
5 Angular Momentum

In the previous chapter we obtained the fundamental commutation relations among the

position, momentum and angular momentum operators, together with an understanding of

how a dynamical relation H = H(X,P) allows us to understand how such quantities evolve

in time. However, with the exception of the parity operator, we’ve not yet said anything

about the spectrum — the set of possible eigenvalues — of these operators, nor have we

been specific about the precise Hilbert space on which they act. Answering such questions

is an important part of the subject of representation theory in mathematics; the study of

how group actions can be realised on a given vector space. In physics, understanding this

will provide essential information about the nature of our quantum system.

To a large extent, both questions are determined by the operator algebra itself. For

example, taking the trace of the commutation relations [Xi, Pj ] = i~ δij IH in any finite-

dimensional Hilbert space H gives

dim(H) δij = − i

~
trH(XiPj − PjXi) = 0 (5.1)

for all i, j by the cyclic property of the trace. So there is no realisation of the position and

translation operators on any non-trivial finite dimensional Hilbert space (and if dim(H) = 0

then X and P necessarily act trivially). The above argument fails in an infinite dimensional

Hilbert space, where neither trH(IH) nor trH(XiPj) is defined. Thus, if we wish to discuss

the position and momentum of a quantum system, we’re necessarily in the world of function

spaces46.

On the other hand, taking the trace of the commutation relations

[Ji, Jj ] = i~
∑
k

εijkJk (5.2)

for the rotation generators just gives i~ εijk trH(Jk) = trH(JiJj−JjJi) = 0, so it is possible

to represent each component of J on a finite dimensional Hilbert space in terms of a

traceless matrix47. This is often a useful thing to do, particularly when discussing the

internal structure of a system.

In this chapter, we’ll consider finite–dimensional Hilbert spaces Hj whose elements

transform among themselves under rotations. In mathematics, the Hj are known as ir-

reducible representations of the rotation group, whilst in physics they’re called multiplets

of definite total angular momentum. This chapter will also substantiate the link between

the rotation generators J and the physics of angular momentum, by examining a simple

Hamiltonian for rotating diatomic molecule. We’ll also flesh out the details of exactly how

the orientation of a system is encoded in the amplitudes for it to be found in different

eigenstates of appropriate angular momentum operators.

46Even here we should really be more careful. As mentioned in a previous footnote, X and P are not

defined as linear operators on the whole of a Hilbert space such as L2(R3, d3x), because a state that is

initially square-integrable may not remain so after the application of the unbounded operator X or P.
47This traceless condition in H is closely related to – but distinct from – the fact that the generators of

SO(3) can also be represented by antisymmetric (hence traceless) matrices acting on R3.

– 56 –



5.1 Angular Momentum Eigenstates (A Little Representation Theory)

Let’s begin by seeing how the algebra [Ji, Jj ] = i~
∑

k εijkJk determines the spectrum of

the angular momentum operators. Since no two components of J commute, we cannot

find a complete set of simultaneous eigenstates of two components of J. However, since

[J,J2] = 0 we can find a complete set of simultaneous eigenstates of (any) one component

of J and J2. Without loss of generality, we orient our coordinate system so that the chosen

component of J is Jz. We let |β,m〉 denote a simultaneous eigenstate of Jz and J2, where

J2|β,m〉 = β~2|β,m〉 and Jz|β,m〉 = m~ |β,m〉 (5.3)

and the factors of ~ are for later convenience. We also choose all the states {|β,m〉} to be

properly normalised. Since they are eigenstates of Hermitian operators, they must then be

orthonormal:

〈β′,m′|β,m〉 = δββ′ δmm′ . (5.4)

Finally, since we’re looking for the simplest possible way to realize our commutation rela-

tions, we’ll assume that the states {|β,m〉} are non-degenerate; that is, we want a Hilbert

space where |β,m〉 is the unique eigenstate of J2 and Jz with the given eigenvalues. I’ll

comment more on this assumption in the next chapter.

We now define

J± = Jx ± iJy (5.5)

which obey J†± = J∓ and so are eachother’s adjoint. As they are built from linear combina-

tions of the components of J, clearly J± each commute with J2, while their commutation

relations with Jz are

[Jz, J±] = [Jz, Jx]± i[Jz, Jy] = i~ (Jy ∓ iJx) = ±~ J± . (5.6)

We learn that

J2(J±|β,m〉) = J±J2|β,m〉 = ~2β J±|β,m〉 (5.7)

and

Jz(J±|β,m〉) = ([Jz, J±] + J±Jz) |β,m〉 = (m± 1)~ (J±|β,m〉) . (5.8)

This shows that the new states J±|β,m〉, if not zero, are still eigenstates of both J2 and

Jz, with the same eigenvalue β~2 for J2. However, their Jz eigenvalue is shifted up or down

(respectively for J+|β,m〉 and J−|β,m〉) by one unit of ~. We see that the role of J± in

angular momentum is similar to the role of A and A† for energy of the harmonic oscillator.

Again, J+ and J− are often called raising and lowering operators. Their role is to rotate

our system, aligning more or less of its total angular momentum along the z-axis without

changing the total angular momentum available. (See figure 7.)

Just as for the harmonic oscillator, examining the algebra of our raising and lower-

ing operators has told us the separation between angular momentum eigenstates, given a

starting point |β,m〉. To fix our initial states, we must examine the norm. By assumption,

|β,m〉 itself is correctly normalized and we compute

‖J+|β,m〉‖2 = 〈β,m|J−J+|β,m〉 = 〈β,m|(Jx − iJy)(Jx + iJy)|β,m〉
= 〈β,m|(J2 − J2

z − ~Jz)|β,m〉 = ~2(β −m(m+ 1))
(5.9)
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Figure 7: The angular momentum raising and lowering operators J± realign the system’s

angular momentum to place more or less of it along the z-axis.

where we’ve used the fact that J†+ = J−. Similarly, we find ‖J−|β,m〉‖2 = ~2(β−m(m−1)).

But since this is a norm, whatever state |beta,m〉 we started with we must have

‖J+|β,m〉‖2 = β −m(m+ 1) ≥ 0 (5.10)

with equality iff J+|β,m〉 = 0 is the trivial state. This shows that it cannot be possible

to always keep applying J+, repeatedly raising the Jz eigenvalue m whilst leaving β un-

changed. There must be some maximum value of m – let’s call it j – for which J+|β, j〉 = 0.

By (5.10) this can only be the case if β obeys

β = j(j + 1) (5.11)

and so is fixed in terms of the maximum allowed value of m.

Similarly, for a generic m value we find

‖J−|β,m〉‖2 = β −m(m− 1) (5.12)

so it also cannot be possible to keep lowering the Jz eigenvalue whilst remaining in the

Hilbert space. There must be some minimum value of m, say j′, for which J−|β, j′〉 = 0

and by (5.12) this can only be the case if

β = j′(j′ − 1) . (5.13)

Applying J+ or J− doesn’t change the J2 eigenvalue β, so these two values of β must agree.

