6 Symmetries in Quantum Field Theory

Physics of the 20" Century was largely driven by symmetry principles. Recognition that
the behaviour of some physical system was governed by the presence of a symmetry became
a key tool that was used to unlock the secrets of physics from hadronic interactions to
electroweak physics and the Standard Model, from superconductivity to Bose-Einstein
condensates. It’s therefore important to understand how symmetry principles arise in QF'T,
and what their consequences are for the correlation functions and scattering amplitudes
we compute.

6.1 Symmetries and conserved charges in the classical theory

We'll start from classical field theory. Recall that Noether’s theorem states that trans-
formations of the fields ¢ — ¢’ under which the Lagrangian changes by at most a total

9

derivative®® correspond to conserved charges. Let’s recall how to derive this.

We suppose we have a continuous family of transformations, such that infinitesimally
our fields transform as

¢"(x) = ¢ (x) = ¢"(x) + 66 (2) = ¢"(x) + € [ ($, 0ud) (6.1)

where €” are constant infinitesimal parameters labelling the transformation, and f# (¢, 0,¢)
are some functions of the fields and their derivatives. The transformation is local if each
of these functions f? depends on the values of the fields and their derivatives only at the
one point x € M, in which case you can think of the transformation as being generated by

the vector field 5

6¢(x)

acting on the infinite dimensional space of fields. The transformation (6.1) is a symmetry

€V, = /Md% g € f2(p,00) (6.2)

if the Lagrangian is invariant upto a possible total derivative, i.e.
5L(6,00) = Ou(¢"KY) (6.3)

for some spacetime vectors K}, because in this case the equations of motion will be unal-
tered.

59The Lagrangian changing by at most a total derivative means the classical field equations will be
unaffected. It’s possible for the field equations to be invariant under further transformations that do not
preserve the Lagrangian. For example, consider the Lagrangian
1 dxt dx* d*zt

L= im (5‘“,?? which gives eom oTE

=0

describing a free particle travelling on R™. The equations of motion are invariant under z* — 2’ = R*,z"
for any R € GL(n,R), but only if R € O(n) is this a symmetry of the Lagrangian. Symmetries of the eom
that do not come from symmetries of the Lagrangian are known as dynamical symmetries and are often
associated with integrable systems. They play an important role in QFT, though we will not discuss them
further in this course.
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Whatever the transformation, the change in the Lagrangian under (6.1) will be

oL oL
oL = 0% (x) + 0,,00%(x
s0()* ") gm0 ) 6
| L0 oL 5¢a+i oL 50 ’
" [56%(@) ~ a7 5(9,0%) oat [5@,0m " |
where 0¢% = € f%(¢, D), and so if this transformation is a symmetry we have
oL 0 oL 0 oL
— 0% + — 09 — 'Kt =0. 6.5
5~ ) o ™ ¢ (0
Defining the current J/ associated to a symmetry transformation by
oL
JI = ——=f(p,00) — KF 6.6
equation (6.4) shows that
Ty =0 (6.7)

along trajectories in field space that obey the classical equations of motion. Note that (6.5)
gives the divergence of the current even when the equations of motion are not obeyed.

Given a current, we define the charge @), corresponding to the transformation with
parameter € by

Q.[N] ::/N*JTZ/NJMn#\/gddlx. (6.8)

Here, N is any codimension-one hypersurface in M and n* is a unit normal vector to N (so
g(n,n) = 1 and g(n,v) = 0 for any v € TN), /g is the square root of the determinant of
the metric g on M, evaluated along N. Thus \/§dd*1x is the (d — 1)—dimensional volume
element on N. The classical statement that 0#.J,, = 0 has the important consequence that
the corresponding charge @, is conserved. To put this in a general context, suppose that
Np and N; are two hypersurfaces bounding a region M’ C M of our space. Then

Qr[Nl]—QT[NO]:/Nl *JT—/NO*JT:/E)MI*JT:/Mld*JT:O (6.9)

where the third equality is Stokes’ theorem and the final equality follows by the conservation
equation (6.7). Thus Q[N] depends on the choice of N only through its homology class.

For example, in canonical quantization of the worldsheet CFT in string theory, we
often choose M to be a cylinder S x [0, T]. The charges are then integrals

Qr = f*Jr (6.10)
of the currents J, around any cycle on the cylinder, while the statement that Q,[N;] =

Qr[No] becomes the statement that the charges are constant whenever we choose two
homologous cycles:
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No N;

A further important example takes the surfaces N g to be constant time slices of Minkowski
space—time:

I+

shown here in the Penrose diagram of R%3. The statement that Q,[Ni] = Q,[No] becomes
the statement that the charges @), are conserved under time evolution. In this case the
constant time slices Ny 1 are non—compact, so for our derivation to hold we should ensure
that the current j decays sufficiently rapidly as we head towards spatial infinity. This
also ensures that the integrals defining @, [Ny 1] converge. You should be familiar with the
relation between symmetries, conserved currents and charges from e.g. last term’s QFT
course, if not before.

6.2 Symmetries of the effective action

Our treatment of Noether’s theorem used the classical equations of motion to deduce that
the charge was conserved, and so needs to be re-examined in the quantum theory. Our
starting point is to understand how the path integral itself responds to a field transforma-
tions. Formally, the path integral measure changes as

D¢ = det @‘Z((;))) Do (6.11)

acquiring a Jacobian from the change of variables, and for an infinitesimal change of the

form (6.1) this Jacobian matrix is

017 (9, 00)

a rra __ sa dCC* € .
S (@ € 1(0.00) = 0% 8w —y) (612)
o thet 56/(2) 352(6,09)
oo (Saw ) = (5t ) (019
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where tr involves a trace over the flavour indices a, b as well as a functional trace over x
and y.

