
10 Interpreting Quantum Mechanics

In this final chapter, I want to explore the process of measurement in quantum mechanics.

According to the Copenhagen interpretation, when we perform a measurement the state

of the particle collapses onto an eigenstate of the corresponding operator, with the prob-

abiliity of different results being given by the Born rule (2.69). This entails a departure

from the unitary (and hence deterministic) time–evolution of our system as described by

Schrödinger’s equation. However, the Copenhagen interpretation does not tell us exactly

what physical process should count as a ‘measurement’: does the observer need to be alive?

to be human? to have taken PQM? Without such a prescription, how can we know when

it is appropriate to evolve our state as |ψ(t)〉 = U(t)|ψ(0)〉 and when instead it should

collapse?

A further problem with measurement is that the states we measure usually corre-

spond to what we consider to be ‘classically sensible’ quantities. This seems to imply that

measurements invovle a preferred choice of basis for the system’s Hilbert space. To give a

famous example, we are all familiar with living cats and dead cats, but no-one has ever seen

a cat that is simultaneously alive + dead. But why should quantum mechanics distinguish

the basis

{|alive〉, |dead〉} over

{ |alive〉+ |dead〉√
2

,
|alive〉 − |dead〉√

2

}
?

In this chapter, we’ll examine these issues from the perspective of decoherence. The

formalism I present here is completely standard, and indeed decoherence is an important,

well-established property of any quantum system. However, I should caution you that the

jury is still out on whether this finally resolves the infamous problems with measurement

in quantum mechanics.

10.1 The Density Operator

To get started, we must first realise that during a measurement, we cannot treat out

quantum system as being isolated. Any form of measurement requires that we bring the

system under study into contact with some form of measuring apparatus. Up to this point,

we’ve assumed that we know the precise quantum state our system is in. While this may

be possible for a small, isolated quantum system, we cannot possibly hope to know the

exact quantum state of a macroscopic measuring device, which may easily contain ∼ 1023

atoms. Thus, to talk about measurements, we first need a way to describe systems even

when we’re not sure which state they’re in. In fact, even in purely classical systems, there’s

always some uncertainty in our knowledge of the system: we never actually know the

momentum of a single particle with infinite precision even in classical mechanics, because

all our measurements are subject to some experimental error.

Let’s now see how to incorporate such imprecision in our knowledge into quantum

mechanics. Suppose we know only that our system is in one of the states {|ψα〉}, and that

the probability it is in state |ψα〉 is pα. It’s important to be clear that we’re not saying
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that system is in state

“ |Ψ〉 =
∑
α

√
pα|ψα〉 ” ,

because |Ψ〉 itself is a well–defined quantum state. Rather, we’re admitting that we don’t

know the true state of the system, which could be any of the states {|ψα〉}. Indeed, these

states do not need to form a complete set, and do not even need to be orthogonal, although

we will take them each to be correctly normalized 〈ψα|ψα〉 = 1 for each α.

In this case, the average result we obtain when measuring the value of some observable

Q is

Q =
∑
α

pα 〈ψα|Q|ψα〉 . (10.1)

This expression combines the quantum expectation value of Q in the state |ψα〉 (which

may not be an eigenstate of Q), together with our lack of knowledge of the system’s state,

represented by the pαs. For future use, it’ll be convenient to describe this using a density

operator ρ : H → H, defined by

ρ =
∑
α

pα|ψα〉〈ψα| (10.2)

where the pα are the probabilities introduced above. Then we can write the average (10.1)

as

Q = trH(ρQ) . (10.3)

(To see this, suppose {|qn〉} is a complete set of eigenstates of Q, with eigenvalues {qn}.
Using {|qn〉} as a basis for H we have

trH(ρQ) =
∑
n

〈qn|ρQ|qn〉 =
∑
n,α

pα〈qn|ψα〉 〈ψα|Q|qn〉

=
∑
n,α

pαqn|〈qn|ψα〉|2 =
∑
α

pα〈ψα|Q|ψα〉
(10.4)

as before.)

The density operator has the following three properties: First, it is an Hermitian

operator

ρ† = ρ , (10.5a)

reflecting the fact that the probabilities pα must be real. Second,

trH(ρ) = 1 (10.5b)

since the probabilities sum to one, and third

〈χ|ρ |χ〉 ≥ 0 for all |χ〉 ∈ H (10.5c)

since probabilities are non-negative. We often write this property as ρ ≥ 0 for short. In

fact, these three properties can be taken to be the defining properties of a density operator,

in the sense that any operator obeying these three properties is the density operator for
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some system. To see this, suppose the eigenvectors of ρ are |φr〉, with ρ|φr〉 = ρr|φr〉.
Then since ρ = ρ† we have ρr ∈ R. The remaining two properties tell us that

∑
r ρr = 1

and ρr ≥ 0. Any set of real numbers {ρr} obeying these conditions can be taken to be a

probability distribution for some system. Note that since the |φr〉 are eigenvectors of the

Hermitian operator ρ, they’re necessarily orthogonal, in contrast to the arbitrary set of

states we used in (10.2).

