will take you to the mystic

shores of String Field Theory, about which very little is known.

35CFT = Conformal Field Theory.
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