
3 Supersymmetric Quantum Mechanics

We now turn to consider supersymmetry in d = 1, which is the case of supersymmetric

quantum mechanics. Our main aim here will be to use SQM to derive the Atiyah–Singer

index theorem, but we’ll begin by studying QM from the point of view of path integrals,

generalizing the finite–dimensional integrals we looked at in the last chapter.

3.1 Path integrals in Quantum Mechanics

Let’s consider the basic case of a (bosonic) quantum particle travelling in Rn. In the

canonical framework, at any time t this particle would be described by a wavefunction

ψ(x) ∈ H ∼= L2(Rn, dnx). The wavefunction evolves in time according to the action of a

unitary operator U(t) : H → H, with U(t) = e−iHt in the standard case that the Hamilto-

nian H is time-independent. We’ll often Wick rotate t → −iτ to Euclidean signature, in

which case the time evolution operator becomes e−τH .

If our particle is initially located at some point y0 ∈ Rn, then the amplitude to find it

at some y1 ∈ Rn a Euclidean time τ = β later is

〈y1, β|y0, 0〉 = 〈y1|e−βH |y0〉 = Kβ(y0, y1) , (3.1)

where

K : [0,∞)× Rn × Rn → R

is known as the heat kernel. For example, in the simplest case of a free particle of unit mass,

the Hamiltonian H = −∇2/2 as an operator on H and the heat kernel is given explicitly

by

Kτ (y0, y1) =
1

(2πτ)n/2
exp

(
−‖y0 − y1‖2

2τ

)
(3.2)

where ‖y0 − y1‖ is the Euclidean distance between the initial and final points.

Feynman’s intuition was that this amplitude could be expressed in terms of the product

of the amplitude for it to start at y0 at τ = 0, then be found at some other location x at an

intermediate time τ ∈ (0, β), before finally being found at y1 on schedule at τ = β. Since

we did not measure what the particle was doing at the intermediate time, we should sum

(i.e. integrate) over all possible intermediate locations x in accordance with the linearity

of quantum mechanics. Iterating this procedure, as in figure 4 we break the time interval

[0, β] into N chunks, each of duration ∆τ = β/N . We then write

〈y1|e−βH |y0〉 = 〈y1|e−∆τ H e−∆τ H · · · e−∆τ H |y0〉

=

∫
〈y1|e−∆τ H |xN−1〉 · · · 〈x2|e−∆τ H |x1〉 〈x1|e−∆τ H |y0〉 dnx1 · · · dnxN−1

=

∫
K∆τ (y1, xN−1) · · · K∆τ (x2, x1)K∆τ (x1, y0)

N−1∏
i=1

dnxi .

(3.3)

In the second line we’ve inserted identity operators 1H =
∫
|xi〉〈xi| dnxi in between each

evolution operator; in the present context this can be understood as the concatenation

– 30 –



Figure 4: Feynman’s approach to quantum mechanics starts by breaking the time evolution

of a particle’s state into many chunks, then summing over all possible locations (and any

other quantum numbers) of the particle at intermediate times.

identity

Kτ1+τ2(x3, x1) =

∫
Kτ2(x3, x2)Kτ1(x2, x1) dnx2 (3.4)

obeyed by convolutions of the heat kernel. It’s a good exercise to check this identity holds

using the explicit form (3.2) of K when the potential vanishes, but the above argument

makes clear that it must hold in general for any heat kernel.

This more or less takes us to the path integral. From the explicit expression (3.2) for

the heat kernel we have

〈y1|e−βH |y0〉 =
1

(2π∆τ)n/2

∫
exp

[
−1

2

N∑
i=0

‖xi+1 − xi‖2
(∆τ)2

∆τ

]
N−1∏
i=1

dnxi

(2π∆τ)n/2
. (3.5)

We set

SN [x] =
1

2

N∑
i=0

‖xi+1 − xi‖2
(∆τ)2

∆τ and DNx =
1

(2π∆τ)Nn/2
.

At least for smooth paths, taking the limit N →∞ with β fixed (so ∆τ → 0), we recognize

(xi+1 − xi)/∆τ as ẋ. Thus it’s tempting to define the path integral as∫
e−S[x]Dx =

∫
lim
N→∞

e−SN [x]DNx (3.6)

where S[x] = 1
2

∫ β
0 ‖ẋ‖2 dτ is the classical action for a (free) particle on Rn. The heat kernel

can then be written as the path integral

〈y1|e−βH |y0〉 = Kβ(y0, y1) =

∫
Cβ [y0,y1]

Dx e−S[x] (3.7)

taken over the value of x(τ) at each τ ∈ (0, β). In other words, the path integral is taken

over the space of maps x : [0, β] → Rn, with the boundary conditions x(0) = y0 and

x(β) = y1.
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In fact, there are many subtleties here. While the limit

lim
N→∞

(
e−SN DNx

)
does rigorously exist (and is known as the Wiener measure), the limits limN→∞ e−SN and

limN→∞DNx do not exist individually. Furthermore, for the Wiener measure to make

sense we must allow arbitrarily jagged, non-differentiable paths. In higher dimensions,

QFTs are always defined using some discretization or regularization procedure so as to

make the path integral well-defined. Studying the behaviour of such integrals as one refines

the discretization, or takes away the regulator, is the mathematical origin of the theory of

renormalization that you’ll study in the Advanced QFT or Statistical Field Theory courses.

We can avoid it in QM because of the rigorous existence of the Wiener measure.

Remarkably20, the Wiener measure can be generalized to cases where the potential

V (x) 6= 0. Heuristically, this just involves including a potential term in the action in the

usual way, but of course all the subtleties are in ensuring that the limit N → ∞ of our

discretized version of the path integral really exists. For QM it does, and the rigorous

mathematical expression is known as the Feynman-Kac measure. Of course, while the

relation (3.7) still holds, the explicit expression (3.2) is no longer valid when V 6= 0.

More generally, if Ôi(x̂) etc. are operators in the canonical picture that depend purely

on x̂, then for τ1 < τ2 < · · · < τn < β we have

〈y1, β|Ôn(τn) · · · Ô2(τ2)Ô1(τ1)|y0, 0〉
= 〈y1|e−(β−τn)H Ôn · · · e−(τ2−τ1)HÔ2 e−(τ2−τ1)HÔ1 e−τ1H |y0〉

=

∫
〈y1|e−(β−τn)HÔn|xn〉 · · · 〈x2|e−(τ2−τ1)HÔ1|x1〉〈x1|e−τ1H |y0〉

∏
i

dxi

=

∫
CT [y0,y1]

Dx e−S[x]
n∏
i=1

Oi(x(τi))

(3.8)

where in the final line, the objects Oi inside the path integral are just ordinary functions,

evaluated at the points x(ti) ∈ N21.

For operators that depend on p̂ as well as x̂, given that p = δS/δẋ = ẋ, one may think

that one should simply replace Ô(x̂, p̂) → O(x, ẋ) in order to construct a path integral

expression for correlation functions of general operators. This is essentially correct (at

least for Rn), but must be done with care: the failure of [x̂, p̂] to vanish is reflected in the

path integral by a delicate inequivalence between

lim
∆τ→0

x(τ)

[
x(τ)− x(τ −∆τ)

∆τ

]
and lim

∆τ→0

[
x(τ + ∆τ)− x(τ)

∆τ

]
x(τ)

as we take away the discretization. In this course, we’ll mostly avoid these subtleties by

considering only path integrals without insertions, or operators that correspond to functions

of x.
20See e.g. J. Zinn–Justin, Path Integrals in Quantum Mechanics, OUP (2005), or B. Hall, Quantum

Theory for Mathematicians, Springer (2013) for a somewhat more mathematical point of view.
21A more precise statement would be that they are functions on the space of fields CT [y0, y1] obtained

by pullback from a function on N by the evaluation map at time ti.
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Closely related to the heat kernel is the partition function. As is familiar from Statistical

Mechanics, in canonical quantization the partition function of a quantum system is defined

to be the trace of the time evolution operator over the Hilbert space:

Z(β) = TrH(e−βH) , (3.9)

with 1/β playing the role of a temperature of our system in equilibrium. The partition

function also has a natural expression in terms of a path integral. In the case of a single

particle moving on R, take the position eigenstates |y〉 to be a (somewhat formal) ‘basis’

of H = L2(R,dy), in which case the partition function becomes

Z(β) =

∫
R
〈y|e−βH |y〉dy =

∫
R

[∫
Cβ [y,y]

Dx e−S

]
dy , (3.10)

where the last equality uses out path integral expression (3.7) for the heat kernel. Because

we’re taking the trace, the path integral here should be taken over maps x : [0, β] → R
such that the endpoints are both mapped to the same point22 y. We then integrate over y,

erasing the memory of the particular point y. This is just the same thing23 as integrating

over maps x : S1 → R where the worldline has become a circle of circumference β. This

shows that

Z(β) = TrH(e−βH) =

∫
CS1

Dx e−S (3.11)

in terms of the path integral.

