
5 Non-Linear Sigma Models in d = 1 + 1

Having explored the superpotential in the previous chapter, here I’d like to explore the role

of the Kähler potential.

5.1 The Geometry of Kähler Manifolds

A Kähler manifold is a manifold M with three mutually compatible structures: it has a

Riemannian metric g, a symplectic form ! and a complex structure J . Thus Kähler geom-

etry is interesting because it sits at the intersection of three major branches of geometry;

Riemannian, complex and symplectic. It can be viewed from all three perspectives.

You know what a Riemannian metric is. A 2-form ! 2 ⌦2(M) is symplectic if it

is closed, d! = 0, and non-degenerate in the sense that for a given vector field X and

arbitrary vector field Y ,

!(X, Y ) = 0 8 Y i↵ X = 0 . (5.1)

Equivalently, picking a basis and writing ! = !ab(x) dxa ^ dxb, the antisymmetric matrix

!ab(x) is invertible at each x 2 M . Symplectic geometry is at the heart of classical

mechanics.

An almost complex structure J is a map J : TM ⌦ C ! TM ⌦ C that obeys

J2 = �1, so its eigenvalues are ±i. At each point p 2 M , we can use J to project tangent

vectors at p into their holomorphic and antiholomorphic parts. In particular, we define the

holomorphic and antiholomorphic tangent spaces at p by

T 1,0
p M =

⇢
X 2 TpM ⌦ C : X =

1

2
(1 � iJ)X

�

T 0,1
p M =

⇢
X 2 TpM ⌦ C : X =

1

2
(1 + iJ)X

�
.

(5.2)

For example, if M = R2, then {@/@x, @/@y} form a basis of TM . We have

J

✓
@

@x

◆
=

@

@y
and J

✓
@

@y

◆
= � @

@x
(5.3)

Thus J here rotates R2 anticlockwise through ⇡/2 around the origin. Its eigenvectors are

@

@z
=

1

2

✓
@

@x
� i

@

@y

◆
and

@

@z̄
=

1

2

✓
@

@x
+ i

@

@y

◆

with eigenvalues ±i, respectively. Notice that the eigenvectors are complex linear combi-

nations of our basis vectors.

An almost complex structure is said to be integrable, and hence be a complex struc-

ture i↵ the Lie bracket of any two holomorphic vector fields is again a holomorphic vector

field. In other words, if

(1 + iJ) [(1 � iJ)X, (1 � iJ)Y ] = 0 (5.4)

for any X, Y 2 TM . Taking real and imaginary parts shows that this is equivalent to the

condition

N(X,Y ) = �J2([X, Y ]) + J([JX, Y ] + [X, JY ]) � [JX, JY ] = 0 (5.5)
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for all X, Y . Despite the presence of the Lie brackets, N(X, Y ) depends only on the values

(not the derivatives) of X and Y , as well as J and its derivatives. It is thus a tensor on

M , known as the Nijenhuis tensor. If our almost complex structure is integrable, then

globally over M

TM ⌦ C = T (1,0)M � T (0,1)M , (5.6)

saying that we can always split a complex vector field into its holomorphic and antiholo-

morphic pieces. Similarly, we can split complex cotangent vectors T ⇤M ⌦ C as

T ⇤M ⌦ C = T ⇤(1,0)M � T ⇤(0,1)M (5.7)

where ↵̄(X) = 0 for any X 2 T (1,0)M and ↵̄ 2 T ⇤(0,1)M . It then follows that the space of

complex k-forms ⌦k(M, C) =
Vk T ⇤M ⌦ C also splits as

⌦k(M, C) =
M

p+q=k

⌦(p,q)(M) , (5.8)

where

⌦(p,q)(M) =
p̂

T ⇤(1,0)M
q̂

T ⇤(0,1)M

is the space of (p, q)-forms on M . (If ⇢ 2 ⌦(p,q)(M) then we can expand it in terms of

components as

⇢ = ⇢a1...apb̄1...b̄q(z, z̄) dza1 ^ · · · dzap ^ dz̄b̄1 ^ · · · ^ dz̄b̄q

where the functions ⇢a1...apb̄1...b̄q(z, z̄) have p holomorphic and q antiholomorphic indices.)

