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Preliminaries

These are the lecture notes for the Part III course on Supersymmetry. I’ll assume that

you’re taking the Part III AQFT course alongside this one and that you took the General

Relativity course last term. We’ll also touch on ideas from the Statistical Field Theory

course.

In contrast to previous years, the course takes the perspective that supersymmetry is

useful because it provides us with toy models of QFTs that we can study in detail, helping

us to understand QFT in general. In the process, we’ll see something of the incredibly

rich connections between QFT and modern geometry & topology. The course will not

emphasize phenomenology.

Books & Other Resources

Here are some of the books & papers I’ve found useful while preparing these notes; you

might prefer different ones to me:

- Hori, K., Vafa, C., et al., Mirror Symmetry, AMS (2003).

This is the main book for (at least the first part of) the course. It’s a huge tome

comprising chapters written by several different mathematicians and physicists, with

the ultimate aim of understanding Mirror Symmetry in the context of string theory.

While you might enjoy the mathematical background in the first few chapters, we’ll

jump in at chapter 8 where the physics starts, and follow the book through to around

chapter 16. While the book itself is rather expensive (a new one costs £130 at

amazon.co.uk), you can download a free pdf from the publishers here.

- Neitzke, A., Applications of Quantum Field Theory to Geometry,

https://www.ma.utexas.edu/users/neitzke/teaching/392C-applied-qft/

Lectures aimed at introducing mathematicians to Quantum Field Theory techniques

that are used in computing Seiberg–Witten invariants. I very much like the perspec-

tive of these lectures, and we’ll follow Neitzke’s notes at various times during the

course.

- Dijkgraaf, R., Les Houches Lectures on Fields, Strings and Duality,

http://arXiv.org/pdf/hep-th/9703136.pdf

An modern perspective on what QFT is all about, and its relation to string theory.

The emphasis is on topological field theories and dualities rather than supersymmetry

per se, but we’ll meet lots of these ideas during the course.

- Deligne, P., et al., Quantum Fields and Strings: A Course for Mathematicians,

vols. 1 & 2, AMS (1999).

Aimed at professional mathematicians wanting an introduction to QFT. They thus

require considerable mathematical maturity to read, but most certainly repay the

effort. Almost everything here is beyond the level of this course, but you may en-

joyed reading the lectures of Deligne & Freed on Supersolutions (vol. 1), Seiberg on
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Dynamics of N = 1 Supersymmetric Field Theories in Four Dinmensions and those

of Witten on The Index of Dirac Operators (vol. 1) and Dynamics of Quantum Field

Theory (vol. 2, especially lectures 12 - 19). I’m hoping to cover at least some of the

material in the lectures by Seiberg & Witten in the later part of the course.

- Nakahara, M., Geometry and Topology for Physics, IOP (2003).

A good place to look if you’re unsure of the background for the mathematical ideas

that we meet in lectures. In particular, contains a discussion of the Atiyah-Singer

index theorem that is close to the one we’ll meet in section 3.96.

I’ll add various further suggestions as we go through the course, so please check back here

from time to time.
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1 Motivation

Before getting started, let’s take a minute to see what this course will be about.

1.1 What is supersymmetry?

In any quantum theory containing fermions, the Hilbert space H splits as

H = HB ⊕HF

where HB is the bosonic and HF the fermionic Hilbert space. That is, states in HB contain

an even number of fermionic excitations (possibly none), whilst those in HF contain an

odd number. The theory is supersymmetric if it contains an operator Q, acting as

Q : HB → HF and Q : HF → HB ,

and such that1

Q2 = 0 and
{
Q,Q†

}
= 2H .

Here, Q† is the adjoint (or Hermitian conjugate) of Q wrt the inner product on H while H

is the Hamiltonian of the theory.