Comparing them, we obtain a quadratic equation for j′ that we solve in terms of j, finding

j′ = j + 1 or j′ = j. Since the minimum value of m can’t be greater than the maximum

value, we must choose the root j′ = −j. The J2 eigenvalue β~2 = j(j + 1)~2 is determined

by j, so we henceforth label our states as |j,m〉; this labelling is simply less cluttered than

|j(j + 1),m〉 would be.

Finally, we note that since applying J− repeatedly will take us from the highest state

|β, j〉 through |β, j − 1〉, . . . down to |β,−j〉, it must be that 2j is a non-negative integer.

In other words, the possible values for j are

j ∈ {0, 1/2, 1, 3/2, . . .} . (5.14)
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Once the total angular momentum quantum number j is fixed, we have

m ∈ {−j,−j + 1, . . . , j − 1, j} . (5.15)

Thus there’s a total of 2j + 1 states in any given j multiplet, and Hj is the Hilbert space

of dimension 2j + 1 spanned by the {|j,m〉} of fixed j. We can move between states in Hj
using the raising and lowering operators J+ and J− which obey

J+|j,m〉 = ~
√
j(j + 1)−m(m+ 1) |j,m+ 1〉

J−|j,m〉 = ~
√
j(j + 1)−m(m− 1) |j,m− 1〉

(5.16)

These operators only change the Jz eigenvalue, not the J2 one. They just realign a given

system, placing more (J+) or less (J−) of its angular momentum along the z-axis. Although

we know we can choose multiplets with different values of j, we’ve not yet discovered a

mathematical operator that alters this J2 eigenvalue; this will be done in section 6.2.1.

5.2 Rotations and Orientation

This section should talk about how eigenfunctions of angular momentum are related to an

object’s orientation. In particular, a classical object has a well-defined orientation because

it is in a superposition of very many nearby angular momentum eigenstates. I think this

is likely to mean lots of values of j as well as m, but not sure of the best example to use

to illustrate this.

Note that, since Jx and Jy can be written in terms of the raising and lowering operators

J±, rotations around an arbitrary axis transform states in a given Hj into other states in

the same Hj . Since Jx = (J+ + J−)/2, we see that when j > 0, the state |j,m〉 is never an

eigenstate of Jx. Hence, for j > 0, we can never be certain of the outcome of measurements

of both Jx and Jz. This argument applies equally to Jy, so it’s impossible to be certain of the

outcome of measurements of more than one component of J. If j = 0, every component

of J yields zero, but a null vector in R3 has no direction. Consequently, there are no

states in which the vector J has a well-defined direction. This situation contrasts with

the momentum vector P which can have a well–defined direction since all its components

commute with one another.

In the mathematical literature, states with m = j are known as highest weight states.

They play a key role in the representation theory of any group G, because once we know

the highest weight state the rest of the multiplet can be constructed by applying lowering

operators such as J−. Physically, a highest weight state is one in which the body’s angular

momentum is most nearly aligned along the z-axis. In this state, the ratio of the squared

angular momentum that lies in the xy-plane to that parallel to the z-axis is

〈j, j|J2
x + J2

y |j, j〉
〈j, j|J2

z |j, j〉
=
〈j, j|J2 − J2

z |j, j〉
~2j2

=
1

j
. (5.17)

As Jx = (J+ + J−)/2 we have 〈j, j|Jx|j, j〉 = 0 and similarly 〈j, j|Jy|j, j〉 = 0. Thus we

have no information about the direction in the xy-plane any angular momentum points.
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Macroscopic bodies, for which j � 1, have only a tiny fraction of their total angular

momentum in the xy-plane when they’re in state |j, j〉, so the uncertain direction of this

component of angular momentum does not lead to significant uncertainty in the total

direction of the angular momentum vector. By contrast, when j = 1/2, even in state

|1/2, 1/2〉 there’s twice as much angular momentum associated with the xy-plane as with

the z-axis and the uncertain direction of this planar component makes it impossible to

say anything more specific than that the angular momentum vector lies somewhere in the

northern, rather than southern, hemisphere. Even when j = 1 and m = 1, the state |1, 1〉
has as much angular momentum along the xy-plane as it has parallel to the z-axis, so the

direction of the angular momentum vector is still very uncertain. This is no surprise: since

dim(Hj) = 2j + 1, when j = 1
2 there are only two independent states the orientation of

our body can take. With such a limited Hilbert space it’s no wonder we only have a fuzzy

notion of where the body’s angular momentum lies.

5.2.1 Rotation of Diatomic Molecules

Our deduction of the possible eigenvalues and eigenstates of J2 and Jz came from con-

sidering rotations: the states |j,m〉 simply enable us to describe what happens when an

object is rotated around some axis, as we’ll understand in more detail and with many

examples later in the chapter. In particular, it’s important to understand that a priori

these states have nothing to do with the energy levels of any given particle. As always,

there’s no way to tell how rotating an object may or may not change its energy until we

specify a form for the Hamiltonian. In this section, we’ll choose a simple form of dynamical

relation H = H(J) that will enable us to understand an important part of the dynamics

of a diatomic molecule.

For some purposes, a diatomic molecule such as CO molecule can be considered to

consist of two point masses, the nuclei of the oxygen and carbon atoms, joined by a ‘light

rod’ provided by the electrons. Following the analogous formula in classical mechanics, we

model the dynamics of this molecule by the Hamiltonian

H =
1

2

(
J2
x

Ix
+
J2
y

Iy
+
J2
z

Iz

)
. (5.18)

where Ix is the moment of inertia along the x-axis, and similarly for Iy and Iz. Though

motivated by classical mechanics, the best justification for this form of Hamiltonian is

ultimately that it agrees with detailed experiments.

In our axisymmetric case, we choose coordinates whose origin is at the centre of mass

of the molecule (somewhere between the C and O atoms) and orient our coordinates so

that the z-axis lies along the molecule’s axis of symmetry. Then Ix = Iy = I, say, whilst

Iz is different. In fact, since the centre of mass of the C and O atoms lie along the z-axis,

the molecule’s moment of inertia around this axis is negligible, Iz � I (see figure 8). We

can thus rewrite our Hamiltonian as

H =
1

2

[
J2

I
+ J2

z

(
1

Iz
− 1

I

)]
. (5.19)
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Figure 8: A simple model of carbon monoxide. By symmetry, Ix = Iy whilst Iz is much

smaller.

