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Advanced Quantum Field Theory
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Please email me with any comments about these problems, particularly if you

spot an error. Problems with an asterisk (∗) may be more difficult.

1. Consider a scalar field φ with potential V (φ) = 1
2m

2φ2 + 1
6µ

ε/2g(µ)φ3 in dimension

d = 6 − ε. Here µ is an arbitrary mass scale introduced so that the coupling g(µ) is

dimensionless.

(a) Draw the one-loop 1PI graph which contributes to the propagator at order g2.

(b) Using dimensional regularisation, show that the divergent part of the corresponding

integral for the six dimensional theory is

−1

ε

g2

(4π)3

(
m2 +

1

6
p2
)
,

where p is the external momentum. Also compute the divergence corresponding

to the one particle irreducible one-loop graph that gives a g3 correction to three

point function, and find the one loop divergence for the one point function.

(c) Show that in six dimensions all these divergences may be cancelled by introducing

the counterterm action

Sct[φ] =

∫
Lct ddx =

1

ε

~
6(4π)3

∫ [
1

2
g2(∂φ)2 + µ−εV ′′(φ)3

]
ddx.

Check that Lct has dimension d.

(d) Determine the β-function for the coupling g and show that β(g) < 0 at small g.

Does the theory have a continuum limit in perturbation theory? Do you expect

this to survive non–perturbatively?

2. Scalar QED describes the interactions of a photon with a complex scalar field. In d

dimensions it is defined by the action

S[A, φ] =

∫ [
1

4
FµνFµν +

1

2
(Dµφ)∗Dµφ+

m2

2
φ∗φ

]
ddx

where Fµν = ∂µAν − ∂νAµ and Dµφ = ∂µφ+ ieAµφ.
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(a) Show that, not including counterterms, there are two distinct 1-loop Feynman

graphs that contribute to vacuum polarization in scalar QED. One of these dia-

grams leads to an integral that is independent of the external momentum. What

is its role?

(b) By considering vacuum polarization, show that when d = 4, the 1-loop β-function

for the dimensionless coupling g corresponding to the charge e is

β(g) =
g3

48π2

in the MS scheme. How does the theory behave at scales far below the mass of the

scalar?

3. Consider the theory of a real scalar field φ and massless fermionic Dirac spinor ψ, with

action

S[φ, ψ] =

∫ [
1

2
∂µφ∂

µφ+
1

2
m2φ2 + ψ̄/∂ψ + ig φψ̄γ5ψ +

λ

4!
φ4
]

d4x

in four dimensional Euclidean space, where ψ̄ = (ψ)†, the Dirac matrices obey {γµ, γν} =

2 δµν , (γµ)† = −γµ and likewise {γµ, γ5} = 0, (γ5)
2 = +id and (γ5)

† = −γ5.

(a) Show that the action is real and invariant under the global transformation

φ→ −φ ψ → eiπγ5/2ψ .

Assuming that the path integral measure is also invariant under this transforma-

tion, show that renormalization cannot generate any vertices involving odd powers

of the scalar field unless they are accompanied by an odd power of iψ̄γ5ψ, as in

the original action.

(b) What counterterms are necessary when studying the continuum limit of this the-

ory? Using dimensional regularization and the on-shell renormalization scheme,

evaluate these counterterms to 1-loop accuracy, and show that the physical ampli-

tudes are finite.

4. Furry’s theorem states that 〈Ãµ1(k1) · · · Ãµn(kn)〉 = 0 when n is odd, where Ãµ(k) is the

photon field in momentum space. It is a consequence of charge conjugation invariance.

(a) In scalar QED, charge conjugation swaps φ and φ̄. How must the photon field Aµ
transform if the action is to be invariant?

(b) Prove Furry’s theorem in scalar QED using the path integral.

(c) Does Furry’s theorem hold for off–shell photons with kµk
µ 6= 0?
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