
2 Supersymmetry in Zero Dimensions

In this first chapter, we’ll look at supersymmetry in zero dimensions, treating it as a

safe playground in which to begin our study. We’ll gradually increase the number of

dimensions as we go through the course. We start with a discussion of fermionic variables

and Berezin integration. We’ll then consider ‘zero–dimensional QFT’. In practice, this

will mean exploring some integrals that are supposed to be toy examples of the partition

functions we meet in higher dimensional theories. We’ll start by looking at bosonic and

fermionic d = 0 ‘path’ integrals separately. Even in this highly over-simplified situation,

we can typically only compute these (bosonic) integrals approximately. We’ll then see our

first examples of how supersymmetry improves things, allowing us to perform the integrals

exactly.

2.1 Fermions and super vector spaces

To consider a supersymmetric theory, or in fact any theory involving fermionic fields, the

first thing we need is the notion of Grassmann variables. Let’s now give a very brief formal

introduction to these.

A Z2-graded vector space is a vector space V = V0 ⊕ V1 (over a field that we can take

to be R or C) endowed with a parity operation. Vectors that lie purely in V0 or purely in

V1 are said to be homogeneous. The parity |v| of a homogeneous vector v is given by

|v| =
{

0 for v ∈ V0

1 for v ∈ V1 .
(2.1)

We often call elements v ∈ V0 even whilst elements w ∈ V1 are called odd. Alternatively,

looking ahead to physics, we often say such elements are bosonic and fermionic, respectively.

If V0 and V1 have dimensions p and q, respectively, the dimension of V is usually denoted

p|q, keeping track of the bosonic and fermionic dimensions separately. The basic example

is V = Rp|q.
The usual operations on vector spaces immediately extend to Z2-graded vector spaces

in a way that respects the grading. For example, the dual V ∗ of a (finite dimensional)

super vector space, say over C, is again the space of all linear maps ϕ : V → C, with the

even part (V ∗)0 being those linear maps that vanish on V1, and the odd part V ∗1 being

those maps that annihilate V0. Similarly, the direct sum of two super vector spaces V and

W is the super vector space V ⊕W where (V ⊕W )0 = V0⊕W0 and (V ⊕W )1 = V1⊕W1,

while their direct product is the super vector space V ⊗W with even and odd parts

(V ⊗W )0 = (V0 ⊗W0) ⊕ (V1 ⊗W1)

(V ⊗W )1 = (V1 ⊗W0) ⊕ (V0 ⊗W1) ,

respecting the Z2 grading.

So far, everything we’ve defined has been the as it would be for any Z2 graded vector

space. What makes V a super vector space is an unusual choice of symmetry operation.
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For ‘ordinary’ (i.e., purely bosonic) vector spaces A and B, there is an exchange operation

s that switches the order in the direct product:

s : A⊗B → B ⊗A , s : a⊗ b 7→ b⊗ a

for any a ∈ A and b ∈ B. This symmetry operator works the same way for Z2-graded spaces

as for standard vector spaces, and can be used to define symmetric and antisymmetric

powers. For example,
A�B = A⊗B + s(A⊗B)

A ∧B = A⊗B − s(A⊗B) .

However, in a super vector space, we instead define the exchange operator by

s : V ⊗W →W ⊗ V , s : v ⊗ w 7→ (−1)|v||w|w ⊗ v (2.2)

for any homogeneous elements v and w (and extended by linearity to all of V and W ).

In other words, interchanging the order of any two fermions gives a minus sign. In conse-

quence, while the symmetric products Sym∗V0 of the even part of a super vector space are

just the usual symmetric products as for any vector space, the ‘symmetric’ products of an

odd vector space is actually the exterior (antisymmetric) algebra on the underlying vector

space. That is Sym∗V1
∼=
∧∗ V1, where on the rhs we treat V1 as a standard vector space

‘forgetting’ that it is fermionic6.

Closely related to this is the notion of a superalgebra. This is a super vector space A
together with a bilinear multiplication map

· : A×A → A

that respects the grading, in the sense that for any elements a, b ∈ A we have |a·b| = |a|+|b|.
As usual, we’ll often drop the multiplication symbol · , indicating it just by juxtaposition.

A superalgebra A is said to be supercommutative (or often just commutative) if

ab = (−)|a||b| ba (2.3a)

so that again we get a minus sign when any pair of fermionic variables are exchanged. For

example, to make Rp|q into a superalgebra, we have the relations

xixj = xjxi , xiψa = ψaxi , ψaψb = −ψbψa . (2.3b)

where xi ∈ Rp|0 are standard, real variables and ψa ∈ R0|q are fermionic. Note in particular

that ψaψa = −ψaψa = 0 for any fixed a. Thus our superalgebra must contain at least two

fermionic variables if it is to have any non-trivial content (beyond that of a usual algebra).

Not all superalgebras are supercommutative. For example, a Lie superalgebra is a

supervector space g = g0 ⊕ g1 where the multiplication

[ , ] : g× g→ g

6More correctly, we let Π denote the parity reversing operator, so Π(V0 ⊕ V1) = V1 ⊕ V0, with V1 now

even. Then Sym∗V1 = Π∗(
∧∗ΠV1); that is, we take antisymmetric powers of the (now bosonic) vector

space ΠV1 and then declare the resulting space to again be fermionic.
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obeys the graded antisymmetry rule

[X,Y ] = −(−)|X||Y |[Y,X]

and graded Jacobi identity

[X, [Y,Z]] + (−)|X|(|Y |+|Z|)[Y, [Z,X]] + (−)|Y |(|Z|+|X|)[Z, [X,Y ]] = 0

We often let { , } denote the Lie bracket restricted to two odd elements in g1 ⊂ g; this is

the anticommutator we saw in the Introduction.

In the same way, we define the ring of polynomials on a super vector space V to

be O(V ) = Sym∗V ∗, with multiplication taken as in (2.2). Thus, treating V0 and V1 as

ordinary vector spaces, the ring of polynomials on a super vector space is isomorphic to

Sym∗V ∗0 ⊗ ∧∗V ∗1 . More generally, the space of smooth functions C∞(V ) on V is

C∞(V ) = C∞(V0)⊗ ∧∗V ∗1 ,

combining smooth functions on V0 with the exterior algebra of V1. For example, if F ∈
C∞(Rp|q), then we have

F (x, ψ) = f(x) + ra(x)ψa + sab(x)ψaψb + · · ·+ g(x)ψ1ψ2 · · ·ψq (2.4)

where f , ra, sab, . . ., g are smooth functions on Rp. In the context of QFT, such functions

(and their generalizations to other ranges and domains) are often called superfields, and

the functions f , ra, sab , . . . are called their component fields. Note that the component

functions are antisymmetric in their indices, e.g. sab(x) = −sab(x), inheriting this from

the antisymmetry of the fermions.

Parenthetically, let me point out that there should be (at least) two places where you’ve

seen something reminiscent of this before. One is the anticommutation relations

{Ψa(x),Ψb(y)} = 0 (2.5)

you introduced last term when quantizing fermionic fields such as the electron. The re-

lations (2.5) were more involved, because the electrons are spinors, and live in 3 + 1 di-

mensions, whereas our variables ψa are just odd elements of some super vector space.

Nonetheless, the ‘fermionic’ nature of the electron field has its mathematical origins in

exactly this notion. The second place is in the relation

dxa ∧ dxb = −dxb ∧ dxa

of the exterior algebra of forms, that you saw in the General Relativity course last term.

Note also that, given a p-form α and a k-form β, their exterior product obeys α ∧ β =

(−1)kpβ∧α. Furthermore, whilst we might write a p-form ω ∈ Ωp(N) on an n-dimensional

manifolds N as ω(x) = ωab···c(x)dxa ∧ dxb ∧ · · · ∧ dxc, a general polyform can be written

F (x, dx) = f(x) + ra(x)dxa + sab(x)dxa ∧ dxb + · · ·+ g(x)dx1 ∧ · · · ∧ dxn

We’ll later understand that the similarity to (2.4) is no accident.
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2.1.1 Differentiation and Berezin integration

We’ll also need to define differentiation and integration for fermions.