If we have perfect knowledge of our system, meaning ρ = |ψ〉〈ψ| so that with probability

1 the system is in state |ψ〉, then we refer to it as pure. Correspondingly, if our knowledge

of the state is incomplete, so that ρ =
∑

α pα|ψα〉〈ψα| with more than one pα > 0, we say

that the system is in an impure or mixed state. This terminology is somewhat misleading,

because it is really just our knowledge that is incomplete — the system itself is presumably

in some perfectly well–defined quantum state, it’s just that we don’t know which one.

The density operator and the operators for the Hamiltonian and other observables

encapsulate a complete, self–contained theory of quantum dynamics. If we have incomplete

knowledge of the system’s quantum state, then use of this formalism is mandatory. If we

do happen to know that our system is initially in the precise quantum state |ψ〉, we can

still use this apparatus by setting ρ = |ψ〉〈ψ|, rather than using the TDSE, though in this

case use of the density operator is optional.

10.1.1 The Bloch Sphere

As a simple example, consider a single spin-1
2 particle with {| ↑ 〉, | ↓ 〉} forming a basis of

H ∼= C2. If we know for sure that the system is in the state |↑ 〉, then

ρ = |↑ 〉〈 ↑ | .

However, if we think there’s only a 1
2 chance that the system is actually in state |↑ 〉, with

a 1
2 chance it might actually be in the state |↓ 〉, then

ρ =
1

2
|↑ 〉〈 ↑ |+ 1

2
|↓ 〉〈 ↓ | = 1

2
1H

In this case, the average value of the spin along any axis is trH(ρS) = 0 and we’ll see later

that having ρ proportional to the identity matrix means we’re maximally ignorant about the

state of our system. As a further example, let | ↑x 〉 denote the eigenstate Sx| ↑x 〉 = ~
2 | ↑x 〉

of spin up along the x-axis. Then if we think there’s probability 1
2 our system is in state

|↑ 〉 and probability 1
2 it’s in the (non-orthogonal) state |↑x 〉, then

ρ =
1

2
|↑ 〉〈 ↑ |+ 1

2
|↑x〉〈 ↑x |

=
1

2
|↑ 〉〈 ↑ |+ 1

4
(|↑ 〉+ |↓ 〉)(〈 ↑ |+ 〈 ↓ |)

=
1

4
1H +

1

2
|↑ 〉〈 ↑ |+ 1

4
|↑ 〉〈 ↓ |+ 1

4
|↓ 〉〈 ↑ |

where we’ve used the result | ↑x 〉 = 1√
2
(| ↑ 〉 + | ↓ 〉) from section 5.3.4. With this density

matrix, we find

Sx =
~
2

= Sz while Sy = 0 ,
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reflecting the fact that we’re more likely to have spin up than down along both the x and

z-axes, but know nothing about the spin along the y-axis.

More generally, since any 2×2 Hermitian matrix can be written as a linear combination

of the identity matrix and the the Pauli sigma matrices, we can write

ρ =
1

2
(1H + b · σ) (10.6)

for some vector b, where we’ve used the fact that trH(σ) = 0 and the condition trHρ = 1

to fix the overall factor. Since 1 = trHρ is the sum of it’s eigenvalues, at least one must

be positive. The other will also be non-negative (as required for their interpretation as

probabilities) if

det ρ =
1

4
(1− b · b) ≥ 0 . (10.7)

Hence (10.6) is a well-defined density operator for our two–state system provided

|b| ≤ 1 .

This condition is known as the Bloch Ball. Density matrices with |b| = 1 on the Bloch

Sphere correspond to pure states, where the system definitely has spin +~/2 along the b̂-

axis. On the other hand, states with |b| < 1 must have both eigenvectors strictly positive,

so there is no way to write such a density matrix as | ↑n 〉〈 ↑n | for any direction n. For both

mixed and pure states, the direction of b is said to define the polarization of the state: for

any b 6= 0, measurements of the spin will be preferentially aligned along b.

10.2 Entropy

For pure states, where ρ = |ψ〉〈ψ| for some |ψ〉, it’s easy to see that

ρn = ρ (pure states) (10.8)

provided |ψ〉 is normalized. If an impure density operator has pα = 0.99999999 for some

particular |ψα〉, with the remaining probability spread in some way among other states,

then although our knowledge of the system’s state is imperfect, the effects of the impurity

are likely to be negligible. On the other hand, if the density operator has pα ≤ 10−20 for

every α so that a tremendous number of states are equally probable, then our knowledge

of the true quantum state of a system is very poor indeed.

We’d like to have a way to quantify how much knowledge, or information, about a

state we have once the probability distribution {pi} has been specified. To achieve this,

define the von Neumann entropy S(ρ) associated to a density operator by

S(ρ) = −trH(ρ ln ρ) . (10.9)

If {|φr〉} are the orthonormal eigenvectors of ρ then we can write

ln ρ =
∑
r

ln(ρr)|φr〉〈φr| .
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Choosing any basis {|n〉} for H, we thus have

−trH(ρ ln ρ) = −
∑
n

〈
n

∣∣∣∣∣
(∑

r

ρr|φr〉〈φr|
)(∑

r′

ln(ρr′) |φr′〉〈φr′ |
)∣∣∣∣∣ n

〉
= −

∑
n,r

ρr ln(ρr) |〈φr|n〉|2 = −
∑
r

ρr ln(ρr)

(10.10)

in terms of the eigenvalues of the density operator.

