
7 Identical Particles

One of the most striking facts that helps us understand the Universe is that, apart from

details of their motion, all electrons are identical. This fact, though convenient, has no ex-

planation within Quantum Mechanics. In Quantum Field Theory, one learns that particles

are simply quantised modes of excitation of a field. We thus replace the vast number of

electrons our Universe contains with a single quantum field that has hugely many excita-

tions. From this perspective, the fact that all elementary particles of the same species are

identical is more or less a tautology, no more surprising than the fact that one factor of x

in the monomial xn is just the same as another.

7.1 Bosons and Fermions

Consider a system consisting of N particles, individually described by some state in a

Hilbert space Ha where a = 1, . . . , N , and suppose |αa〉 ∈ Ha gives a complete specification

of the state of the ath particle, so αa collectively labels all the quantum numbers describing

the particle’s energy, orbital angular momentum, spin etc.. In the case that the particles

are distinguishable – meaning they are each from different species, such as an electron, a

proton or a neutron – a complete set of states of the full system is then labelled by linear

combinations of states

|α1;α2; . . . ;αN 〉 = |α1〉|α2〉 · · · |αN 〉 ∈
N⊗
a=1

Ha . (7.1)

in accordance with the discussion of section 2.3.1. However, suppose particles 1 and 2 are

indistinguishable; for example, they might both be electrons. The state (7.1) thus describes

a situation where there is one electron with quantum numbers given by α1 and another

whose same properties are labelled by α2. Since both electrons are identical, it can make

no difference which is which. Consequently, there can be no physical difference between

this state and the state in which these two particles are exchanged. This does not imply

that the two states are identical, but does imply that they can only differ by a phase:

|α2;α1; . . . 〉 = eiφ|α1;α2; . . . 〉 , (7.2)

where φ is independent61 of the particular values of the labels αa, but may depend on the

species of particle we exchange.

If we exchange the pair of particles once again we find

|α1;α2; . . . 〉 = eiφ|α2;α1; . . . 〉 = e2iφ|α1;α2; . . . 〉 (7.3)

61There’s a (non-examinable!) exception to this in the case of two spatial dimensions, where the phase

may depend on the homotopy class of the path the particles take whilst they are being exchanged. In

2 + 1 dimensions, these paths can become braided (tangled) and the multi–particle state transforms in

a representation of the braid group, first studied in the maths literature by Emile Artin. This leads to

the possibility of anyonic statistics, which play an important role in some condensed matter systems.

Fortunately, we’re interested in quantum mechanics on R3 and in higher dimensions it turns out the paths

can always be disentangled, so anyons do not arise.
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using the fact that the phase is independent of the particular values of the quantum numbers

αa. Thus e2iφ = 1, so

eiφ = ±1 . (7.4)

The choice of sign depends only on the species of the particle. Identical particles which

are symmetric under exchange are called62 bosons, while those that are antisymmetric are

said to be fermions.

If all N of the particles in our system are identical, then the argument immediately

extends to say that the state must be either completely symmetric or completely antisym-

metric under exchange of any pair, which case being determined by whether the particles

are bosons or fermions. That is, for bosons the state of the system is actually described by

a vector

|α1;α2; . . . ;αN 〉 ∈ SymNH ⊂
N⊗
H , (7.5)

whereas for fermions the state lies in the antisymmetric part

|α1;α2; . . . ;αN 〉 ∈
N∧
H ⊂

N⊗
H . (7.6)

As a simple example, a pair of identical fermions with quantum numbers α1 and α2 live in

the antisymmetric state

|ψ〉fermi =
1√
2

(|α1;α2〉 − |α2;α1〉) , (7.7)

whereas the system would have to be described by the symmetric combination

|ψ〉bose =
1√
2

(|α1;α2〉+ |α2;α1〉) (7.8)

if instead these particles were identical bosons.

A further fact that also comes from quantum field theory is that particles with integer

spin are always bosons, whilst particles with (odd) half–integer spin are always fermions.

Among the elementary particles, examples of bosons thus include the W and Z bosons

(hence the name!) and the photon, while examples of fermions include electrons, neutrinos

and quarks. You’ll learn about how this connection between spin and statistics arises if

you take the Part III QFT course.