We'll be especially interested in infinitesimal transformation ¢ — ¢'* = ¢%+€” f2(p, D)
that leaves the product of the action and regularized path integral measure invariant, i.e.,

Dy e SN — Dy eSOl (6.14)

(In most cases, the symmetry transformation will actually leave both the action and measure
invariant separately, but the weaker condition (6.14) is all that is necessary.) Then the
partition function in the presence of a source J, for ¢* can be written

2l = [ Do exo |1 (8161+ [ n o @ate)]
oo x| (S04 [ n@e@ates [ nweso.00 i)

, (6.15)
- [0 (1 -5 [ @) 206,000 a ) o (ST61— Jag ata)
M
6T‘
=2) (1-5 [ n@ 52,00, dle s )
M
Hence, since all the parameters ¢ may be chosen independently,

[ ) (52(6,00)), a's =0 (6.16)
where the expectation value is taken in the presence of the source J, normalized so that
(LHy=1

We’d like to write this result in terms of the 1PI quantum effective action I'[®¢]. Recall
that this is the Legendre transform of W[J] = —h In Z, with J, conjugate to a field ®¢
and where J, is evaluated at @]

oT[®
Jao(y) = — 6.17
) =~ 50005 (6.17)

at which point (¢%) s, = ®*. At this value of J, (6.16) gives

_ a (SF[@] dl‘
0= [ (120,00, fgarsd (6.15)

which says that the effective action I'[®“] is invariant under the transformations
P &' = D" + " (f(,00)) Jp (6.19)

involving the expectation values of the transformations of the original, classical action.
These symmetries of the 1PI quantum effective action are known as Slavnov—Taylor
identities.
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A very important special case of all this is when the transformations that act linearly
on the fields, so

£0) = @)+ [ e @ ) dly+ 3 [ 09) 010+ () Ay

=)+ [ dand o)y
(6.20)
for some coefficients {c%(x),d?,(z,y)} with® d = e©) +3°(=1)™ma,,, - -- 9, e#1*#= . Under
such a linear transformation, the matrix € 6 f%(z)/d¢%(y) = €"d%,(x,y) appearing in the
Jacobian is field independent, at least formally. Thus, even if it does not vanish, it will not
affect any normalized correlation functions such as those appearing in the Slavnov-Taylor
identities. Furthermore,

D)) ga = () + /M 02 (2, 9) (6 () 12 A%y

= cbla)+ [ da)a) oy (6:21)
— f2(@).
Thus, if our symmetry transformation acts linearly on the fields, equation (6.19) becomes
ST
= (D, 0P d .22
0= [ fe@.0m) e e, (6:22)

so that these same transformations ®* — ®% + €" f2(P,d¢) are also symmetries of the
quantum effective action. This is not generally the case for symmetry transformations
which act non-linearly on the classical fields, because the expectation value of a non-
linear functional of the fields is not usually the same as the non—linear functional of the
expectation values.

The importance of this result is that if we know the quantum effective action is invariant
under the same symmetry as was the classical action, then it cannot have been possible
to generate terms which violate these symmetries through quantum effects such as loop
diagrams. For example, the classical action

2
Sle] = / %(805)2 + %& + %& dz (6.23)

is invariant under the Z, transformation ¢ — —¢. Provided we regularize in a way that
preserves this symmetry (so our regularization treats ¢ and —¢ equally) then we know
that I'|—¢| = I'[¢]. Perturbatively, we can indeed check that every Feynman graph one can
draw using the ingredients in (6.23) must have an even number of external legs, so indeed
no vertices with odd powers of ¢ can be generated in I'[¢]. As a second example, if we have
a theory of n scalar fields ¢* with action

2
S[¢"] = / %%b 0", 8" + %5@ 00" + Mdap ¢*¢")* d'a (6.24)

50We assume that either M is compact, or that appropriate boundary or asymptotic conditions are placed
on the ¢® and ef?""#™ % g0 that there is no boundary term here.
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that is invariant under ¢® — ¢'“ = “bqﬁb for R% € O(n). In this case, provided we choose
to regularize the ¢ in an O(n) invariant way, the path integral measure acquires a Jacobian

det <(;<Z:((;))> = det (5d(m ) Rab(a:))

which is field independent. The quantum effective action will thus also be O(n) invariant.

Further examples come from symmetries, such as rotations or translations, whose
action on the fields is induced from their action on M itself. For example, the SO(d)
transformation

D A o (6.25)

of M induce the transformations
Au(z) = Al () = (L), A (L) (@) = ' (x) = S%(L) P (L w)  (6.26)

of the photon and electron fields, where S(L) = exp(iL,,[Y",v"]/4) is the spinor represen-
tation of the SO(d). These transformations leave the QED action

Sqep[A, V] = /R ) [:EQF“”FW + (D +m)yp | da (6.27)

invariant, and are again linear in the fields. Thus we expect that the quantum effective
action will also be SO(d) invariant.

6.2.1 Regulators and symmetry

The results above are formal, in the sense that we have not yet said how to define the
infinite dimensional determinant

) oo (TUE09))
det ( 5qﬁb(y) or the trace t 5P 0W) .

To do so, as always we must first regularize to turn our path integral turning into a finite

dimensional integral. To what extent the results above carry through depends on how this
is achieved. In the simplest case, it may be possible to regularize the theory in a way
compatible with the classical symmetry. For example, if we regularize an SO(d) invariant
classical theory either by imposing a cut-off Ay on the eigenvalues of the SO(d) invariant
Laplacian —0"0,, acting on the fields, or perturbatively by working in d dimensions (perhaps
at the cost of gauge invariance), then the quantum effective action is indeed guaranteed to
be SO(d) invariant, even whilst we keep the regulator finite (e.g. even at finite Ag or in
d#4).