A derivation of a commutative superalgebra A is a linear map D : A → A that obeys

D(ab) = (Da)b+ (−)|a||D|a (Db) (2.6)

for every a, b ∈ A. In other words, we have a graded version of the Leibniz rule. For

example, on Rp|q we have even derivatives ∂/∂xi (the usual derivative on Rp) and also odd

derivatives ∂/∂ψa, defined by

∂

∂xi
xj = δji ,

∂

∂xi
ψb = 0 ,

∂

∂ψa
ψb = δba ,

∂

∂ψa
xj = 0

and the derivation property

∂

∂ψa
(ψbψc) = δba ψ

c − ψb δca .

More generally, a (smooth) vector field on Rp|q is a derivation

X(x, ψ) = Xi(x, ψ)
∂

∂xi
+ χa(x, ψ)

∂

∂ψa

where Xi, χa ∈ C∞(Rp|q). The vector field is even if Xi is even and χa is odd, whilst it is

odd if the Xi are odd and the χa even.

Now let’s turn to integration. Since any function of a single fermionic variable ψ is of

the form f + ρψ, we only have to define
∫

dψ and
∫

dψ ψ. We ask that our integration

measure is translationally invariant, so that if ψ′ = ψ + η with some fixed η ∈ R0|1 then∫
ψ′ dψ′ =

∫
(ψ + η) dψ =

∫
ψ dψ + η

∫
1 dψ

by linearity of the integral. This implies∫
1 dψ = 0 . (2.7a)

We then choose to normalise our integration measure such that∫
ψ dψ = 1 . (2.7b)

These rules are often known as Berezin integration. Note that they imply∫
∂

∂ψ
F (ψ) dψ = 0

since the derivative removes the single power of ψ that can appear in F (ψ). This allows

us to integrate by parts, provided due care is taken of signs.
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If we have n fermionic variables ψa, repeated application of the above rules shows that

the only non-vanishing integral is one whose integrand involves exactly one power of every

ψa. Specifically, we have∫
ψ1ψ2 · · ·ψn−1ψn dnψ =

∫
ψ1ψ2 · · ·ψn dψn dψn−1 · · · dψ1 = 1 (2.8)

and, in general ∫
ψa1ψa2 · · ·ψan dnψ = εa1a2···an (2.9)

with the sign coming from ordering the ψs. Suppose we write χa = Na
bψ

b for some

N ∈ GL(n) and consider integrating the χs against the original measure dnψ. Then, by

linearity∫
χa1χa2 · · ·χan dnψ = Na1

b1
Na2

b2
· · ·Nan

bn

∫
ψb1ψb2 · · ·ψbn dnψ

= Na1
b1
Na2

b2
· · ·Nan

bn
εb1b2···bn

= det(N) εa1a2···an = detN

∫
χa1χa2 · · ·χan dnχ .

(2.10)

Thus we see that for Berezin integration

χa = Na
bψ

b ⇒ dnχ =
1

det(N)
dnψ , (2.11)

where the Jacobian of the change of variables appears upside down (and without a modulus

sign) compared to the standard, bosonic rule dny = | detN |dnx if ya = Na
bx
b.

2.2 QFT in zero dimensions

Let’s now get a bit closer to the sort of path integrals we meet in QFT. We’ll begin by

thinking about purely bosonic and purely fermionic theories, before seeing what we gain

by making our integral supersymmetric.

2.2.1 A purely bosonic theory

In our zero-dimensional toy model, the whole Universe M is just a single point:

M = {pt} .

Then, in the simplest case, a ‘field’ on M is just a map X : {pt} → R, or in other words

just a real variable. The space of all field configurations is also easy to describe: with n

such fields, C ∼= Rn because we completely specify what the fields looks like everywhere

on M = pt just by giving their values. The path integral measure DX becomes just

the standard (Lebesgue) measure dnX on Rn, so the path integral reduces to a standard

integral

Z =

∫
Rn

e−S(X)/~ dnX , (2.12)

over Rn.
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In zero dimensions, there are no space-time directions along which we could differ-

entiate our ‘fields’, so the action is just a function S(X) of these real variables, with no

‘kinetic terms’. All that really matters is that this function is chosen so that the partition

function (2.12) converges, but we’ll typically take S(X) to be a polynomial (with highest

term of even degree), such as

S(X) =
m2

2
XiXi +

λijkl
4!

XiXjXkX l .

If the action is purely quadratic, corresponding to a free theory, then the partition func-

tion (2.12) is a simple Gaussian integral. However, interesting theories involve interactions,

and then exact evaluation of (2.12) may well be beyond us even in this near–trivial zero-

dimensional case.

We may hope to approximate (2.12) perturbatively by expanding around the classical

limit ~→ 0. In this limit, the weighting e−S/~ suppresses all contributions to the integral

except perhaps those near the minima of S. In particular, if S(X) has a unique, isolated

minimum at some point X0 ∈ Rn (which may be the ‘trivial’ vacuum X0 = 0), the Hessian

∂i∂jS(X) will be positive–definite at X0. Then, as ~→ 0+, we have asymptotically∫
Rn

e−S(X)/~ dnX ∼ (2π~)n/2
e−S(X0)/~√

det (∂i∂jS|X0)

(
1 +A1~ +A2~2 + · · ·

)
. (2.13)

The proof of this is known as the method of steepest descent (or stationary phase in the

Minkowski case) and should be familiar if you’ve taken a course on Asymptotic Methods7.

7In case you didn’t take such a course, here’s an outline of a proof in the case of a single field: Let

A(~) =
e+S(X0)/~
√
~

∫ b

a

e−S(X)/~ f(X) dX

and let ε ∈ (0, 1
2
). Define B(~) in the same way as A(~), but where the integral is taken over the range

[X0 − ~
1
2−ε, X0 + ~

1
2−ε]. As ~→ 0, we have that A(~)−B(~) is smaller than ~N for any N ∈ N. (We say

the difference is rapidly decaying in ~.) Now let χ = (X −X0)/
√
~, so

B(~) =

∫ ~ε

−~ε
e(S(X0)−S(X0+χ

√
~))/~ f(X0 + χ

√
~) dχ .

Provided the action S(X) and insertion f(X) were smooth, the integrand of this expression is a smooth

function of
√
~ when ~ ≥ 0. Let C(~) be the same integral as for B(~), but with the integrand replaced by

its Taylor expansion around 0 in
√
~, modulo terms of order ~N . Then

|B(~)− C(~)| ≤ K ~N−ε

for some constant K ≥ 0. Finally, let D(~) be the same as C(~), but where the limits of the integral are

−∞ and ∞. Then D(~) is a polynomial in
√
~, while C(~)−D(~) is rapidly decaying in ~. Since D(~) is a

polynomial in
√
~, it admits a Taylor expansion in

√
~ modulo ~N−ε. Also, the coefficients of odd powers of√

~ in D(~) are given by integrals of an odd function of χ over all of R, and hence vanish. Finally, we have

D(0) =

∫
R

e−∂
2S|X0

χ2/2 f(X0) dχ =

√
2π f(X0)√
∂2S|X0

.

Putting all these facts together shows that∫
R

e−S(X)/~ f(X) dX = e−S(X0)/~√~A(~) ∼
√

2π~e−S(X0)/~ f(X0)√
∂2S|X0

∞∑
n=0

An~n ,
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In particular, expanding X around the classical solution X0 as Xi = Xi
0 + δXi, we have

S(X) = S(X0) +
1

2
∂i∂jS|X0δX

i δXj +O(δX3) (2.14)

so that the leading term

Z0 = (2π~)n/2
e−S(X0)/~√

det(∂i∂jS|X0)
(2.15)

in the asymptotic series of the partition function is just what we’d obtain as the partition

function of a theory a free (purely quadratic) theory.