Since 0 ≤ ρr ≤ 1, it’s easy to see from the form (10.10) that S(ρ) ≥ 0 with S(ρ) = 0

iff ρ describes a pure state, where only one of the ρrs is non-zero (and hence equal to 1)

as we have complete certainty about which state our system is in. We also claim that the

maximum value of S(ρ) is attained iff

ρ = ρmax =
1

dim(H)
1H . (10.11)

When ρ = ρmax all states are equally likely – meaning we have no idea about which state

our system is actually in. To see that this indeed maximises the entropy, use the method

of Lagrange multipliers to impose the constraint trH(ρ) = 1 and vary

S(ρ)− λ (trH(ρ)− 1)

with respect to the probabilities and Lagrange multiplier λ. At an extremum,

0 = −trH
[
δρ ln ρ+ ρρ−1δρ+ λ δρ

]
0 = δλ (trH(ρ)− 1) .

(10.12)

In the first line, we’ve used the fact that tr(ρ ρ−1δρ) = tr(ρ δρ ρ−1) inside the trace, so

the order of the variation in the logarithm doesn’t matter. These equations must hold for

arbitrary variations δρ and δλ, so the first tells us that

ρ = e−λ−11H . (10.13)

for some constant e−λ−1. Taking the trace, the second equation fixes the constant of

proportionality so that

ρ = ρmax =
1

dim(H)
1H , (10.14)

as claimed. The corresponding maximum entropy is

S(ρmax) = −trH (ρmax ln ρmax)

= −trH(1H)

dim(H)
ln(dim(H)−1) = ln dim(H) .

(10.15)

Because it was defined as a trace, S(ρ) doesn’t depend on which basis we use to describe

our Hilbert space.
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10.2.1 The Gibbs Distribution

One of the main uses of the density operator and von Neumann entropy is in Quantum

Statistical Mechanics. As an example, suppose we wish to extremize the entropy subject

to both trH(ρ) = 1 and trH(ρH) = U , saying that we know our system has a fixed average

energy U . Then using two Lagrange multipliers λ and β, at an extremum we have

0 = δ [S(ρ)− λ (tr(ρ) − 1)− β (tr(ρH)− U)] (10.16)

which gives the three conditions

0 = −trH [δρ (ln ρ+ 1 + βH + λ)]

0 = δλ (tr(ρ)− 1)

0 = δβ (trH(ρH)− U)

(10.17)

Since these must hold for arbitrary variations, the first equation gives

ρ = e−βHe−λ−1 . (10.18)

at a maximum of S(ρ) with fixed energy. The second two conditions just enforce our

constraints: to ensure trH(ρ) = 1 we must set eλ+1 = Z(β) where the constant

Z(β) = trH(e−βH) . (10.19)

is known as the partition function of our system. Thus, in a state of maximum entropy for

fixed average energy, the density operator takes the form

ρ =
1

Z(β)
e−βH =

1

Z(β)

∑
n

e−βEn |En〉〈En| , (10.20)

where in the final expression we have inserted a complete set of H eigenstates. This form

of density operator is known as the Gibbs distribution, It plays a fundamental role in

quantum statistical mechanics, as you’ll see next term. β is usually denoted 1/ kBT where

T is called the temperature and kB the Boltzmann constant. For fixed average energy U of

the system, the temperature is determined by the constraint trH(ρH) = U . In other words,

the temperature T is determined by the average energy of the system. You’ll work much

more with the density operator and entropy if you take the Part II Statistical Mechanics

course next term.

10.3 Reduced Density Operators

If our system comprises two (or more) identifiable subsystems A and B, then H = HA⊗HB
so the full Hilbert space is the tensor product of the Hilbert spaces of the subsystems. Recall

that a state |Ψ〉 ∈ HA ⊗HB is called entangled if it cannot be written as a single product

|φ〉 ⊗ |χ〉 of states |φ〉 ∈ HA and |χ〉 ∈ HB.

We’ll suppose A describes the system we’re really interested in, whilst B is the ‘en-

vironment’. That is, B describes the quantum state of everything in the Universe except
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our immediate object of study A. Of course, we can’t hope to know the precise quantum

state of B.

We’re going to be interested in the average value we obtain for measurements of a

quantity Q that is an observable purely of A, represented on the full Hilbert space by

Q⊗ 1B, when the whole Universe is described by a density operator ρAB. We have

Q = trHA⊗HB
(
(Q⊗ 1B) ρAB

)
= trHA(QρA) (10.21)

where we’ve used the fact that the traces can be performed independently. The second

equality introduces the reduced density operator ρA of subsystem A, defined by

ρA = trHB (ρAB) , (10.22)

taking the trace only over subsystem B.

The reduced density operator enables us to obtain expectation values of subsystem

A’s observables without bothering about the states of B. For example, suppose an atom

is situated in a low-intensity radiation field. Every so often, a photon comes along. This

photon may scatter off the atom, or be absorbed by the atom into an excited state which

subsequently decays re-emitting the photon, or may even cause the atom to be temporarily

ionized. If we wish to keep track of the whole system, then as more and more photons

interact with the atom, we’d need to use a larger and larger Hilbert space encompassing

further and further tensor products of the Hilbert spaces of individual photons. This is

inconvenient, to say the least. However, if we’re only really interested in the state of the

atom, it’s enough to keep track of the atom’s reduced density operator, which refers solely

to the Hilbert space of the atom.

