
6 Addition of Angular Momentum

Back in section 2.3.1, we understood how to describe composite systems using the tensor

product of the Hilbert spaces of the individual subsystems. However, in many circum-

stances, the basis of the tensor product formed by taking all possible pairs of basis ele-

ments from the individual subspaces is not the most convenient. A key case is when the

subspaces transform under the action of a group G. We’d like to understand the effect of

a G-transformation on the combined space, and the ‘obvious’ tensor product basis usually

obscures this.

In this chapter, we’ll see how this works for the case of the rotation group G = SO(3).

Specifically, suppose two subsystems are each in states of definite total angular momentum

– meaning mathematically that they transform in irreducible representations of SO(3) –

with total angular momentum quantum numbers j1 and j2, respectively. We’d like to

express the tensor product of the subsystems in terms of a sum of Hilbert spaces,

Hj1 ⊗Hj2 =
⊕
j

Hj , (6.1)

where each Hj describes a state of the whole system with definite total angular momentum

quantum number j56. Physically, to understand this decomposition is to understand how

to add the angular momentum of the two subsystems so as to find the possible values

of the combined angular momentum of the whole system. For example, in a Hydrogen

atom, both the proton and electron carry angular momentum ~/2 by virtue of their spins,

and further angular momentum may be present depending on the electron’s orbit around

the proton. If we wish to treat the atom as a whole, then we’ll be concerned with the

angular momentum of the combined system rather than that of the electron and proton

individually. An even more familiar example is your bike: the total angular momentum

comes from a combination of the back and front wheels which can be independent (at least

in principle, though I don’t recommend trying this while you’re riding along!).

Our second task in this chapter is to fill in a gap left in our knowledge: While we

know how to use the raising and lowering operators J± to realign a given amount of an-

gular momentum along or away from some axis, we’ve not yet learnt how to perform a

mathematical operation that changes the total angular momentum of our state. In sec-

tion 6.2.1, we’ll understand that, as well as states, operators themselves can carry angular

momentum. Applying such an operator to a state yields a new state whose total angular

momentum can differ from that of the original state. We’ll illustrate this using various

physical examples, including radiative transitions induced by an electric dipole moment,

and the special ‘dynamical’ symmetries present in the Coulomb and harmonic oscillator

potentials.

56In quantum mechanics we’re concerned with Hilbert space, but in fact the inner product plays very

little role in this story. The whole of this section carries over more generally to the case of representations of

a general Lie group G, where we decompose the tensor product Rj1 ⊗Rj2 of two irreducible representations

(vector spaces) Rj1 and Rj2 in terms of a sum
⊕

j Rj of further irreducible representations. You can learn

more by taking the Part II Representation Theory course next term (and more still in the Part III courses).
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Figure 12: Two gyroscopes, of individual angular momenta j1 and j2, may be aligned

relative to one another so that their total angular momentum ranges between j1 + j2 and

|j1 − j2|. For fixed relative alignment, the total angular momentum may be chosen to be

aligned along any axis.

6.1 Combining the Angular Momenta of Two States

Suppose we have two subsystems (‘gyros’) enclosed in a box, where the first system has

total angular momentum quantum number j1 and the second has total angular momentum

quantum number j2. As we saw in section 5.1, a basis of states of the first system is

{|j1,m1〉} where m1 ∈ {−j1,−j1 + 1, . . . , j1} (6.2)

while the second system may be described in terms of the basis

{|j2,m2〉} where m2 ∈ {−j2,−j2 + 1, . . . , j2} . (6.3)

From the general discussion of section 2.3.1, the state of the combined system can be

expressed as

|ψ〉 =

j1∑
m1=−j1

j2∑
m2=−j2

cm1m2 |j1,m1〉 ⊗ |j2,m2〉 (6.4)

with some coefficients cm1m2 . We can choose m1 and m2 independently, so there are a total

of (2j1 + 1)(2j2 + 1) states here – this is the dimension of the tensor product Hj1 ⊗ Hj2 .

We want to understand how the states (6.4) behave under rotations; that is, we’d like to

understand which linear combinations in (6.4) correspond to a definite amount of angular

momentum for the system as a whole.

Let’s first consider the corresponding classical situation, where we may wish to know

the combined angular momentum of two gryroscopes. Although the total angular momen-

tum of the individual components is fixed, that of the whole system is variable because it

depends on the relative orientation of the two gyros: if they are aligned with eachother,

the whole system might be expected to have total angular momentum labelled by j1 + j2,

while if the two subsystems are aligned exactly against eachother, then you may expect the

system as a whole to have total angular momentum |j1−j2|. (See figure 12.) It’s important
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to realise that we’re not saying anything at all about how the individual subsystems may or

may not be coupled to one another dynamically – that is, we’re not assuming any form of

interaction between them in the Hamiltonian. Rather, we’re just considering the different

relative alignments of their angular momenta that are possible in principle.

Quantum mechanically, the angular momentum operator for the combined system is

J = (J1 ⊗ 1Hj2 ) + (1Hj1 ⊗ J2) (6.5)

where J1 and J2 are the angular momentum operators for the two subsystems. It follows

that

J2 = (J2
1 ⊗ 1Hj2 ) + (1Hj1⊗ J2

2) + 2(J1 ⊗ J2) (6.6)

where in the final term we take the scalar product of the two spin operators over their

spatial vector indices. We’ll often abuse notation by writing

J = J1 + J2 and J2 = J2
1 + J2

2 + 2J1 · J2 , (6.7)

with the tensor product and identity operators being understood.

We can rewrite the operator (6.6) in a way that allows us to understand its action on

states |j1,m1〉|j2,m2〉, which form our basis in (6.4) (we’ve again dropped the ⊗ symbol).