In the AQFT course, you’ll learn that the different terms in this expansion correspond

to different types of Feynman diagrams: the classical action S(X0) evaluated at our critical

point gives tree–level vacuum diagrams, the determinant det(∂i∂jS|X0) corresponds to

1-loop vacuum diagrams, and the higher-order terms in the series (2.13) correspond to

higher-loop quantum corrections.

We don’t usually expect this perturbation series to give us exact results about the

partition function and in fact, expansions in ~ typically have zero radius of convergence!

If the expansion (2.13) were to converge at any finite ~, it would have to converge for all

~ in a disc D ⊂ C centered on the origin. But if the action is chosen so that the integral

defining the partition function converges whenever ~ > 0, then it surely diverges if we

formally attempt continue into the region ~ < 0.

What (2.13) actually gives is an asymptotic expansion of the partition function. Recall

that a series
∑

n an~n is asymptotic to a function I(~) if, for all N ∈ N,

lim
~→0+

1

~N

∣∣∣∣∣I(~)−
N∑
n=0

an~n
∣∣∣∣∣ = 0 . (2.16)

In other words, with fixed N , for sufficiently small ~ ∈ R≥0 the first N terms of the series

differ from the exact answer by less than ελN for any ε > 0. (The difference is o(N)). We

write

I(~) ∼
∞∑
n=0

an~n as ~→ 0 (2.17)

to mean that the series on the right is an asymptotic expansion of I(~) as ~ → 0. It’s

important to remember that the true function may differ from its asymptotic series by

transcendental terms; for example, the function e−1/~2 ∼ 0 as ~→ 0, but clearly e−1/~2 6= 0.

Thus, if we instead fix a value of ~, however small, and include more and more terms in the

sum, we will eventually get worse and worse approximations to the answer. Perturbation

theory thus tells us important, but not complete, information about our QFT.

2.2.2 A purely fermionic theory

Next let’s look at a purely fermionic d = 0 QFT. The first step is to compute a Gaussian

integral for fermions, modelling the case of a free fermionic theory in higher dimensions.

where A0 = 1. This proves (2.13) in the case of a single field. The generalization to finitely many fields Xa

is straightforward. But don’t worry, neither of these proofs are central to (nor examinable for) this course.
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Since the action must be bosonic, the smallest number of fermions we can consider is two.

The action is then

S(ψ1, ψ2) = Aψ1ψ2

for some A, and the d = 0 partition function is the integral∫
e−Aψ

1ψ2/~ dψ1 dψ2 .

over these two fermions. Using the fact that S2 = 0, the expansion of e−Aψ
1ψ2~ truncates

at the first non-trivial term and we have∫
e−Aψ

1ψ2~ dψ1 dψ2 =

∫ (
1− A

~
ψ1ψ2

)
d2ψ = A/~ .

from the rule (2.8) of Berezin integration.

More generally, for 2m fermions and an antisymmetric matrix Aab, the Gaussian inte-

gral is∫
e−Aabψ

aψb/2~ d2mψ =

∫ m∑
k=0

(−)k

(2~)kk!
(Aabψ

aψb)k d2mψ

=
(−)m

(2~)mm!

∫
Aa1a2Aa3b4 · · ·Aa2m−1a2m ψ

a1ψa2 · · ·ψa2m−1ψa2m d2mψ

=
(−)m

(2~)mm!
εa1a2···a2m−1a2mAa1a2 · · ·Aa2m−1a2m

=

(
−1

~

)m
Pfaff(A) ,

(2.18)

where the only term of the expansion that contributes is the one where each fermion appears

precisely once. In the final line, we’ve introduced the Pfaffian of a 2m× 2m antisymmetric

matrix A by

Pfaff(A) =
1

2mm!
εa1a2···a2m−1a2mAa1a2 · · ·Aa2m−1a2m . (2.19)

For example,

Pfaff

(
0 a

−a 0

)
= a .

In the first problem set, I ask you to use fermionic variables to show that (Pfaff A)2 = detA,

so that our Gaussian integral (2.18) can be written as ±
√

det(A). For comparison, recall

that the Gaussian integral of the quadratic form 1
2Mabx

axb of n bosonic variables gives

(up to a constant)
√

1/ det(M), with M a symmetric matrix. Thus, except for a possible

numerical factor which we could in any case include in the normalization of the measure,

the fermionic result for Gaussian integrals is again just the inverse of the bosonic one.

If our action only contains (finitely many) fermions, then the expansion of e−S will

always truncate eventually. The Berezin integral will then just extract the coefficient of

whatever terms where all the fermions are present, so the integral will be some polynomial
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in the coupling constants in the action. For example, suppose we have 4 fermions (so that

we can write a non-trivial quartic interaction), with

S(ψa) = A
(
ψ1ψ2 + ψ3ψ4

)
+ λψ1ψ2ψ3ψ4 .

Then S3 = 0 and

e−S/~ = 1− 1

~
S +

1

2~2
S2

= 1− 1

~
[
A
(
ψ1ψ2 + ψ3ψ4

)
− λψ1ψ2ψ3ψ4

]
+
A2

~2
ψ1ψ2ψ3ψ4

and the integral
∫

e−S/~ d4ψ = (A/~)2 − λ/~ analytically. In this sense, in d = 0 purely

fermionic theories are simpler than purely bosonic ones. Unfortunately, this simplification

does not carry over to higher dimensions.

2.3 A supersymmetric theory

We’re now ready to consider a d = 0 theory containing both a bosonic variable x ∈ R and

two fermionic variables, ψ1 and ψ2. The space of fields is then C ∼= R1|2. A generic action

involving these fields takes the form

S(x, ψ1, ψ2) = V (x) + U(x)ψ1ψ2 (2.20)

for some (smooth) functions U , V of the bosonic fields. Note that (in the absence of

fermionic sources) there can’t be any terms in S involving only one of the fermion fields

since this term would itself be fermionic. There also can’t be higher order terms in the

fermion fields since (ψa)2 = 0 for each fermionic variable.

We’d often take U and V to be polynomials, in which case for the integral of e−S to

converge, we just require that V (x) → ∞ as |x| → ∞. Beyond the quadratic terms, the

individual monomials in V describe interactions among the bosons and can be represented

by vertices in a Feynman diagram, while non-constant terms in U represent couplings

between the bosons and fermions. For generic polynomials U and V , this theory is just as

intractable as a purely bosonic one: while we can always perform the Berezin integrations

exactly (at least for finitely many fermionic variables), doing so leaves us with

1

~

∫
R
U(x) e−V (x)/~ dx .

Typically, this integral is just as difficult as the purely bosonic partition function and again

we’d have to be content to evaluate it perturbatively.

Supersymmetry is the magic that will allow us to do better. For later convenience,

we’ll combine the two real fermions into a single complex one, writing ψ = ψ1 + iψ2 and

ψ̄ = ψ1 − iψ2. Instead of the generic action (2.20), let’s specialise to the case

S(x, ψ, ψ̄) =
1

2
(∂W )2 − ψ̄ψ ∂2W (2.21)
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where we’ve imposed a particular relation between U and V , in particular writing U(x) =

(∂W/∂x)2. This relation has the consequence that S(x, ψ1, ψ2) is invariant under the flow

generated by the fermionic vector fields

Q = ψ
∂

∂x
+ ∂W (x)

∂

∂ψ̄

Q† = ψ̄
∂

∂x
− ∂W (x)

∂

∂ψ
.

(2.22)

As above, these vector fields are odd derivations of C∞(R1|2), acting on the basic variables

as
Q(x) = ψ , Q†(x) = ψ̄

Q(ψ) = 0 , Q†(ψ̄) = 0

Q(ψ̄) = ∂W (x) , Q†(ψ) = −∂W .

To check that the action is invariant, we compute

Q(S) = ψ
∂

∂x

(
1

2
(∂W )2 − ψ̄ψ ∂2W

)
+ ∂W

∂

∂ψ̄

(
1

2
(∂W )2 − ψ̄ψ ∂2W

)
= ψ ∂W ∂2W − ψ ∂W ∂2W = 0 ,

where we used the fact that (ψ)2 = 0 in computing the first term. A similar calculation

shows that Q†(S) = 0.