It’s also possible that, even though regulators which preserve the classical symmetry
exist, for some reason we choose to regularize in a way that violates the symmetry. (This
may be because the other regulator is particularly convenient, perhaps because it does pre-
serve some other symmetry that we consider to be more ‘important’, or else because we’re
simply unaware of the symmetry-preserving regulator.) In this case, the path integral mea-
sure will not respect the symmetry of the classical action, and neither the counterterms nor
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the regularized theory will be invariant. As an example, we may regularize the continuum
theory

St = [ 50600+ Vig)a's (6.28)

by replacing R? by a lattice A € R? with spacing a, replacing the action by

d ~ 2
sl = 3 (5 30 (P D) v (6.20)

a
x€EA n=1

that samples the field just at lattice points, and integrating over the values of ¢ at these
lattice points®'. In this case, with finite lattice spacing a the quantum effective action will
be invariant under the discrete subgroup G' C SO(d) corresponding to the symmetries of
the lattice, but there’s no reason to expect it to have full SO(d) invariance. Nonetheless,
as we'll see in more detail below, full SO(d) invariance is restored in the continuum limit.

Finally, it’s possible that no regularization procedure which preserves the classical sym-
metry exists. In this case, the classical symmetry is simply not present in the quantum
theory and is said to be anomalous. As an example, the conformal transformations

S — eQU(SW, Vodiz — e Vi dis, A e Ty (6.30)
Ap(x) = Au(2), @) = e () '
leave invariant the action
S[Aﬂﬂ = / |:12FNV w + &Ww d*z (6.31)
R4 46

of QED in four dimensions, where the charged fermion is taken to be massless. Neither our
imposition of a cut-off, nor our analytic continuation to d dimensions, nor the introduction
of a lattice preserve this conformal invariance and indeed it is broken in the quantum
theory: the S-function can be understood as measuring the conformal anomaly.

While true, the statement that the symmetry is anomalous if we cannot find any
regularization compatible with the symmetry is clearly unsatisfactory, as we haven’t yet
said how we can tell if such a regulator truly doesn’t exist, or whether our imagination
was simply too limited. A proper answer to this question takes us into considerations of
the geometry and topology of the space of fields, and was one of the original places where
theoretical physics made contact with differential topology such as the Atiyah—Singer index
theorem. Unfortunately, a sensible explanation of this beautiful subject lies beyond the
scope of this course. Nonetheless, it’s often easy to understand the source of such a failure
even from naive considerations. For example, we might define a metric on the space of

fields by
ds® = / Gap(d) 66 6 /g d%x
M

S1Here f1 is a unit basis vector of A. We’ve taken the original space to be a d-dimensional torus — or,
equivalently, imposed periodic boundary conditions on ¢ — so as to ensure there are only finitely many
lattice points.
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where ¢ : (M, g) — (N, G) is the field of a (non—)linear sigma model, or by

ds? = / t(84, 64,) g" /g d'a
M

in the case of a gauge theory. In each case, we could construct a path integral measure
from some regularization of the associated Riemannian measure on the space of fields. In
each case, we see that the metric — and hence the measure — on the space of fields depends
on a choice of metric on M and in particular depends on the conformal factor of g. Hence
there’s no reason to expect the quantum theory would be invariant under a change of this
conformal factor.

6.3 Ward—Takahashi identities

Closely related to the consideration of symmetries of the effective action is to consider
symmetries of correlation functions. Consider a class of operators whose only variation
under the transformation ¢ — ¢’ comes from their dependence on ¢ itself (such as scalar
operators under rotations). Such operators transform as O(¢) — O(¢'). At least on a
compact manifold M we have

/ Dpe MOy (¢(21)) -+ On((20)) = / D e SV Oy (¢ (21)) -+ On(¢ ()

- / Dpe N Oy(¢'(21)) - On(/ ()
(6.32)
The first equality here is a triviality: we’ve simply relabeled ¢ by ¢’ as a dummy variable in
the path integral. The second equality is non—trivial and uses the assumed symmetry (6.14)
under the transformation ¢ — ¢’. We see that the correlation function obeys

(O1(¢(1)) -+ On(@(xn))) = (O1(¢ (21)) - - On(¢ (zn))) (6.33)

so that it is invariant under the transformation. This is known as a Ward—Takahashi
identity, or often (and rather unfairly) just a Ward identity.

For example, consider the phase transformation
¢ =%, ¢ =e% (6.34)

that leaves the action

Sl¢] = /M £A6 A wdg + <V (6]) (6.35)

invariant. The path integral measure will be invariant under this symmetry provided we
integrate over as many modes of ¢ as we do of ¢. Correlation functions built from local
operators of the form O; = ¢"¢* must obey

(O1(21) -+ Op()) = €@ 2i=1573) (O (1) - - Op () - (6.36)

Considering different (constant) values of a shows that this correlator vanishes unless
>.;7Ti = »_;8i. The symmetry thus imposes a selection rule on the operators we can
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insert: only a product of operators that is (in total) invariant under the symmetry can
yield a non—zero correlator.

As a second example, suppose (M, g) = (R, §) and consider a space-time translation
x — 7’ = x — a where a is a constant vector. Under this translation, we have

¢(x) = ¢ (2) = p(z —a). (6.37)

If the action and path integral measure are translationally invariant and the operators O;
depend on x only via their dependence on ¢(x), then the Ward identity gives

(O1(x1) - On(xp)) = (O1(x — a) - - - Op(xy, — a)) (6.38)

for any such vector a. Thus, having carried out the path integral, we’ll be left with a
function f(x1,x2,...,2,) that depends only on the relative positions (x; —x;). Similarly, if
the action & measure are invariant under SO(d) transformations x — Lx then a correlation
function of scalar operators will obey

(O1(21) - - On(@n)) = (O1(La1) - - Op(Lan)) - (6.39)

Combining this with the previous result shows that the correlator can depend only on the
rotational (or Lorentz) invariant distances (z; — x;)? between the insertion points.