The above considerations apply to composite particles as well as to elementary ones.

When we exchange a pair of identical composite particles, we exchange all of their con-

stituents. Thus, if the composites are made up from an odd number of fermions and any

number of bosons, upon exchange we’ll acquire an odd number of minus signs, so the whole

state must be antisymmetric. For example, a proton consists of three (valence) quarks and

many gluons, so is a fermion. So too is a neutron. On the other hand, composites consist-

ing of an even number of fermions and any number of bosons must be symmetric under

62They’re named after Satyendra Nath Bose and Enrico Fermi, respectively, who first studied their

properties.
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exchange with an identical composite. For example, a hydrogen atom consists of a proton

and an electron, each of which are fermions, so the composite Hydrogen atom is itself a

boson.

This behaviour is consistent with addition of angular momentum. When we add the

angular momenta of an odd number of particles each with odd half–integer spin, the total

angular momentum is also an odd half–integer, whereas when we combine the angular

momenta of an even number of particles each with odd half–integer spin, the total angular

momentum is an integer. Even without quantum field theory, it would be impossible for

all integer spin particles to be fermions, because a composite consisting of an even number

of such integer spin particles would also have integer spin, but would be a boson.

7.1.1 Pauli’s Exclusion Principle

The fact that the state of identical fermions must be totally antisymmetric has an im-

mediate, striking consequence: no two fermions can be put in exactly the same state

simultaneously. This fact is known as Pauli’s exclusion principle. As an example, since we

must always have ψσ,σ′(x,x
′) = −ψσ′,σ(x′,x), if both fermions happen to have the same

Sz eigenvalue we find ψσ,σ(x,x′) = −ψσ,σ(x′,x). Hence the spatial wavefunction of the

system necessarily vanishes at x = x′ so there is zero probability that the two particles are

located at the same place.

More generally, the state |Ψ〉 of N identical fermions is represented in terms of the

determinants

〈α1, α2, . . . , αN |Ψ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(α1) ψ1(α2) · · · ψ1(αN )

ψ2(α1) ψ2(α2) · · · ψ2(αN )
...

...
. . .

...

ψN (α1) ψN (α2) · · · ψN (αN )

∣∣∣∣∣∣∣∣∣∣
(7.9)

that in this context are known as Slater determinants. Again, |α1, α2, . . . , αn〉 represents

a state in which some fermion has quantum numbers α1, another has α2 and so on, where

the labels αi denote a complete set of quantum numbers for single particle states, including

(say) their momentum, spin-z value, etc., while ψ1(α1) = 〈α1|ψ1〉 is the amplitude for the

‘first’ fermion to have quantum numbers α1. If αi = αj for any i 6= j, then two columns of

this determinant coincide. The amplitude 〈 . . . , αi, . . . , αi, . . . |Ψ〉 thus vanishes identically,

so there is zero probability of any two fermions being found in an identical state.

It’s worth stressing that we’ve learned only that the state of a pair of identical fermions

must be antisymmetric under exchange of every one of their quantum numbers. The Hilbert

space of a single such spin-s fermion is itself a tensor product Hfermion = Hspat ⊗ C2s+1,

including a factor that describes the fermion’s spatial wavefunction (including details of

its likely position, orbital angular momentum etc.) and a separate factor Hspin
∼= C2s+1

spanned by the possible spin states {|s〉, |s− 1〉, . . . , |− s〉} of this spin-s particle. We must

exchange both the spin and spatial parts of the state in order to find a physically equivalent

state.
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In the example of our electron pair, ψσ,σ′(x,x
′) is certainly equivalent to ψσ′,σ(x′,x),

since both correspond to the electron at x having spin σ and the electron found at x′ having

spin σ′. However, antisymmetry of the total state does not imply any relation between

the states ψσ,σ′(x,x
′) and ψσ′,σ(x,x′): these are distinct physical possibilities because the

electron at x has different spin in the two cases. We saw in section 6.1.2 that the spin

wavefunctions of the two electrons could be combined into a triplet of spin-1 states

|1, 1〉 = |↑ 〉|↑ 〉 , |1, 0〉 =
1√
2

(|↑ 〉|↓ 〉+ |↓ 〉|↑ 〉) , |1,−1〉 = |↓ 〉|↓ 〉 (7.10)

which are symmetric, and a single antisymmetric state

|0, 0〉 =
1√
2

(|↑ 〉|↓ 〉 − |↓ 〉|↑ 〉) (7.11)

of spin-zero. Because the overall state of the electron pair must be antisymmetric, the

spatial wavefunction must be antisymmetric if the electron pair is in any of the spin-1

states, while the spatial wavefunction must be symmetric if the electron pair is in the spin-