Throughout these lectures, we’ll be looking in detail at the consequences of the presence

of such an operator, understanding why such theories are so special. However, a couple

of consequences follow so simply that we may as well state them immediately. Firstly, we

have

[H,Q] =
1

2

[{
Q,Q†

}
, Q
]

=
1

2

(
(QQ† +Q†Q)Q−Q(QQ† +Q†Q)

)
= 0 ,

(1.1)

where we’ve usedQ2 = 0 to reach the final line. Provided the Hamiltonian is self-adjoint, we

also have [H,Q†] = 0. Thus Q and Q† are automatically conserved and the transformations

they generate will be symmetries of the theory. Since Q : HB,F → HF,B, each term in Q

must either create or destroy an odd number of fermions and Q itself will be a fermionic

operator. Th symmetries it generates therefore mix fermions with bosons and are known

as supersymmetries, while Q and Q† are known as supercharges.

The second consequence is that, for any state |Ψ〉 ∈ H,

〈Ψ|H|Ψ〉 =
1

2
〈Ψ|QQ† +Q†Q|Ψ〉

=
1

2

∥∥∥Q†|Ψ〉∥∥∥2
+

1

2
‖Q|Ψ〉‖2 ≥ 0 ,

(1.2)

with equality iff Q|Ψ〉 = Q†|Ψ〉 = 0. Thus all states have non-negative energy, and the

ground state energy vanishes iff it is invariant under the supersymmetry transformations

generated by both Q and its adjoint.

1The anticommutator is defined for any two operators (whether or not they are fermionic) by {A,B} =

AB +BA. The factor of 2 on the rhs of {Q,Q†} = 2H is for later convenience.
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This basic structure can be extended in many ways. In a Lorentz invariant quantum

field theory, the Hamiltonian H is just one component of the momentum vector Pm so

it’s natural to expect that the supercharges are also part of a multiplet. The usual (but

not the only) way this works is for the Qs and Q†s to transform as spinors under Lorentz

transformations. For example, in a Lorentz-invariant supersymmetric QFT in d = 4, the

basic supersymmetry algebra above is enhanced to{
Qα, Q

†
α̇

}
= 2σmαα̇Pm

where σm = (12×2,σ) and σ are the Pauli matrices2 whose rows and columns are indexed

here by α and α̇. Explicitly,

Pαα̇ = σmαα̇Pm =

(
H + Pz Px − iPy
Px + iPy H − Pz

)
so that what we were calling Q before here becomes the linear combination Q = Q

A further generalization, known as extended supersymmetry is to have several different

supercharges Qaα, where a = 1, . . . ,N , obeying3{
Qaα, Q

†b
α̇

}
= 2δabPαα̇ and

{
Qaα, Q

b
β

}
= εαβZ

ab .

where the constants Zab are known as central charges. Note that, from the definition

of the anticommutator, the lhs of the second equation is certainly symmetric under the

simultaneous exchange of both the spinor and ‘extended’ indices. On the rhs, εαβ is the

SL(2,C) (and hence Lorentz) invariant inner product, so we must also have Zba = −Zab.
The possibility to include central charges reflects the fact that, whilst we still have (Qa)2 =

0 for each individual value of a, the anticommutator of two different Qs may be non-zero.

We’ll explore more of the structure and consequences of this supersymmetry algebra

as we go through the course, but for now I want to motivate why we should be interested

in such supersymmetric theories at all.

1.2 Why study it?

For much of its development, the main hope for supersymmetry was that it would provide

a phenomenologically relevant extension to physics beyond the Standard Model. These

hopes were founded on good reasons, ranging from unification of the SU(3)×SU(2)×U(1)

Standard Model gauge couplings under renormalization group flow, to providing a viable

candidate that explains what Dark Matter is, to ensuring that the (Higgs) vacuum of our

Universe is stable. In particular, there was great hope that the LHC would provide direct

experimental evidence for supersymmetry in Nature.

2The role of the Pauli matrices here is just as an intertwiner, providing an isomorphism between the

tensor product of a left- and a right-Weyl spinor representations of SO(1, 3) and the vector representation.

In other dimensions, we may modify this to {QA, Q†B} = 2ΓMABPM where Γ is some form of Dirac matrix

and the range of the spinor indices depends on d.
3This equation uses spinors appropriate for d = 4, but again extended supersymmetry exists in other

dimensions, too.
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As you’re probably well aware, this has not happened. While the experiment is still

ongoing and the full parameter space is still being explored, it now looks as though one of

the original phenomenological motivations for supersymmetry — a potential explanation

of why the Higgs particle is so much lighter than the Planck scale, known as the hierarchy

problem — is actually not related to supersymmetry. Worse, although it is still perfectly

possible for supersymmetry to exist in Nature at energy scales beyond those accessible to

the LHC, it is not at all clear that the political or economic will is there to spend a very

large sum of money hunting for it. For these reasons, I no longer think it is reasonable to

study supersymmetry with the aim of doing phenomenology. (Others may disagree!)