10.4 Decoherence

We now show a very important result. Suppose the Universe itself is in a pure quantum

state, so that ρAB = |Ψ〉〈Ψ| for some state |Ψ〉 written as

|Ψ〉 =
∑
a,β

ca,β|a〉|β〉

in terms of orthonormal bases {|a〉} for A and {|β〉} for B. Then the reduced density

matrix ρA is

ρA = trHB
(
ρAB

)
= trHB

 ∑
a,a′,β,β′

ca,β ca′,β′ |a〉|β〉 〈a′|〈β′|


=
∑
a,a′

Ca,a′ |a〉〈a′| ,
(10.23)

where now

Caa′ =
∑
β

ca,β ca′,β . (10.24)

If the original state |Ψ〉 was simple, so that (say) the ca,β are non–zero only for a single

value of β, for which ca,β = ca, then Caa′ = caca′ with no sum. Then (10.23) is a pure

– 150 –



density operator for the state |φ〉 =
∑

a ca|a〉. However, if |Ψ〉 is a more general, entangled

state then the sum in (10.24) means that ρA is the density operator for a mixed state.

For example, suppose our Universe consists of just two spin-1
2 particles, prepared in

the pure but entangled state

|ψ〉 =
1√
2

(
|↑↓ 〉 − |↓↑ 〉

)
where |↑↓ 〉 = |↑ 〉|↓ 〉 etc.. The associated density operator is

ρAB = |ψ〉〈ψ|

=
1

2

(
|↑↓ 〉〈 ↑↓|+ |↓↑ 〉〈 ↓↑| − |↑↓ 〉〈 ↓↑| − |↓↑ 〉〈 ↑↓|

)
.

(10.25)

Tracing over the second spin gives the reduced density operator

ρA = trHB
(
ρAB

)
=

1

2

(
|↑ 〉〈 ↑ |+ |↓ 〉〈 ↓ |

)
=

1

2
1A (10.26)

which is mixed, and indeed the state of maximum entropy.

Although we won’t prove this here, the von Neumann entropy (10.9) obeys

S(ρAB) ≤ S(ρA) + S(ρB) (10.27)

where ρA and ρB are the reduced density matrices for the two subsystems. The equality

is saturated if and only if the two subsystems are uncorrelated (unentangled) so that

ρAB = ρA ⊗ ρB. This property is known as subadditivity and it tells us that the entropy of

a whole is no greater than the sum of entropies of its parts. It follows from subadditivity

that if H = HA ⊗HB ⊗HC then

S(ρABC) ≤ S(ρA) + S(ρBC) ≤ S(ρA) + S(ρB) + S(ρC) (10.28)

but in fact something stronger is true: we have

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) (10.29)

which is known as strong subadditivity and was proved in 1973 by Elliott Lieb and Mary

Beth Ruskai. To interpret it, we consider AB and BC are each subsystems of ABC, with

AB ∩ BC = B. Strong subadditivity states that the entropy of the whole is no greater

than the entropies of the overlapping subsystems AB and BC, even when the entropy of

the overlap B is removed.

10.5 Time Evolution of Density Operators and Reduced Density Operators

In the Schrödinger picture, states evolve in time according to

|ψ(t)〉 = U(t)|ψ(0)〉 (10.30)

where U(t) = e−iHt/~ in the case that the Hamiltonian itself is time–independent. This

implies that the density operator evolves (like any other operator) as

ρ(t) = U(t)ρ(0)U−1(t) , (10.31)
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Figure 19: Strong subadditivity of the von Neumann entropy.

or

i~
dρ

dt
= U(t)(Hρ(0)− ρ(0)H)U−1(t) = [H, ρ(t)] (10.32)

infinitesimally. This is the quantum analogue of Liouville’s equation dρ/dt = {H, ρ} in

Classical Dynamics, which governs the time evolution of a probability density ρ on phase

space. In particular, if the density operator can be written purely in terms of the Hamil-

tonian then it is time–independent. The Gibbs ensemble we obtained above is a good

example.

To obtain the time evolution of an arbitrary expectation value (of a quantity that has

no explicit time dependence in the Schrödinger picture) we use (10.32) to find

i~
d

dt
trH(ρQ) = trH ([H, ρ]Q) = trH(ρ [Q,H]) (10.33)

where the last equality uses the cyclicity of the trace. We know from before that the rate of

change of the expectation value of Q in any pure quantum state is given by the expectation

value of [Q,H]/i~. Equation (10.33) states that – even when our knowledge of the quantum

state is imprecise – the expected rate of change of Q is the appropriately weighted average

of the rates of change of Q for each of the possible states of the system.

Let’s now consider how the reduced density operator evolves. Suppose that at t = 0

both A and B start in pure quantum states |φ〉 and |χ〉, respectively. Initially then,

ρAB(0) = |Ψ0〉〈Ψ0| (10.34)

where

|Ψ0〉 = |φ〉|χ〉 , (10.35)

so that the two systems are unentangled. The whole system will evolve unitarily in time

via the operator UAB(t) built from the Hamiltonian of the full system. This means that

the reduced density operator for system A evolves as

ρA(t) = trHB
(
UAB(t)|Ψ0〉〈Ψ0|U−1

AB(t)
)

=
∑
β

〈β|UAB(t)|Ψ0〉 〈Ψ0|U−1
AB(t)|β〉 (10.36)

– 152 –



where we’re using the orthonormal basis {|β〉} of HB to perform the trace.