0 state. Thus, for a given spatial wavefunction ψ(x,x′) the pair has four possible states,

and the states

1√
2

(
ψ(x,x′)− ψ(x′,x)

)
⊗

 |1, 1〉|1, 0〉
|1,−1〉

 and
1√
2

(
ψ(x,x′) + ψ(x′,x)

)
⊗|0, 0〉 (7.12)

span a basis of the two–electron Hilbert space.

In general, as always, an electron pair can be in a superposition of the four states

in (7.12), with different spatial wavefunctions in each term of the superposition. Simi-

larly, an N -fermion system may be in state |Ψ〉 that is a superposition of different states

|α1, α2, . . . , αN 〉, with different (distinct) values of the αis, where each of the ampli-

tudes 〈α1, α2, . . . , αN |Ψ〉 are given in terms of the single–particle states by Slater determi-

nants (7.9).

7.1.2 The Periodic Table

This section closely follows section 4.5 of Weinberg.

One of the outstanding successes of the early years of quantum mechanics was an

understanding of the structure of the Periodic Table of the Elements. The exact dynamics

of a heavy atom, with large atomic number Z, is very complicated because each electron

not only feels an attractive Coulomb potential −Ze2/r from the Z protons in the nucleus,

but also a repulsive electromagnetic interaction from all the other electrons. However, it

turns out that a reasonable approximation – known as the Hartree approximation – is to

imagine that each electron moves in a (roughly) central potential V (r) created by the net

effect of the protons and the other electrons, while neglecting the fact that the response

of any given electron to this potential will itself modify the potential. Near the nucleus,

V (r) ≈ −Ze2/r as the electron feels the full strength of the attraction of the protons, while
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at large distances V (r) ≈ −e2/r since the protons’ charge is shielded by the (Z − 1) other

electrons.

As for any central potential, [L2, H] = 0 and [L, H] = 0 so we can label the single–

electron states by their values of ` and m, together with another integer n labelling the

energy levels. However, because V (r) is not precisely 1/r, unlike the pure Coulomb po-

tential, states with different ` do not have identical energy. Because V (r) ∼ 1/r near the

nucleus, the single–electron wavefunctions behave as r` for small r, just as in Hydrogen.

This mean that states with high values of ` are less likely to be found at small r where

the potential is deepest, and so typically have slightly larger energy than those of lower

`, compared to the pure Coulomb case. Numerical calculations show that the states of

roughly equal energy are
1s,

2s, 2p,

3s, 3p,

4s, 3d, 4p,

5s, 4d, 5p,

6s, 4f, 5d, 6p,

7s, 5f, 7p, . . .

with energy increasing as one proceeds down the list. Here, the number corresponds to

the label n, while s, p, d, f, . . . stand for sharp, principal, diffuse, faint, . . . and simply

correspond to ` = 0, 1, 2, 3, . . . . This historic notation is standard in atomic spectroscopy,

which is still of great importance in the pharmaceutical industry.

Since electrons have spin-1
2 they are fermions. Pauli’s exclusion principle prevents the

electrons in a heavy atom from all burying down into the lowest energy 1s state, and forces

them to gradually fill up the higher energy levels. There are 2(2`+ 1) distinct states with

orbital angular momentum `, with the extra factor of 2 coming from the two possible spin

states of the electron. Thus, the number of possible states in each line of the above table

is 2, 2 + 6 = 8, 2 + 6 = 8, 2 + 10 + 6 = 18, 2 + 10 + 6 = 18 and 2 + 14 + 10 + 6 = 32, etc.