Using the fact that

Jx =
J+ + J−

2
and Jy =

J+ − J−
2i

we have

2J1 · J2 = 2(J1xJ2x + J1yJ2y + J1zJ2z)

= 2

(
J1+ + J1−

2

J2+ + J2−
2

+
J1+ − J1−

2i

J2+ − J2−
2i

+ J1zJ2z

)
= J1+J2− + J1−J2+ + 2J1zJ2z .

(6.8)

Using this to eliminate J1 · J2 from (6.6) allows us to write the total angular momentum

operator as

J2 = J2
1 + J2

2 + J1+J2− + J1−J2+ + 2J1zJ2z , (6.9)

where we now understand how each of the terms on the rhs act on any state of the form

|j1,m1〉|j2,m2〉.
Let’s consider the action of this operator on states of the whole system. We’ll start

by examining the state |j1, j1〉|j2, j2〉 in which both gyros are maximally aligned with the

ẑ-axis. Since Jz = J1z + J2z we have

Jz|j1, j1〉|j2, j2〉 = (j1 + j2)~|j1, j1〉|j2, j2〉 (6.10)

so indeed this state is an eigenstate of Jz with the expected eigenvalue. Also, using (6.9)

we have

J2|j1, j1〉|j2, j2〉 =
(
J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

)
|j1, j1〉|j2, j2〉

= (j1(j1 + 1) + j2(j2 + 1) + 2j1j2) ~2|j1, j1〉|j2, j2〉
= (j1 + j2)(j1 + j2 + 1)~2|j1, j1〉|j2, j2〉

(6.11)
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where we’ve used the fact that |j1, j1〉|j2, j2〉 is annihilated by both J1+ and J2+. Thus,

setting j = j1 + j2, we may write

|j, j〉 = |j1, j1〉|j2, j2〉 (6.12)

since |j1, j1〉|j2, j2〉 satisfies both the defining equations for a state of total angular momen-

tum labelled by j1 + j2, with it all aligned along ẑ. (This is a highest weight state for

j = j1 + j2.)

Now that we’ve found one mutual eigenstate of the combined J2 and Jz, we may easily

construct others by applying the lowering operator J− = J1−+J2−. Acting on the left and

using equation (5.16) we have

J−|j, j〉 = ~
√
j(j + 1)− j(j − 1)|j, j − 1〉 = ~

√
2j|j, j − 1〉 . (6.13)

On the other hand, applying J− = J1− + J2− to the rhs of (6.12) gives

(J1− + J2−)|j1, j1〉|j2, j2〉
= ~

[√
j1(j1 + 1)− j1(j1 − 1)|j1, j1 − 1〉|j2, j2〉+

√
j2(j2 + 1)− j2(j2 − 1)|j1, j1〉|j2, j2 − 1〉

]
= ~

√
2j1|j1, j1 − 1〉|j2, j2〉+ ~

√
2j2|j1, j1〉|j2, j2 − 1〉 .

(6.14)

Comparing the two sides we learn that

|j, j − 1〉 =

√
j1
j
|j1, j1 − 1〉|j2, j2〉+

√
j2
j
|j1, j1〉|j2, j2 − 1〉 . (6.15)

Note that the lhs is an eigenstate of Jz with eigenvalue (j − 1)~, and indeed the rhs is an

eigenstate of J1z + J2z with eigenvalue (j1 + j2 − 1)~. A further application of J− to the

lhs and J1− + J2− to the rhs would produce an expression for |j, j − 2〉 and so on.

Since [J2, J−] = 0, all the states we produce by acting on |j, j〉 with J− have total

angular momentum quantum number j = j1 + j2. This corresponds to the individual

angular momenta of the subsystems always being aligned with eachother, with the different

|j,m〉 telling us about how closely there mutual direction of alignment coincides with the

z-axis.

It’s perfectly possible for the individual subsystems to not line up with eachother.

In such a configuration the net total angular momentum of the combined system will be

less than the maximum value j1 + j2. Let’s seek an expression for the state |j − 1, j − 1〉
in which the total angular momentum of the whole system is just less than the maximum

possible, but where this angular momentum still points along the ẑ-axis. It’s trivial to verify

that any simple state |j1,m1〉|j2,m2〉 is an eigenstate of Jz = J1z + J2z, with eigenvalue

(m1 + m2)~. We require m1 + m2 = j − 1 = j1 + j2 − 1, so either (m1,m2) = (j1 − 1, j2)

or (m1,m2) = (j1, j2 − 1). Also, the state |j − 1, j − 1〉 must be orthogonal to the state

|j, j − 1〉 we found in (6.15) since they are each eigenstates of the Hermitian operator J2

with distinct eigenvalues. Therefore we must have

|j − 1, j − 1〉 =

√
j2
j
|j1, j1 − 1〉|j2, j2〉 −

√
j1
j
|j1, j1〉|j2, j2 − 1〉 . (6.16)
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Figure 13: Decomposing the tensor product of two irreducible representations into a sum

of irreducible representations, drawn as semicircles. The picture on the left shows states

obtained by adding a system with j1 = 2 to one with j2 = 1, while that on the right is for

j1 = 1 and j2 = 1/2.

with a relative sign between the two terms. Again, this is a highest weight state, now with

j = j1 + j2− 1. Given this state, we may now proceed to construct all the states |j− 1,m〉
with −j + 1 ≤ m ≤ j − 1 by applying the lowering operator J−.