3.1.1 A free quantum particle on a circle

As an example, let’s consider a free particle with action

S[x] =

∫
1

2
ẋ2 dτ (3.12)

but where x ≡ x + 2πR. This model describes quantum mechanics of a bosonic, scalar

particle living on a circle of radius R. We’ll compute the partition function for this theory

first by using the canonical framework you’re familiar with from your undergraduate QM

courses, and then again using a path integral instead.

In the canonical picture, the Hamiltonian obtained from (3.12) is just H = p2/2 and

becomes

H = −1

2

d2

dx2

22The specific heat kernel (3.2) obeys Kβ(y, y) = Kβ(0, 0) so is actually independent of y. Thus on flat

space with vanishing potential, this final y integral does not converge. This is an ‘infra-red’ effect that

arises because R is non-compact. The partition function of a quantum particle does converge if we turn

on a potential V (x) with V → ∞ as |x| → ∞. Even without a potential, infra-red effects are absent if

our quantum particle lives on a compact space, such as a torus or sphere, rather than on Rn. We’ll see

examples of this in the next few sections.
23To avoid technicalities, I’m being deliberately vague about the (lack of) differentiability of the map; a

careful, rigorous treatment leads to the same conclusion using the Wiener measure on S1.
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under quantization in the position representation. Given the periodicity of x, the Hamil-

tonian has eigenfunctions

φn(x) = einX/R for n ∈ Z ,

with corresponding eigenvalues En = n2/2R2. Thus, the partition function is

Z(β) = TrH(e−βH) =
∑
n∈Z

e−βn
2/2R2

(3.13)

as we easily find in the canonical formulation.

Let’s now compute the same partition function as a path integral over all maps x :

S1
β → S1

2πR, weighted by the action (3.12). Such maps are classified by their winding

number, m ∈ Z. This winding number is a topological invariant of the map x describing

the number of times the worldline S1
β is wrapped around the target S1

2πR; there is no

continuous family of maps that interpolate between a map of winding number m and one

of m′ 6= m. To account for this, we let

xm(τ) = y(τ) +
2πmτR

β
(3.14)

describe maps of fixed winding number m, where y(τ + β) = y(τ) and the second term

accounts for the winding. We then take the path integral to be

Z(β) =
∑
m∈Z

∫
e−S[xm]Dy (3.15)

including a sum over all topological sectors. At winding number m we have

S[xm] =
2m2π2R2

β
− 1

2

∮
S1
β

y
d2y

dτ2
dτ , (3.16)

and, decomposing the periodic function y into its normalized Fourier components

y(τ) =
y0√
β

+
∞∑
n=1

[
yn

√
2

β
cos

(
2πnτ

β

)
+ ỹn

√
2

β
sin

(
2πnτ

β

)]
(3.17)

we take the path integral measure Dy formally to be

Dy =

∞∏
n=1

dyn dỹn
2π

.

The path integral then gives us the rather formal expression

Z(β) =
∑
m∈Z

e−2π2m2R2/β 2πR

√
β

2π

∞∏
n=1

(
β

2πn

)2

(3.18)

for the partition function, where the factor of 2πR
√
β/2π comes from integrating over

the constant zero-mode y0 and the infinite product comes from the non-zero modes. This
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infinite product clearly requires regularization, and it is convenient to use a ζ-function.

Recall that Riemann’s ζ-function can be defined for Re(s) > 1 by the sum

ζ(s) =

∞∑
n=1

n−s

and extended to all s ∈ C/{1} by analytic continuation. In particular, we have ζ(0) = −1/2

and ζ ′(0) = −(1/2) ln(2π). To apply this to our case, we consider the related function

ζ̃(s) =

∞∑
n=1

(
2πn

β

)−2s

=

(
β

2π

)2s

ζ(2s)

Differentiating term-by-term gives

ζ̃ ′(0) =

∞∑
n=1

ln

(
2πn

β

)−2

= ln

[ ∞∏
n=1

(
β

2πn

)2
]

which we recognize from our divergent path integral, whereas relating the derivative to the

derivative of the Riemann ζ-function gives

ζ̃ ′(0) = 2ζ(0) ln
β

2π
+ 2ζ ′(0) = − ln

β

2π
− ln 2π = − lnβ .

Thus the regularized path integral over the non-zero modes gives a contribution of eζ̃
′(0) =

1/β to the partition function. Altogether, we have

Z(β) = R

√
2π

β

∑
m∈Z

e−2π2m2R2/β . (3.19)

To see that this agrees with the result (3.13), note first that∑
n∈Z

δ(x+ 2πn) =
1

2π

∑
m∈Z

eimx

and hence we have the Poisson resummation identity∑
n∈Z

e−(2πn)2a/2 =

∫ ∑
n∈Z

e−x
2a/2δ(x+ 2πn) dx

=
1

2π

∫ (∑
m∈Z

eimxe−x
2a/2

)
dx =

1√
2πa

∑
m∈Z

e−m
2/2a

from which it follows that (3.13) & (3.19) agree.

3.1.2 Path integrals for fermions

Path integrals for fermions may be constructed in just the same way as for bosons, with a

few subtleties.
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In the first problem set, I ask you to construct the fermionic coherent state |η〉 =

e
ˆ̄ψη|0〉 and its conjugate 〈η̄| = 〈0|eψ̂η̄ and show that they obey the normalization condition

〈η̄|η〉 = eη̄η, and provide a resolution of the identity

1H =

∫
e−η̄η |η〉〈η̄| d2η (3.20)

for the fermionic system. Also, using these states one can express the trace of any operator

as

TrH(Â) =

∫
e−η̄η 〈−η̄|Â|η〉 d2η (3.21)

whereas the supertrace – the difference between the trace over states with an even and odd

number of fermionic excitations – is represented as

STrH(Â) = TrH((−1)F Â) =

∫
e−η̄η 〈η̄|Â|η〉 d2η . (3.22)

Note that the usual trace involves a minus sign in the adjoint state 〈−η|.
We can now use these states to construct the path integral for fermions. The heat kernel

for the fermionic system in Euclidean time β is again 〈χ̄′|e−βH |χ〉. By taking commutators

if necessary, we can always order the Hamiltonian so that in each term, all ψ̂ operators

appear to the right of all ˆ̄ψ operators. With this ordering understood, we write

〈χ̄′|e−βH |χ〉 = 〈χ̄′|e−∆τ He−∆τ H · · · e−∆τ H |χ〉

=

∫
〈χ̄′|e−∆τ H |ηN−1〉 · · · 〈η̄2|e−∆τ H |η1〉 〈η̄1|e−∆τ H |χ〉

N−1∏
k=1

e−η̄kηk d2ηk
(3.23)

just as for bosons, where we note the presence of the factors of e−η̄kηk coming from the nor-

malization of our fermionic coherent states. Using the fact that |ηk〉 and 〈η̄k| are eigenstates

of ψ̂ and ˆ̄ψ respectively, for an infinitesimal ∆τ we have

〈η̄k+1|e−∆τ H( ˆ̄ψ,ψ̂)|ηk〉 = e−∆τ H(η̄k,ηk) 〈η̄k+1|ηk〉 = e−∆τ H(η̄k+1,ηk) eη̄k+1ηk . (3.24)