The first two elements, hydrogen and helium, have electrons just in the ground state

1s. The 8 elements from lithium to neon have electrons in the n = 1 and n = 2 states,

while the next 8 elements from sodium to argon have electrons in states with n = 1, 2, 3.

The first excited states of hydrogen and helium are obtained by promoting (one of) their

1s electrons up to the 2s state, and lie 10.2eV and 19.8eV above the corresponding ground

states. These energy differences correspond to the frequency of UV radiation, so this

transition cannot be stimulated by optical frequency radiation. By constrast, the first

excited state of lithium is obtained by promoting a 2s electron to a 2p state, and lies a

mere 1.85eV above its ground state. This corresponds to the frequency of rather deep red.

Elements that lie beyond helium play an important role in astronomical measurements,

even though they are present only in trace amounts compared to hydrogen and helium,

because their absorption spectra contain lines at easily observed optical frequencies.

The chemical properties of an element are largely determined by the number of elec-
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trons in its highest energy level, since these are least tightly bound. Atoms with no electrons

outside filled energy levels are particularly stable chemically. These elements are called no-

ble gases and include helium (Z = 2), neon (Z = 2 + 8 = 10), argon (Z = 2 + 8 + 8 = 18),

krypton (Z = 2 + 8 + 8 + 18 = 36), xenon (Z = 2 + 8 + 8 + 18 + 18 = 54) and radon

(Z = 2 + 8 + 8 + 18 + 18 + 32 = 86).

Elements with either a few more or few less electrons than required to fill a shell have

their chemical properties determined by this number, known as the valence and counted

positive for extra electrons and negative for fewer. If there is just one electron in the highest

energy level, then this electron is easily stripped away, so the element is chemically reactive.

These are the alkali metals and include lithium (Z = 2+1 = 3), sodium (Z = 2+8+1 = 11),

potassium (Z = 2 + 8 + 8 + 1 = 19) etc. If a large number of such atoms combine to form

a solid crystal, then it is energetically favourable for the valence electrons to be shared

throughout the solid rather than clinging to their original atom. These electrons thus form

a sort of fluid that is free to flow within the crystal when stimulated by a small external

force. This gives the crystal high electrical and high thermal conductivity, making it a

metal. (You’ll study this in much more detail if you take the Applications of Quantum

Mechanics course next term.) Atoms with two electrons more than the noble gases are also

chemically reactive, though not as reactive as the alkalis. They are known as the alkaline

metals and include beryllium (Z = 2 + 2 = 4), magnesium (Z = 2 + 8 + 2 = 12), calcium

(Z = 2 + 8 + 8 + 2 = 20) etc.

On the other hand, atoms with one electron missing from their highest energy level tend

to strongly attract other electrons and so are chemically reactive non–metals, often reacting

violently when brought into contact with metals. These elements are called halogens and

include fluorine (Z = 2 + 8 − 1 = 9), chlorine (Z = 2 + 8 + 8 − 1 = 17), bromine

(Z = 2 + 8 + 8 + 18− 1 = 35), iodine (Z = 2 + 8 + 8 + 18 + 18− 1 = 53) etc. Elements with

two electrons missing from their highest energy level include oxygen (Z = 2 + 8− 2 = 8),

sulfur (Z = 2 + 8 + 8− 2 = 16), etc. These elements are again chemically reactive, though

less so than the halogens.

The inclusion of the 4f and 5f states in the sixth and seventh energy levels, respec-

tively, are responsible for the long sequence of rare earths in the middle of the periodic

table. Numerical calculations show that wavefunctions of the 2(2 · 3 + 1) = 14 different

4f states have small probability to lie outside the wavefunctions of the two 6s states, de-

spite having slightly higher energy. Consequently, these elements are all rather similar

chemically. The same is true of the 14 different 5f states compared to the wavefunctions

of the two 7s states. The 14 elements in which the 4f states are being filled run from

lanthanum (Z = 2 + 8 + 8 + 18 + 18 + 2 + 1 = 57) to ytterbium (Z = 70) and are known

as lanthanides, while the next chemically similar sequence are the actinides, running from

actinium (Z = 2 + 8 + 8 + 18 + 18 + 32 + 2 + 1 = 89) to nobelium (Z = 102). Beyond

this point the nuclei themselves become so unstable that the element tends to undergo

radioactive decay before it has chance to participate in any chemical reaction.
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7.1.3 White Dwarfs, Neutron Stars and Supernovae