Figure 13 helps us to organise our results. States of the combined system with well–

defined angular momentum are marked by dots. The radius of each semicircle is propor-

tional to
√
j′, where j′(j′ + 1)~2 is the state’s eigenvalue J2. The height of a state above

the centre of the semicircles is proportional to m. The outer semicircle thus contains all

states with j′ = j1 + j2; going inwards we meet the states with j′ = j1 + j2 − 1, then those

with j′ = j1 + j2 − 2 and so on. To construct |j − 2, j − 2〉 we note that it must be in the

span of {|j1, j1− 2〉|j2, j2〉, |j1, j1− 1〉|j2, j2− 1〉, |j1, j1〉|j2, j2− 2〉}, and that |j, j − 2〉 and

|j − 1, j − 2〉 also lie in the span of these states. Having constructed both |j, j − 2〉 and

|j − 1, j − 2〉, the state |j − 2, j − 2〉 must be the unique orthogonal combination.

From our classical considerations, it’s reasonable to conjecture that the smallest pos-

sible total angular momentum quantum number of the whole system is |j1 − j2|, coming

when the two gyros are aligned against one another. Let’s check this by working out the

total number of states the conjecture leads to. Without loss, we can assume j1 ≥ j2. If the

combined system has j values running from j1 + j2 to j1 − j2, then we count a total of

j1+j2∑
j=j1−j2

(2j + 1) = 2

 j1+j2∑
j=j1−j2

j

+ (2j2 + 1) = (2j1)(2j2 + 1) + (2j2 + 1)

= (2j1 + 1)(2j2 + 1) ,

(6.17)

in agreement with the dimension of the tensor product space we found earlier using the

‘obvious’ tensor product basis in (6.4). We’ve thus accounted for all the possible states of

the system.

The numbers

Cj,m(j1,m1; j2,m2) = 〈j,m| (|j1,m1〉 ⊗ |j2,m2〉) (6.18)
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are known as Clebsch–Gordan coefficients. Physically, they represent the amplitude that,

when the total system is in state |j,m〉, we will find the subsystems to be in states |j1,m1〉
and |j2,m2〉 when we peer inside the box. For example, from equation (6.15) we see that

C3,2(2, 1; 1, 1) =
√

2/3, so if we know our box contains a gyro of spin 2 and a gyro of

spin 1, if the box is in state |3, 2〉 then there’s a 2/3 chance that the second gyro has its

spin maximally aligned with the z-axis with the first significantly inclined, but only a 1/3

chance that it is the first gyro that is maximally aligned with the ẑ-axis.

Let’s take a look at a few examples to familiarise ourselves with the above general

formalism.

6.1.1 j ⊗ 0 = j

First, the trivial case: if one of the subsystems (say the second) has j2 = 0, then it always

lies in |j2,m2〉 = |0, 0〉. Hence the tensor product is trivial

H = Hj1 ⊗H0 = Hj1 ⊗ C ∼= Hj1

because we have no choice about the state of the second subsystem. The states

{|j,m〉 = |j1,m1〉|0, 0〉}

therefore form a basis of the full system, and are immediately a single irreducible repre-

sentation with j = j1.

6.1.2 1
2 ⊗ 1

2 = 1⊕ 0

The first non–trivial case is when j1 = j2 = 1/2. Physically this is relevant, e.g. to the

case of the ground state of the Hydrogen atom where to understand the spin of the whole

atom we must combine the spins of both the proton and the electron. From above, we have

|1, 1〉H = |↑ 〉e |↑ 〉p (6.19)

where the subscripts refer to Hydrogen, the electon and the proton, respectively. In this

state, the spins of the electron and proton are aligned with eachother, and they each have

maximal possible spin along the ẑ-axis. Applying J−H = J−e + J−p we obtain

|1, 0〉H =
1√
2

(|↑ 〉e |↓ 〉p + |↓ 〉e |↑ 〉p) , (6.20)

while applying J−H a second time gives

|1,−1〉H = |↓ 〉e |↓ 〉p . (6.21)

Since both the electron and proton are in the | ↓ 〉 state here, any further applications of

either lowering operator will annihilate the rhs, in agreement with the action of the total

lowering operator J−H on the state |1,−1〉H of the whole atom.

Let me point out a perhaps surprising feature of this multiplet. In state (6.20), we are

certain to find that the z-component of the spins of the electron and proton are ‘antiparal-

lel’. This may seem surprising given that the atom is still in a spin-1 state, corresponding to
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the spins of the subsystems being aligned. The resolution of the paradox is that while the

z-components are indeed antiparallel, the components in the xy-plane are aligned, although

their precise direction is unknown to us. Similarly, in both the |1, 1〉 and |1,−1〉 states,

while the z-components of the electron and proton spins were aligned, their components

in the xy-plane were in fact antiparallel. The poor alignment in the xy-plane accounts for

the fact that
√
〈J2〉 =

√
2~ for the atom, which is less than the sum of

√
〈J2〉 =

√
3/4 ~

for the electron and proton individually.

The remaining state of the atom is |0, 0〉, in which the atom has no angular momentum.

This should be orthogonal to (6.20), so we find

|0, 0〉H =
1√
2

(|↑ 〉e |↓ 〉p − |↓ 〉e |↑ 〉p) . (6.22)

The change in sign on the rhs of this equation ensures that the electron and proton spins

are antiparallel in the xy-plane as well as in the z-direction. In fact, one can check that

this state may also be written as

|0, 0〉H = − 1√
2

(|↑x〉e |↓x〉p − |↓x〉e |↑x〉p) (6.23)

where |↑x〉 and |↓x〉 are eigenstates of Jx. Similarly,

|1, 0〉H =
1√
2

(|↑x〉e |↑x〉p − |↓x〉e |↓x〉p) (6.24)

as one can check straightforwardly.