Then the full heat kernel (3.23) becomes

〈χ̄′|e−βH |χ〉 = lim
N→∞

∫
exp

(
N∑
k=1

η̄kηk−1 −∆τ H(η̄k, ηk−1)

)
N−1∏
k=1

e−η̄kηk d2ηk

= lim
N→∞

∫
exp

(
−

N∑
k=1

[
η̄k
ηk − ηk−1

∆τ
+H(η̄k, ηk−1)

]
∆τ

)
eη̄NηN

N−1∏
k=1

d2ηk ,

(3.25)

where we have set η0 ≡ χ and η̄N ≡ χ̄′. We recognise the contents of the square brackets

as a discretization of the Euclidean action

S[η, η̄] =

∫ β

0

[
η̄η̇ +H(η̄, η)

]
dτ
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With this action, the heat kernel for the fermionic system can also be written formally as

a path integral

〈χ̄′|e−βH |χ〉 =

∫
e−S[ψ,ψ̄] eψ̄(β)ψ(β)DψDψ̄ (3.26)

where we formally integrate over all ψ(τ) such that ψ(0) = χ and ψ(β) = χ′. Note

the presence of the boundary term ψ̄(β)ψ(β) = χ̄′χ′ as a remnant of our discretization

procedure using these coherent states.

As for the bosons, the partition function of the fermionic system is given by the path

integral

Z(β) = Tr(e−βH) =

∫
〈−χ̄|e−βH |χ〉 e−χ̄χ d2χ

=

∫
AP

e−S[ψ,ψ̄] DψDψ̄
(3.27)

where again the trace means that the action S is the integral over a circle. The normal-

ization of the coherent states cancels the boundary term in the previous path integral.

However, the fact that the trace (3.21) involves 〈−χ̄| rather than 〈χ| means that the

fermionic fields ψ(τ) and ψ̄(τ) should be antiperiodic as one goes around the circle. By

contrast, the supertrace (3.22) over the Hilbert space of the fermionic system

STr(e−βH) = Tr((−1)F e−βH) =

∫
P

e−S[ψ,ψ̄] DψDψ̄ (3.28)

is computed with fermions ψ(τ + β) = ψ(τ) that are periodic around the circle.

3.2 SQM with a potential

To begin, let’s look at a simple extension of the d = 0 model we considered in section 2.3:

we’ll take a worldline theory of one bosonic field x and a single complex fermion ψ, each

of which now depend on the worldline coordinate t. We take the action to be

S[x, ψ, ψ̄] =

∫
1

2
ẋ2 +

i

2

(
ψ̄ψ̇ − ˙̄ψψ

)
− 1

2
(∂W )2 + ψ̄ψ ∂2W dt (3.29)

where again W (x) is a (smooth) function of the bosonic field x. Up to boundary terms,

this action is invariant under the transformations

δx = ε̄ψ − εψ̄
δψ = ε(iẋ− ∂W )

δψ̄ = ε̄(−iẋ+ ∂W )

(3.30)

that generalize the d = 0 supersymmetry transformations (2.22). Checking this is an

important exercise!

As before, these transformations are generated by the fermionic vector fields

Q =

∫ [
ψ(t)

δ

δx(t)
− (iẋ− ∂W )

δ

δψ̄(t)

]
dt

Q̄ =

∫ [
−ψ̄(t)

δ

δx(t)
+ (iẋ− ∂W )

δ

δψ(t)

]
dt

(3.31)
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where the functional derivatives act as

δ

δx(t′)
x(t) = δ(t− t′) δ

δx(t′)
ψ(t) = 0

δ

δx(t′)
ψ̄(t) = 0

and similarly for the fermionic derivatives. In this d = 1 case the transformations generated

by Q and Q̄ obey {
Q, Q̄

}
x = −2iẋ{

Q, Q̄
}
ψ = −iψ̇ − ψ ∂2h ' −2iψ̇{

Q, Q̄
}
ψ̄ = −i ˙̄ψ + ψ̄ ∂2h ' −2i ˙̄ψ ,

(3.32)

where the symbol ' here means ‘holds on the equations of motion’. Thus we have{
Q, Q̄

}
' −2i

∂

∂t
. (3.33)

We can find the charges associated to this symmetry by the usual Noether procedure:

allowing the parameters ε, ε̄ to depend on t, we find the action is no longer invariant, but

rather

δS =

∫
M
−iε̇Q− i ˙̄εQ̄ dt (3.34)

where
Q = ψ̄(iẋ+ ∂h)

Q̄ = ψ(−iẋ+ ∂h)
(3.35)

are the supercharges.

To perform canonical quantization we need to find the Hamiltonian. The momenta of

our system are

p =
δL

δẋ
= ẋ , π =

δL

δψ̇
= iψ̄ (3.36)

and so the Hamiltonian is

H = pẋ+ πψ̇ − L =
1

2
p2 + (∂h)2 +

1

2
∂2h(ψ̄ψ − ψψ̄) . (3.37)

Classically, we have 1
2∂

2h(ψ̄ψ−ψψ̄) = ∂2hψ̄ψ = −∂2hψψ̄, but since π = iψ̄ is the momenta

conjugate to ψ, quantum mechanically different orderings of the ψs and ψ̄s are inequivalent.

We’ve chosen a particular ordering in (3.37) for reasons that will soon become apparent.

Upon quantization, we have the usual commutation & anticommutation relations24

[x̂, p̂] = i and {ψ̂, π̂} = i . (3.38)

Note that, just as for the Dirac field in d = 4, the fermionic operators ψ̂ and π̂ in d = 1

obey anticommutation relations. Just as in d = 0, all bosonic fields commute with all

fermionic fields.

24As in any QFT, these are ‘equal time’ relations, but since in our d = 1 Universe a constant time slice is

just a point, there’s no need to specify any further arguments for the fields. Thus they reduce to the usual

commutation (or anticommutation) relations of QM. Recall also that I’ve set ~ = 1.
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For the bosonic variable, as usual in QM we take the Hilbert space H = L2(R,dx) to

the usual space of square-integrable wavefunctions on R. The action of the operators x̂

and p on such a wavefunction Ψ(x) is standard:

x̂Ψ(x) = xΨ(x) , p̂Ψ(x) = −i
d

dx
Ψ(x) . (3.39)

To understand the role of the fermions, we note that since π = iψ̄ we can write the fermionic

anticommutation relations as {ψ̂, ˆ̄ψ} = 1. This is very reminiscent of the commutation

relations [a, a†] = 1 of a quantum SHO, except that here we have anticommutators. In

the usual SHO, the Hamiltonian H = ~ω(a†a + 1
2) is determined by the number operator

N = a†a. Motivated by this, we define the fermion number operator

F = ˆ̄ψ ψ̂ (3.40)

which obeys

[F, ψ̂] = −ψ̂ , [F, ˆ̄ψ] = + ˆ̄ψ (3.41)

as a consequence of the fundamental relations (3.38). (Note that F itself is a bosonic

operator.) This suggests we treat ψ̂ as a lowering operator and define a ground state |0〉
of the fermionic system by ψ̂|0〉 = 0. The first excited state is then |1〉 = ˆ̄ψ|0〉 just as in

the usual SHO, but since ˆ̄ψ2 = 0, this ‘fermionic oscillator’ has no higher excited states.

The Hilbert space of the full quantum system combines these two:

H = L2(R,dx)|0〉 ⊕ L2(R,dx)|1〉 = HB ⊕HF (3.42)

where HB and HF are the first and second summands, respectively. Note that F acts as 1

on HF , and annihilates any state in HB.