The virtue of expressing H in terms of J2 and Jz is that our knowledge of the spectrum

of these operators immediately allows us to write down the spectrum of this Hamiltonian:

the state |j,m〉 is an energy eigenstate with

Ejm =
~2

2

[
j(j + 1)

I
+m2

(
1

Iz
− 1

I

)]
, (5.20)

with |m| ≤ j. Since Iz � I for our diatomic molecule, the coefficient of m2 is very much

greater than that of j(j+1), so states with m 6= 0 will only occur very far above the ground

state. Consequently, the low lying states have energies of the form

Ej = j(j + 1)
~2

2I
(5.21)

for some j. As we saw in the previous section, only discrete values of j are allowed, so the

energy levels are quantized. One can excite a CO molecule, causing it to rotate faster, only

by supplying a definite amount of energy. Similarly, for the molecule to relax down to a

state of lower angular momentum, it must emit a quantized lump of energy.

Carbon monoxide is a significantly dipolar molecule. The carbon atom has a smaller

share of the binding electrons that does the oxygen, with the result that it is positively

charged while the oxygen atom gains negative charge. In Maxwell’s theory of electrody-

namics, a rotating electric dipole is expected to emit electromagnetic radiation. Because

we’re in the quantum regime, this radiation emerges as photons which, as we’ll see later

in the chapter, can add or carry away only one unit ~ of angular momentum. Thus the

energies of the photons that can be emitted or absorbed by a rotating dipolar molecule are

Eγ = ±(Ej − Ej−1) = ±j~
2

I
. (5.22)

Using the relation E = ~ω, the angular frequencies in the rotation spectrum of the molecule

are

ωj =
j~
I

(5.23)

In the case of 12CO, 2π~/I evaluates to a frequency ν ∼ 113.1724 GHz and spectral lines

occur at multiples of this frequency. In the classical limit of large j, the molecule’s total
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angular momentum |J| ≈ j~. This is related to the angular frequency Ω at which the

molecule rotates by |J| = IΩ. Comparing to (5.23) we see that in the classical limit

ωj�1 = Ω, so the frequency of the emitted radiation is just the frequency at which the

molecule rotates.

Measurements of the radiation at 113.1724 GHz provide one of the two most important

probes of interstellar gas48. In denser, cooler regions, hydrogen atoms combine to form H2

molecules which are bisymmetric and do not have an electric dipole moment when they

rotate. Consequently, these molecules, which together with similarly uncommunicative

Helium make up the vast majority of cold interstellar gas, lack readily observable spectral

lines. Astronomers are thus obliged to study the interstellar medium through the rotation

spectrum of the few parts in 106 of CO it contains.

5.3 Spin

In section 5.3 we saw that the orbital angular momentum operator L and spin operator S

each obeyed an identical algebra to that of the rotation generators,

[Li, Lj ] = i~
∑
k

εijkLk [Li,L
2] = 0

[Si, Sj ] = i~
∑
k

εijkSk [Si,S
2] = 0

(5.24)

as well as [Si, Lj ] = 0. Since the algebra of the Js was all we used to deduce their spectra, it

follows immediately that (L2, Lz) and (S2, Sz) have the same possible spectra as we found

for (J2, Jz). It’s traditional to label eigenstates of (L2, Lz) as |`,m〉 and those of (S2, Sz) as

|s, σ〉, where ` and s correspond to the eigenvalues of L2 and S2, respectively, and m and σ

label the eigenvalues of Lz and Sz. (Unfortunately, it’s traditional to label the eigenvalue

of both Jz and Lz by the same letter m, even though they mean different things and may

take different values in any given state. Which is meant is usually clear from the context.)

5.3.1 Large Rotations

Our claim that the possible values of (j,m) are

j ∈ {0, 1/2, 1, 3/2, . . .} and then m ∈ {−j,−j + 1, . . . , j − 1, j} (5.25)

was based on examining the algebra [Ji, Jj ] = i~
∑

k εijkJk, and likewise for (`,m`) or

(s, σ). In turn, this algebra originally came from considering the behaviour of objects

under very small rotations. We now check whether these spectra are also compatible with

large rotations.

Suppose we rotate the state |j,m〉 through an amount α around the z-axis. Then

|j,m〉 → U(αẑ)|j,m〉 = e−iαJz/~|j,m〉 = e−imα|j,m〉 . (5.26)

since it is an eigenstate of Jz. Rotations through 2π around any axis return us to our

starting point, so are equivalent to no rotation. Thus, for U(α) to be a homomorphism

48The other key probe is the hyperfine line of atomic hydrogen that will be discussed in chapter 8.
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from SO(3) to the group of unitary operators on H, we must have U(2πα̂) = 1H. In

particular, when α̂ = k̂, from above we must have e−2πim = 1. This is true if m is an

integer, but not if it is an odd-half-integer. Since m is an integer or (odd) half-integer

iff j is, we conclude that odd half-integer values of j are in fact not compatible with the

behaviour of objects under large rotations: they’re ruled out by our basic requirement that

U(α) represents the action of SO(3) on H.

The fact that global properties of rotations rule out some of the eigenvalues allowed

by the rotation algebra is an example of a phenomenon familiar from IB Methods. The

behaviour of function in the neighbourhood of a point may be governed by some differential

equation. The associated differential operator (if it’s linear) typically has a large spectrum,

which is cut down by boundary conditions or periodicity conditions. For example, on any

open set U ⊂ R the linear operator −id/dx has eigenfunctions eikx for any k ∈ C. However,

if we know that globally ψ : S1 → C so is periodic, then k must be quantized in units of

the circle’s radius. The only difference in our case is that the non-trivial algebra of the

rotation generators already restricted the possible eigenvalues of J2 and Jz to be quantized

in units of ~. Global properties of the rotation group still remove some of the eigenvalues

that were allowed locally. More succinctly, states where j ∈ N0 + 1
2 do form representations

of the rotation algebra so(3), but not of the rotation group SO(3).

In fact, we’ll see that our arguments above have been rather too hasty.

5.3.2 The Stern–Gerlach Experiment

Quantization of angular momentum in units of ~ was originally proposed by Bohr & Som-

merfeld as a means by which the stability of atomic orbits could be understood; we’ve

now seen how this quantization arises automatically in the full mathematical framework

of quantum mechanics. However, back in 1922 it still seemed very mysterious, so Stern

and Gerlach designed and conducted experiments to check whether angular momentum is

really quantized in Nature.