6.3.1 Current conservation in QFT

We can obtain more powerful constraints on correlation functions if our symmetry trans-
formation does not just preserve the action, but the Lagrangian density £(x) itself. This
means that the symmetry holds at each point * € M separately, not just when integrated
over M, which will be the case if K}, = 0 in (6.3). Suppose that ¢ = ¢' = ¢ + € f.(¢, 0¢)
is a symmetry of £(x) and the path integral measure when the infinitesimal parameters €”
are constant. To access the extra information in the fact that L£(z) itself is invariant, we
allow the parameters to vary (smoothly) over M, so €" — €"(x). As in Noether’s theorem,
the variation of the Lagrangian and path integral measure must now be proportional to
Ou€”, so

Z= [ DW= | Dp e 1— [ %, Ade"| +O(e 6.40
¢ e S/h S[e]/h d O(e?
M

to lowest order. Notice that the current here may include possible changes in the path
integral measure as well as in the action. The zeroth order term agrees with the partition
function on the left, so the first order term must vanish and we have

0= - /M £ n(2)) A de” = /M e (2)d + Go(2), (6.41)

if either OM = 0 or the fields decay sufficiently rapidly that there is no boundary contribu-
tion. For this to hold for arbitrary € we must have d * (j.(x)) = 0 so that the expectation
value of the current obeys a conservation law, just as in classical physics. (In the simple
case (M, g) = (R%,4), this is just the familiar 04 (j,,(z)) = 0.)
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We'’re now ready to obtain the more powerful constraints on correlation functions.
Consider a class of local operators that transform under ¢(z) — ¢(z) + € (z) f. (¢, 0¢) as

O(¢) — O(¢ + €5¢) = O(¢) + €"6,0 (6.42)

to lowest order in €"(z), where we've defined 6,0 = 00/9¢ f,(¢,0¢). Then, accounting
for both the change in the action and measure as well as in the operators,

/ DS ] 04(6a1) = / D! S T[ 0,6/ ()
i=1 =1

n n
:/'nge_s[d)]/h |:1 — / *7p N\ dET:| H Ol(l‘z) + ZET({L‘i) 57«Ol(l’l) H Oj(l‘j) + 0(62) .
M i=1 i=1 i

(6.43)
Again, the first equality is a triviality while the second follows upon expanding both
D¢’ e 51#1/1 and the operators to first order in the position-dependent parameters € (x).
The e-independent term on the rhs exactly matches the lhs, so the remaining terms must
cancel. To first order in € this gives

n n
/ € (z) Ad x <jr(x) 11 Oi(:ci)> ==Y <J(xi) 5:0i(zi) [ | oj(xj)> , (6.44)
M i=1 i=1 i

after an integration by parts®? Note that the derivative on the lhs hits the whole correlation
function.

We'd like to strip off the parameters €”(x) and obtain a relation purely among the
correlation functions themselves. To do this, we must handle the fact that the operator
variations on the rhs are located only at the points {z1,...,2,} € M. Choosing (M, g) =
(R4, §) for simplicity, we write

€ (x;) 6,04(x;) = /M 6z — z;) € (x) 6,04(x;) da

as an integral, so that all terms in (6.44) are proportional to € (x). Since these may be
chosen arbitrarily, we obtain finally®?

n n

M <jff(x) 11 o,-(g;i>> == 8z - ) <5T(9i(xi) 11 oj(:cj)> . (6.45)

i=1 i=1 j#i
stating that the divergence of a correlation function with an insertion of the current j'
vanishes everywhere except at the locations of other operator insertions. This is the mod-
ification of the conservation law 8, (j#'(z)) = 0 for the expectation value of the current

52We must either take M compact, or else ask that either €" (x) have compact support or impose suitable
boundary conditions on the fields so as to avoid any boundary terms in the integration by parts.
53The appropriate generalization to a Riemannian manifold (M, g) is

d * <jr(w)HOz‘(l’z‘)> == % Z5d(m — i) <5r(9i($i)H0j(fﬂj)> ;

i=1 J#i

where the exterior derivative on the lhs acts on x.
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itself. Again, note that the divergence is taken after computing the path integral. The
relation (6.45) is also known as a Ward-Takahashi identity. In particular, when M is
compact, integrating (6.45) over all of M gives

> <5Toi(g;i) 11 oj<g:j)> =0 (6.46)

i=1 j#i
which is just the infinitesimal version of our previous, global form of Ward—Takahashi

identity (6.33). However, the local version (6.45) contains far more information.

As an example, let’s consider the original use of the local form of the Ward—Takahashi
identity, which remains one of the most important. Consider the transformation

Yy =, e =geT, A e A =4, (6.47)
acting linearly on the electron and photon fields. For constant «, these are symmetries of
the QED action

1 y -
SQED [Aa ¢] = /d4$ |:4¢QFM Ful/ + w(W + m)w (6'48)

and the regularized path integral measure is also invariant under these transformations,
D) D)+ DY/ DY’ = D) D, (6.49)

provided we integrate over an equal number of 1) and v modes in the regularized theory.
Thus these transformations are indeed symmetries of the path integral.
As above, we promote « to a position—dependent parameter «(z) with

d(x) = @ pz), P d)e @ Ay (z) o Au(z) (6.50)

Although closely related, this is not a gauge transformation because the photon field A,
itself remains unaffected. The action is of course not invariant under this local transforma-
tion, but provided our regularized measure depends only on the fields (¢,1) and not their
derivatives, the measure will still be. Thus the only contribution to the current comes from
the action and one finds j* = i)py*4). This is just the charged current to which the photon
couples in QED.

For infinitesimal a(z) we have

(z) =ia(z)p(z),  o(z) = —i(z)a()

so the local Ward-Takahashi identity (6.45) for the correlation function (v (x1)w(z2)) be-
comes

Op (g () (21)(w2)) = —16%(x — 21) (W (21)(22)) +16%(x — 22) (W (w1)b(x2))  (6.51)

so that the vector f(z,z1,22) = (ju(x)¥(x1)Y(x2)) is divergence free everywhere except
at the insertions of the electron field. This identity is traditionally written in momentum
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space. We Fourier transform the two-point function of the electron field:

/d4x1 d4x2 elf1a1 g—ika a2 <¢($1)1Z($2)>

dlay dhag €M T2 (Y (21 — 22)(0))

/ (6.52)
/

Aty dlay v el (4 (y)2)(0))

(2m)4 6% (ky — ko) S(k1)

where the first equality follows from translational invariance of the correlation function,
and where

S(k) = / a6 (4 ()3 (0)) (6.53)

is the exact electron propagator in momentum space. As usual, we can represent this exact
propagator in terms of a geometric series

S(k) = - ¢+i/’_‘_‘./’+i/’_‘_'_?+...
1 1 1 1

N ST) S(#) S(K)

ik+m  if+m
1

if+m—2(k)’

ik+m  if+m it +m i +m (6.54)

where the electron self-energy () is the sum of all 1PT Feynman graphs with one
external ¢ and one external ¢ (both amputated).