In the quantum theory, the supercharges Q and Q̄ of (3.35) become fermionic operators

Q̂ = ˆ̄ψ(ip̂+ ∂h) ˆ̄Q = ψ̂(−ip̂+ ∂h) (3.43)

while the Hamiltonian (3.37) becomes

Ĥ =
1

2
p̂2 +

1

2
(∂h)2 +

1

2
∂2h ( ˆ̄ψψ̂ − ψ̂ ˆ̄ψ) . (3.44)

We’ll drop the hats from operators henceforth: this should cause no confusion so long as one

keeps the representation (3.42) in mind. Since {ψ,ψ} = 0 = {ψ̄, ψ̄} we have immediately

{Q,Q} = 0 and {Q̄, Q̄} = 0. (3.45)

Using the fundamental commutation relations, we also compute

{Q, Q̄} =
{
ψ̄(ip+ ∂h), ψ(−ip+ ∂h)

}
= {ψ̄(ip), ψ(−ip)}+ {ψ̄ ∂h, ψ ∂h}+ i{ψ̄p, ψ ∂h} − i{ψ̄ ∂h, ψp}
= p2 + (∂h)2 + i

(
{ψ̄, ψ}p ∂h− ψψ̄[p, ∂h]

)
− i
(
{ψ̄, ψ}∂h p− ψψ̄[∂h, p]

)
= p2 + (∂h)2 + i(ψ̄ψ − ψψ̄)[p, ∂h]

= p2 + (∂h)2 + ∂2h (ψ̄ψ − ψψ̄) .

(3.46)
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Thus our supersymmetric Quantum Mechanics carries the algebra

{Q,Q} = 0 , {Q̄, Q̄} = 0 , {Q, Q̄} = 2H (3.47)

It was to ensure that {Q, Q̄} = 2H that we chose the specific ordering of terms in the

Hamiltonian. It follows that

[H,Q] =
1

2

[
{Q, Q̄}, Q

]
=

1

2
(QQ̄+ Q̄Q)Q− 1

2
Q(QQ̄+ Q̄Q) = 0 (3.48)

since Q2 = 0, and similarly [H, Q̄] = 0. This says that, as expected the Hamiltonian

is invariant under the supersymmetry transformations generated by Q and Q̄. Note also

that, since it is proportional to the lowering operator ψ, Q̄ : HF → HB and annihilates

HB, while Q : HB → HF and annihilates HF . Finally, we record that [F,Q] = Q, that

[F, Q̄] = −Q̄ and that [F,H] = 0.

3.2.1 Supersymmetric ground states and the Witten index

The fact that H = 1
2{Q, Q̄} where Q̄ = Q† has several important consequences. Let |E〉 be

an eigenstate of H with H|E〉 = E|E〉. Then, as already mentioned in the Introduction,

E = 〈E|H|E〉 =
1

2
〈E|QQ̄+ Q̄Q|E〉 =

1

2

(
‖Q|E〉‖2 + ‖Q̄|E〉‖2

)
≥ 0 (3.49)

so that all the eigenvalues of H are non-negative. In particular H|Ψ〉 = 0 iff both Q|Ψ〉 = 0

and Q̄|Ψ〉 = 0, and such a zero-energy state must be a ground state. Thus we see that in

SQM a ground state of zero energy must be invariant under supersymmetry.

We can explicitly find these ground states as follows. Recall that the fermionic system

is spanned by the states |0〉 and ψ̄|0〉. Let’s represent these as

|0〉 →
(

1

0

)
and ψ̄|0〉 →

(
0

1

)
.

Then Q and Q̄ are represented by

Q = ψ̄(ip+ ∂h) →
(

0 0

d/dx+ ∂h 0

)

Q̄ = ψ(−ip+ ∂h) →
(

0 −d/dx+ ∂h

0 0

)

A ground state is thus a state

(
f

g

)
where f and g are functions of x that obey

df

dx
+ (∂h)f = 0 , and − dg

dx
+ (∂h)g = 0 . (3.50)

These are solved by f = Ae−h(x) and g = Be+h(x). For a solution in L2(R, dx) we must

set either A = 0 or B = 0 or both, depending on the behaviour of h(x) as |x| → ∞.
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If h(x) → +∞ as |x| → ∞ then the ground state is (f, 0)T, whereas if h(x) → −∞ as

|x| → ∞ then the ground state is (0, g)T. On the other hand, if h(x) → ±∞ as x → −∞
but h(x) → ∓∞ as x → +∞ then there is no (normalizable) supersymmetric state of

zero-energy.

It’s worth emphasising just how remarkable this is. If we simply switch off the fermions,

then our Hamiltonian becomes

H =
p2

2
+ V (x)

where V (x) = (∂h)2 is non-negative, but otherwise arbitrary. For generic choices of h we’d

have no idea what the ground state wavefunction of this Hamiltonian looks like, though

we may be able to approximate it either by a judicious choice of Raleigh–Ritz ansatz, or

perhaps perturbing around a nearby potential whose states we do understand. Supersym-

metry allows us to take a ‘square root’ of the Hamiltonian, so that the supersymmetric

ground states is determined by a system of first-order equations that we can solve exactly,

at least in this case of only one bosonic variable.

Unfortunately, while we can find the exact ground state, it’s usually much harder to say

anything about excited states. Nonetheless, there are a few important, general features

that we can see. First, since H is Hermitian, eigenstates with distinct eigenvalues are

orthogonal, so H =
⊕

n≥0Hn where H|Ψ〉 = En|Ψ〉 for any |Ψ〉 ∈ Hn, and E0 = 0 is

the energy of the supersymmetric ground state. Since F,Q and Q̄ each commute with

H, they preserve each Hn and in particular we can split Hn = Hn,B ⊕ Hn,F just as for

the full Hilbert space. Again we have Q : Hn,B → Hn,F and annihilates Hn,F , whereas

Q̄ : Hn,F → Hn,B and annihilates Hn,B. In particular, given a state |b〉 ∈ Hn,B we have

2En|b〉 = (QQ̄+ Q̄Q)|b〉 = Q̄Q|b〉 . (3.51)

If n 6= 0, so that |b〉 is not a supersymmetric ground state, then we see that also |f〉 =

Q|b〉 6= 0. Turning this around, we have that

|b〉 = Q̄

(
1

2En
|f〉
)

for some |f〉 ∈ Hn,F . (3.52)

Thus any state |b〉 ∈ Hn,B with energy En > 0 is necessarily the Q̄-transformation of some

state |f〉 ∈ Hn,F . A similar argument shows that any state in Hn,F with n > 0 is the

Q-transformation of some state in Hn,B. Putting these together, we’ve shown that

Hn,B ∼= Hn,F for all n > 0 .

In particular, bosonic and fermionic states are paired at each energy level. The above

argument breaks down for the ground states, because these are annihilated by both Q

and Q̄, so we cannot establish an isomorphism between H0,B and H0,F and there may be

different numbers of bosonic and fermionic ground states.

We define the Witten index of a theory to be the difference between the number of

bosonic and fermionic ground states. Since the excited states come in pairs, we see that
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this can be computed as

dimH0,B − dimH0,F = TrH((−1)F e−βH) (3.53)

with the factor of (−1)F ensuring that the contribution of excited states cancels out of the

sum. For the same reason, this index is independent of β (playing the role of an ‘inverse

temperature’ in statistical mechanics); only the excited ground states are senstive to the

value of β, and their contribution cancels out in pairs.

The importance of the Witten index is that it is insensitive to the details of our

Hamiltonian, and in particular insensitive to the detailed form of h(x). This is because

as we vary our choice of h, so long as the model remains supersymmetric, the excited

states must all move around in pairs. Changing h may cause some excited states to lower

their energy until they become ground states, and it may also cause some ground states to

acquire positive energy, but in any such effect a bosonic state must always be accompanied

by a fermionic state, so the difference in the number of bosonic and fermionic ground states

will be unaffected.