We’re motivated to define operators Mβ(t) : HA → HA by

Mβ(t) = 〈β|UAB(t)|χ〉 = trHB
(
UAB(t)|χ〉〈β|

)
, (10.37)

where we not that this is an operator acting on HA since we’ve used the time evolution

operator UAB(t) for HA ⊗ HB. Since UAB(t) is unitary, the Mβ(t)s obey a completeness

relation ∑
β

M †β(t)Mβ(t) =
∑
β

〈χ|〈β|UAB(t)|χ〉 = 1A (10.38)

provided |χ〉 was properly normalized. Putting all this together,

ρA(t) =
∑
β

Mβ(t)ρA(0)M †β(t) (10.39)

is the evolution of the reduced density matrix.

In the exceptional case that the full Hamiltonian does not couple A and B, so that

H = HA ⊗ I + I ⊗HB and UAB(t) = UA(t)⊗ UB(t), we have

Mβ(t) = 〈β|UB(t)|m〉 UA(t) .

The completeness relation then shows that

ρA(t) = UA(t)ρA(0)U−1
A (t) . (10.40)

Thus, if A starts in a pure state and it does not interact with the environment then it will

remain in a pure state. However, in every realistic case, subsystems are coupled to each

other — however weak, there is some term HAB in the Hamiltonian that is not diagonal

with respect to the splitting HA ⊗ HB. In the presence of an interaction term HAB, the

time evolution operator is not generically a product of the time evolution operators of the

two subsystems, and states of A and B will typically become entangled, leading to ρA(t)

describing a mixed state at some later time t.

In general, interactions between an experimental system and the wider environment

mean that the state of the whole Universe rapidly becomes entangled. Since we don’t keep

track of all the details of the environment, sooner or later we’re obliged to describe our

experimental system by its reduced density operator, which will be impure. The tendency

for subsystems to evolve from pure quantum states to impure states through interactions

with the environment is known as quantum decoherence. Trying to isolate a system from

the environment so as to prevent it from becoming impure is one of the main challenges to

be overcome in building a practical quantum computer.

10.5.1 Decoherence and Measurement

We’re at last ready to explore what all this has to do with measurements in quantum

mechanics.

Let’s suppose our system A consists of a single qubit, either |↑ 〉 or |↓ 〉. To keep things

simple we’ll imagine the environment (or measuring apparatus) has only three possible
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states, |0〉, |1〉 and |2〉. An ideal measurement will change the state of the measuring

apparatus without affecting the system A under study. Let’s suppose the measurement

process is described via evolution by a unitary operator U , representing the usual evolution

of the system and apparatus by a coupled Hamiltonian. We suppose our apparatus is

designed in such a way that U is defined by80

U |↑ 〉 ⊗ |0〉 = |↑ 〉
(√

1− p |0〉+
√
p |1〉

)
U |↓ 〉 ⊗ |0〉 = |↓ 〉

(√
1− p |0〉+

√
p |2〉

)
.

(10.41)

In other words, the apparatus starts in the ‘quiescent’ state |0〉. When we bring it into

contact with our system A, the apparatus changes its state with probability p, becoming

|1〉 if A is in ↑ 〉, or |2〉 if A is | ↓ 〉. The apparatus is not perfectly efficient, so stays in the

quiescent state with probability 1− p.
Now let’s suppose the system A is initially described by some density matrix

ρA =

(
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

)

For this evolution, we have

M0 = 〈0|U |0〉 =
√

1− p 1A

M1 = 〈1|U |0〉 =
√
p |↑ 〉〈 ↑ |

M2 = 〈2|U |0〉 =
√
p |↓ 〉〈 ↓ |

(10.42)

and these indeed obey
∑

βM
†
βMβ = 1A. Contact with our measuring apparatus thus causes

ρA to evolve as

ρA =

(
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

)
7→
(

ρ↑↑ (1− p)ρ↑↓
(1− p)ρ↓↑ ρ↓↓

)
, (10.43)

suppressing the off–diagonal components. These off-diagonal components encode possi-

ble superpositions between | ↑ 〉 and | ↓ 〉, so as our system becomes entangled with the

measuring apparatus, we’re less likely to find it in such a superposition.

Let’s go further and look at successive evolution. The probability the apparatus

changed away from the quiescent state during one measurement period was p, so if we

suppose this measurement took a short time δt, then we can a rate Γ = p/δt. After a total

time t = Nδt, the off–diagonal terms will thus be suppressed by

(1− p)n =

(
1− Γ

t

N

)N
≈ e−Γt (10.44)

for large N . In particular, if we initially prepare A to be in the superposition

|ψ〉 = a|↑ 〉+ b|↓ 〉 where |a|2 + |b|2 = 1

80By assigning appropriate values to U acting on |1〉 and |2〉, this U can indeed be completed to a unitary

operator (exercise!).
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then eventually, A’s density matrix will become

lim
t→∞

ρA(t) = lim
t→∞

(
|a|2 ab e−Γt

ab e−Γt |b|2

)
=

(
|a|2 0

0|b|2

)
.

This is sometimes called phase damping, because the late–time density matrix only has

real entries.