Altogether, combining two states each with angular momentum 1/2, we’ve found a

triplet of states with total angular momentum j = 1:

|1, 1〉 = |↑ 〉 |↑ 〉 , |1, 0〉 =
1√
2

(|↑ 〉 |↓ 〉+ |↓ 〉 |↑ 〉) , |1,−1〉 = |↓ 〉 |↓ 〉 (6.25)

and a singlet with total angular momentum j = 0:

|0, 0〉 =
1√
2

(|↑ 〉 |↓ 〉 − |↓ 〉 |↑ 〉) . (6.26)

Note that each state in the triplet is symmetric under exchange of the angular momenta

of the two subsytems, while the singlet state is antisymmetric under this exchange.

6.1.3 1⊗ 1
2 = 3

2 ⊕ 1
2

If our subsystems have j1 = 1 and j2 = 1
2 , then the total system can have j = 3

2 or j = 1
2 .

Let’s start as always with the highest state∣∣∣∣32 , 3

2

〉
= |1, 1〉 |↑ 〉 . (6.27)

Applying the lowering operator, we find successively the states∣∣∣∣32 , 1

2

〉
=

√
2

3
|1, 0〉 |↑ 〉+

√
1

3
|1, 1〉 |↓ 〉 ,∣∣∣∣32 ,−1

2

〉
=

√
1

3
|1,−1〉 |↑ 〉+

√
2

3
|1, 0〉 |↓ 〉 ,∣∣∣∣32 ,−3

2

〉
= |1,−1〉 |↓ 〉

(6.28)
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Figure 14: Classically, the sum of two vectors lies on a sphere centred on the end of one

of these vectors, at a location determined by their relative orientation.

which complete the j = 3
2 multiplet. The remaining states are∣∣∣∣12 , 1

2

〉
=

√
1

3
|1, 0〉 |↑ 〉 −

√
2

3
|1, 1〉 |↓ 〉 and

∣∣∣∣12 ,−1

2

〉
=

√
2

3
|1,−1〉 |↑ 〉 −

√
1

3
|1, 0〉 |↓ 〉 .

(6.29)

The first of these is obtained by requiring it to be orthogonal to |32 , 1
2〉, and the second

follows by applying the lowering operator to the first.

6.1.4 The Classical Limit

We should expect to recover a classical picture when we combine two systems each with

large amounts of total angular momentum. Let’s see how this occurs. Classically, if we

add two angular momentum vectors j1 and j2 then the resultant vector has magnitude

j2 = (j1 + j2)2 = j2
1 + j2

2 + 2j1 · j2 . (6.30)

If we know nothing about the relative orientation of j1 and j2, then all points on a sphere

of radius |j2| centred on the end of j1 are equally likely. Consequently, the probability dP

that j1 and j2 have relative alignment in the range (θ, θ+ dθ) is proportional to the area of

the band shown in figure 14. The magnitudes of j1 and j2 are fixed, so dj2 = 2|j1||j2| d cos θ.

Hence the probability of this alignment is

dP =
2π sin θ dθ

4π
=
|j| d|j|

2|j1||j2|
(6.31)

and hence dP/d|j| = |j|/2|j1||j2|.
In the quantum case, suppose j1, j2 � 1. Then the fraction of states in the combined

system with some amount j of angular momentum is

2j + 1

(2j1 + 1)(2j2 + 1)
≈ j

2j1j2
(6.32)

provided |j1 − j2| ≤ j ≤ j1 + j2. Thus, if we know nothing about the original state of

the subsystems, the probability that the combined system has total angular momentum j

agrees with the classical probability computed above.
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6.2 Angular Momentum of Operators

Suppose that V is a vector operator, so that in particular U−1(α)VU(α) = R(α)V under

rotations, or

[Ji, Vj ] = i~
∑
k

εijkVk (6.33)

infinitesimally. We define the spherical components of V by

V +1 = − 1√
2

(Vx + iVy) , V −1 =
1√
2i

(Vx − iVy) , V 0 = Vz (6.34)

Then the commutation relations (6.33) are equivalent to

= m~V m

[J±, V
m] = ~

√
2−m(m± 1)V m±1 .

(6.35)

6.2.1 The Wigner–Eckart Theorem

6.2.2 Dipole Moment Transitions

6.2.3 The Runge–Lenz Vector in Hydrogen

For a spinless particle of mass57 M in a generic central potential, the Hamiltonian takes

the form

H =
P2

2M
+ V (|X|) . (6.36)

By definition, any such Hamiltonian is rotationally invariant, so it follows that

[L, H] = 0 and [L2, H] = 0 . (6.37)

Since we also have [Li,L
2] = 0 we can find a complete set of simultaneous eigenstates of

H,L2 and Lz, so we can label our states as |n, `,m〉. The Hamiltonian does not involve Lz
except through L2, so the energy level En,`,m of such a state must certainly be independent

of m. However, the Hamiltonian does involve L2 through the kinetic operator, so we do

not generically expect the energy levels to be independent of `. Physically, if we give our

particle more or less angular momentum, it will whizz round faster or slower. Typically,

we’d expect this to change the energy.

Nonetheless, it occasionally happens that a Hamiltonian is invariant under transfor-

mations beyond those inherited from the transformations of the space R3 in which the

quantum system lives. If the algebra of the corresponding generators closes, meaning that

the commutator of any pair of generators is equal to another generator (perhaps including

the Hamiltonian), then we say we have a dynamical symmetry. In such cases, it may be

possible to change the total angular momentum of a state without changing its energy, so

that states of different orbital angular momentum quantum number ` can be degenerate.