In the Stern–Gerlach experiments, a beam of uncharged atoms of the same type is

passed through a region of slowly varying magnetic field. If the atoms have mass M , the

Hamiltonian for this process is49

H =
P2

2M
− µ ·B (5.27)

where B is the applied magnetic field, and µ is known as the magnetic dipole moment

of the atom. Ultimately, the reason the atom can be treated as a magnetic dipole is

because of detailed properties of the distribution of its electrons. It would take us too

far afield to explain this precisely, but the dipole moment arises because the atom has an

orientation: a perfectly spherically symmetric atom cannot have any dipole moment as

there is no preferred direction for the ‘north’ or ‘south’ poles. Thus the dipole moment is

49The potential energy resulting from coupling a magnetic dipole to an applied magnetic field is similar

to the (perhaps more familiar) energy −p · E of an electric dipole p in an applied electric field E. Note

that the atoms carry no net electric charge, so there’s no Lorentz force.
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Figure 9: A schematic picture of the Stern–Gerlach experiment, borrowed from the As-

tronomy Cast site.

only non-zero for atoms that transform non-trivially under S. If the atom is in the spin s

representation, we can write µ = (µ/~s) S.

Choosing our coordinates so that the z-axis points along the direction of the magnetic

field, the Hamiltonian becomes

H =
P2

2M
− µ

~s
BSz , (5.28)

where B = |B|. The equations of motion (obtained, say, using the Heisenberg picture) tell

us that the expectation values of position and momentum in any state |ψ〉 obey

d

dt
〈X〉 =

〈P〉
M

and
d

dt
〈P〉 =

µ

~s
〈(∇B)Sz〉 . (5.29)

The second of these equations is analogous to the classical F = −∇V .

We see that the force experienced by any given atom depends on its value of Sz. For a

spin s particle, these are ~{−s,−s+ 1, . . . , s− 1, s} and in particular can be of either sign.

If an atom is in the state |s, s〉 with all its spin aligned along the direction of B, then it will

experience a force pushing it in the direction of increasing magnetic field. On the other

hand, those atoms in the state |s,−s〉 will be pushed in the direction of decreasing B, while

atoms with σ = 0 (when s is an integer) are unaffected. In total, when an initial beam

of atoms in which the spins are randomly aligned passes through the region of magnetic

field, it will be split into 2s + 1 different trajectories. Thus, if the atoms are perfectly

spherical, they will pass through unaffected, whereas if they have s = 1 the beam will be

split into three, corresponding to the three possible eigenvalues {~, 0, ~}, if they have s = 2

the beam will split into five, and so on. Finally, if the atoms have very large spin (and so

a very definite orientation in space) the beam will be split into so many paths that we can

no longer distinguish the individual paths, seeing instead a broad smear. This is the same

result we’d expect to find if angular momentum is not quantised, where the amount by

which an atom is deflected would depend smoothly on its orientation with respect to B.

Stern and Gerlach’s original experiment in fact used silver atoms. Their magnetic was

controlled by a dial. Initially, as B = 0 the atoms all passed straight through. As they
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turned up the magnetic field, the beam split – into two separate paths. As B was further

increased, the separation between these two beams increased, but no further splitting was

observed. Thus, not only is angular momentum quantized as Bohr & Sommerfeld had

predicted, but silver atoms have spin s = 1
2 !

5.3.3 Spinors and Projective Representations

This section lies beyond the Schedules and is non-examinable.

The Stern–Gerlach experiment shows that, despite our arguments, half–integer values of s

actually arise in Nature. In fact, the chemical properties of the elements and the structure

of the periodic table, together with properties of materials such as metals, conductors and

insulators depends crucially on particles having half-integer values of spin. These values

are in conflict with our current mathematical formalism, so we must have made a mistake,

imposing too strong a condition that ruled out the possibility of half-integer spins.

The error lay in our claim that we needed to represent the action a transformation

group G on Hilbert space H, rather than just on projective Hilbert space PH. (Recall that

states which differ only by an overall constant – which does not need to have modulus 1

provided we use the general form (2.69) of the Born rule – yield the same results in all

experiments. Thus physical systems are represented by states in projective Hilbert space.)

Projectively, it’s enough to require

U(g2) ◦ U(g1) = eiφ(g2,g1) U(g2 · g1) (5.30)

rather than (4.7), where φ(g1, g2) is a real phase. This phase does not affect which ray in

H the state lies in, so leaves the physics unchanged. The operator algebra is associative,

so we must have

U(g3) ◦ (U(g2) ◦ U(g1)) = (U(g3) ◦ U(g2)) ◦ U(g1) (5.31)

which implies the phases obey

φ(g2, g1) + φ(g3, g2 · g1) = φ(g3, g2) + φ(g3 · g2, g1) . (5.32)

Phase factors eıφ(g2,g1) obeying this condition are known as cocycles on the group G. One

possible solution of (5.32) is to take

φ(g2, g1) = β(g2 · g1)− β(g2)− β(g1) . (5.33)

for some arbitrary (smooth) function β : G → R. This solution is ‘trivial’, because if

φ(g2, g1) takes this form, then can define a new unitary transformation operator U ′(g) =

eiβ(g)U(g) which obeys our original condition (4.7). By agreeing to work with the new

operator, the phases never arise. The interesting question is whether there are other,

non-trivial solutions to (5.32).
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A theorem in group cohomology50 states that it’s possible for non-trivial projective

representations to arise for groups that are not simply connected51. In fact, this is the case

for SO(3). The topology of the rotation group can be seen by viewing each rotation as

parametrised by a vector α. If we allow the axis of rotation α̂ to point in any direction,

then rotations with |α| ∈ (0, π) are uniquely specified. However, when rotating through

π we get the same rotation whether rotating around α̂ or −α̂. Thus, we can picture the

space of all rotations as a solid, three dimensional ball |α| ≤ π, but with antipodal points

on the surface |α| = π identified.

This description show that SO(3) contains smooth, closed paths, beginning and ending

at the identity rotation (the origin of the 3-ball) that cannot be continuously shrunk to

a point. For example, consider paths which start and end at the identity rotation, i.e.

the centre of the sphere. Figure ?? shows a loop which is contractible; it can obviously

be shrunk to a point. On the other hand, figure ?? shows a loop for which the angle of

rotation starts at zero, smoothly increasing to π at the point A. At this point it reaches

the boundary and reappears at the antipodal point A′, before continuing to increase to 2π

back at the identity. It should be intuitively clear that this loop cannot be shrunk to a

point whilst keeping both its ends fixed at the identity.

Next, consider the loop in figure ??, along which the angle of rotation increases from

0 to 4π, reaching the boundary of the ball twice, once at A, reappearing at A′ and then

again at B reappearing at B′. By moving the second antipodal pair B and B′ (as shown

in figure ??) the section of the path between A′ and B can be pulled across the boundary,

smoothly deforming the loop back to the situation in figure ??. Thus, after two complete

rotations the situation becomes simple once more. In general, the angle along any closed

path must increase by an integer multiple of 2π. The resulting loop will be contractible if

this integer is even, but non-contractible if it is odd.