The remaining term in the Ward identity (6.51) involves the electromagnetic current
Ju- In momentum space this becomes

/d4a: ey dhag €P® 171 ¢ K22 (f (1)) (0 )(22)
_ /d% Az das olP (z—22) Gik1-(z1-22) (i(p+k1—k2)-22 (Gu(x — zo)p(zy — 332)1;(0»

= (2m)* 0*(p + k1 — ko) S(k1)T k1, k) S (k2)

(6.55)
where the final line defines the exact electromagnetic vertex I',(ki,k2) in terms of
the Fourier transform of (j,¥) and the exact electron propagator. To understand this
definition, note that (¢(z1)j,(z)(x2)) will be given by the sum of all Feynman graphs
connecting the electron field insertions at x1 2 to the current at x. Recalling that j,, = lﬁ’mw’
we see that the leading contribution will simply come from a pair of propagators connecting
Y(r1) to ¥(x), and ¥ (z) to 1P(z2) respectively. Further contributions will come from
diagrams that correct each of these free propagators, turning them into the exact electron

propagators on each side; i.e.

(W(@1)ju(@)P(z2)) D (Y(@1)P (@) Y (@)Y (22)) - (6.56)
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These diagrams tell us nothing new about the vertez; they’re already part of the exact elec-
tron propagator. We thus include factors of S(k1) and S(k2) in our definition, accounting
for all such diagrams.

The remaining contributions are the ones we care about. They involve graphs that
connect the two exact electron propagators together in some way. For example, at leading
order, we have the diagram

(4

NUNAN

(8

where the red dots are the usual QED vertex —iei Ay while the purple dot denotes the
insertion of the composite operator j,(x). Noting the j, is the current to which the photon
couples, our picture includes an external photon line joining on to this vertex. This external
photon line makes clear that we are computing a correction to the QED vertex, though it
is not strictly part of the correlator ( juw@ and so should be amputated, as indicated by
the dotted line in the diagram. Loop diagrams such as these provide O(h) corrections to
the electron—photon vertex function, giving

Iy (K1, k2) = v, + quantum corrections, (6.57)

where the external fermion lines are amputated in I, as explained above.

Now let’s return to the Ward-Takahashi identity (6.51). Taking the Fourier transform
of the complete equation, in momentum space this reads

(k1 = k2)p S(k1)IH (K1, k) S(k2) = 1S(k1) — 1S (k) (6.58)

or equivalently
(k1 — ko), TH(k1, ko) = 1S (ko) — 1S (Ky) (6.59)

by acting with S~ (k;) on the left and S~!(k2) on the right. (Recall that these are matrices
in spin space.) The significance of this identity is that it relates quantum corrections to the
electron kinetic term | Y(P+m)1p d*z to quantum corrections to the electron—photon vertex
—ief&A@ZJ d*z = —ie [ j*A, d*z. The ‘inverse electron propagator’ S~!(k) is nothing but
the electron kinetic term in the quantum effective action, written in momentum space, and
the fact that the rhs of (6.51) involves the difference of these for the electron and positron
just cancels the mass term.
Differentiating (6.51) wrt ki and then taking the limit ki 2 — k gives

T,k k) = —182”5—1(1@) =y, + 132#2(;6) (6.60)
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showing indeed that the quantum corrections to the vertex are completely determined by
the quantum corrections to the fermion propagator. Evaluating this at & = 0 shows that the
quantum effective action renormalizes the complete covariant derivative term | WIp dia
together, whilst the & dependence in ¥(F) amounts to saying that higher derivative correc-
tions must always be of the form ~ 1) DP, again involving covariant derivatives. (You'll
explore this further in the problem sets.)

6.4 Emergent symmetries

As we saw in chapter 4, irrespective of the details of its microscopic origin, at low energies
a QFT is governed by the values of a relatively small number of relevant or marginal
couplings. These couplings correspond to relevant and marginal operators that (typically)
involve only a small number of powers of the fields or their derivatives. It’s often the
case that these few relevant and marginal operators are invariant under a wider range of
field transformations than a generic, irrelevant operator would be. The effects of irrelevant
operators are strongly suppressed at low energies, making it appear as though the theory
has the larger symmetry group. Thus, symmetry can be emergent in the low—energy
theory, even if not it is present in the microscopic theory.

As an example, consider a theory of electromagnetism coupled to several generations
of charged fermions, denoted v;, each with the same charge —e. We might imagine that 1,
describe the three generations of charged leptons in the Standard Model. The most general
Lorentz— and gauge—invariant Lagrangian we can write down for these fields that contains
only relevant and marginal operators is

1
»C[A7 7/%] = @ZS FWFMV

+ Z (Z1)ij Yri VL + (ZR)ij Yri DY Ri + Mijrivr; + Mijdribrs]
v (6.61)

h
where 1

1
Yri = 5(1 +75)¢i YR = 5(1 — ¥5)%i

are the left— and right-handed parts of the fermions, where Z3 and Zj r are possible
wavefunction renormalization factors for the photon®® for and leptons, and where M|, g
are lepton mass terms. For the Lagrangian (6.61) to be real, the matrices Zj, p must be
Hermitian, while their eigenvalues must be positive if we are to have the correct sign kinetic
terms.