Hamiltonians with dynamical symmetry are very rare: for single–particle quantum

systems moving on R3 with a central potential, the only cases are the harmonic oscillator

57We denote the mass with a capital M so as to avoid any confusion with the z angular momentum

quantum number m.
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and motion in a Coulomb potential. However, these two cases are so important that it’s

worth considering them from this point of view.

The treatment below closely follows section 4.8 of Weinberg – I think I’ll modify it when I

write the Wigner-Eckart part

The first case we’ll study is for the Coulomb potential, relevant e.g. to the hydrogen

atom. Classically, conservation of angular momentum in any central potential implies that

the motion is confined to a plane, but the Kepler problem has a further conserved quantity

known as the Runge–Lenz vector r, given by

r = −e2 x

|x| +
1

M
p× L (6.38)

for a particle of mass M . Conservation of this vector implies that classical bound states

have closed orbits; the motion is not just in a plane, but follows a fixed ellipse. (The

observation of a gradual shift in Mercury’s orbit – the precession of its perihelion – was

one of the early confirmations of General Relativity’s modifications to Newton’s Laws of

Gravity.)

Now let’s consider the quantum mechanical case. We construct the Runge–Lenz oper-

ator

R = − e2

|X|X +
1

2M
(P× L− L×P)

= − e2

|X|X +
1

M
P× L− i~

M
P .

(6.39)

Classically, the two terms in brackets on the first line of (6.39) are equal; we’ve written it

this way to ensure that R† = R.

Since R is a vector operator built from X and P, it follows that its commutation

relations with L are

[Li, Rj ] = i~
∑
k

εijkRk . (6.40)

so that it transforms as a vector under rotations. Therefore, the Wigner-Eckart theorem

says that

〈n′, `′,m′|Rk1 |n, `,m〉 = C`′,m′(1, k
′; `,m) 〈n′‖R‖n〉 (6.41)

Furthermore, a somewhat tedious calculation (which I’ll spare you, and which I don’t

expect you to reproduce) shows that [H,R] = 0 so the Runge-Lenz vector is conserved.

Thus the reduced matrix element 〈n′‖R‖n〉 vanishes unless n′ = n.

The orbital angular momentum L = X × P is orthogonal to each of the three terms

in this expression, so R · L = L ·R = 0. We also have

L2 = (X×P) · L = X · (P× L)

= (P× L) ·X +

3∑
i,j,k=1

εijk [Xi, PjLk]

= (P× L) ·X + 2i~P ·X ,

(6.42)
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as well as

P · (P× L) = 0 , (P× L) ·P = 2i~P2 and (P× L)2 = P2 L2 (6.43)

where we’ve been careful to keep track of operator orders. Using these results, we find that

the length-squared of the Runge–Lenz operator is given by

R2 = Z2e4 +
2H

µ

(
L2 + ~2

)
. (6.44)

The point of this expression is that it relates R to H; since we know the spectrum of L2,

we can find the eigenvalues of H if we can find the eigenvalues of R. A rather longwinded

calculation (that I won’t expect you to reproduce) shows that the components of the

Runge-Lenz operator obey the commutation relations

[Ri, Rj ] = −2i~
µ
H
∑
k

εijkLk , (6.45)

where we note that H commutes with L.

We now introduce the operators

A± =
1

2

(
L±

√
µ

−2H
R

)
(6.46)

built from the orbital angular momentum operator, the Runge-Lenz operator and the

Hamiltonian, where we recall that functions (such as the square root) of an operator are

defined as in (2.42). The point of introducing these strange-looking combinations is that

commutation relations (6.40) & (6.45) show that the A± obey the algebra

[A±i, A±j ] = i~
∑
k

εijkA±k and [A±,A∓] = 0 , (6.47)

which we recognise58 as two independent copies of the angular momentum algebra so(3).

In particular, just as for the total angular momentum, the eigenvalues of A2
± take the form

a±(a±+1)~2 where a± ∈ {0, 1/2, 1, 3/2, . . .}, with the eigenvalues of any component of A±
running from −~a± to +~a± in steps of ~.

Since [A±, H] = 0 we can find simultaneous eigenstates of H, A2
± and, say, A+z and

A−z. However, taking the square of‘(6.46) and using the fact that L ·R = R · L = 0,

A2
+ = A2

− =
1

4

(
L2 +

µ

2H
R2
)

= −Z
2e4µ

8H
− ~

2

4
. (6.48)

In particular, we cannot choose these eigenvalues of A2
+ and A2

− independently, but must

have a+ = a−. Calling the common eigenvalue a, an simultaneous eigenstate of H and A2
±

obeys

− Z2e4µ

8E
=

(
a(a+ 1) +

1

4

)
~2 =

~2

4
(2a+ 1)2 . (6.49)

58For bound states of the Coulomb potential, the spectrum of H is negative-definite, so the operators

A± are indeed Hermitian when acting on such states. At energies above the ionisation threshold, the

square root in (6.46) means that A± can no longer be treated as Hermitian, and this algebra is then better

described as sl(2).
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For a any non-negative half integer, 2a + 1 ∈ {1, 2, 3, . . .}, so the energy levels can be

written

En = −Z
2e4µ

2~2n2
where n ∈ N . (6.50)

These are the energy levels of hydrogenic atoms that you obtained in IB QM. The eigenval-

ues of A+z and A−z can be chosen independently, and each run from −a~ to a~ in steps of

~. Thus the degeneracy of the state with energy En is (2a+ 1)2 = n2. Again, this is bigger

than the degeneracy of a generic central potential, and the degenerate states transform in

representations of the enhanced so(3)×so(3) symmetry algebra. The diagonal part of this,

generated by L = A+ + A− corresponds to spatial rotations.