The topological properties of paths in G become important when we consider the

behaviour of U(g) as the group element g varies around a loop L, beginning and ending at

some fixed g0. It is quite possible for U(g) to change smoothly with g along L in such a

way that the operators at each end of the loop do not coincide: they may differ by a phase

U(g0)
L−→ αLU(g0)

where the phase αL depends on the loop. This is consistent with the projective homomor-

phism (5.30).

To investigate the possibilities for αL, let’s specialize to the case in which the operators

act on a Hilbert space of finite dimension N , so that each U(g) can be regarded as an N×N
unitary matrix. We can use up some of the freedom in (5.30) by requiring that each such

matrix has unit determinant. This does not fix things completely, but the residual freedom

50Unfortunately, I won’t prove this here. If you’re interested, you can find a proof (given in the context

of quantum mechanics) in either Weinberg’s The Quantum Theory of Fields, vol. 1 (chapter 2, appendix

B), or else in Hall’s Quantum Theory for Mathematicians.
51There’s one other possibility: that the Lie algebra g contains central elements (vectors e ∈ g s.t.

[e, g] = 0) that cannot be removed by a redefinition of the generators. This case is not relevant for us.
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is discrete:

det U(g) = +1 for all g ∈ G ⇒ eiNφ(g1,g2) = 1

If G is simply connected, meaning that any closed loop is contractible, then the determinant

condition implies αL = 1 for all loops L. This follows straightforwardly using continuity:

αL must be an N th root of unity, but if it varies continuously as we vary our loop L and if

all such loops are contractible to the single point g0, then we must have the same matrix

at the beginning and ending of each loop, so αL = 1.

If G is not simply connected, the same argument still shows that αL = 1 for any

contractible L, but there may also be non-contractible loops with αL 6= 1. In this case, we

can at least deduce that αL = αL′ whenever the loops L and L′ are in the same homology

class, meaning that they can be smoothly deformed into one another. Furthermore, if loops

L and L′ are traversed successively, then U(g0)
L→ αLU(g0)

L′→ αLαL′U(g0), so there are

self-consistency constraints.

We can now give a unique definition of U(g) for all g in a simply connected Lie group

G. Recalling that U(e) = idH, we define U(g0) by choosing any path from the identity e to

g0 and demanding that U(g) changes smoothly along this path. The values along the path

are unique by the determinant and continuity conditions, but the end result U(g0) is also

unique, because by traversing them in opposite directions, any two paths e → g0 can be

combined to form a closed loop at g0. This loop is contractible since our group is simply

connected. With this definition, continuity also ensures that all cocylces are equal to one,

so we have a genuine representation (not just a projective representation) of G.

Carrying out the same construction when G is not simply connected, we’ll encounter

paths from e to g0 which cannot be smoothly deformed into one another. Thus, starting

from U(e) = idH, in general we obtain different values for U(g0) depending on the path we

take. In this way we’re forced to consider multi-valued functions on G (just as when defining

a continuous square root in the complex plane). The ambiguity, or multi-valuedness, in

U(g0) can be resolved only by keeping track of the path we used to reach g0, just as for

the complex square root we must keep track of how many times we’ve encircled the origin

to be sure which branch we’re on. Such a multi-valued definition inevitably means that

non-trivial cocyles appear.

As we saw above, the rotation group G = SO(3) is not simply connected, but there

rae just two topological classes of loops, depending on whether the net angle of rotation

is an even or odd multiple of 2π. Any loop l in the first class is contractible and so has

αL = 1. Any loop L′ in the second class is non-contractible, but if we traverse L′ twice it

becomes contractible again. Thus α2
L′ = 1 and αL′ = ±1. The finite-dimensional spaces

Hj on which the rotation operators act are nothing but the multiplets of total angular

momentum j(j + 1)~2, with a basis {|j,m〉} where

m ∈ {−j,−j + 1, . . . , j − 1, j}

Thus dimHj = 2j + 1. From the determinant condition (αL)2j+1 = 1 for any loop, but

from our topological considerations αL = ±1. If j is an integer then 2j + 1 is odd and it
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follows that αL = 1 for all loops, contractible or not. However, if j is an odd half-integer

then 2j + 1 is even and αL = −1 is possible for non-contractible loops. This is exactly the

behaviour we found above: under the rotation operator U(αẑ) = e−iαJz/~, a generic state

in the j multiplet transforms as

|ψ〉 =

j∑
m=−j

cm|j,m〉 7→ U(α)|ψ〉 =

j∑
m=−j

cm e−iαm|j,m〉 . (5.34)

Any state with j (and hence all m) odd-half-integral changes sign under a rotation through

an odd multiple of 2π. The discussion of this section shows that the origin of this unex-

pected sign is the non-trivial topology of the rotation group – in our new terminology,

we have a projective representation of SO(3). These projective representations play an

important role in physics, and are often called spinors.

We have, finally, obtained the correct mathematical framework in which to describe

rotations and angular momentum in quantum mechanics. The history of the subject devel-

oped rather differently to the exposition we’ve given here. By the 1920s, careful studies of

atomic spectroscopy had revealed that many spectral lines were in fact doubled, composed

of two lines, very close in frequency. In 1924 (even before Schrödinger published his famous

equation) Pauli proposed that this doubling indicated that, in addition to the quantum

numbers n, `,m labelling their energy levels, electrons possessed a further quantum number

that took just two values. A year later, Uhlenbeck & Goudsmit suggested that this could

be associated to some form of internal angular momentum. Their idea was initially treated

with suspicion. If one wished to suppose the electron was a small, rotating sphere, then

for it to have the needed angular momentum ~/2 and yet keep its radius small enough so

that its finite size would not have been detected by experiment52, the surface of the sphere

would need to be travelling faster than light.

Nevertheless, the Stern–Gerlach experiment showed that particles could indeed have

spin, contributing to the Hamiltonian in the presence of a magnetic field in just the same

way as would a classical spinning magnetic dipole. Heisenberg, Jordan and C. G. Darwin53

then showed that the internal spin of the electron exactly accounted for the fine splitting

of spectral lines that had puzzled Pauli, as we’ll see in chapter 8.1.1.

We now understand that spin is an intrinsic property of fundamental particles: the

Hilbert space of a fundamental particle is not simply Hspat
∼= L2(R3, d3x) describing its

spatial wavefunction, but rather a tensor productHspat⊗Hs. However we may excite, crash

into, or generally interfere with the motion of an electron or W boson, for as long as they

remain electrons and W bosons, their spin will always be s = 1
2 and s = 1, respectively.

5.3.4 Spin Matrices

Since σ ∈ {−s,−s + 1, . . . , s − 1, s}, states of definite total spin s can be described by a

finite dimensional Hilbert space Hs ∼= C2s+1. As always, once we pick a basis on H we can

52To date, no experiment has ever detected a finite size, or any other non-trivial internal spatial structure

in the electron.
53Charles Galton Darwin, grandson of Charles Robert Darwin.
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describe the action of linear operators such as S explicitly in terms of matrices. Let’s now

carry this out the first few spin representations, working in the basis {|s, σ〉} of eigenstates

of Sz.