7.2 Exchange and Parity in the Centre of Momentum Frame

Let’s now consider the effects of exchanging two identical particles on their spatial wave-

function. Letting X1, P1 and X2, P2 denote the position and momentum operators of the

two particles, exchanging 1↔ 2 implies that

Xcom =
X1 + X2

2
7→ X2 + X1

2
= Xcom

Pcom = P1 + P2 7→ P2 + P1 = Pcom ,
(7.13)

whilst
Xrel = X1 −X2 7→ X2 −X1 = −Xrel

Prel =
P1 −P2

2
7→ P2 −P1

2
= −Prel .

(7.14)

Thus, exchange acts trivially on the centre-of-momentum coordinates, but acts on the

relative coordinates just like a parity transformation. Since Ym
` (−x) = (−1)`Ym

` (x) under

parity, we see that if two identical particles have relative orbital angular momentum `, the

spatial part of the wavefunction will be either symmetric or antisymmetric under exchange

according to whether ` is odd or even.

The behaviour of the entire state under exchange is determined by whether the particles

in question are bosons or fermions. In the case of identical bosons, the spins must be

combined to form a symmetric overall spin state when ` is even, or an antisymmetric

overall spin state when ` is odd so as to ensure the overall state is always symmetric under

exchange. For fermions, the opposite holds so as to ensure overall antisymmetry.

if the neutrons are produced in a state where their relative orbital angular momentum

is ` in the centre of momentum frame, their spatial wavefunction acquires a factor of (−1)`

under exchange of the two neutrons.

7.2.1 Identical Particles and Inelastic Collisions

The requirement that the state describing N identical bosons/fermions be totally symmet-

ric/antisymmetric under exchange of any pair of identical particles has important conse-

quences in collision processes where such particles are created or destroyed.

For example, consider an exotic type of ‘atom’ consisting of a spin-0 pion (denoted by

π−) bound electromagnetically to a deuterium nucleus (denoted by D+ – itself consisting

of a proton and a neutron, bound together by the strong nuclear force). The bound state

energy levels of this atom due to the electromagnetic Coulomb attraction between the π−

and D+ have the same form as in Hydrogen and, in particular, the ground state is |1, 0, 0〉,
an s-wave having ` = 0. Because the pion is much heavier than the electron, the Bohr

radius of the D+π− ‘atom’ is much smaller than that of Hydrogen and the π− wavefunction

closely hugs the D+ nucleus. The D+ is known to have spin-1 whilst the π− is spin zero,

so the 1s ground state of the D+π− ‘atom’ has total angular momentum j = 1.

Now, as well as their electromagnetic interactions, the π− and D+ also interact via the

short-range strong nuclear force. This causes the ‘atom’ to be unstable, with the π− rapidly
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being absorbed by the D+, causing the system to disintegrate into a pair of neutrons (each

denoted N):

π− +D+ −→ N +N . (7.15)

(In particle physics terminology, processes such as this, where different types of particles

appear in the initial and final states, are known as inelastic. An elastic process is one in

which the initial & final states contain the same particles.)

Neutrons are fermions with spin-1
2 , so the final state must be antisymmetric under

their exchange. One possibility is for their spins to combine into one of the triplet

|↑ 〉|↑ 〉 , 1√
2

(|↑ 〉|↓ 〉+ |↓ 〉|↑ 〉) , |↓ 〉↓ 〉

of symmetric spin-1 states, combined with a spatial wavefunction that is antisymmetric

under exchange. From above, this will be the case if the relative orbital angular momentum

of the two neutrons is odd. The other possibility is for the spins to form the antisymmetric

spin-0 state
1√
2

(|↑ 〉|↓ 〉 − |↓ 〉|↑ 〉)

combined with a relative spatial wavefunction of even `.

Total angular momentum is conserved, so the spin and orbital angular momentum of

the final state must combine to give j = 1 as for the initial ground state of the π−D+.