Incidentally, it’s useful to note that the energy levels of a hydrogenic atom can be

written as

En = −Z
2α2

2n2
mc2 (6.51)

where the dimensionless number

α =
e2

4πε0~c
(6.52)

is known as the fine structure constant. Experimentally, α ≈ 1/137. The significance of

this is that, at least for small atomic number Z, |En/mc2| � 1 providing a posteriori

justification of our use of non–relativistic quantum mechanics to study the hydrogen atom.

6.2.4 Enhanced Symmetry of the 3d Isotropic Harmonic Oscillator

As a second example, consider an isotropic 3d harmonic oscillator, with Hamiltonian

H =
P2

2M
+

1

2
Mω2X2 (6.53)

as in section 3.3. The fact that H is quadratic in X as well as in P means it has an

enhanced symmetry beyond the obvious SO(3) rotational invariance. We can see this from

the form

H = ~ω

(∑
i

A†iAi +
3

2

)
(6.54)

in terms of raising and lowering operators. Written this way, H is clearly invariant under

the transformations

Ai 7→ A′i

3∑
j=1

uij Aj A†i 7→ (A′i)
† =

3∑
k=1

A†k (u†)ki (6.55)

for any 3× 3 unitary matrix u. These matrices must be unitary if the new A′† is indeed to

be the Hermitian conjugate of the new A′. It’s important to realise that, although they are

unitary, the matrices uij do not act on the Hilbert space of the harmonic oscillator, but just

on the spatial indices of the vector operators A and A†. They thus mix X and P together59.

59For those taking Integrable Systems: classically these are symmetries of phase space that do not come

from symmetries of space itself, and reflect the fact that the harmonic oscillator is (super-)integrable.
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Note also that the new raising and lowering operators obey the same commutation relations

as the original ones.

A 3×3 unitary matrix has 9 independent real components, whereas a rotation in three

dimensions is completely specified by only 3 independent Euler angles, so the U(3) sym-

metry of this Hamiltonian is much bigger than the SO(3) rotational invariance of a generic

central potential. The fact that the Hamiltonian is invariant under the U(3) transforma-

tions (6.55) implies that there should be a total of nine conserved quantities corresponding

to the nine generators of this symmetry. It’s easy to check that these generators form

the tensor operator T with components Tij = A†iAj . We have [H,T] = 0 and hence each

component Tij is conserved. To understand these operators, we decompose T into its

irreducible parts as in section 6.2.1, obtaining

Tij = A† ·A δij
3

+
A†iAj −A

†
jAi

2
+

[
A†iAj +A†jAi

2
−A† ·A δij

3

]
. (6.56)

The trace A† · A is (up to a constant) just the Hamiltonian itself, which is certainly

conserved. Recalling the definition (3.33) of the raising and lowering operators, the anti-

symmetric part can be combined into a vector with components∑
j,k

εijkA
†
jAk =

1

2M~ω
∑
j,k

εijk(MωXj − iPj)(MωXk + iPk)

=
i

2~
∑
j,k

εijk (XjPk − PjXk) =
i

~
Li ,

(6.57)

where in the last equality we used the fact εijk(XjPk − PjXk) = 2εijkXjPk, with the

ε-symbol ensuring that the components of X and P commute. Thus

L = −i~ (A† ×A) , (6.58)

so that the vector part of T is nothing but the usual orbital angular momentum operator

for the 3d oscillator. It is no surprise that this is conserved.

The remaining five conserved quantities — the symmetric, traceless part (Tij+Tji)/2−∑
i Tii/3 of T — generate transformations that mix X and P, appropriately rescaled.

They’re less familiar, as they’re special to the simple harmonic oscillator. The five com-

ponents of this traceless symmetric part correspond to the spin-2 part of the operator

T

We can see this degeneracy by examining the excited states of the oscillator. Just as

in 1d, these may be obtained by acting on |0〉 with any component of the raising operators

A†. Since the ground state has energy 3~ω/2 and each application of a raising operator

increases the energy by one unit of ~ω, each of the states

A†iN · · ·A
†
i2
A†i1 |0〉 (6.59)

has the same energy (N + 3/2)~ω, where we can choose any {i1, i2, . . . , iN} ∈ {1, 2, 3}. We

often call the (correctly normalised) such state |nx, ny, nz〉, where nx is the total number
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of times we’ve applied the x-component of A†, and similarly for ny and nz. Of course,

N = nx + ny + nz.

Since the components of the raising operators all commute with one another, we can

consider the indices i1, . . . , iN in (6.59) to be symmetrized. Consequently, the degeneracy

of the N th energy level is the same as the number of independent components of a rank N

tensor in 3 dimensions, which is (N + 1)(N + 2)/2 . (Think ‘stars & bars’, or the number

of ways to partition N into three non-negative integers (nx, ny, nx).) This is the larger

degeneracy that we promised. It’s easy to derive this degeneracy in number of ways; our

derivation here makes clear that the degenerate energy states transform in representations

of the larger su(3) algebra.