Since the action is invariant, we say that Q and Q† generate supersymmetries of this

zero dimensional theory. Taking the anticommutators of these odd vector fields gives

{Q,Q} = 2 ∂W ψ
∂

∂ψ̄
and

{
Q†,Q†

}
= −2 ∂W ψ̄

∂

∂ψ
(2.23a)

whilst {
Q,Q†

}
= −∂W

(
ψ
∂

∂ψ
− ψ̄ ∂

∂ψ̄

)
(2.23b)

and you can (should!) check that this is a (non-Abelian) Lie superalgebra. The vector fields

appearing on the right here are also symmetries of the action as one can check directly: the

first two either add some amount of ψ onto ψ̄ or vice-versa, but since the action involves

these variables only through ψ̄ψ, any such change gives ψ2 or ψ̄2 and hence vanishes. The

final vector field rotates the phase of the complex fermion, so obviously leaves the action

invariant.

Nonetheless, there are apparently a number of differences compared to the supersym-

metry algebra we saw in the Introduction. Firstly, although {Q,Q} annihilates both x and

ψ, it does not annihilate ψ̄ and so Q2 is not zero in general. However, we see from (2.21)

that ψ ∂2W = 0 is the ‘equation of motion’ obtained from varying the action wrt ψ̄. Thus,

our supersymmetry algebra Q2 = 0 (and likewise Q̄2 = 0) hold only ‘on-shell’. We’ll see

how to do better in the first problem set, and also later on in section ??. Secondly, unlike

the algebra {Q,Q†} = 2H we wrote in the introduction, the rhs of (2.23b) should not really

be interpreted as a ‘Hamiltonian’. Indeed, in any d = 0 theory there is no ‘time’ (or any
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other) direction in our Universe along which to translate, so H ≡ 0 identically. We’ll study

further examples of supersymmetric theories where the supersymmetry transformations

close only up to a global (bosonic) symmetry of the action.

Supersymmetric QFTs are drastically simpler than generic ones because (at least in

this zero–dimensional example) the method of steepest descent is exact. There are two

ways to understand this, and both are important.

Firstly, suppose we rescale W → λW for some λ ∈ R+ and let

Sλ(x, ψ, ψ̄) =
λ2

2
(∂W )2 − λ ψ̄ψ ∂2W

be the action built from the rescaled W . Because this is nothing more than a renaming

of our original, arbitrary W (x), Sλ is invariant under similarly rescaled supersymmetry

transformations generated by

Qλ = ψ
∂

∂x
+ λ∂W

∂

∂ψ̄
and Q†λ = ψ̄

∂

∂x
− λ∂W ∂

∂ψ
. (2.24)

Now, the key point is that the ‘path’ integral8

I(λ) =
1√
2π

∫
e−Sλ dx dψ dψ̄

built using this rescaled action is in fact independent of λ. This is because

d

dλ
I(λ) = − 1√

2π

∫
∂Sλ
∂λ

e−Sλ dx d2ψ

= − 1√
2π

∫ (
λ (∂W )2 − ψ̄ψ ∂2W

)
e−Sλ dx d2ψ

(2.25)

where we’ve commuted the derivative through the integral which is allowed since the in-

tegral is absolutely convergent. We now observe that λ (∂W )2 − ψ̄ψ∂2W = −Q†λ(ψ ∂W ).

Since Sλ is also invariant under Q†λ, we have

d

dλ
I(λ) =

1√
2π

∫
Q†λ(ψ ∂W ) e−Sλ dx d2ψ

=
1√
2π

∫
Q†λ
(
ψ ∂W e−Sλ(x,ψ,ψ̄)

)
dx d2ψ .

(2.26)

showing that the entire integrand is the Q†λ transformation of something. Acting in-

side (2.26), the derivative ∂/∂ψ in Q†λ strips off the (only) power of ψ. so this term

does not survive the Berezin integration. On the other hand, while the term generated by

ψ̄∂/∂x does survive the Berezin integrals, it’s manifestly a total derivative wrt x. For any

real function W (x) and λ ∈ R+, we have

∂W e−λ
2(∂W )2/2 → 0 as |x| → ∞ ,

8Henceforth I’ll set ~ = 1. For later convenience, I’ve chosen to normalise the integration measure over

(each) bosonic variable by a factor of 1/
√

2π.
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so there are no boundary terms and this term also vanishes. Thus we have

d

dλ
I(λ) = 0

as promised.

Our original problem was to evaluate I = I(1). However, since I(λ) is actually

independent of λ, we’ll get the same result for our integral whatever value of λ ∈ R+ we

use. In particular

I(1) = lim
λ→∞

I(λ)

and this observation is useful because it’s easy to calculate the integral as λ → ∞. For

very large λ, the bosonic factor e−λ
2(∂W )2/2 suppresses all contributions to the integral

arbitrarily strongly everywhere except where ∂W = 0. Thus, in this limit, the integral

receives contributions only from neighbourhoods of the critical points of W (x). This is the

key property of localization. It’s of course very closely related to perturbation theory using

steepest descent, because sending λ→∞ here has the same effect as sending ~→ 0 there.

The important difference is that in the supersymmetric case, nothing is lost by taking this

limit, as our argument above shows.

The second, slightly more abstract, way to understand the localization is as follows. Let

U be a neighbourhood of ∂W = 0 (so U is perhaps disconnected) and Uc its complement.

On Uc we can change variables from (x, ψ, ψ̄) 7→ (y, χ, χ̄) where

y = x− ψ̄ψ

∂W
χ = ψ

√
∂W χ̄ = ψ̄ . (2.27)

In the first problem set, you’ll show that under this change of variables

dx d2ψ =
√
∂W (y) dy d2χ , (2.28)

where on the rhs W is treated as a function of y. The point of this transformation is that

Q(y) = 0 = Q†(y), so that y itself is invariant under supersymmetry. Furthermore,

S[y, 0, 0] =
1

2
(∂W (y))2 =

1

2
(∂W (x))2 − ∂2W (x)ψ̄ψ = S[x, ψ, ψ̄] . (2.29)

In fact, y is the only independent combination of (x, ψ, ψ̄) that is supersymmetrically

invariant, so any function h(x, ψ, ψ̄) obeying Qh = 0 = Q†h may be expressed as h(y, 0, 0).

We immediately see that the contribution to I from Uc is

IUc =
1

2π

∫
Uc

e−S[x,ψ,ψ̄] dx d2ψ =
1

2π

∫
Uc

e−S[y,0,0]
√
∂W (y) dy d2χ = 0 (2.30)

since the integrand is independent of the fermionic variables χ, χ̄. As before, the only

non-vanishing contributions to I come from a neighbourhood of the points where ∂W = 0

at which our coordinate transformation (2.27) breaks down.

To understand what’s happening in general, suppose we wish to perform some integral

over a space C, but the integrand (including the measure) is actually invariant under a
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Figure 1: Integrals invariant under a group G fermionic transformations localize to an

arbitrarily small neighbourhood of the fixed locus of G.

group G of transformations. If G acts freely, then we can pick coordinates that decompose

the integral into an integral over G itself and an integral over the quotient C/G. Since the

original integrand was invariant under G, the integral over the group just gives a factor of

vol(G). For example, if S(x, y) and O(x, y) are each invariant under rotations(
x

y

)
7→
(
x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x

y

)
then the integral ∫

R2

e−S(x,y)O(x, y) d2x = 2π

∫ r

0
e−S(r)O(r) rdr (2.31)

where the factor 2π = vol(SO(2)) =
∫
SO(2) dθ comes from integrating over rotations, and

the (non-trivial) radial integral is taken over R≥0
∼= R2/SO(2). In QFT, G may be a group

of global transformations which leave the action S and operators O invariant.

In our case G is a group of fermionic symmetries, parametrized by some fermionic

coordinate θ. In this case we have
∫
G dθ = 0 by the basic rule of Berezin integration.

Consequently, if an integral is invariant under a fermionic symmetry, we expect to get zero.