We saw above that if h(x) → +∞ as |x| → ∞ then the unique ground state was of

the form f(x)|0〉 ∈ H0,B, and hence we would find TrH(−)F e−βH = +1. If h(x)→ −∞ as

|x| → ∞ then the unique ground state is fermionic and TrH(−)F e−βH = −1. Finally, if

h(x)→ ±∞ as x→ ∓∞ then there are no supersymmetric ground states and the Witten

index vanishes. The Witten index thus cares about the asymptotic behaviour of h as

|x| → ∞, but not to any of its details for finite x.

3.2.2 Path integral computation of the Witten index

We are now ready to use the path integral to compute the Witten index of our basic SQM

with potential 1
2(∂h)2. We have

IW = STrH(e−βH) =

∫
P

e−SE [x,ψ,ψ̄] DxDψDψ̄ , (3.54)

where the subscript P on the path integral is to remind us that this integral is to be taken

with both the bosonic field x and fermionic fields ψ and ψ̄ being periodic. The path integral

is weighted using the Euclidean action

SE [x, ψ, ψ̄] =

∮ [
1

2

(
dx

dτ

)2

+ ψ̄
dψ

dτ
+

1

2
(∂h)2 + ∂2h ψ̄ψ

]
dτ (3.55)

which is invariant under the supersymmetry transformations

δx = εψ̄ − ε̄ψ , δψ = ε(−ẋ+ ∂h) , δψ̄ = ε̄(ẋ+ ∂h) (3.56)

that are the Euclidean continuation of the supersymmetry transformations (3.30). Note

that since x is periodic, it’s essential that ψ and ψ̄ are also periodic, rather than an-

tiperiodic, around the S1 worldline for these transformations to make sense globally. The

partition function Z(β) thus breaks supersymmetry globally, and so we cannot (generically)
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expect to be able to use localization to say anything about it. Localization does work for

the Witten index.

Of course, if we allow the parameters ε, ε̄ to also be antiperiodic, then we can preserve

supersymmetry with antiperiodic fermions. However, no constant parameter ε can be

antiperiodic. Requiring the symmetry to hold even for varying parameters ε(t) really

means we’d be gauging the supersymmetry. This is supergravity, here on the worldline.

Unfortunately, it is beyond the scope of these notes, though you will encounter it if you’re

taking a course in String Theory.

We have already argued from the point of view of canonical quantization that the

Witten index is independent of β, and insensitive to all but the asymptotic behaviour of h.

Let’s now see this again from the path integral perspective. Firstly, as in zero dimensions,

if we rescale h(x)→ λh(x), then varying wrt λ ∈ R> gives

dIW

dλ
= −

∫
P

[∮
λ(∂h)2 + ψ̄ψ∂2hdτ

]
e−SE [x,ψ,ψ̄]DxDψDψ̄ (3.57)

Just as in zero-dimensions, the λ-rescaled supersymmetry transformations (3.56) show that∮
λ(∂h)2 + ψ̄ψ∂2hdτ = Qλ

(∮
∂hψ dτ

)
+

∮
dx

dτ

dh

dx
dτ

= Qλ

(∮
∂hψ dτ

)
+

∮
dh .

(3.58)

The last term vanishes since it is a total derivative integrated over a compact25 S1. Thus

the insertion in (3.57) is Q-exact and the path integral for IW is independent of scalings

of h, as expected. However, if we send λ → ∞ then the potential term in the action

suppresses all contributions except from maps x : S1 → x∗, where again x∗ is a critical

point of h. Thus the path integral for the Witten index localizes to a neighbourhood of

field configurations obeying
dx

dτ
= 0 =

dh

dx
(3.59)

i.e. constant maps to the critical points of h(x).

For a nearby map, we set x(τ) = x∗+ δx(τ) and expand the action to quadratic order

in δx(τ). This gives

S
(2)
E =

∫ β

0

[
1

2
δx

(
− d2

dτ2
+ (h′′(x∗))

2

)
δx+ ψ̄

(
d

dτ
+ h′′(x∗)

)
ψ

]
dτ (3.60)

as the action for field configurations in the neighbourhood of our localization point. It’s

straightforward to compute the Witten index using this quadratic theory: Since both the

bosonic field and fermionic fields must be periodic, we can expand them in Fourier modes

as

δx(τ) =
∑
n∈Z

δxn e2nπiτ/β , ψ(τ) =
∑
n∈Z

ψn e2nπiτ/β (3.61)

25If you prefer, the integral
∫ β

0
(dx/dτ)(dh/dx) dτ = h(x(β))− h(x(0)) vanishes since x(τ) is periodic.
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with δx−n = δx∗n as x(τ) is real, and where ψ̄(τ) = ψ(τ). The path integral becomes an

integral over all these Fourier modes, giving∫
e−S

(2)
E DδxDψDψ̄ =

det(∂τ + h′′(x∗))√
det(−∂2

τ + (h′′(x∗))2)

=

∏
n∈Z(2πin/β + h′′(x∗))√∏

n∈Z((2πn/β)2 + (h′′(x∗))2)

=
h′′(x∗)

|h′′(x∗)|

(3.62)

so that, summing over all critical points

IW = STr(e−βH) =
∑

x∗ :h′(x∗)=0

h′′(x∗)

|h′′(x∗)|
. (3.63)

Note that all the terms with |n| 6= 0 have cancelled out between the numerator and denom-

inator. This result is in agreement with what we obtained (more straightforwardly) from

the canonical perspective: if h is a polynomial of even degree, then IW = ±1 according

to whether the coefficient of the leading term in h is positive or negative, whereas if the

leading term in h has odd degree, IW = 0. This also coincides with what we obtained from

our zero-dimensional example, which is not surprising since the path integral here reduced

to constant maps.

3.3 Nonlinear Sigma Models

To get something more interesting, we need to study a quantum system with closer con-

nections to geometry. Consider a particle travelling freely on a general Riemannian man-

ifold (N, g) which we’ll take to have dimension n. Our worldline fields describe a map

x : M → N ; that is, for each point τ on the worldline M , x(τ) is a point in N . It’s often

convenient to describe N using coordinates. If an open patch U ⊂ N has local co-ordinates

xa for a = 1, . . . , n, then we let xa(τ) denote26 the coordinates of the image point x(τ).

We can interpret x(τ) as a possible trajectory a particle might take as it travels through

the space N . (See figure 5.) In this context, N is called the target space of the theory.

We choose the non-linear sigma model action

S[x] =
1

2

∫
M

[
gab(x)ẋaẋb

]
dτ , (3.64)

where gab(x) is the pullback to the worldline M of the Riemannian metric on N , τ is

worldline (Euclidean) time, and ẋa = dxa/dτ . Under a small variation δx of x the change

in the action is

δS[x] =

∫
M

[
gab(x) ẋa ˙δx

b
+

1

2

∂gab(x)

∂xc
δxc ẋaẋb

]
dτ

=

∫
M

[
− d

dτ
(gac(x)ẋa) +

1

2

∂gab(x)

∂xc
ẋaẋb

]
δxc dτ + gab(x) ẋb δxa

∣∣∣
∂M

.

(3.65)

26More precisely, xa(τ) are the pullbacks to M of coordinates on U by the map x.
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x(t)

Figure 5: The theory (3.64) describes a map from an abstract worldline into the Rieman-

nian target space (N, g), interpreted as single particle Quantum Mechanics on N .

Requiring that the bulk term vanishes for arbitrary variations δxa(τ) gives the Euler–

Lagrange equations
d2xa

dτ2
+ Γabcẋ

bẋc = 0 (3.66)

where Γabc = 1
2g
ad (∂bgcd + ∂cgbd − ∂dgbc) is the Levi–Civita connection on N , again pulled

back to the worldline. Thus the field equation (3.66) says that, classically, the particle

travels along a geodesic in (N, g).

We can try to quantize this NLSM in the usual way. Firstly, the momentum conjugate

to xa(τ) is

pa =
δL

δẋa
= gabẋ

b

and so we obtain the usual quantum commutation relations27

[x̂a, p̂b] = i δab .