6.3 Angular Momentum of the Isotropic Oscillator

We can find the spectrum of H` using raising and lowering operators in a similar fashion

to our treatment of the full H above. We introduce

A` =
1√

2µ~ω

(
iPr −

(`+ 1)~
R

+ µωR

)
(6.60)

and a short computation using [R,Pr] = i~ shows that

H` = ~ω
(
A†`A` +

(
`+

3

2

))
. (6.61)

This is very similar to the expression (3.35) above, but now we find the commutation

relations

[A`, A
†
`] = 1 +

(`+ 1)~
µωR2

=
H`+1 −H`

~ω
+ 1 (6.62)

in place of (3.34) for the raising and lowering operators in Cartesian coordinates. In

consequence, the commutator of H` with A` is

[A`, H`] = ~ω[A`, A
†
`A`] = ~ω[A`, A

†
`]A` = (H`+1 −H` + ~ω)A` , (6.63)

or equivalently

H`+1A` −A`H` = −~ωA` . (6.64)

This is very close to showing that A` is a lowering operator, but the presence of H`+1

means that the algebra does not close unless we consider all values of `. To understand

the implications of this, let |E(`)〉 be an eigenstate of H`, with H`|E(`)〉 = E|E(`)〉 where

we emphasise that the energies depend on the total orbital angular momentum quantum

number `. Then

H`+1(A`|E(`)〉) = (E − ~ω)A`|E(`)〉 , (6.65)

which implies that A`|E(`)〉 is an eigenstate of H`+1 with eigenvalue E − ~ω. The Hamil-

tonian H`+1 is the one appropriate for the radial part of wavefunctions with total angular

momentum labelled by ` + 1, so applying A` to |E(`)〉 has created a state with lower en-

ergy, but with a radial wavefunction corresponding to a state of greater orbital angular

momentum.
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Figure 15: The action of the operators A` and A†` on the states of the isotropic three

dimensional oscillator.

By a now familiar argument, in any H` eigenstate we have

E`
~ω
− `− 3

2
=

〈
E(`)

∣∣∣∣H`

~ω
− 3

2

∣∣∣∣E(`)

〉
= 〈E(`)|A†`A`|E(`)〉 = ‖A`|E(`)〉‖2 ≥ 0 . (6.66)

Thus, for a fixed given energy E the maximum orbital angular momentum our state can

have is

`max =
E

~ω
− 3

2
. (6.67)

As `max is a non–negative integer (since it is a possible value for ` at given E) we see that,

in agreement with the previous subsection, the ground state energy is 3~ω/2 which occurs

when `max = 0, meaning that this ground state is necessarily spherically symmetric.

For any given energy, the state |E(`max)〉 which saturates the bound (6.66) obeys

A`max |E(`max)〉 = 0 and has the maximum possible total angular momentum out of all

the states with this energy. It is thus the quantum equivalent of a circular orbit. In the

position representation we have

0 = 〈r|A`max |E(`max)〉 =
1√

2µ~ω

(
∂

∂r
+

1

r
− (`max + 1)

r
+
mωr

~

)
〈r|E(`max)〉 (6.68)

where we use |r〉 to denote a state that is definitely located at radius r. This equation is

solved by

〈r|E(`max)〉 = C r`max e−r
2/4r20 (6.69)

where r0 =
√
~/2µω and C is a constant. Note that the exponential here is just the

product of the exponentials we’d expect for Cartesian oscillators. This wavefunction

varies with r, so quantum mechanically even a ‘circular’ orbit has some radial kinetic

energy. In the limit of large `max in which classical mechanics applies, the radial kinetic

energy is negligible compared to the tangential kinetic energy. The full wavefunction is

〈r|(|E(`max)〉 ⊗ |`max,m〉) and so also involves the spherical harmonic Ym
`max

(θ, φ). Bearing

in mind that d3x = r2 sin θ dφ dθ dr, the radial probability density P (r) for this state is

P (r) ∼ r2`max+2 e−r
2/2r20 . For r/r0 �

√
2`max + 2 this rises as r2`max+2 and it falls as the

– 92 –



Gaussian takes over when r/r0 >
√

2`max + 2. The rms deviation in the radial location is

∼ r0, which is a small fraction of the expected radial location 〈R〉 when `max is large.

We can obtain the radial wavefunctions of more eccentric orbits using A†`. Taking the

adjoint of (6.64) we obtain

H`A
†
` −A

†
`H`+1 = ~ωA†` . (6.70)

Acting with this on |E(`+ 1)〉 we have

H`(A
†
`|E(`+ 1)〉) = (E + ~ω) (A†`|E(`+ 1)〉) (6.71)

so that A†`|E(`+1)〉 is a state of increased energy, whose radial wavefunction is appropriate

for orbital angular momentum `. Thus A†`|E(`+1)〉 = c|E(`)+~ω〉 for some constant c. The

radial wavefunctions of the eccentric orbits follow by writing this equation in the position

representation, though we won’t perform this calculation here. The way the energy raising

/ angular momentum lowering operators A†` and the energy lowering / angular momentum

raising operators A` act on the states is summarised in figure 15.

In the previous section we found that there were (N+2)(N+1)/2 degenerate states in

the N th excited level of the isotropic oscillator, each with energy E = (N + 3/2)~ω. From

the point of view of the present section, with energy E = (N + 3/2)~ω we have `max = N

and this degeneracy arises as

`max∑
`=0

∑̀
m=−`

1 =

`max∑
`=0

(2`+ 1) = `max(`max + 1) =
(N + 1)(N + 2)

2
(6.72)

since there are 2`+ 1 possible states with total orbital angular momentum `.

6.4 The Radial Hamiltonian for the Coulomb Potential

For some purposes, it’s useful to study hydrogen from a point of view that emphasises

the fact that the potential is central, so energy eigenstates may also be chosen to have

definite angular momentum. In the first problem set you showed that the kinetic part of

the Hamiltonian could be written as

T =
1

2µ

(
P 2
r +

L2

R2

)
, (6.73)

where R2 = X ·X and Pr = 1
2(X̂ ·P + P · X̂) is the radial momentum. Thus, when acting

on an orbital angular momentum eigenstate |`,m〉, the Hamiltonian of a hydrogenic atom

with atomic number60 Z reduces to

H` =
P 2
r

2µ
+
`(`+ 1)~2

2µR2
− Ze2

4πε0R
. (6.74)

As in IA Dynamics & Relativity, this is just what we’d find for a particle moving in one

dimension under the influence of the effective potential

Veff(R) =
`(`+ 1)~2

2µR2
− Ze2

4πε0R
. (6.75)

60The atomic number is the number of protons in the atom’s nucleus.
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H` governs the oscillations of the particle around the minima of this potential. Note

that since H` depends only on the radius R and radial momentum Pr, in position space its

eigenstates will determine the radial dependence RE(r) = 〈r|E(`)〉 of the full wavefunction.