The exception to this is that G may not act freely but may have some fixed locus C0 ⊂ C.
In the example above, this was the locus ∂W = 0 where the transformations of ψ and ψ̄

vanished. As above, let U be an arbitrarily small, G-invariant open neighbourhood of C0

and let Uc be its complement (see figure 1). Then G acts freely on U c and so the integral

over Uc vanishes by the above argument, just as we saw in our example. Thus the integral

only receives contributions from an infinitesimal neighbourhood of the fixed locus C0.9

Now we’ve understood why it localizes, let’s finally go ahead and compute our integral.

Suppose for simplicity thatW (x) is some generic polynomial of degreeD withD−1 isolated,

non-degenerate10 critical points. Near any such critical point x∗ we have

W (x) = W (x∗) +
c∗
2

(x− x∗)2 + · · · (2.32)

9If you’re awake, you’ll notice that in my bosonic example of rotations, the origin 0 ∈ R2 was also a fixed

point, but we didn’t need seem to give it special consideration. This is because in the bosonic case, the

integral over G was non-zero (= 2π) and the point r = 0 was a set of measure zero (provided our integral

remained appropriately non-singular there). In the fermionic case, by contrast, fixed points give the only

non-zero contribution.
10That is, ∂W |x∗ = 0 but ∂2W |x∗ 6= 0.
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� �Figure 2: The supersymmetric path integral receives contributions just from infinitesimal

neighbourhoods of the critical points of W (x). These alternately contribute ±1 according

to whether they are minima or maxima.

where c∗ = ∂2W (x∗), so the action (2.21) becomes

S(x, ψ, ψ̄) =
c2
∗
2

(x− x∗)2 − c∗ψ̄ψ + · · · . (2.33)

The higher-order terms will be negligible because, e.g. we can always increase λ to focus

in on an infinitesimal neighbourhood of x∗. Expanding the exponential in Grassmann

variables, the contribution of this critical point to the integral is

1√
2π

∫
e−c

2
∗(x−x∗)2/2

[
−1 + c∗ψ̄ψ

]
dx d2ψ =

c∗√
2π

∫
e−c

2
∗(x−x∗)2/2 dx

=
c∗√
c2
∗

= sgn
(
∂2W |∗

)
.

(2.34)

Summing over all the critical points, the integral becomes

I =
∑

x∗ : ∂W |x∗= 0

sgn
(
∂2W |x∗

)
(2.35)

and is thus largely independent of the detailed form of W . In fact, if W is a polynomial of

odd degree, then ∂W = 0 must have an even number of roots, with ∂2W being alternately

positive and negative at each successive root. Thus their contributions to (2.35) cancel

pairwise and Iodd = 0 identically. On the other hand, if W has even degree then it has an

odd number of critical points and we obtain Iev = ±1, with the sign depending on whether

W → ±∞ as |x| → ∞. (See figure 2.)

The fact that this integral is so simple for arbitrary polynomials W (x) is a really

remarkable result! To reiterate, we’ve found that for any such polynomial, the partition

function I[W ] is always either 0 or ±1. If we imagined trying to compute I[W ] pertur-

batively, then for a non-quadratic W we’d still have to sum infinitely diagrams using the

vertices in the action. In particular, we could certainly draw Feynman diagrams with ar-

bitrarily high numbers of loops involving both x and ψ fields, and these graphs would each
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contribute to the coefficient of some power of the coupling constants in the perturbative

expansion. However, by an apparent miracle, we’d find that these graphs always cancel

themselves out; the net coefficient of each such loop graph would be zero with the contri-

butions from graphs where either x or ψ̄ψ run around the loop contributing with opposite

sign. The reason for this apparent perturbative miracle is the localization property of the

supersymmetric integral.

2.4 Landau–Ginzburg theories and the chiral ring

For a further example, consider a theory of a complex boson z and two complex fermions

ψ1, ψ2. We pick a holomorphic function W (z) and choose the action

S[z, ψi] = |W ′(z)|2 +W ′′(z)ψ1ψ2 −W ′′(z̄)ψ̄1ψ̄2 (2.36)

This action is invariant under two sets of supersymmetry transformations, generated by

Q1 = ψ1
∂

∂z
+ ∂W

∂

∂ψ2
Q†1 = ψ̄1

∂

∂z̄
+ ∂W

∂

∂ψ̄2

Q2 = ψ2
∂

∂z
− ∂W ∂

∂ψ1
Q†2 = ψ̄2

∂

∂z̄
− ∂W ∂

∂ψ̄1
.

(2.37)

Note that since W is holomorphic, these generators now obey

{Qi,Qj} = 0 ,
{
Q†i ,Q

†
j

}
= 0 (2.38)

identically.

The same localization principle as before implies that

I =

∫
e−S[z,ψi] d2z d4ψ

only receives contributions from a neighbourhood of the critical points of W , which are

again fixed points of the supersymmetry transformations. For example, away from this

neighbourhood, we can change variables (z, ψi)→ (y, χi) as

y = z − ψ1ψ2

∂W
, χi =

√
∂W ψi

and write the action as S[y, 0]. After changing variables, the integrand is independent of

the fermions and so vanishes under the Berezin integration.

In this case, the result of the contribution from the critical points will be slightly

different. Let z∗ be an isolated, non-degenerate critical point of W so that nearby

W (z) = W (z∗) +
α

2
(z − z∗)2 + · · · . (2.39)

Around such a critical point, only the quadratic pieces

S(2)[z, ψi] = |α(z − z∗)|2 + αψ1ψ2 − ᾱψ̄1ψ̄2 (2.40)
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are important. Thus the integral in this case becomes

I =
1

2π

∫
e−S d2z d4ψ

=
1

2π

∑
z∗ : ∂W |z∗=0

∫
e−|α(z−z∗)|2 |α|2ψ1ψ2ψ̄1ψ̄2 d2z d4ψ

=
1

2π

∑
z∗ : ∂W |z∗=0

|α|2
∫

e−|α(z−z∗)|2 dz dz̄

=
∑

z∗ : ∂W |z∗=0

1 = # (critical points of W ) ,

(2.41)

just counting (no longer with sign) the number of critical points.

It’s important to realise that localization can be used to calculate much more than

just the partition function. Suppose O is any function of the fields that is invariant under

(say) the antiholomorphic supersymmetry transformations generated by Q† = Q†1 + Q†2.

We will allow O to have arbitrary behaviour under the holomorphic supersymmetry trans-

formations, so Qi(O) 6= 0 necessarily. Then O may have arbitrary dependence on (z, ψi)

but, away from ∂W = 0, it can depend on z̄ and ψ̄i only through ȳ and ψ̄1 + ψ̄2. Then the

correlation function11

〈O〉 =
1

2π

∫
e−S O d2z d4ψ ,

will again localize to a neighbourhood of the fixed–point locus ∂W = 0 as the integrand is

independent of ψ̄1 − ψ̄2 on Uc. As an example, any holomorphic function f(z) of z alone

is certainly δ̄-invariant, so

〈f〉 =
1

2π

∫
f(z) |∂2W |2 e−

1
2
|∂W |2 dz dz̄

=
∑

z∗ : ∂W |z∗=0

1

2π

∫
f(z∗) |∂2W |2 e−

1
2
|∂W |2

=
∑

z∗ : ∂W |z∗=0

f(z∗) .

localizing again to the critical points of W .

Since (Q†)2 = 0, a simple way to construct such an operator is to let Λ(z, z̄, ψi, ψ̄i)

be any operator and take O = Q†(Λ). However, such operators have vanishing correlation

functions, because

〈Q†Λ〉 =
1

2π

∫
(Q†Λ) e−S d2z d4ψ =

1

2π

∫
Q†
(
Λ e−S

)
d2z d4ψ , (2.42)

which vanishes for the same reasons as above. Thus the interesting operators are those

that are in the kernel of Q† (so Q†O = 0), but not in its image (so O 6= Q†(Λ) for any Λ).