The simplest case is s = 0, for which the only possible value of σ is also zero. This

state obeys e−iα·S/~|0, 0〉 = |0, 0〉 for any α. Hence a spin-zero object, like a perfect sphere,

is completely unchanged under any rotation. In view of this, spin-zero particles are known

as scalar particles. The discovery of the Higgs boson, announced on 4th July 2012 at CERN

in Geneva, was the first time a fundamental scalar particle had been observed in Nature.

The next case is s = 1
2 . Electrons, neutrinos and quarks are fundamental particles of

spin 1
2 , whilst protons, neutrons and the silver atoms used by Stern & Gerlach are examples

of composite spin-half particles. When s = 1
2 , σ can only take one of the two values ±1

2 .

For shorthand, we let |↑ 〉 denote the state |s, σ〉 = |12 , 1
2〉 and |↓ 〉 denote |12 ,−1

2〉. A generic

state of a spin-half system can thus be expanded as

|ψ〉 = a|↑ 〉+ b|↓ 〉 (5.35)

in this basis, where a, b ∈ C and |a|2 + |b|2 = 1 so that |ψ〉 is correctly normalised.

In this basis, we can write the spin operators themselves as the 2× 2 matrices

Sx =

(
〈 ↑ |Sx|↑ 〉 〈 ↑ |Sx|↓ 〉
〈 ↓ |Sx|↑ 〉 〈 ↓ |Sx|↓ 〉

)
, Sy =

(
〈 ↑ |Sy|↑ 〉 〈 ↑ |Sy|↓ 〉
〈 ↓ |Sy|↑ 〉 〈 ↓ |Sy|↓ 〉

)
,

Sz =

(
〈 ↑ |Sz|↑ 〉 〈 ↑ |Sz|↓ 〉
〈 ↓ |Sz|↑ 〉 〈 ↓ |Sz|↓ 〉

)
.

(5.36)

Because | ↑ 〉 and | ↓ 〉 are eigenstates of Sz, evaluating Sz in this basis is immediate. To

also evaluate Sx and Sy, we note that Sx = (S+ + S−)/2 and Sy = (S+ − S−)/2i where

S± are the spin raising and lowering operators defined just as for J±. Using (5.16) with

j = s = 1
2 gives S+|↓ 〉 = ~|↑ 〉 and S−|↑ 〉 = ~|↓ 〉. In this way, we obtain

Sx =
~
2

(
0 1

1 0

)
, Sy =

~
2

(
0 −i

i 0

)
, Sz =

~
2

(
1 0

0 −1

)
. (5.37)

The coefficients of ~/2 here are known as Pauli matrices and usually written54 as (σx, σy, σz).

Thus, for s = 1/2, we can write S = ~/2σ.

Proceeding to spin-one, we find three possible values σ ∈ {−1, 0, 1}. Thus the spin-

one Hilbert space is three (complex) dimensional, and when s = 1 we can represent each

component of S by a 3× 3 matrix. In this case, the spin raising and lowering operators S±
act as

S+| − 1〉 =
√

2~ |0〉 , S+|0〉 =
√

2~ |+ 1〉 ,
S−|+ 1〉 =

√
2~ |0〉 , S−|0〉 =

√
2~ | − 1〉 ,

(5.38)

54Do note confuse this vector of Pauli matrices with the eigenvalue label of Sz.
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as follows from (5.16) with j = s = 1. Using these results, one can check that

Sx =
~√
2

 0 1 0

1 0 1

0 1 0

 , Sy =
~√
2

 0 −i 0

i 0 −i

0 i 0

 , Sz =

 1 0 0

0 0 0

0 0 −1

 . (5.39)

Sadly, these matrices don’t have any special name. Just as for spin-half, we can use this

representation to express the state |1, θ〉 in which a measurement of n ·S along some axis n

is certain to yield +~. Examples of fundamental particles with spin-one are the somewhat

unimaginatively named W and Z bosons55. These are responsible for the weak interactions

that, among other things, allows two Hydrogen nuclei to fuse into Deuterium, powering

nuclear fusion in the core of stars.

In just the same way, we can represent each component of the spin operator by a

(2s + 1) × (2s + 1) matrix for any finite s. Since our basis is adapted to Sz, the matrix

representation of Sz will be

Sz = ~diag(s, s− 1, . . . ,−s+ 1,−s) . (5.40)

Matrices for Sx and Sy may be constructed using the spin raising and lowering operators

as above. Since S± only change the z-component of the spin by 1 unit, these matrices are

very sparse. One finds that they have non-zero entries only along the subleading diagonals,

given by

(Sx)σ′σ =
~
2

[
α(σ) δσ′−1,σ + α(σ − 1) δσ′+1,σ

]
(Sy)σ′σ =

~
2i

[
−α(σ) δσ′−1,σ + α(σ − 1) δσ′+1,σ

]
,

(5.41)

where α(σ) =
√

(s− σ)(s+ σ + 1). Note that, whatever the value of s, we always have

three matrices (Sx, Sy, Sz) describing reorientations around the three independent axes in

R3. Note also that each of these matrices is indeed traceless, as required by i~ εijktrH(Sk) =

trH([Si, Sj ]) = 0 as we said at the beginning of the chapter.

In elementary particle physics (and also in Tripos questions), one rarely encounters

spins higher than 1. Nonetheless, it’s interesting to consider the limit s � 1 of very high

spins to see how our classical intuition emerges. For example, and electric motor that is

roughly 1 cm in diameter and weighs about 10 gm might spin at ∼ 100 revolutions per

second. Its intrinsic angular momentum is then ∼ 103 kg m2 s−1 ≈ 1031~. The classical

world thus involves huge values of s!