A basis of eigenstates |E, `,m〉 of the full Hamiltonian H can be chosen to be (tensor)

products of the eigenstates |E(`)〉 of H` and the eigenstates |`,m〉 of L2 and Lz, whose

position space wavefunction Ym
` (θ, φ) = 〈r̂|`,m〉 is a spherical harmonic, as in section 5.4.1.

All three terms in H` must have the same dimensions, and in particular the ratio of

the two terms in Veff must be dimensionless. Thus

~2

µR2
× 4πε0R

e2
=

4πε0~2

µe2
× 1

R
is dimensionless. (6.76)

It follows that the Bohr radius

a0 ≡
4πε0~2

µe2
(6.77)

is the characteristic length scale of the hydrogen atom. We have

H` =
~2

2µ

(
P 2
r

~2
+
`(`+ 1)

R2
− 2Z

a0R

)
(6.78)

in terms of a0.

Let’s define a new operator A` by

A` =
a0√

2

(
i

~
Pr −

`+ 1

R
+

Z

(`+ 1)a0

)
. (6.79)

Then one finds

A†`A` =
a2

0

2

(
− i

~
Pr −

`+ 1

R
+

Z

(`+ 1)a0

)(
i

~
Pr −

`+ 1

R
+

Z

(`+ 1)a0

)
=
a2

0

2

{
P 2
r

~2
+

(
Z

(`+ 1)a0
− `+ 1

R

)2

+ i
`+ 1

~

[
Pr,

1

R

]}
.

(6.80)

Using the commutator [Pr, R] = −i~ this gives

A†`A` =
a2

0

2

{
P 2
r

~2
+

Z2

(`+ 1)2a2
0

+
(`+ 1)2

R2
− 2Z

a0R
− i

~
`+ 1

R
[Pr, R]

}
=
a2

0

2

{
P 2
r

~2
+

Z2

(`+ 1)2a2
0

+
`(`+ 1)

R2
− 2Z

a0R

}
=
a2

0µ

~2
H` +

Z2

2(`+ 1)2
.

(6.81)

Had we instead evaluated A`A
†
` the only difference would have been the sign in front of

the commutator, so we would instead find

A`A
†
` =

a2
0µ

~2
H`+1 +

Z2

2(`+ 1)2
(6.82)
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which now involves the Hamiltonian appropriate for states whose orbital angular momen-

tum is given by `+ 1. Rearranging (6.81) allows us to write the radial Hamiltonian as

H` =
~2

µa2
0

(
A†`A` −

Z2

2(`+ 1)2

)
(6.83)

while taking the difference of (6.81) and (6.82) gives the commutation relations[
A`, A

†
`

]
=
a2

0µ

~2
(H`+1 −H`) . (6.84)

The final result we need is the commutation relation

[A`, H`] =
~2

µa2
0

[
A`, A

†
`A`

]
=
~2

µa2
0

[
A`, A

†
`

]
A` = (H`+1 −H`)A` , (6.85)

where the final step uses (6.84). Cancelling the H`A` term on both sides, this simplifies to

A`H` = H`+1A` , (6.86)

and we also have A†`H`+1 = H`A
†
` by taking the Hermitian conjugate.

Now let’s understand these operators. Let |E, `〉 be an eigenstate of H` and L2 with

H`|E, `〉 = E|E, `〉 and L2|E, `〉 = `(`+ 1)~2 |E, `〉. Then

H`+1 (A`|E, `〉) = A`H`|E, `〉 = E (A`|E, `〉) (6.87)

so that A`|E, `〉 is an eigenstate of H`+1 with the same energy E. Thus, acting on |E, `〉, A`
creates a new state with the same energy, but where the effective potential corresponds to

the angular momentum quantum number `+1. Acting on the new state A`|E, `〉 with A`+1

again creates a new state with the same energy, but even more orbital angular momentum

labelled by ` + 2, and so on. We already know that our energy levels are not infinitely

degenerate, so this process must eventually terminate. That is, just as in the harmonic

oscillator, there must be a maximum value `max such that

A`max |E, `max〉 = 0 (6.88)

and again, by analogy with the classical case where a circular orbit has the highest possible

orbital angular momentum for fixed energy, we can view this state as the quantum analogue

of a circular orbit. Taking the norm and using equation (6.81) we have

0 = ‖A`max |E, `max〉 ‖2 = 〈E, `max|A†`max
A`max |E, `max〉 =

a2
0µ

~2
E +

Z2

2(`max + 1)2
, (6.89)

or equivalently

E = −Z
2~2

2µa2
0

1

n2
(6.90)

where n ≡ `max + 1 labels the energy level. This agrees with the spectrum of the Hamil-

tonian computed earlier using the Runge–Lenz vector (or indeed in IB QM). The virtue
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of the Runge–Lenz derivation is that it makes transparent the role of the additional, dy-

namical symmetry of Hydrogen, explaining why the energy levels fall into multiplets of

so(3) × so(3). The virtue of the present derivation is that it makes transparent how the

degeneracy arises because, aside from simply rotating our system, we can trade radial ki-

netic energy and Coulomb potential for different orbital kinetic energy whilst keeping the

total energy constant.
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