In section 6 we learnt that when we combine systems with angular momenta ` and s, the

combined system could have total angular momentum j ∈ {` + s, ` + s − 1, . . . |` − s|}
depending on the relative alignment of the two subsystems. Thus, in the case that the

neutrons spins combine to the antisymmetric spin-0 state, then j = `. However, since this

case requires ` even for fermionic statistics, we see it is ruled out. The remaining case is

that the neutrons spins combine to give net spin-1, so that

j ∈ {`+ 1, `, `− 1} .

Since fermionic statistics here require that ` is odd, the only possibility to get j = 1 is if

` = 1 and the spin and orbital angular momenta of the neutron pair are neither perfectly

aligned nor perfectly anti-aligned. Thus the final state has j = ` = s = 1.

These considerations also help us to determine the intrinsic parity of the pion. Recall

from section 4.6 that the parity operator Π acts on a state |x〉 as

Π|x〉 = η|x〉 (7.16)

where the value of η ∈ {+1,−1} is known as the intrinsic parity that, like spin, depends on

the type of particle that the state |x〉 represents. More generally, if |x1, κ1; x2, κ2; · · · ; xN , κN 〉
describes an N -particle state in which a particle of type κa is definitely located at xa, then

from (??) the parity operator acts as

Π|x1, κ1; x2, κ2; · · · ; xN , κN 〉 = η1η2 · · · ηN | − x1, κ1;−x2, κ2; · · · ;−xN , κN 〉 . (7.17)
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where the ηk = ±1 is the intrinsic parity of the kth particle. (This holds whether or not

the particles are distinguishable.)

Like the spin of fundamental particles, these intrinsic parities are independent of any

details of the spatial wavefunction. Intrinsic parities thus have no effect in elastic processes,

where the same particles are present in both the initial and final states. The intrinsic parity

of a particle can often be determined by examining inelastic processes in which the particle

participates.

In the example π−D+ → NN above, equating the parities of the initial and final states

gives

ηπ ηD = (−1)` η2
N = −1 , (7.18)

since the initial atomic state |1, 0, 0〉 has ` = 0 and hence no parity other than the intrinsic

parities of the pion and deuteron. Provided parity is conserved by the strong nuclear

interactions causing this decay, we conclude that the π− and D+ must have opposite

intrinsic parity. Now, the D+ is predominantly an s-wave bound state of a proton and

neutron, so ηD = (−1)` ηP ηN = ηP ηN , and furthermore the proton and neutron can

always be chosen to have the same intrinsic parity since they are related by an ‘isospin’

symmetry63. Thus ηD = +1 and hence the pion must have intrinsic parity ηπ = −1.

As we mentioned in section 4.5.1, one of the great surprises of particle physics came

in the 1950s. Cosmic rays were found to contain various types of particles, including

two similar of similar mass called the τ+ and the θ+. Both particles decay quickly, the

predominant channels being

θ+ −→ π+ + π0 and τ+ −→ π+ + π+ + π− . (7.19)

The angular distribution of the pions in the final states could be observed in a cloud

chamber or bubble chamber, and studying these patterns showed that the pions were

produced in an ` = 0 state in both cases. Since ηπ = −1 (irrespective of the electric charge

of the pion, for the same isospin reason as above), the θ+ should have intrinsic parity

ηθ = η2
π = +1, while the τ+ should have ητ = −1. However, as measurements improved

the masses and lifetimes of the two particles became indistinguishable. The puzzle was

resolved in 1956 when Lee and Yang proposed that the two particles were in fact one and

the same, but that parity was not conserved in their decay process. Their proposal was

largely ignored until Lee persuaded his colleague, Madame Chien–Shiung Wu, to test it

using the β–decay of a certain isotope of cobalt. Wu’s experiments showed that parity

is indeed violated in the weak interactions. The fact that x → −x is not a symmetry of

Nature can be accommodated in QFT, though the deep reason for it remains mysterious64.

63The Standard Model has an (approximate) ‘internal’ SU(2) symmetry known as isospin that rotates

protons into neutrons; they are different states of the same nucleon, somewhat like the two different spin

states |↑ 〉, |↓ 〉 of the same electron.
64There are various natural ways for parity violation to originate in string theory, but needless to say,

none of them have been verified experimentally.
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