If the wavefunction renormalization matrices (Z, r);; are non-diagonal then the form
of (6.61) suggests that processes such as 1)y — 11 + v are allowed, so that the absence of
such a process in the Standard Model would seem to indicate an important new symmetry.
However, this is a mirage. We introduce renormalized fields ¢ 5 defined by 1, = Spi}
and ¥Yrp = Spy¥pr. The Lagrangian for the new fields takes the same form, but with new
matrices

Zy =S171S,,  Zp=ShZrSr, M =SIMSg.

541t is conventional to denote the photon wavefunction renormalization factor by Zs.
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Now take Sy, to have the form S, = Uy, Dy, where Uy, is the unitary matrix that diagonalizes
the positive—definite Hermitian matrix Zy, and Dy, is a diagonal matrix whose entries and
the inverses of the eigenvalues of Zy,. Such an Sy, ensures that Z; = 1, and we can arrange
Zpr = 1 similarly. This condition does not completely fix the unitary matrix Uy, because if
Z; =1 then it is unchanged by conjugation by a further unitary matrix. We can use this
remaining freedom to diagonalize the mass matrix M. The polar decomposition theorem
implies that any complex square matrix M can be written as M = V H where V is unitary
and H is a positive semi—definite Hermitian matrix. Thus, we perform a further field
redefinition ¢, = S¢7 and ¥y = Sk with S = (S%)1VT and choose S}, to be the
unitary matrix that diagonalizes H.
In terms of the new fields the Lagrangian (6.61) becomes finally (dropping all the
primes)
L[A Y] = 4%223 F* Fuy + > [@riD¥ri + GrilPvri + mibrivri + mipritpri]
) b (6.62)
= 1323 F" Fu + ) i+ ma)i
(2

This form of the Lagrangian manifestly shows that the ‘new’ fields ; have conserved
individual lepton numbers. It’s easy to write down an interaction that would violate these
individual lepton numbers, such as Y;jkl@/;w“d)j @k%ﬂﬁl- However, all such operators have
mass dimension > 4 and so are suppressed in the low—energy effective action. Lepton
number conservation is merely an accidental property of the Standard Model, valid®® only
at low—energies.

Higher dimension operators can lead to processes such as proton decay that are impos-
sible according to the dimension < 4 operators that dominate the low—energy behaviour.
Thus, although such processes are highly suppressed, they are very distinctive signatures
of the presence of higher dimension operators. Experimental searches for proton decay put
important limits on the scale at which the new physics responsible for generating these
interactions comes into play. Sorting out the details in various different possible extensions
of the Standard Model is one of the main occupations of particle phenomenologists.

In fact, there are arguments to suggest that there are no continuous global symmetries
in a quantum theory of gravity. Certainly; there are no such continuous global symmetries
in string theory (though discrete global symmetries do exist). From this perspective, all
the continuous symmetries that guided the development of so much of 20" Century physics
may be low—energy accidents.

6.5 Low energy effective field theory

The concept of a symmetry being emergent under renormalization group flow is tremen-
dously powerful. In trying to construct low energy effective actions, we should simply

55In fact, certain non—perturbative processes known as sphalerons lead to a very small violation of lepton
number even in with dimension 4 operators. However the difference B— L between baryon number and lepton
number is precisely conserved in the Standard Model, yet is believed to be just an accidental symmetry.
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identify the relevant degrees of freedom for the system we wish to study and then write
down all possible interactions that are compatible with the expected symmetries. At low
energies, the most important terms in this action will be those that are least suppressed
by powers of the scale A. Thus, to describe some particular low—energy phenomenon, we
simply write down the lowest dimension operators that are capable of causing this effect.
Let’s illustrate this by looking at several examples.

6.5.1 Why is the sky blue?

As a first example, we’ll use effective field theory to understand how light is scattered by
the atmosphere. Visible light has a wavelength between around 400nm and 700nm, while
atmospheric Ny has a typical size of ~ 7 x 10~%nm, nearly a million times smaller. Thus,
when sunlight travels through the atmosphere we do not expect to have to understand all
the details of the microscopic No molecules, so we neglect all its internal degrees of freedom
and model the Ny by a complex scalar field ¢ so that excitations of ¢ correspond to creation
of an Ny molecule (with excitations of ¢ creating anti-Nitrogen). Importantly, because the
N> molecules are electrically neutral, ¢ is uncharged so D, ¢ = 0,,¢ and Nitrogen does not
couple to light via a covariant derivative.

The presence of the atmosphere explicitly breaks Lorentz invariance, defining a pre-
ferred rest frame with 4-velocity v = (1,0,0,0), so the kinetic term of the ¢ field is
i dix %ggu“@,iqﬁ showing that the field ¢ has mass dimension 3/2. The lowest dimension

gauge invariant couplings between ¢ and A, we can write down are

|p|*FH E,, and |p[2utu” F F
where we’ve allowed ourselves to use the preferred 4-velocity u”. In d = 4, each of these
interactions has mass dimension 7 so, schematically, the effective interactions responsible
for this scattering must take the form

St ol = [ ate[Fho 4 Footu- PP (6:63)

where the couplings g; 2(A) are dimensionless and A is the cut-off scale. In the case
at hand, the obvious cut—off scale is the inverse size of the Ny molecule whose orbital
electrons are ultimately responsible for the scattering. We expect our effective theory really
contains infinitely many further terms involving higher powers of ¢, F' and their derivatives.
However, on dimensional grounds these will all be suppressed by higher powers of A and
so will be negligible at energies << A. The ¢?F? terms themselves must be retained if we
want to understand how light can be scattered by ¢ at all.