Let’s now show that, when s� 1, there is very little uncertainty in the direction of a

systems spin. Suppose our system is in the state |s, s〉 so that its spin is maximally aligned

with the z-axis. Let’s compute 〈s, s|n · S|s, s〉 where n = (sin θ, 0, cos θ). That is, we want

to know how much spin we expect to measure along the direction in the xz-plane, inclined

55Although the photon carries one unit of ~ in intrinsic angular momentum, it has only two possible

states corresponding to left- or right-circular polarized light. Because the photon is massless, one needs to

consider representations of the Lorentz group, rather than the spatial rotation group, in order to describe

it accurately. We won’t do this in this course.
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at angle θ to the z-axis. Classically, this would be just ~s cos θ, the projection of s onto

this axis. Quantum mechanically, we have

〈s, s|n · S|s, s〉 = sin θ 〈s, s|Sx|s, s〉+ cos θ 〈s, s|Sz|s, s〉 = ~s cos θ , (5.42)

using the fact that Sx = (S+ + S−)/2. Thus, on average the quantum result agrees with

the classical intuition. This holds for any value of s, but now let’s ask what the uncertainty

in this result is. We compute

〈s, s|(n · S)2|s, s〉 = sin2 θ 〈s, s|S2
x|s, s〉+ sin θ cos θ 〈s, s|SxSz + SzSx|s, s〉+ cos2 θ 〈s, s|S2

z |s, s〉

=
1

4
sin2 θ〈s, s|S+S−|s, s〉+ ~2s2 cos2 θ

= ~2
(s

2
sin2 θ + s2 cos θ

)
,

(5.43)

with all other terms vanishing. Consequently

√
〈(n · S)2〉 − 〈n · S〉2 =

√
s

2
~ | sin θ| (5.44)

and so, in the classical limit of large s, the uncertainty is small (∼
√

1/s) compared to

〈n · S〉.

5.3.5 Paramagnetic Resonance and MRI Scanners

In the presence of an external magnetic field, a classical magnetic dipole µ experiences a

torque
∂L

∂t
= µ×B . (5.45)

The dipole will thus turn until it aligns itself along the direction of the field, minimizing

its energy. This is familiar from a compass. However, suppose the dipole is already spin-

ning around its centre of mass, such that µ = γL where the constant γ is known as the

gyromagnetic ratio. Then instead one finds that the torque causes the dipole to precess

around B.

As in our discussion of the Stern-Gerlach experiment, particles such as a proton or

electon do have magnetic dipole moments µ = (2µ/~) S proportional to their spin. We’ll

see that in quantum mechanics, this spin does indeed precess around the direction of an

applied magnetic field. This is the basis of MRI scanners, which have become an enormously

important diagnostic tool for both chemistry and medicine.

We can understand the basic principles of an MRI machine by using our spin matrices.

Unlike the beam of silver atoms in the Stern-Gerlach experiment, here the protons are

not free to move, because they’re held in place by the electromagnetic binding forces of

a complex molecule, and this molecule is also held in a (roughly) fixed place in our cells.

Thus we take the Hamiltonian to be

H = −µ ·B = −2µB

~
Sz , (5.46)
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with no kinetic term. Again, we’ve chosen the direction of the magnetic field to define

the ẑ axis. In particular, for a spin-1
2 particle such as a proton, the eigenvalues of this

Hamiltonian are E± = ∓µB, where B = |B.

Initially, we cannot expect the protons in our body to have their spins already aligned

along B̂. Suppose instead that some proton has its spin aligned along some axis n =

(0, sin θ, cos θ) inclined at angle θ to B̂. That is, we consider a proton in the state |θ↑〉
defined by

n · S |θ↑〉 =
~
2
|θ↑〉 . (5.47)

We can always choose to expand this state in terms of our basis {| ↑ 〉, | ↓ 〉}, representing

states of definite spin along ẑ, as

|θ↑〉 = a|↑ 〉+ b|↓ 〉 (5.48)

where |a|2 + |b|2 = 1. In terms of our matrices (5.37) for spin-1
2 , the eigenvalue equa-

tion (5.47) becomes

~
2

sin θ

(
0 −i

i 0

)(
a

b

)
+
~
2

cos θ

(
1 0

0 −1

)(
a

b

)
=
~
2

(
cos θ −i sin θ

i sin θ − cos θ

)(
a

b

)
=
~
2

(
a

b

)
(5.49)

Solving this eigenvalue problem and the normalisation condition yields a = cos θ2 and

b = i sin θ
2 (up to a possible phase), so a proton whose spin is aligned along the n axis is in

state

|θ↑〉 = cos
θ

2
|↑ 〉+ i sin

θ

2
|↓ 〉 (5.50)

Note that |θ↑〉 has the expected behaviour at θ = 0 and θ = π, and that it yields −|↑ 〉 as

θ is continuously increased to 2π. (It’s straightforward to generalise this example to the

case of a state with spin aligned along an arbitrary axis n.)

Applying the time evolution operator U(t) = e−iHt/~ with the Hamiltonian (5.46), we

find that at time t the proton’s state has evolved to

|ψ(t)〉 = U(t)|θ↑〉 = cos
θ

2
e−iHt/~ |↑ 〉+ i sin

θ

2
e−iHt/~ |↓ 〉

= cos
θ

2
e−iωt/2 |↑ 〉+ i sin

θ

2
e+iωt/2 |↓ 〉

(5.51)

where ω = 2µB is the Larmor frequency. One can check that this state is an eigenstate of the

spin operator aligned along the axis n(t) = (sin θ sinωt, sin θ cosωt, cos θ), so that at time

t, the proton’s spin is definitely aligned along n(t). Consequently, as time passes, the spin

of any proton will precess around the direction of B with frequency ω that is independent

of the angle of inclination θ – i.e. independent of the proton’s initial orientation (provided

it was not pointing exactly along B̂ in the first place). This is exactly the same behaviour

as we found classically.

When a material that contains chemically bound hydrogen atoms is immersed in a

strong magnetic field, over time the protons will emit radiation (not accounted for by our
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Figure 10: An image of a cross-section of the head, produced by an MRI scan. Different

regions contain different concentration of organic molecules, so react more or less strongly

to the resonant magnetic field. MRI scanners are one of the most important diagnostic

tools in modern medicine.

above Hamiltonian) so as to sit in the ground state. Thus, eventually the precession will

cease and most of the protons’ spins will be aligned along the direction of B.

Now suppose that, in addition to the static external B field, we apply a small addi-

tional magnetic field b cos(ωt) that varies at the same Larmor frequency ω = 2µB. The

Hamiltonian felt by the protons will then be

H = −µ · (B + b cos(ωt) ) = −2µ

~

(
B b cos(ωt)

b cos(ωt) −B

)
(5.52)

if the new field is in the x̂-direction. The TDSE for this system is thus(
ȧ

ḃ

)
= −i

(
B b cos(ωt)

b cos(ωt) −B

)(
a

b

)
(5.53)

varies with frequency ω = 2µB/~ (which corresponds to radio frequencies for µ the

dipole moment of the proton and B the strength of a typical magnetic field available in

hospitals). This radiation has just the right energy to excite these protons into the state

where their spin is aligned against B. Consequently, such radiation is readily absorbed by

the sample, whereas radiation at nearby frequencies is not. As we have seen, interference

between the two states causes the spin to precess around the direction of B, and this

precessing magnetic moment couples resonantly to the applied radiation field.