We can take the Hilbert space to be H = L2(N,
√
g dnx), the space of complex-valued

functions that are square-integrable wrt the obvious measure
√
g dnx. Then commutation

relations show that, as usual, p̂a acts on Schrödinger wavefunctions as p̂a = −i∂a.

However, the Hamiltonian is ambiguous. Classically, we have

H = paẋ
a − L =

1

2
gab(x)papb

and the quantum version of this will certainly be some form of Laplacian acting on our

wavefunctions. The problem is that, because the metric g depends on x, we have to decide

how to order the x̂s and p̂s in the quantum Hamiltonian operator Ĥ. It’s reasonable to

ask that our ordering choice respects general coordinate invariance of the target space

and, since H contains at most two ps, Ĥ should be a second order differential operator

27As confirmation of these relations, the boundary term in (3.65) shows that the symplectic potential on

the space of maps is Θ = pa δx
a = gab(x)ẋb δxa and the canonical commutation relations follow from the

associated symplectic form Ω = δΘ = δpa ∧ δxa.
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acting on wavefunctions Ψ(x), involving no more than two derivatives of the metric. These

restrictions do not fix Ĥ completely, but give

ĤΨ(x) = −1

2

1√
g

∂

∂xa

(√
g gab

∂

∂xb
Ψ

)
+ αRΨ = −1

2
∇a∇aΨ + αRΨ

where the first term is the covariant Laplacian acting on scalar functions, and the second

term is some arbitrary multiple of the Ricci scalar of g. This ambiguity will be cured in

the supersymmetric model.

To construct the supersymmetric extension of this, we introduce dimN complex fermions

ψa (with ψ̄a = ψa) and consider the rather intimidating action

S[x, ψ, ψ̄] =

∫
M

1

2
gabẋ

aẋb + igabψ̄
a (∇τψ)b − 1

2
Rabcd ψ

aψ̄bψcψ̄d dτ , (3.67)

where the fermion kinetic term uses the pullback to M of the covariant derivative acting

on sections of TN :

(∇τψ)a =
d

dτ
ψa + Γabc

dxb

dτ
ψc

and where Rabcd is the Riemann curvature of the target space metric. Note that, for

a generic choice of target space (N, g), the (pullback of the) metric components gab(x),

connection Γabc(x) and Riemann curvature will all depend on the worldline field xa(τ). We’ll

understand the origin of this action better when we consider superspace in the following

chapters; you’ll also explore it further in the first problem set.

The most important fact about this action is that, up to boundary terms, it is invariant

under the supersymmetry transformations

δxa = εψ̄a − ε̄ψa

δψa = ε
(

iẋa − Γabcψ̄
bψc
)

δψ̄a = ε̄
(
−iẋa − Γabcψ̄

bψc
)
,

(3.68)

and it’s very good practice to check you can show this. The conserved Noether charges

corresponding to these transformations are

Q = iψ̄a
(
gabẋ

b + igbcψ̄
bΓcadψ

d
)

Q̄ = −iψa
(
gabẋ

b + igbcψ̄
bΓcadψ

d
)
,

(3.69)

respectively. Much easier to see is that the action is also invariant under the transformations

ψa 7→ e−iαψa , ψ̄a 7→ e+iαψ̄a (3.70)

generated by the Noether charge

F = gabψ̄
aψb . (3.71)

Conservation of F means that evolution in the quantum theory does not create or destroy

excitations of the ψs.
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Let’s now quantize this theory. The momenta conjugate to (xa, ψa) are

pa =
δL

δẋa
= gab

(
ẋb + igbcψ̄

bΓcadψ
d
)

with the extra piece coming from the covariant part of the fermion kinetic term, and

πa =
δL

δψ̇a
= igabψ̄

b

for the fermions. We again have the basic commutation & anticommutation relations

[x̂a, p̂b] = iδab ,
{
ψ̂a, ˆ̄ψb

}
= gab (3.72)

with all other commutators & anticommutators being trivial.

The natural Hilbert space on which to represent these commutation & anticommuta-

tion relations can be constructed as follows. Firstly, as in the non-supersymmetric NLSM,

we take the Hilbert space of the bosonic system to be L2(N,
√
g dnx), so that as usual

x̂a and p̂a correspond to multiplication by the coordinate xa and differentiation −i∂/∂xa.

Next, as in section 3.2, we take the vacuum of the fermionic system to be defined by

ψa|0〉 = 0 for all a = 1, . . . , n. Then the Hilbert space of the (ψ, ψ̄)-system is spanned

by the states obtained by acting on this |0〉 with any of the ‘raising’ operators28 ψ̄b, with

each component of ψ̄b acting at most once. The anticommutation relations ψ̄aψ̄b = −ψ̄bψ̄a
mean that we can interpret these states as given a basis of all p-forms on N , with the

correspondence
|0〉 ↔ 1

ψ̄a|0〉 ↔ dxa

ψ̄aψ̄b|0〉 ↔ dxa ∧ dxb
...

...

ψ̄1 · · · ψ̄n|0〉 ↔ dx1 ∧ · · · ∧ dxn

In other words, ψ̄a corresponds to taking the exterior product dxa∧. On the other hand,

the anticommutation relations {ψa, ψ̄b} = gab and vacuum condition ψa|0〉 = 0 show that

ψe ψ̄aψ̄bψ̄c · · · ψ̄d|0〉 = {ψe, ψ̄aψ̄bψ̄c · · · ψ̄d}|0〉
=
(
gae ψ̄bψ̄c · · · ψ̄d − ψ̄a gbeψ̄c · · · ψ̄d + ψ̄aψ̄b gce · · · ψ̄d + · · ·

)
|0〉 ,
(3.73)

and hence we should interpret the action of ψa as contraction by the vector field gab ∂
∂xb

.

Combining the bosonic and fermionic systems together, in total we have

H = Ω∗(N)⊗ C =

n⊕
p=0

Ωp(N)⊗ C (3.74)

the space of all complex valued polyforms on N , square-integrable with respect to the inner

product

〈α|β〉 =

∫
N
α ∧ ∗β (3.75)

28Again, henceforth we drop the ‘hats’.

– 47 –



where ∗ is the Hodge star. Notice that if we choose a wavefunction Ψ(x)|0〉 ↔ Ψ(x) ∈
Ω0(N) (i.e. a function rather than a higher form), this inner product reduces to 〈Ψ|Ψ〉 =∫
N

√
g |Ψ(x)|2 dnx, just as we had in the purely bosonic model above, whilst repeated use

of (3.73) connects the indices of two forms together29. We can decompose H = HB ⊕HF ,

where HB is the space of even forms whilst HF is the space of odd forms.

One of the beautiful features of this model is that the supercharges Q and Q̄ also have

natural geometric interpretations. In the canonical framework, the supercharges (3.69) are

Q̂ = i ˆ̄ψap̂a and ˆ̄Q = −iψ̂ap̂a . (3.76)

Thus, acting on Ω∗(N)⊗ C, we have

Q = iψ̄apa ↔ dxa ∧ ∂

∂xa
= d , (3.77)

and so is just the exterior derivative. Similarly,

Q̄ = −iψapa ↔ d† = (−1)n(p+1)+1 ∗ d∗ (3.78)

is the adjoint of Q wrt the inner product (3.75). Note that d† : Ωp(N) → Ωp−1(N) for

p ≥ 1 and annihilates functions, just as we expect for ψ acting on a state with p ψ̄s.