Now let’s consider computing a scattering amplitude ¢ + v — ¢ + v using the the-
ory (6.63). The vertices ¢>F? and ¢?(u - F)? each involve two copies of ¢ and two copies
of the photon, so can both contribute to this scattering at tree—level. In particular, for go
we find the diagram
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k[ g2

¢ . ¢

Because the interaction proceeds via the fieldstrength F' rather than A directly, it involves a
derivative of each photon, bringing down a power of the photon’s momentum. For massless
particles such as the photon, |k| = w, so the amplitude A oc gaw?/A? and the tree-level
scattering cross—section takes the form

4
w
ORayteigh = [AI” < 63 15 (6.64)

characteristic of Rayleigh scattering. Loop corrections to this cross—section will involve
higher powers of the coupling g2/A? and so will be suppressed for photon energies < A.
Since the cross—section increases rapidly with frequency, blue light is scattered much more
than red light, so the daylight sky in a direction away from the sun appears blue.

Our treatment of the scattering using the simple effective action (6.63) is only justified
if w < A, where A was the inverse size of the N9 molecules responsible for the scattering
at a microscopic level. It will thus fail for photons of too high energy, or if the visible light
enters a region where the scattering is done by larger particles. In particular, as water
droplets coalesce in the atmosphere they can easily reach sizes in excess of the wavelength
of visible light. In this case the relevant scale A is the inverse size of the water droplet,
and (6.63) will be unreliable for light in the visible spectrum; there are infinitely many
higher order terms |¢|*" F2¢/M?5+37=4 (and also further derivative interactions) that will
be just as important. Thus there’s no reason to expect that higher frequencies will be
scattered more. Clouds are white.

6.5.2 Why does light bend in glass?

In vacuum, the lowest—order gauge, Lorentz and parity invariant action we can write for
the photon is of course the Maxwell action

1

Sl = 200 foon

d*z F"F, = E / dt d3z (eOE E-1B. B> (6.65)
4 Jraa Ko

where g is the magentic permeability of free space. For later convenience, we’ve written

this term out in non-relativistic notation, using ¢ = 1/ugeo to introduce the electric

permittivity €g in the electric term.

In the presence of other sources, we should add a new term to this action that describe
interactions between the photons and the sources. Low-energy effective field theory pro-
vides a powerful way to think about these new interaction terms. We suppose the degrees
of freedom we expect to be important at some scale A can be described by some field(s) @,
which may have arbitrary spin, charge etc.. Then in general we’d expect the new action
to be
S = Sy[A] + SR[A, @] (6.66)
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The Euler—Lagrange equations become
O"Fu = oy, (6.67)

where the current J,(z) := 65t /§ A¥(z) is defined to be the variation of the new interaction
terms. Together with the Bianchi identity ) F),,; = 0, these give Maxwell’s equations.

For example, consider a piece of glass. Glass is an insulator, so the Fermi surface lies in
a band gap. Thus, so long as the light with which we illuminate our glass has sufficiently
low—frequency, the electrons will be unable to move and the insulator has mo relevant
degrees of freedom. In this case, we must have Sint[A, ®] = Sins[A4], so the interaction
Lagrangian must be a sum of gauge invariant terms built from A. However, while the local
structure of glass is invariant under rotations and reflections, a lump of glass is certainly
not a Lorentz invariant as it has a defines a preferred rest frame. So in writing our effective
interactions, there’s no reason to impose Lorentz invariance. Thus for glass we should add
a term
Sintr4] = dtdgfvl(er-E—XmB-B—i—---) (6.68)
glass 2
where the dimensionless couplings y.(A) and xm(A) are respectively the electric and
magnetic susceptibilities of the glass. (Invariance under reflections rules out any E - B
term.) Higher—order polynomials in E, B and their derivatives are certainly allowed, but
by dimensional analysis must come suppressed by a power of the electron bang—gap energy
A. The field equations obtained from Sy + S¥* show that light travels through the glass
with reduced speed given by

e ()
glass (€O+Xe) 100 Xm | »

This leads to Snell’s Law at an interface and the appearance of bending.

Notice that our EFT argument doesn’t tell us anything about the values of xe or xum;
for that we’d need to know more about the microphysics of the silicon in the glass. However,
it does predict that integrating out the high energy degrees of freedom (the electrons in
the glass) will lead to an effective Lagrangian that at low—energies must look like (6.68).
Since E and B each have mass dimension +1, any higher powers of these fields would be
suppressed by powers of the energy scale required to excite electrons.

Similarly, a crystal such as calcium carbonate or quartz has a lattice structure that
breaks rotational symmetry. For such materials there is no reason for the effective La-
grangian to be rotationally symmetric, so we should expect different permeabilities and
permittivities for the different components of E and B:

1
Scrystal = /dt d31} 5 ((Xe)ijEiEj - (Xm)ijBiBj) . (6'69)

This leads to different speeds of propagation for the different polarization states of light,
resulting in the phenomenon of birefringence. (See figure 9.)
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© Dirk Wiersma/Science Photo Library

Figure 9: Ancient Viking texts describe a sdlarstei that could be used to determine the
direction of the Sun even on a cloudy day, and was an important navigational aid. It’s
believed that this sunstone was a form of calcium carbonate (CaCQOs), or calcite. Calcite is
birefringent, so different polarizations of light travel through it at different speeds, leading to
multiple imaging. Near the Arctic, sunlight is quite strongly polarized, with the polarization
reduced in directions away from the sun due to random scattering from the atmosphere.
Thus, by moving a calcite crystal around one can detect the direction of the Sun even when

obscured by clouds.

As we’ve emphasized above, the effective actions (6.68)-(6.69) are only the lowest—order
terms in the infinite series we obtain from integrating out high—energy modes corresponding

to the atoms in the glass or crystal. The next order terms take the schematic form%6

~ /dt &z [X;E“ + %B‘l + %EQBQ + %(aw + %(03)2

and on dimensional grounds will be suppressed by an energy scale A of order the excita-
tion energy of the insulating material. Such higher order terms lead to Euler-Lagrange
equations that are nonlinear in the electric and magnetic fields. We’d expect them to be-
come important as the energy density of the electric or magnetic fields grows to become
appreciable on the scale A. Indeed, we’ve seen an example of this in the Euler—Heisenberg
effective action for QED at energy scales much lower than the mass of the lightest charged
particle. Aside from breaking Lorentz invariance, the only role of the insulating material
here is to reduce the scale A to the effective mass of the lightest charge carrier — the band
structure of crystals means that this can be very much lower than the 511 keV electron
mass.