Instead, the main claim I wish to convince you of is that supersymmetry is interesting

because it allows us to better understand quantum field theory. This motivation will affect

the whole structure and choice of topics in our course.

Let’s get a glimpse of what I have in mind. In any Quantum Field Theory, the main

objects we wish to understand are path integrals. A typical example is4∫
C

exp

(
−1

~
S[φ]

)
Dφ .

This integral is supposed to be taken over the space C of all5 field configurations. That

is, every point φ ∈ C corresponds to a configuration of the field – a picture of what the

field looks like across our whole Universe M . Since we allow our fields to have arbitrarily

small bumps and ripples, C is typically an infinite dimensional function space. The path

integral involves some sort of measure e−S[φ]/~Dφ that weights the contribution of each

field configuration φ ∈ C by e−S[φ]/~, where S[φ] is the classical action. You’ll have met

something very similar if you took the Statistical Field Theory course last term (or perhaps

a Statistical Mechanics course earlier), and you’ll learn much more about path integrals in

the Advanced Quantum Field Theory course this term.

Unfortunately, in a generic QFT, it’s almost impossibly difficult even to make sense of

the ingredients in this integral, let alone to perform the integral itself. Typically, the best

we can do is perturbation theory. That is, we pick a particular field configuration φ0 that

solves the classical field equations (almost always, this will be the ‘trivial’ configuration

φ0 = 0) and then write down Feynman diagrams describing particles travelling on this

background, or vacuum. The particles are really just perturbative excitations δφ = φ− φ0

of the quantum field, so you’re examining the behaviour of the theory in a neighbourhood

of your original field configuration. (Last term, you constructed such Feynman diagrams

by acting on the vacuum state with creation & annihilation operators. You’ll see how the

same diagrams emerge from the path integral in this term’s AQFT course.) Even this

Feynman diagram expansion is very complicated.

This was not how you learned QM. You didn’t jump from considering free particle

solutions to Schrödinger’s equation straight into perturbation theory. Instead, you first

4I’ve written this path integral assuming that we’re in Euclidean signature. For Minkowski signature,

we’d instead have eiS[φ]/~.
5We’ll gloss over the subtle and important point of exactly what sort of configurations should be allowed –

should they be continuous? differentiable? smooth. The correct answer involves Wilsonian renormalization.
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studied a wealth of carefully chosen, exactly solvable examples, almost certainly including

particles in a square well, the harmonic oscillator, the pure Coulomb potential and the

theory of angular momentum. All of these are idealisations, often containing a large amount

of symmetry. Nonetheless, they are often closer to the real world — and so provide a

better starting point around which to study perturbation theory — than is free theory.

Furthermore, studying them also helps us build our experience and understanding of what

QM itself actually is!

Making a QFT supersymmetric allows us to do the same for QFT. While a typical

QFT is intractable, in supersymmetric theories we can often obtain exact results, at least

for some observables. By studying them, we understand QFT itself better, even if our final

goal is to do away with supersymmetry.

Better still, these exact results often reveal deep and beautiful connections between

QFT and geometry and topology. Examples include many of the highlights of twentieth

century mathematics, such as the Atiyah–Singer index theorem, Mirror Symmetry, and

Donaldson or Seiberg–Witten invariants of 4-manifolds. The interplay between mathemat-

ics and physics in these areas has been one of the most fruitful major lines of research

of the past thirty years, with breakthroughs still ongoing. From a physics point of view,

they teach us that even the vacuum of a QFT can be a highly subtle, interesting object,

and this realisation is now feeding through even to experiments in areas such as Symme-

try Protected Topological Phases of certain condensed matter systems. The richness of

perspective that supersymmetry brings to our appreciation of QFT is, for me at least, the

best reason to study it.
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