We fix the ordering ambiguity in the quantum Hamiltonian Ĥ by requiring that the

d = 1 supersymmetry algebra
{
Q, Q̄

}
= 2H holds. Notice that since [F,Q] = Q and

[F, Q̄] = −Q̄, this definition of H also ensures that [F,H] = 0 so that fermion number is

also conserved in the quantum theory. Geometrically, our Hamiltonian is the operator

H =
1

2
{Q, Q̄} ↔ 1

2
∆ =

1

2

(
dd† + d†d

)
(3.79)

where ∆ is the natural generalization of the scalar Laplacian when acting on forms. To

understand this, note for example that when acting on a function f(x), since d†f = 0 we

have
∆f = (dd† + d†d)f = d†df = ∗d ∗ (∂af dx

a)

= ∗d
( √

g

(n− 1)!
gab ∂af εbcd...edx

c ∧ dxd ∧ · · · ∧ dxe
)

= ∗ 1

(n− 1)!
∂m

(√
g gab ∂af εbcd...edx

m ∧ dxc · · · ∧ dxe
)

= ∗∂a
(√

g gab ∂bf
) 1

g
dx1 ∧ dx2 · · · ∧ dxn

=
1√
g
∂a(
√
g gab∂bf) ,

which is the usual curved space Laplacian for functions. Also, since d† is the adjoint of d

wrt the inner product (3.75), this Laplacian obeys

(ω,∆ω) = (ω, dd†ω) + (ω, d†dω) = ‖d†ω‖2 + ‖dω‖2 ≥ 0 (3.80)

29Since ∗ : Ωp(N) → Ωn−p(N) for each p, α and ∗β here are each polyforms in general. In the inner

product 〈α|β〉, we take all the pieces of α ∧ ∗β that combine to form an n-form and integrate this over N .

All other terms are zero – by antisymmetry if we try to make a form of degree > n, and by definition if we

try to integrate a form of degree < n over N .
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and so is positive, as expected for our supersymmetric quantum mechanics.

A form ω is said to be harmonic if ∆ω = 0. A fundamental theorem of Riemannian

geometry, known as Hodge’s theorem, states that harmonic forms are in 1:1 correspondence

with de Rham cohomology classes. That is,

Harmp(N) ∼= Hp
dR(N) ,

where

Hp
dR(N) =

ker(d : Ωp(N)→ Ωp+1(N) )

im(d : Ωp−1(N)→ Ωp(N) )
.

It is clear from (3.80) that harmonic forms must be closed. The role of the extra condition

d†ω = 0 is to select a representative of the equivalence class ω ∼ ω + dβ in cohomology.

It thus plays the same role as fixing the gauge freedom A ∼ A + dλ in Maxwell theory

by requiring the photon to obey the Lorenz gauge condition d†A = 0. Putting all this

together, we see that supersymmetric ground states of the quantum NLSM (3.67) with p

fermionic excitations correspond to the de Rham cohomology Hp(N) of the target space.

Homology and Cohomology

Let’s give a small introduction to de Rham cohomology and its duality to homology.

Since ∂C = 0 the pairing depends only on the cohomology class of ω, since

(C,ω + dβ) =

∫
C
ω + dβ =

∫
C
ω +

∫
∂C
β = (C,ω) .

Likewise, (C,ω) depends only on the homology class of C, for if the cycles C1 and

C2 can be smoothly deformed into one another, then we can find a (p+ 1)-cycle D

whose boundary ∂D = C1 − C2. Then

(C1, ω)− (C2, ω) =

∫
C1

ω −
∫
C2

ω =

∫
∂D

ω =

∫
D
dω = 0

3.3.1 The Witten Index of a NLSM

On a generic compact Riemannian manifoldN , it can be hard to solve the equations dω = 0,

d†ω = 0 to find explicit expressions for harmonic forms, so unlike the simple potential

case considered in section 3.2.1, we cannot usually obtain an exact description of the

ground states. But because the space of harmonic forms is given by a purely (differential)

topological object, H∗dR(N), this space — and in particular its dimension — is often much

easier to compute. In particular,

Tr((−1)F e−βH) =

n∑
p=0

(−1)p dim Harmp(N) =

n∑
p=0

(−1)p dimHp
dR(N) = χ(N) , (3.81)

and so the Witten index of SQM on a compact Riemannian manifold N is just the Euler

characteristic χ(N) of N . For example, using the duality between cohomology and
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homology outlined in Box 3.3, we see that a sphere Sn has χ(Sn) = 1 + (−1)n as it is a

connected manifold with the only non-trivial cycle being in dimension n, whereas a compact

Riemann surface Σg of genus g has χ(Σg) = 1−2g+1 = 2−2g, as it is connected manifold

with 2g independent non–contractible 1-cycles and Σg itself forming a non-trivial 2-cycle.

We can get a further, very different expression for the Euler characteristic by consid-

ering the path integral expression

Tr((−1)F e−βH) =

∫
e−S[x,ψ,ψ̄]DxDψDψ̄ (3.82)

for the Witten index, where we recall that this should be taken over fields living on a

circle of circumference β, where the fermions (as well as xa(τ)) are periodic around the S1

worldline. From the canonical point of view, we understood that since only ground states

contributed to the Witten index, Tr
(
(−1)F e−βH

)
is independent of β. To see this from the

path integral perspective, note that the whole action

S[x, ψ, ψ̄] = Q̄

[∮
gabψ̄

a
(

iẋb − Γbcdψ̄
cψd
)

dτ

]
(3.83)

and hence is Q̄-exact.

if we rescale τ 7→ τ ′ = τ/β, then the action becomes (dropping the primes)

S =

∫ 1

0

1

2β
gabẋ

aẋb + igabψ̄
a∇τψb +

β

2
Rabcdψ

aψ̄bψcψ̄d dτ

=

(3.84)

To understand this, it will be helpful to introduce an auxiliary bosonic field Ba(τ),

writing the action as

S[x, ψ, ψ̄, B] =

∫ β

0
Baẋ

a +
1

2
gabBaBb + igabψ̄

a∇τψb +
1

2
Rabcdψ

aψ̄bψcψ̄d dτ . (3.85)

Eliminating Ba using its algebraic equation of motion Ba = −gabẋb leads back to our

original action. In the presence of Ba, the ε̄-supersymmetry transformations are modified

to become

δxa = −ε̄ψa , δψa = 0

δBa = ΓcabBcψ
b − 1

2
Rabcdψ̄

bψcψd , δψ̄a = gab
(
Bb − gdeψ̄eΓdbcψc

)
.

(3.86)

and one can check that the action (3.85) is invariant under these transformations, and that

they are nilpotent.

note that not only is the action invariant under these transformations, but is exact:

S = Q̄

[∫ β

0
gabψ̄

a

(
iẋb +

1

2
gbcBc

)
dτ

]
. (3.87)

As usual, this path integral localizes to the fixed point locus of the supersymmetry

transformations

δψa = ε
(

iẋa − Γabcψ̄
bψc
)
, δψ̄a = ε̄

(
−iẋa − Γabcψ̄

bψc
)
,

or in other words to
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3.3.2 The Atiyah–Singer Index Theorem

In this section, we assume that the target space N is even dimensional. If we restrict the

previous theory to the case ψ̄ = ψ, then the action simplifies to

S[x, ψ] =

∮
1

2
gabẋ

aẋb +
1

2
gabψ

a∇τψb dτ , (3.88)

with no curvature term since Ra[bcd] = 0 is an algebraic Bianchi identity. For this action, as

the Levi-Civita connection Γ is torsion-free, the supersymmetry transformations become

simply

δxa = εψa and δψa = −εẋa . (3.89)

This corresponds to taking ε = −ε̄ in (3.68). This is sometimes known as N = 1
2 super-

symmetry in d = 1. The Noether charge corresponding to these transformations is

Q =
1

2
gabψ

aẋb , (3.90)

while the momenta conjugate to xa and ψa are

pa =
δL

δẋa
= gabẋ

a +
1

2
ψcΓ

c
abψ

b and πa =
δL

δψ̇a
=

1

2
gabψ

b , (3.91)

where in the expression for pa we have lowered the index on ψ using the metric.

Upon canonical quantization, the commutation relations among the fields become

[xa, pb] = iδab and
{
ψa, ψb

}
= 2gab (3.92)

As usual, the Hilbert space of the bosonic fields can be taken to be L2(N,
√
g dnx), and (as

explained in the Box) the natural quantization of the fermionic fields ψ is to take Hψ = S,

the space of Dirac spinors, with the fermions acting as the Dirac matrix γa. Mixing the two

constructions, the Hilbert space of this system is the space L2(S(N),
√
g dnx) of square-

integrable sections of the spin bundle on N .