11Often, one normalizes correlation functions by the partition function; that is, one takes 〈O〉 =∫
e−SODX

/ ∫
e−S DX . In this course our correlation functions will be unnormalized. The conventions

in AQFT or Statistical Field Theory may be different
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We call the equivalence class

HQ† =
{O : Q†O = 0}
{O = Q†Λ} (2.43)

the Q†-cohomology. Because 〈O + Q†Λ′〉 = 〈O〉 + 〈Q†Λ′〉 = 〈O〉, correlation functions

depend only on the cohomology equivalence class of an operator.

Suppose for r = 1, . . . n the operators Or ∈ HQ† . Then Q̄(
∏
rOr) = 0 follows by the

Leibniz rule, so the product is Q†-closed. Furthermore, if we change one of the Ors by a

Q†-exact piece, say O1 → O1 +Q†Λ1, then

n∏
r=1

Oa →
(
O1 +Q†Λ1

) n∏
r=2

Or =

n∏
r=1

Or +Q†
(

Λ1

n∏
r=2

Oa
)

and so the cohomology class of the product remains unchanged. Correlation functions of

products of Q†-invariant operators are thus only sensitive to the Q†-cohomology. In the

context of supersymmetry, the Q†-cohomology is often called the chiral ring: we can add,

subtract and multiply such cohomology classes, but not ( in general) divide them.

In particular, to compute the chiral ring for bosonic fields, let f(z) be a holomorphic

function so that Q†f = 0 as before. Since Q†(fψ̄1) = f(z) ∂W and ∂W is also holomorphic,

we see that any holomorphic function that has ∂W as a factor is equivalent to zero in the

Q̄-cohomology. Thus the chiral ring R = C[z]/{I} where I is the ideal generated by ∂W .

For example, if

W =
zn+1

n+ 1
− az

where a is a constant, then ∂W = zn − a. The chiral ring is then the ring of polyno-

mials in z, modulo the relation zn = a. The non-trivial elements in this ring are thus

{1, z, z2, . . . , zn−1}.
The fact that correlation functions of operators that are invariant under supersym-

metry depend on the cohomology class represented by the operator is the starting–point

for much of the mathematical interest in QFT: we design our supersymmetric QFT so

that this cohomology is the cohomology of an interesting space. For example, Donaldson’s

theory of invariants of 4-manifolds that are homeomorphic but not diffeomorphic, and the

Gromov–Witten generalization of intersection theory can both be understood as exam-

ples of (higher–dimensional) supersymmetric QFTs where the localization / cancellation is

precise. We’ll see this much more in the following chapters.

It’s also important to mention that we can, of course, try to compute correlation

functions of operators that are not Q̄-closed. However, there’s no reason to expect such

correlation functions will be amenable to techniques of localization, so we’ll typically have

to resort to a perturbative treatment as for any QFT.

2.5 The Duistermaat–Heckmann localization formula

For a final example in zero dimensions, let’s look at something with a little more geometry.
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Let (M,ω) be a symplectic manifold. That is, M is a (smooth) 2n-dimensional manifold

on which we have a 2-form ω that obeys

dω = 0 so ω is closed

ω(X,Y ) = 0 for all vector fields Y iff X = 0 identically

The second condition is a non-degeneracy condition. We can equivalently write it as the

condition that the Liouville measure ωn 6= 0. Concretely, if xa are local coordinates12 on

M then we can write ω = ωab(x) dxa ∧ dxb and the Liouville measure

ωn = det(ωab) dx
1 ∧ dx2 ∧ · · · ∧ dx2n .

Since it is non-degenerate, ω is invertible and

ω−1 = (ω−1)ab
∂

∂xa
∧ ∂

∂xb

defines a Poisson bracket on M . This Poisson bracket obeys the Jacobi identity as a

consequence of ω being closed.

Now suppose X is a vector field on M and that ω is invariant along the flow generated

by X. This means the Lie derivative of ω along X vanishes, so

0 = LXω = (ıXd+ dıX)ω = d(ıXω)

where the second equality uses Cartan’s homotopy formula for the Lie derivative of a form13,

and the final equality uses the fact that ω is closed. We thus see that the contraction ıXω is

itself a closed 1-form. Provided b1(M) = 0, all closed 1-forms onM must be exact, so we can

find a function h such that14 dh = −ıXω. Then X is said to be a Hamiltonian vector field,

with h the corresponding Hamiltonian. Equivalently, given a function h, the corresponding

Hamiltonian vector field is X = −ω−1(dh, · ) = −{h, · } obtained by inserting h into the

first slot of the Poisson bracket. We often write X as Xh if we wish to emphasize its

relation to h. You should be familiar with this from Classical Dynamics (although perhaps

in a less abstract language) where, in the most standard case, M = R2n is the space of

positions and momenta and the Hamiltonian h : M → R is interpreted as the energy.

Hamilton’s equations say that dynamical trajectories are determined by the equations

ḟ = {f, h} = Xh(f), so that the function f : M → R changes in time by flowing along Xh.

We’ll be concerned with symplectic manifolds M that are compact and have no bound-

ary. We’ll also require that our Hamiltonian vector field X = ω−1(dh) generates a U(1)

action on M . That is, the generic orbit of X is a circle, but there may be fixed points

x∗ ∈ M where the vector field vanishes and the circle shrinks to zero. We’ll also assume

for simplicity that any such fixed points are isolated. The key example to keep in mind is

12The xas are all the coordinates here, including both the qs and ps, so xa = (qi, pj)! In particular,

a = 1, . . . , 2n, whereas i, j = 1, . . . , n.
13If you’re not familiar with this formula, you can prove it e.g. by comparing the component form of the

Lie derivative to the component form of the rhs. I leave the proof as an exercise.
14The minus sign here is a convention, chosen to agree with standard definitions in classical mechanics.
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Figure 3: S2 is a symplectic manifold. The circle action rotates the S2 around an axis,

leaving the poles fixed.

M = S2 with symplectic form ω = sin θ dθ∧dφ. The vector field X = ∂/∂φ is Hamiltonian

with h = cos θ, and generates a circle action as in figure 3. The fixed points x∗ of the circle

action are the North pole (θ = 0) and South pole (θ = π), where15 X(x∗) = 0.

In this situation, the Duistermaat–Heckmann theorem states that, for α ∈ R, the

integral ∫
M

ωn

n!
eiαh

reduces to a sum of contributions over the fixed points x∗. In the example where M = S2

with the above symplectic form and Hamiltonian, this integral becomes elementary and we

find ∫
M

ωn

n!
eiαh =

∫
S2

eiα cos θ sin θ dθ ∧ dφ = 2π

∫ 1

−1
eiαz dz =

2π

iα

(
eiα − e−iα

)
.

As promised, the answer is a sum of contributions of the integrand eiαh(x∗) itself, evaluated

at the North and South poles. Aside from the universal factor 2π/iα, the contribution of

each fixed point is weighted by a factor of ±1 whose role we will understand momentarily.

The Duistermaat–Heckmann theorem states that thee same will be true for any compact,

symplectic M and Hamiltonian h.

We can give a simple derivation of this theorem using supersymmetry. The ‘fields’

of our model will be xa, local coordinates on M , and 2n fermions ψa which transform as

tangent vectors to M . To sound fancy, we can say that the space of fields is C = ΠTM ,

the parity–reversed tangent bundle to M . That is, C looks just like the total space TM of

the tangent bundle to M , except that we’re treating the fibre directions as fermionic. A

generic smooth function of our fields looks like

F (x, ψ) = f(x) + ρa1(x)ψa1 + ga1a2(x)ψaψb + · · ·+ ra1a2...a2n(x)ψa1ψa2 · · ·ψa2n ,

15Figure 3 makes it clear that X = 0 at the North and South poles, but this is not easy to see from the

expression X = ∂/∂φ because the coordinates (θ, φ) break down at the poles. Recall (e.g. from the theory

of angular momentum in QM) that ∂/∂φ = x∂/∂y − y∂/∂x where (x, y, z) are Cartesian coordinates on a

copy of R3 in which our S2 is embedded as the unit sphere. The Cartesian expression clearly has a zero

along the z-axis.
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and so we identify C∞(ΠTM) ∼= Ω∗(M), the space of forms on M of arbitrary degree.