Now we come to the punchline. What exactly was it that made our measurement cause

A to evolve into either | ↑ 〉 or | ↓ 〉, but not a superposition? Clearly, this must have had

something to do with our choice of U in (10.41). To get an idea, let’s imagine the two–

state system A actually corresponds to a dust particle which can sit either at x0 or x1. The

measuring apparatus may be a photon which, with probability p, can scatter into a different

direction, depending on where the dust is located. The fact that U is defined wrt to the

preferred basis |↑ 〉 = |x0〉 and |↓ 〉 = |x1〉 then corresponds to the fact that the interactions

are local: The interactions we can described between the dust and photons will be built out

of operators such as Xdust, so decoherence will take place in the basis {|x0〉, |x1〉} where

the dust particle has a definite location, rather than the
(
|x0〉 ± |x1〉

)
/
√

2 basis.

Locality of interactions is one of the key features of all physical laws, and has deep–

rooted origins in quantum field theory. Combined with decoherence, many physicists be-

lieve81 that this explains why we see cats either in the state |alive〉 or the state |dead〉, but

never
(
|alive〉+ |dead〉

)
/
√

2.

10.6 Quantum Mechanics or Hidden Variables?

Einstein was never happy with the probabilistic nature of quantum mechanics. He, Podol-

sky and Rosen devised a thought experiment that they hoped would show quantum me-

chanics was incomplete as a theory of Nature.

In the EPR thought experiment, an electron and a positron82 are produced in a state

with net spin 0, perhaps by the decay of some nucleus from a spin-0 excited state to a

lower spin-0 state. The electron and positron travel in opposite directions, each carrying

the same amount of momentum. At some distance from the decaying nucleus Alice detects

the electron and measures the component of its spin in a direction a of her choice. Since

electrons have spin-1
2 , Alice inevitably discovers either +~/2 or −~/2. Meanwhile Bob,

who is sitting at a similar distance on the opposite side of the nucleus, detects the positron

and measures its spin in some direction b of his choice.

We’re free to choose the z-axis to be aligned with Alice’s direction a. Since the electron–

positron system has combined spin zero, it must be in the state

|EPR〉 =
1√
2

(|↑ 〉|↓ 〉 − |↓ 〉|↑ 〉) (10.45)

81The matter is still not fully resolved. The leading proponents of the ‘measurement=decoherence’

paradigm are H.D. Zeh and W. Zurek, see for example Zurek, W., Quantum Darwinism, Nature Physics 5(3),

181 (2009) for a review. Prominent opponents include R. Kastner, see e.g. Kastner, R., Stud. Hist. Phil. Sci-

ence B48 56 (2014).
82Here we’ll describe a slightly sharper version of EPR’s original thought experiment, due to Bohm. The

positron is the antiparticle of the electron, predicted in the relativistic theory by Dirac’s equation. It has

the same mass and spin as an electron, but opposite sign electric charge.

– 155 –



that entangles the separate spins of the electron and positron. We’ll call this the EPR

state. According to the Copenhagen interpretation, when Alice measures +~/2 for the

electron spin, the system collapses into the state

|ψ′〉 = |↑ 〉|↓ 〉 . (10.46)

Thus, whilst before Alice’s measurement the amplitude for the positron to have spin +~/2
along a was 1/2, after she has measured the electron spin, there is no chance that the

positron also has spin up along the same axis.

The state of the positron corresponding to definitely having spin +~/2 along the b-axis

is

|↑b〉 = cos

(
θ

2

)
e−iφ/2|↑ 〉+ sin

(
θ

2

)
eiφ/2|↓ 〉 (10.47)

as we found in the second problem sheet, where θ = cos−1(a · b) and φ is the azimuthal

angle around ẑ = â. Given that after Alice’s measurement the positron is certainly in state

|↓ 〉, it follows from (10.47) that the probability Bob measures spin up along b is

|〈 ↑b |↓ 〉|2 = sin2

(
θ

2

)
. (10.48)

In particular, there is only a small probability he would find spin-up along a direction

closely aligned with Alice’s choice a.

We’ve supposed that Alice measures first, but if the electron and positron are far apart

when the measurements are made, a light signal sent to Bob by Alice when she makes

her measurement would not have arrived at Bob by the time he makes his measurement,

and vice versa. In these circumstances, relativity tells us that the order in which the

measurements appear to be made depend on the velocity of the observer who is judging

the matter. Consequently, for consistency the predictions of quantum mechanics must be

independent of who is supposed to make the first measurement and thus collapse the state.

This condition is satisfied by the above discussion, since the final probability depends only

on a · b and is thus symmetric between Alice and Bob.

What bothered EPR is that after Alice’s measurement there is a direction (a) along

which Bob can never find +~/2 for the positron’s spin, and this direction depends on what

exactly Alice chooses to measure. This fact seems to imply that the positron somehow

‘knows’ what Alice measured for the electron, and the collapse of the entangled wavefunc-

tion
1√
2

(|↑ 〉|↓ 〉 − |↓ 〉|↑ 〉) −→ |↑ 〉|↓ 〉

apparently confirms this suspicion. Since relativity forbids news of Alice’s work on the

electron from influencing the positron at the time of Bob’s measurement, EPR argued that

the required information must have travelled out in the form of a hidden variable which

was correlated at the time of the nuclear decay with a matching hidden variable in the

electron. These hidden variables would then explain the probabilistic nature of quantum

mechanics — QM would contain no uncertainties once replaced by a ‘better’ theory taking

into account these hidden variables.
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10.6.1 Bell’s Inequality

Remarkably, Bell was able to show that the predictions of any theory of hidden variables

are in conflict with the predictions of quantum mechanics.