Such non-linear terms mean that a powerful laser will not pass directly through an
insulating material in a straight line, but rather will be scattered in a very complicated
non-linear way. Indeed this is observed (see figure 10) and is the starting—point for the
whole field of Nonlinear Optics.

56 Alternatively, we can take ¢ = ¢(E, B) and p = u(E, B) so that the permittivity and permeability are
themselves functions of the fields.
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Figure 10: Higher—order terms in the effective action lead to nonlinear optical effects such
as the generation of these harmonics from the incoming laserbeam on the left. Notice that
the scattered light has a higher frequency than the incoming red light. (Figure taken from
the Nonlinear Optics group at Universiteit Twente, Netherlands.)

6.5.3 Quantum gravity as an EFT

The final example of a low-energy effective field theory I'd like to discuss is General Rela-
tivity. Including (as we should) a cosmological constant A, the Einstein—Hilbert action for
General Relativity is

1
167GN

Sonla] = [ a5 | A+ (iRl (6.70)
where R(g) is the Ricci scalar. The cosmological constant has mass dimension 4 and so is
relevant (in fact, this is the most relevant operator of all). The Riemann tensor involves the
second derivative of the metric and so has mass dimension +2, showing that the Newton
constant Gy must have mass dimension —2 in four dimensions, as is well-known. If we work
perturbatively around flat space, writing ¢ = § + /Gxh so that the metric fluctuation h
has canonically normalized kinetic terms appropriate for a spin-2 field, then we will obtain
a positive power of the Newton constant Gy in front of all interactions ~ h3 and higher.
These interactions are thus all irrelevant.

Clearly, we require such metric interactions in order to account for experimental phe-
nomena (things fall down!). How is this compatible with our understanding of QFT? One
possibility is as follows. We know that it is perfectly possible (and indeed generic) for the
quantum effective action representing a continuum QFT to contain a (perhaps infinite)
number of irrelevant interactions, provided their coefficients are fixed in terms of the pa-
rameters governing the relevant and marginal interactions — in other words, we generate
irrelevant interactions as we move away from a critical point along a renormalized tra-
jectory. In the case of gravity, near the Gaussian fixed point (free, massless spin-2 field)
there are no relevant or marginal interactions, so the renormalized trajectory would just
stay as free theory. Thus, if this is the case, gravity must be controlled by some other,
strongly coupled critical point in the UV. This scenario goes by the name of asymptotic
safety. It’s an active topic of research, but I think it’s safe to say it’s a long shot. Another,
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in my opinion more likely, possibility is that Nature is telling us that GR simply isn’t a
fundamental, UV complete theory. New degrees of freedom are needed to make sense of
Planck scale physics — perhaps strings.

Nonetheless, GR makes perfect sense as a low—energy effective field theory. In this case,
we should expect that the Einstein—Hilbert action is just the first term in an infinite series
of possible higher—order couplings. Diffeomorphism invariance restricts these higher—order
terms to be products of the metric and covariant derivatives of the Riemann tensor, and
the first few terms are

S/e\ﬁ[g] = /d4:v\/—g [C()A4 + 1 AR+ 3 R? + ¢3 RM Ry, 4 ca RMPE Ry pr + - - } (6.71)

where the couplings ¢; are dimensionless. In fact, it can be shown that a linear combination
of the couplings co, ¢3 and ¢4 is proportional to the four—dimensional Gauss—Bonnet term
which is topological and does not affect perturbation theory.
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6.6 Charges, quantum states and representations

Let’s integrate the Ward identity over some region M’ C M with boundary M’ = N1 — Ny,
just as we studied classically. We'll first choose M’ to contain all the points {z1,...,z,}
so that the integral receives contributions from all of the terms on the rhs of (6.45). Then

n

(@) J] 0ita)) = (@INo] [T Os(wa)) = = 3 _(60i(wi) [ ] O5(2) (6.72)

i=1 i

where the charge Q[N] = |, v *j just as in the classical case. In particular, if M’ = M and
M is closed (i.e., compact without boundary) then we obtain

n

0="> (50i(z;) [ 0j(=))) (6.73)
i=1 i
telling us that if we perform the symmetry transform throughout space-time then the
correlation function is simply invariant, 6([ [, ©;) = 0. This is just the infinitesimal version
of the result we had before in (6.33).
On the other hand, if only one some of the x; lie inside M’, then only some of the

d-functions will contribute. In particular, if I C {1,2,...,n} then we obtain
(@QIN1] [T Oiw)) — (QINo) [] Oilwa)) = = (60i(ws) [] Os(=)) - (6.74)
i=1 i=1 icl ji

whenever x; € M’ for i € I. Only those operators enclosed in M’ contribute to the changes
on the rhs.

Note that the condition that M be closed cannot be relaxed lightly. On a manifold
with boundary, to define the path integral we must specify some boundary conditions for
the fields. The transformation ¢ — ¢’ may now affect the boundary conditions, which lead
to further contributions to the rhs of the Ward identity. For a relatively trivial example, the
condition that the net charges of the operators we insert must be zero becomes modified
to the condition that the difference between the charges of the incoming and outgoing
states (boundary conditions on the fields) must be balanced by the charges of the operator
insertions.

A much more subtle example arises when the space—time is non—compact and has
infinite volume. In this case, the required boundary conditions as |x| — oo are that our
fields take some constant value ¢y which lies at the minimum of the effective potential.
Because of the suppression factor e°l¢!, such field configurations will dominate the path
integral on an infinite volume space-time. However, it may be that the (global) minimum
of the potential is not unique; if V(¢) is minimized for any ¢ € M and our symmetry
transformations move ¢ around in M the symmetry will be spontaneously broken.
You’ll learn much more about this story if you’re taking the Part III Standard Model
course.
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