Now we choose our action. The first terms we’ll need are

S0(x, ψ) = −iα(h(x) + ωab(x)ψaψb) .

These terms are invariant under the supersymmetry transformations generated by

Q = ψa
∂

∂xa
+Xa(x)

∂

∂ψa

as one can easily verify using the fact that X is Hamiltonian, with associated Hamiltonian

function h. This Q has a simple geometric meaning: since functions of (x, ψ) are identified

with forms onM , wheneverQ acts on any superfield (such as the action) we can equivalently

view it as the operator

Q = d+ ıX .

In particular, the first term ψa∂/∂xa in Q corresponds to the exterior derivative d, while

the second term strips off a ψa replacing it with the vector field Xa and so represents the

operation of contraction ıX acting on forms. Furthermore,

1

2
{Q,Q} = dıX + ıXd = LX , (2.44)

so our Q squares to the Lie derivative along X. In particular, Q2 = 0 when acting on forms

that are constant along the orbits of X.

To aid with the localization, we need to add another term to the action. In the simplest

case, we do this by first picking a postive-definite metric g on M . We then deform the

action to

Sλ = S0 + λQ (g(ψ,X)) = S + λ (g(X,X)− ψaψc ∂cXa) ,

where Xa = gabX
b and λ ∈ R≥ is a constant. Provided the metric is invariant under the

U(1) action, from (2.44) we have Q2(g(ψ,X)) = LX(gabX
b dxa) = 0. Therefore Q(Sλ) = 0

and our deformed actions remain supersymmetric for all λ.

Now let’s consider the partition function of our theory. As usual, this is the integral

Z =

∫
ΠTM

e−Sλ(x,ψ) d2nx d2nψ (2.45)

over the space of fields. It may seem surprising that, even though M may be curved, we’re

integrating using the näıve measure d2nx d2nψ. In fact, this measure on ΠTM is invariant

under orientation–preserving diffeomorphisms f : M → M . To see this, suppose that xa

are coordinates on a neighbourhood of m ∈M and ya are coordinates on a neighbourhood

of f(m). Then the pushforward of any vector X at m is the vector

f∗(X) = Xa(f(x))
∂yb

∂xa
∂

∂xb
= Y b(y)

∂

∂yb
.
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at f(m). In particular, since the ψa are fermionic elements of the tangent bundle, under a

diffeomorphism they pushforward to χb = ψa (∂yb/∂xa). Therefore the measure transforms

under pullback as16

f∗(d2ny d2nχ) = det

(
∂yb

∂xa

)
d2nx d2n

(
∂yd

∂xc
ψc
)

= d2nx d2nψ

where we have used the transformation law (2.7b) for the Berezin measure. We see that

d2nx d2nψ is a canonically defined measure on ΠTM , because the bosonic and fermionic

measures transform oppositely17.

As in previous sections, the most important feature of the partition function (2.45) is

that it is actually independent of the value of λ ∈ R≥. Again, this is because

− ∂

∂λ

∫
e−Sλ d2nx d2nψ =

∫
Q (g(ψ,X)) e−Sλ d2nx d2nψ =

∫
Q
(
g(ψ,X) e−Sλ

)
d2nx d2nψ ,

which vanishes because after acting with Q, each term in the integrand is either missing

some fermion or else is a total derivative on M . As a special case, setting λ = 0 and

integrating out the fermions we have

Z =

∫
ΠTM

e−S0(x,ψ) d2nx d2nψ =
(iα)n

n!

∫
M
ωn eiαh (2.46)

so, up to the harmless factor (iα)n, the partition function is equal to the integral in the

Duistermaat–Heckmann theorem.

To actually evaluate Z, we instead consider the limit λ → ∞. Because g is positive-

definite, at large λ the term λ g(X,X) in Sλ suppresses all contributions to the integral

except those near the zeros of X, i.e., the fixed points of the U(1) action. Near each fixed

point, the method of steepest descent (2.13) gives

Z ∼ (2π)n

n!

∑
x∗∈M :X(x∗)=0

eiαh(x∗) ε
a1b1a2b2···anbn (∂a1Xb1)(∂a2Xb2) · · · (∂anXbn)√

det(∂a∂bg(X,X))

∣∣∣∣∣
x∗

, (2.47)

as the leading–order term when λ → ∞. The numerator here comes from integrating out

the dominant fermion term ψaψc∂cXa, while the denominator from the Gaussian approx-

imation to the bosonic integral near x = x∗. Generically, we’d expect the leading–order

term (2.47) to receive corrections from a power series in 1/λ, as in (2.13). However, su-

persymmetry ensures the answer is actually λ-independent, so in particular it agrees with

the λ→∞ limit. Thus (2.47) is in fact the exact answer. (This implies that each term in

the sub–leading power series is actually zero even at finite λ. This is true, but hard to see

directly.)

We can simplify the ratio in (2.47) as follows. First, let’s suppose dim(M) = 2.

Then near each fixed point, we choose (Darboux) coordinates (q, p) on the tangent space

16We assume the coordinate transformation is orientation–preserving so that det(∂y/∂x) > 0 and there

is no need for a modulus sign in the bosonic measure.
17This is closely related to the fact that the (bosonic) cotangent bundle T ∗N to any manifold N has a

canonically defined measure.
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Tx∗M
∼= R2 such that the fixed point x∗ is the origin (q, p) = (0, 0) and the symplectic form

ω = dq ∧ dp. In these coordinates, X rotates us around the origin on circles of constant

radius, so

X = k

(
q
∂

∂p
− p ∂

∂q

)
for some k ∈ Z. The Hamiltonian function associated to X is h = 1

2k(q2 +p2). The obvious

U(1)-invariant metric is just the Euclidean metric g = dq2 + dp2, in which case

εab∂a(gbcX
c) = ∂qXp − ∂pXq = 2k , whilst

√
det(∂a∂b(XcXc)) = 2k2

Hence the ratio in (2.47) is just 1/k. In particular, for the previous example M = S2, we

have k = +1 at one fixed point and k = −1 at the other fixed point, because if we orient

the tangent planes the same way then the circle action X rotates us in an opposite sense

(anticlockwise/anticlockwise) at the North and South poles.

The higher dimensional case works similarly. Near each fixed point x∗, we choose

Darboux coordinates (qi, pj) on the tangent space Tx∗M
∼= R2n such that ω = dqi ∧ dpi

and X acts as

X =

n∑
i=1

ki

(
qi

∂

∂pi
− pi

∂

∂qi

)
.

Thus X rotates us around circles in each R2 factor, with the ki ∈ Z allowing for the

possibility that we rotate around at different rates in each R2 factor. We then find

εa1b1a2b2···anbn (∂a1Xb1)(∂a2Xb2) · · · (∂anXbn)√
det(∂a∂bg(X,X))

∣∣∣∣∣
x∗

=
∏
i

1

ki

so the ratio in the steepest descent formula is just the product of weights of the U(1) action.

Comparing (2.47) to (2.46) gives the final form of the Duistermaat-Heckmann formula∫
M

ωn

n!
eiαh =

(
2π

iα

)n ∑
x∗∈M :X(x∗)=0

eiαh(x∗)∏
i ki(x∗)

. (2.48)

We emphasize that this is valid for any compact (M,ω) and any Hamiltonian h : M → R,

provided the fixed points are isolated and non-degenerate.

2.5.1 A non-Abelian generlization

There are many ways in which the Duistermaat–Heckmann formula (and its supersymmet-

ric derivation) can be generalized. One example is where the symplectic manifold carries

the action of a Lie group G, no longer required to be U(1). That is, we have dim(G) vector

fields Xi = Xa
i (x) ∂/∂xa on M which obey [Xi, Xj ] = fkijXk where fkij are the structure

constants of the Lie algebra g of G. We require that the symplectic form is preserved by

the G-action, so LXi(ω) = 0 for all i.