MRI scanners are typically tuned to determine the concentration of a single type of

atom, usually Hydrogen. However, in a complex molecule, not every Hydrogen nucleus
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(proton) feels the same magnetic field, because of additional contributions from the elec-

trons that bind the atoms together in the molecule. For example, in methanol (CH3OH)

the magnetic field experienced by the proton that is attached to the oxygen atom differs

from those experienced by the protons attached to the carbon atom. Also, of the 3 pro-

tons bound to the carbon atom, one is on the opposite side of carbon from oxygen, while

the other two lie between the carbon and oxygen atoms. The first thus feels a different

magnetic field to the other two. Now, the frequency ω of precession is proportional to

the strength of the magnetic field at the location of the proton, so for any fixed strength

of applied magnetic field, methanol has three different resonant frequencies. Clues to the

chemical structure of a substance can thus be obtained by determining the frequencies at

which magnetic resonance occurs in a given imposed field. If we choose B to have a spatial

gradient, then only a thin slice of our sample material will have ω tuned to its resonant

frequency, so we excite transitions to higher energy levels only in this thin slice. Varying

this field in an orthogonal direction as the nuclear spins decay back down to the ground

state allows us to recover three dimensional images.

5.4 Orbital Angular Momentum

The topological considerations that allowed us to admit half-integer values of s do not

apply to `. To understand this, recall from section 4.3.1 that L could be interpreted as the

generator of circular translations — transformations that translate a state around a circle

in space, without adjusting its orientation. Unlike the space S3/Z2 of rotations, in R3

the space of such circular paths is contractible (see figure ??). Consequently, translation

around a circular path always leaves our state unchanged. In particular, we must have

e−2πiẑ·L/~|`,m〉 = e−2πim|`,m〉 = |`,m〉 , (5.54)

so that m ∈ Z and hence ` ∈ N0.

5.4.1 Spherical Harmonics

The commutation relations of the Ls are exactly the same as those of the Ss, so for any

finite ` we could choose to represent the orbital angular momentum operators by the same

(2` + 1) × (2` + 1) matrices as we obtained above. However, in practical applications

we’re usually interested in states whose orbital angular momentum quantum number `

may change, perhaps as a result of the particle being excited from one energy level to

another. Thus it’s more convenient to use a formalism that allows us to treat all values of `

simultaneously. Furthermore, we often want to know about L at the same time as knowing

about linear momentum P or position X, and we have seen that the [Xi, Pj ] commutation

relations do not have any finite dimensional representation and we can only represent them

as operators acting on (wave)functions. Let’s now see how to reconstruct eigenfunctions of

orbital angular momentum – the Legendre polynomials and spherical harmonics you met

in IB – from the operator formalism.

In the position representation, the orbital angular momentum operators become

L = X×P = −i~ x×∇ (5.55)
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so that in particular

Lz = −i~
(
x
∂

∂y
− y ∂

∂x

)
. (5.56)

In terms of spherical polar coordinates we have (x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ),

so
∂

∂φ
=
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z
= −y ∂

∂x
+ x

∂

∂y
(5.57)

so that Lz = −i~ ∂/∂φ. Thus, using these coordinates, the eigenvalue equation for Lz
becomes

〈x|Lz|`,m〉 = −i~
∂

∂φ
〈x|`,m〉 = m~ 〈x|`,m〉 (5.58)

or −i∂ψ`,m(x)/∂φ = mψ`,m(x), where ψ`,m(x) = 〈x|`,m〉 is the position space wavefunc-

tion. This is solved by

ψ`,m(x) = K(r, θ) eimφ (5.59)

for some function K(r, θ). Since m ∈ Z, ψ`,m is a single–valued function of the azimuthal

angle φ. This is often given as a further reason why only integer values of m (and hence `)

should be allowed.

A straightforward, though somewhat tedious calculation shows that the raising and

lowering operators

L± = Lx ± iLy = ±~ e±iφ

(
∂

∂θ
± i cot θ

∂

∂φ

)
(5.60)

in the position representation. The condition L+ψ`,` = 0 then fixes

ψ`,`(x) = R(r) sin` θ ei`φ . (5.61)

Applying the lowering operators one finds that all the other ψ`,m(x)s are of the form

ψ`,m(x) = R(r) Ym
` (θ, φ) (5.62)

where the spherical harmonic

Ym
` (θ, φ) = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (cos θ) eimφ (5.63)

is given in terms of the associated Legendre polynomial

Pm` (x) =
1

2``!
(1− x2)m/2

d`+m

dx`+m
(x2 − 1)` . (5.64)

In particular, the spherical harmonics withm = 0 are proportional to the ordinary Legendre

polynomial

Y0
` (θ) =

√
2`+ 1

4π
P`(cos θ) . (5.65)

which is a odd or even polynomial in cos θ, according to whether ` is odd or even. In

particular, the Pm` s are only single–valued as functions on S2 when ` is an integer, providing
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Figure 11: The first few spherical harmonics Ym
` (θ, φ). Each row contains pictures of the

2`+ 1 spherical harmonics at fixed `, with m increasing from −` to ` along each row.

another reason why the half–integer values allowed by general considerations of the algebra

must in fact be discarded for L.

We won’t be concerned with the detailed form of these spherical harmonics, though

you may wish to note the orthogonality condition∫
S2

Ym′
`′ (θ, φ) Ym

` (θ, φ) sin θ dθ dφ = δ``′ δmm′ (5.66)

and the fact that

r2∇2Ym
` (θ, φ) = −`(`+ 1) Ym

` (θ, φ) (5.67)

where ∇2 is the Laplacian. Furthermore, since L is invariant under parity, Π−1LΠ = +L,

it follows that so too are the raising and lowering operators L±. Therefore, all states in

a given ` multiplet have the same parity. To determine what that parity is, note that in

spherical polar coordinates the transformation x 7→ −x becomes

(r, θ, φ) 7→ (r, θ − π, φ+ π) (5.68)

so in particular cos θ 7→ − cos θ. Since P`(− cos θ) = (−1)`P`(cos θ), we see that the parity

of Y0
` is odd or even, according to whether ` is odd or even, and hence

Ym
` (θ − π, φ+ π) = (−1)` Ym

` (θ, φ) (5.69)

for all spherical harmonics with a given value of `.
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It’s occasionally useful to have an alternative form of the spherical harmonics. Consider

the polynomial in R3

ψ(x) =

3∑
i1,i2,...,i`=1

ψi1i2...i`x
i1xi2 · · ·xi` (5.70)

that is homogeneous of degree `. The coefficients ψi1i2...i` ∈ C are necessarily totally

symmetric in their indices, and the polynomial is harmonic, i.e. ∇2ψ(x) = 0 if ψi1i2...i` are

traceless on any pair of indices.

Finally, notice that so far we’ve said nothing about the radial profile of the wavefunc-

tion, R(r). Since this function is certainly spherically symmetric, the rotation generators

cannot tell us anything about it and to determine R(r) we’d need further information, such

as the Hamiltonian.
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