Suppose we assume that the result of measuring the electron’s spin in the a-direction

is completely determined by the values taken by hidden variables in addition to a. We

suppose there are n such hidden variables, so that the result of measuring the electron’s

spin is a function

se : R3 × Rn →
{
−~

2
,+
~
2

}
(10.49)

that returns either +~/2 or −~/2, depending only on the direction a ∈ R3 along which we

measure the spin and the values v ∈ Rn of the hidden variables carried by the electron. In

other words, if Alice knew the value of the hidden variable v ∈ Rn, we could predict with

certainty the result of measuring the component of the electron’s spin along any direction

a. Alice is only uncertain of the outcome because she does not know the values of the

hidden variables. Similarly, the result of measuring the positron’s spin along b is some

function sp(b,v). We have

se(a,v) + sp(a,v) = 0 (10.50)

by conservation of angular momentum.

Let’s suppose that v has a probability distribution p(v), such that the probability dP

that v lies in the infinitesimal volume dnv is

dP = p(v) dnv . (10.51)

Then the expectation value of interest is

〈se(a,v) sp(b,v)〉 =

∫
p(v) se(a,v) sp(b,v) dnv

= −
∫
p(v) se(a,v) se(b,v) dnv .

(10.52)

Now suppose Bob sometimes measures the spin of the positron parallel to b′ rather than

b. The fact that sp(b,v)2 = ~2
4 allows us to write

〈se(a,v) sp(b,v)〉 − 〈se(a,v) sp(b′,v)〉 = −
∫
p(v) se(a,v) [sp(b,v)− sp(b′,v)] dnv

= −
∫
p(v) se(a,v) se(b,v)

[
1− 4

~2
se(b,v) se(b

′,v)

]
dnv .

(10.53)

The expression [1 − 4se(b,v)se(b
′,v)] is non–negative, while the product se(a,v) se(b,v)

fluctuates between ±~2/4. Hence we obtain the bound

∣∣〈se(a,v) sp(b,v)〉 − 〈se(a,v) sp(b′,v)〉
∣∣ ≤ ~2

4

∫
p(v)

[
1− 4

~2
se(b,v) se(b

′,v)

]
dnv

=
~2

4
− 〈se(b,v) sp(b′,v)〉

(10.54)
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This is Bell’s inequality. It must hold for any three unit vectors a, b and b′ if the proba-

bilistic nature of QM really comes from some underlying hidden variables.

We now show that quantum mechanics itself violates Bell’s inequality. To do this, we

must treat the spins as operators and compute their expectation values in some state, and

we’ll choose the EPR state (10.45). Because |EPR〉 has total spin zero, it obeys

(Se ⊗ 1p + 1e ⊗ Sp)|EPR〉 = 0

so that we always find the spin of the electron and positron to be anti-aligned whenever we

measure them along any one given axis, no matter in which direction this is. In particular,

this allows us to write(
a · Se ⊗ 1p

)(
1e ⊗ b · Sp

)
= −

(
a · Se ⊗ 1p

)(
b · Se ⊗ 1p

)
= −(a · Se b · Se)⊗ 1p

(10.55)

when acting on |EPR〉. For any (single) spin-1
2 particle, the spin operator obeys

a · S b · S =
~2

4
a · b +

i~
2

(a× b) · S .

Therefore

〈a · Se b · Sp〉EPR = −~
2

4
a · b− i~

2
(a× b) · 〈Se〉EPR . (10.56)

Finally, we note that the expectation value of the electron’s spin

〈EPR|Se ⊗ 1p|EPR〉 = 0

along any axis. This is clear for the z-axis, but since |EPR〉 has no preferred direction it

must be true of the other directions also. Thus we find that the EPR state obeys

〈a · Se ⊗ b · Sp〉EPR = −~
2

4
a · b (10.57)

for any two directions a and b. Using this correlation in either side of Bell’s inequality we

find

LHS =
~2

4
|a · (b− b′)| whereas RHS =

~2

4
(1− b · b′)

In particular, suppose a and b are unit vectors, with a · b = 0 and b′ = b cosα + a sinα.

Then we find

LHS =
~2

4
| sinα| whereas RHS =

~2

4
(1− cosα)

and it’s easy to see that Bell’s inequality is violated for all α 6= 0, π/2. The predictions of

quantum mechanics are thus inconsistent with the existence of hidden variables.
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10.6.2 The CHSH Inequality

There’s a slightly simpler context in which we can see the essentials of the conflict between

quantum probability and hidden variables theories, discovered by Clauser, Horne, Shimony

& Holt.

Suppose Alice and Bob are each sent a two-state system as in the EPR experiment.

Alice chooses to measure one of two possible observables, either A1 and A2. Similarly, Bob

can choose to measure either B1 or B2. To keep things simple, let’s assume that there

are only two possible outcomes, +1 and −1, for the result when measuring any of the four

quantities Ai or Bi. We’ll require that

[Ai, Bj ] = 0 for i = 1, 2

so that the measurement Alice makes does not interfere with the one made by Bob. How-

ever, we do not require that either [A1, A2] = 0 or [B1, B2] = 0.