We make a choice18 of φi ∈ g∗ and define our supersymmetry operator Q by

Q = ψa
∂

∂xa
+ φiXa

i (x)
∂

∂ψa

18As a simple example, suppose M = R2n with xa = (qi, pj) the usual Darboux coordinates. Then

the momenta pj are Hamiltonians whose corresponding vectors ∂/∂qj generate translations. Then the φi

correspond to a choice of direction in Rn along which we may wish to translate.
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so that the φi parametrize the particular g-transformations we can perform. As before, we

have Q2 = LφiXi and so Q2 = 0 when acting on functions F (x, ψ, φ) that are g-invariant.

In particular, the basic action S0 naturally generalizes to

S0 = −i
(
φihi(x) + ωab(x)ψaψb

)
and is Q-invariant.

It seems undemocratic to single out a particular choice of φi, and we can avoid this

by also integrating over g in our partition function. To do this, rather than thinking of

φi as fixed, we let it represent a Euclidean coordinate on g, chosen so that the Euclidean

measure ddimGφ coincides with the evaluation at g = TeG of the Haar measure on G. Then

we integrate over g using the measure

e−ε(φ,φ)/2 d
dimGφ

vol(G)
,

where vol(G) is the volume of G computed using our Haar measure. The Gaussian factor

is constructed using the Killing form ( , ) on g and is inserted to ensure the integral over

g converges. At λ = 0 our partition function then becomes

ZG(ε) =

∫
g×ΠTM

exp
[
− ε

2
(φ, φ) + iφihi(x) + iωab(x)ψaψb

] ddimGφd2nx d2nψ

vol(G)

=
1

vol(G)

(
2π

ε

)dimG ∫
ΠTM

exp

[
− 1

2ε
(h, h) + iωab(x)ψaψb

]
d2nx d2nψ ,

(2.49)

where in the second line we have performed the Gaussian integral over the φis. Integrating

out the fermions we arrive at

ZG(ε) =
1

vol(G)

(
2π

ε

)dimG ∫
M

exp

[
− 1

2ε
(h, h)

]
ωn

n!
(2.50)

as the underlying bosonic integral. Alternatively, adding a judiciously chosen Q-exact

term to the action before integrating out the fermions and scaling λ → ∞, ZG can again

be evaluated by localization.

2.5.2 A glimpse of two-dimensional Yang-Mills theory

Now let me convince you that this hasn’t all just been about playing around with some

pretty integrals. Let’s consider Yang-Mills theory, with gauge group G. On R3,1, Yang-

Mills theory is one of the main ingredients of the Standard Model, but we’ll restrict our

considerations to a two-dimensional version that lives on some closed, compact Riemann

surface Σ.

As usual, the basic field is a connection∇. At least locally on Σ, we can write∇ = d+A

where the gauge field A = Aαµ(x) tα dx
µ (at least locally on Σ), and {tα} are a basis of the

Lie algebra of G. Unlike the exterior derivative, the connection ∇ is not nilpotent, but
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obeys ∇2 = F , where F is the curvature or Yang-Mills fieldstrength. In terms of the gauge

field, we have

F = ∇2 = dA+A ∧A =
1

2

(
∂µA

α
ν − ∂νAαµ + fαβγA

β
µA

γ
ν

)
tα dx

µ ∧ dxν .

locally. The space A of connections is an infinite dimensional affine space whose tangent

space T∇A ∼= Ω1(Σ, g) at any point ∇ ∈ A, because the difference between two connections

is a 1-form on Σ that transforms in the adjoint.

Gauge transformations are maps g : Σ → G that act on the connection as g : ∇ 7→
g∇g−1 and therefore

F 7→ gFg−1 A 7→ gAg−1 − dg g−1 . (2.51)

The space G of all gauge transformations can be identified with the space Maps(Σ, G) of

maps to the gauge group, and the corresponding (infinite dimensional) Lie algebra is

Lie(G) = TeG ∼= Ω0(Σ, g) .

In particular, writing g = eλ and taking λ infinitesimal, (2.51) reduces to

F 7→ F − [F, λ] A 7→ A−∇λ

where∇λ = dA+[A, λ]. Geometrically, we can view this gauge transformation as generated

by the vector field

Xλ = −
∫

Σ
(∇λ(σ))α

δ

δAα(σ)

on A. (The variational derivative here acts as (δ/δAα(σ))Aβ(σ′) = δβα δ2(σ − σ′). The

integral over σ ∈ Σ in the definition of X can be viewed as the continuous part of a ‘sum

over components’. We let δ denote the exterior derivative on A.)

One of the reasons that Yang-Mills theory is special in two dimensions is that A is

naturally an infinite–dimensional symplectic manifold with symplectic form

ω =
1

2

∫
Tr(δA ∧ δA)

Remarkably, the vector field Xλ that generates gauge transformations is Hamiltonian, and

its associated Hamiltonian function is nothing but the curvature F . More specifically, let

h(λ) =

∫
Σ

Tr(λF ) .

Then taking the exterior derivative on A, we have

δh(λ) =

∫
Σ

Tr(λ∇δA) = −
∫

Σ
Tr(∇λ ∧ δA) = −ıXλω

where the first equality uses the fact that δF = ∇δA = d(δA) + [A, δA] .
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The action for Yang-Mills theory is

SYM[∇] =
1

2g2

∫
Σ

Tr(F ∧ ∗F ) (2.52)

as usual. Here, g2 a coupling and Tr is a G-invariant quadratic form on the Lie algebra

of G, normalized so that Tr(tαtβ) = −1
2δαβ. The Yang-Mills partition function is then

an integral of e−SYM[∇] over the space A/G of equivalence classes of connections up to

gauge transformations. Somewhat heuristically, we can perform this by instead integrat-

ing over A and dividing by vol(G) to compensate for overcounting gauge-equivalent field

configurations. That is,

ZYM =
1

vol(G)

∫
A

e−SYM[∇]DA

where DA is a formal Euclidean measure on A. In fact, since the symplectic form ω has

constant (or δ-function) coefficients, in two dimensions we can equally interpret this as a

formal Liouville measure on the infinite–dimensional symplectic space A.

It should be clear that the partition function of YM2 is a infinite–dimensional analogue

of the non-Abelian localization story we outlined above. To make the correspondence even

clearer, we introduce a scalar field φ and a fermionic field ψ, where

φ ∈ Ω0(Σ, g) ∼= Lie(G) and ψ ∈ Ω1(Σ, g) ∼= ΠTAA .
Thus the scalar lives in the Lie algebra of G whilst ψ transforms as a fermionic tangent

vector to the space of gauge fields. Note that, for our application, we’ve chosen the fermion

to be a 1-form on Σ rather than a spinor. We can then rewrite rewrite the Yang-Mills path

integral in first-order form as

ZYM =

∫
Lie(G)×ΠTA

exp

[
i

∫
Σ

Tr(φF ) +
1

2

∫
Σ

Tr(ψ ∧ ψ)− g2

2

∫
Σ
∗Tr(φ2)

]
DADψDφ

vol(G)
.

Note that because we haven’t given the fermion any kinetic term, its path integral is trivial

(reflecting the fact that the Euclidean measure on A is already the Liouville measure).

Completing the square in φ and then performing the Gaussian integrals over both φ and

ψ returns us to the standard form (2.52) of the Yang-Mills action. Note also that the

extended action is invariant under the supersymmetry transformations19

δA = iψ δψ = −∇φ δφ = 0

as one can readily check using the fact that Σ has no boundary. These transformations

square to a gauge transformation of A along φ, or in other words to the Lie derivative along

the Hamiltonian vector field Xφ. As above, the supersymmetric form of the action can be

used to localize the Yang-Mills partition function, reducing it to an exactly calculable

integral over the moduli space of flat connections (∇ ∈ A s.t. F = 0). Unfortunately, it

would take us too far afield to explain this here, but you can find the story in the paper

Two Dimensional Gauge Theories Revisited, J. Geom. Phys. 9, 4 (1992) by E. Witten,

where the non-Abelian localization story was also first introduced.
19I caution you that these are not (quite) the usual supersymmetry transformations in Yang-Mills theory,

though they are closely related. See section ?? for the standard case.
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