The supercharge Q = ψapa is then the Dirac operator i /∇, and the Hamiltonian H =

Q2 = − /∇2
.
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Spinors in n = 2m dimensions

The Dirac γ-matrices on an even dimensional Riemannian manifold obey

{γi, γj} = 2δij

where i, j, . . . are tangent space indices. We will take the γ-matrices to be Hermitian.

Over C, we can construct m = n/2 raising and lowering operators from these by

introducing γI± = 1
2(γ2I ± iγ2I+1) where I = 1, . . . ,m. These obey

{γI+, γJ−} = δIJ , {γI+, γJ+} = 0 , {γI−, γJ−} = 0

In particular, starting from a spinor χ that obeys γI−χ = 0 for all I, we obtain the

Dirac representation of Spin(n) by acting on χ with any combination of the raising

operators γI+, where each γI+ acts at most once. This representation has dimensions

2n/2, with the generators of Spin(n) acting as Σij = − i
4 [γi, γj ]. One may check that

these Σij indeed obey the algebra[
Σij ,Σkl

]
= i
(
δik Σjl + δjl Σik − δjk Σil − δil Σjk

)
defining spinn

∼= son.

The Dirac representation is reducible. Because the generators Σij are

quadratic in the γs, under a Spin(n) transformation, spinors constructed from the

vacuum χ by applying an even number of γ+ operators do not mix with those

constructed by applying an odd number of γ+s. We define the Hermitian matrix

(generalizing γ5 in n = 4 dimensions)

γn+1 = in/2γ1γ2 · · · γn

which obeys

(γn+1)2 = 1 , {γn+1, γi} = 0 and
[
γn+1,Σij

]
= 0

We say a spinor has even chirality if it is in the +1 eigenspace of γn+1, and odd

chirality if it is in the −1 eigenspace. The space S of spinors thus splits as S =

S+ ⊕ S−.

In curved space, the vielbein eia defined up to SO(n) transformations by

gab = δije
i
ae
j
b gives an orthonormal frame at each p ∈ N . The inverse vielbein eai

obeys eaie
i
b = δab and eaie

j
a = δji. We introduce a spin connection 1-form ωij by

demanding that the vierbeins are covariantly constant

∇aeib = ∂ae
i
b − Γcabe

i
c + ωiaje

j
b = 0 .

Since ejb is invertible, this fixes the spin connection to be

ωiaj = ebjΓ
c
abe

i
c − ebj∂aeib

=
1

2
ebj
(
∂ae

i
b − ∂beia

)
− 1

2
ebi (∂aebj − ∂beaj)−

1

2
ebiecj (∂bekc − ∂cekb) eka .
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where tangent space indices (on ω and e) are raised and lowered using the metric

δij on the tangent space.

We can use the spin connection to construct a curved space Dirac operator

/∇ψ = γa
(
∂aψ + ωjka Σjkψ

)
which allows us to parallel transport spinors on N . Since /∇ anticommutes with γn+1,

the Dirac operator maps positive chirality spinors to negative chirality spinors, and

vice versa. We thus write

/∇ =

(
0 D†

D 0

)
with respect to the decomposition S(N) = S+(N) ⊕ S−(N). Notice that D2 =

(D†)2 = 0. We define the index of the Dirac operator to be

index(D) = dim ker(D)− dim ker(D†)

Again, we can get an alternative expression for this index by studying the path integral

representation. As usual, with both x and ψ periodic, the path integral over fields on S1 is

independent of the circumference β. In the limit β → 0 it is dominated by constant field

configurations (x0, ψ0). We expand around these as xa = xa0 + δxa and ψa = ψa0 + δψa,

where
∮
δxa dτ = 0 =

∮
δψa dτ . Using Riemann normal coordinates

gab(x) = δab −
1

3
Racbd(x0)δxcδxd +O(δx3)

Γabc(x) = ∂dΓ
a
bc(x0)δxd +O(δx2) = −1

3
(Rabcd(x0) +Racbd(x0)) δxd +O(δx2) .

for the metric and connection, the action becomes

S[x0, ψ0, δx, δψ] =

∮
−1

2
δxa

d2

dτ2
δxa +

1

2
δψa

d

dτ
δψa − 1

4
Rabcdψ

a
0ψ

b
0 δx

cdδx
d

dτ
dτ (3.93)

to quadratic order in the fluctuations, where indices are raised and lowered with the flat

metric, and we have made use of algebraic Bianchi identities to bring the curvature in this

form.

Integrating over the fluctuations gives30√
det′(δab∂τ )√

det′(−δab∂2
τ +Rab∂τ )

=
1√

det′(−δab∂τ +Rab)

where Rab = Rabcd(x0)ψc0ψ
d
0 is an antisymmetric matrix with entries depending on x0 as

well as ψ0. We can decompose the tangent space TNx0 to N at x0 into two-dimensional

30The primes on the determinants are to remind us that these are just the non-zero modes. Note that the

path integral over fermion non-zero modes gives a square root of the determinant of −∂τ (or the Pfaffian

of this operator), rather than the determinant we would obtain from complex fermions).
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spaces that are invariant under the action of Rab, such that the restriction of Rab to the

ith such subspace takes the form

R
∣∣
i

=

(
0 ωi
−ωi 0

)
for some ωi. Let −Di denote the restriction of −δab∂τ +Rab to this subspace. Expanding

δxa(τ) as a Fourier series

δxa(τ) =
∑
k 6=0

δxak e2πikτ ,

(and applying an son transformation to the δxaks if necessary) we see that the eigenvalues

of −Di on this subspace are 2πik ± ω. Therefore√
det′(−Di) =

∏
k 6=0

√
−(2πk)2 − ω2

i =
∞∏
k=1

(2πk)2
∞∏
k=1

(
1− ω2

i

(2πk)2

)
The first infinite product diverges, and can be understood via ζ-function regularization as

∞∏
n=1

(2πk)2 = (4π2)ζ(0)e−2ζ′(0) = 1 .

The more interesting factor is the remaining one involving ω2
i . Using the infinite product

expansion

sinh(z) = z
∞∏
n=1

(
1 +

z2

π2n2

)
,

we recognize this factor as sinh(ωi/2)
ωi/2

. Combining the factors from all the n/2 orthogonal

subspaces, we have finally√
det′(−δab∂τ +Rab) =

∏
i

sinh(ωi/2)

ωi/2
= det

(
sinh(R/2)

R/2

)
, (3.94)

and hence the path integral gives us the Atiyah-Singer index theorem

index(/∂
+

) =

∫
det

(
sinh(Rabψa0ψb0/2)

Rabψa0ψb0/2

)
dnx0 dnψ0 =

∫
N

det

(
sinh(R/2)

R/2

)
(3.95)

for the Dirac operator on N . Here, Rc
d = R c

ab d dx
a ∧ dxb is the curvature 2-form, and the

last integral is understood to mean we should extract the n-form part of the determinant

as a Taylor series in R.

Consider the action

S[x, ψ, η] =

∮ [
1

2
gabẋ

aẋb +
1

2
gabψ

a(∇τψ)b + η̄α(Dτη)α − 1

2
η̄α(Fab)

α
βψ

aψbηβ
]

dτ (3.96)

where the covariant derivatives are

(∇τψ)a = ∂τψ
a + Γabcẋ

bψc

(Dτη)α = ∂τη
α +Aαaβẋ

aηβ
(3.97)
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and the (Fab)
α
β = (∂aAb−∂bAa+[Aa, Ab])

α
β is the curvature of D. This action is invariant

under the supersymmetry transformations

δxa = εψa , δψa = −εẋa

δηα = −εψa(Aa)αβηβ , δη̄β = −εη̄α(Aa)
α
βψ

a
(3.98)

that generalize (3.69).

ψa(τ) =
∑
n∈Z

ψane2πinτ/β = ψa0 +
∑
n6=0

ψane2πinτ/β

we have that the path integral
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