Now consider the observable

C = (A1 +A2)B1 + (A1 −A2)B2 . (10.58)

In a hidden variable theory, the outcomes of measuring the Ai or Bj would be entirely

determined by the value v of some hidden variables carried by the state, so we’d have

functions

ai : Rn → {+1,−1} and bj : Rn → {+1,−1} . (10.59)

The average value of C in a hidden variable theory is

〈C〉 =

∫ ([
a1(v) + a2(v)

]
b1(v) +

[
a1(v)− a2(v)

]
b2(v)

)
p(v) dnv , (10.60)

where again p(v) is the probability density for the hidden variables. Since each ai(v) can

take only the values ±1, either v is such that the outcomes of A1 and A2 are different, in

which case

a1(v) + a2(v) = 0 while a1(v)− a2(v) = ±2 ,

or else the value of v ensures that the outcomes of A1 and A2 are the same, so that

a1(v)− a2(v) = 0 while a1(v) + a2(v) = ±2 .

Thus, whatever the value of v, only one of the two terms in the integral (10.60) can be

non-zero. Multiplying the non-zero term by bi(v at most changes its sign, so we always

have [
a1(v) + a2(v)

]
b1(v) +

[
a1(v)− a2(v)

]
b2(v = ±2

fluctuating as v moves around. Consequently, we can bound the average by

− 2 ≤ 〈C〉 ≤ 2 . (10.61)

This is known as the CHSH inequality and it’s obeyed in any hidden variables theory.
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Now let’s look at the same observable in quantum theory. Since the eigenvalues of Ai
and Bj are just ±1, we have A2

i = 1 and B2
j = 1. Consequently one finds

C2 = (A1 +A2)2B1 + (A1 −A2)2B2
2 + (A1 +A2)(A1 −A2)B1B2 + (A1 −A2)(A1 +A2)B2B1

= 4−A1A2B1B2 +A2A1B1B2 −A1A2B2B1 +A2A1B2B1

= 4− [A1, A2] [B1, B2] ,

(10.62)

where the first equality uses our assumption [Ai, Bj = 0. We have that

|〈[A1, A2]〉| ≤ |〈A1A2〉|+ |〈A2A1〉| ≤ 2 , (10.63)

with the final bound again coming since the eigenvalues of Ai are just ±1. Thus we have

〈C2〉 ≤ 8 in quantum theory. Finally, since 〈C2〉 ≤ 〈C〉2 for any Hermitian operator, we

obtain the Cirel’son bound

− 2
√

2 ≤ 〈C〉 ≤ 2
√

2 (10.64)

in quantum theory. This shows that quantum theory permits a wider range of values for

〈C〉 than allowed by the CHSH bound (10.61) for hidden variable theories.

Again, it’s straightforward to show that the EPR state saturate the Cirel’son inequality.

Recall from (10.57) that

〈â · σe ⊗ b̂ · σp〉EPR = −â · b̂ = − cos θ (10.65)

for any two unit vectors. (We’re using the Pauli matrices rather than spins S = ~σ/2 to

ensure the eigenvalues are ±1 as in the CHSH & Cirel’son bounds.) To apply this to the

Cirel’son case, let Ai be the Pauli matrices for the electron and Bj those for the proton

and choose A2, B1, A1, B2 to all lie in (say) the (x, z)-plane at angles 0, π/4, π/2 and 3π/4

to the z-axis, respectively. Then

〈A1B1〉 = 〈A1B2〉 = 〈A2B1〉 = − 1√
2

for the EPR state, while

〈A2B2〉 = +
1√
2
.

Consequently, we have

〈C〉EPR = −2
√

2 (10.66)

saturating the Cirel’son bound.

Impressively, this inequality has actually been tested experimentally by Aspect et al.,

following the suggestion of Clauser et al.83 In the experiment, two photons are emitted

from successive decays of excited states of calcium. The first comes from the decay of a

83See Freedman, S. & Clauser, J., Experimental Test of Local Hidden Variable Theories, Phys. Rev. Lett.

28, 938 (1972) an Aspect, A. & Roger, G. Experimental Realization of the Einstein–Podolski–Rosen–Bohm

Gedankenexperiment: A New Violation of Bell’s Inequalities, Phys. Rev. Lett. 49, 91 (1982). An earlier

version of the experiment was performed by Kocher, C. and Commins, E. Phys. Rev. Lett. 18, 575 (1979).
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parity-even state with j = 0 to a short-lived parity-odd state with j = 1, while the second

photon comes from the decay of this short-lived state to a further x parity-even state of

j = 0 (of lower energy than the initial state). The photons are directed into a combination

of polarizers and photomultipliers which read out ±1 according to whether the photons are

found to be linearly polarized along some directions a and b. The experiment found

|〈C〉expt| = 2.697± 0.0515 (10.67)

This is slightly less than the idealised result |〈C〉EPR| = 2
√

2 ≈ 2.828, with most of the

disagreement coming because the polarizers used in the experiment were not perfectly

efficient. When the efficiency of the polarizers is taken into account, Aspect’s result is in

good agreement with what was is predicted by quantum mechanics, and in clear violation

of the CHSH bound for hidden variable theories.

In the final problem set, you’ll explore an even more striking conflict between the pre-

dictions of Quantum Mechanics and classical hidden variables by considering entanglement

between three qubits rather than two.
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