This is known as the Hodge decomposition.

In fact, if a manifold M possesses any two of the above structures, in a way that

are compatible, the third is automatic. For example, from the symplectic viewpoint, a

symplectic manifold (M,!) is compatible with a complex structure J if !(JX, JY ) =

!(X, Y ). This says that under the decomposition

⌦2(M) = ⌦2,0 � ⌦1,1(M) � ⌦0,2(M)

of 2-forms into their holomorphic and antiholomorphic parts, the symplectic form ! actually

lies in ⌦1,1(M). Any such symplectic manifold also has a natural Hermitian metric, defined

by

g(X, Y ) = !(X, JY ) (5.9)

for all X, Y 2 TM ⌦C. To see that this is a metric, note first that since ! is non-degenerate

and J2 = �1, so too g is non-degenerate. We also have

g(Y, X) = !(Y, JX) = �!(JX, Y ) = !(JX, J2Y ) = !(X, JY ) = g(X,Y ) ,

so g is symmetric. The metric is also compatible with the complex structure, since

g(JY, JX) = !(JY, J2X) = �!(JY,X) = !(X, JY ) = g(X,Y ) = g(Y, X) ,
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and the metric is also of type (1,1). We say such metrics are Hermitian. The metric is

Riemannian if and only if the symplectic form is positive, meaning !(X, JX) > 0 for all

X 2 TM .

The Poincaré lemma in a real manifold states that locally, any closed form ↵ is exact,

so if d↵ = 0 then ↵ = d� at least in some open region U ⇢ M . On a complex manifold,

we can split d = @+ @̄ into the exterior derivative in the holomorphic and antiholomorphic

directions (e.g., on R2 = C we have

d = dx
@

@x
+ dy

@

@y
= dz

@

@z
+ @z̄

@

@z̄
= @ + @̄ ,

where dz = dx + idy and dz̄ = dx � idy.) We then have

0 = d2 = @2 + (@@̄ + @̄@) + @̄2 .

But since @2 : ⌦p,q ! ⌦p+2,q, while @@̄ + @̄@ : ⌦p,q ! ⌦p+1,q+1 and @̄2 : ⌦p,q ! ⌦p,q+2,

acting on any form of fixed type (p, q), the image of these three operators lies in di↵erent

vector spaces. Thus the only way for them to sum to zero is to be zero separately.

In particular, since 0 = d! = @! + @̄!, we must have @! = 0 and @̄! = 0 separately,

as these are (3, 0)- and (2, 1)-forms. Combined with the Poincaré lemma, this implies that

! = i @@̄K (5.10)

for some function K, at least locally on the Kähler manifold. (The factor of i ensures that

! is real if K is a real function. Notice that K is defined upto the transformations

K(z, z̄) 7! K(z, z̄) + f(z) + f̄(z̄) (5.11)

where f is holomorphic. The function K is known as the Kähler potential.

The relation (5.9) implies that, in terms of local holomorphic coordinates (za, z̄ā)

on M , the metric has components gab̄ = @a@b̄K. For example Cn can be treated as a

Kähler manifold with K(z, z̄) =
P

a |za|2. The resulting metric is just the flat metric

g =
P

a �aā dz̄ādza =
P

a(dxa)2 +(dya)2 on R2n, and ! = i
P

a �aādza ^dz̄ā =
P

i dxi ^dyi

the usual symplectic form. As a second example, CPn is a Kähler manifold with K =

ln
�
1 +

Pn
a=1 |za|2

�
on the coordinate patch Cn ⇢ CPn (this patch covers the complement

of a hyperplane in CPn). The resulting metric is known as the Fubini-Study metric on

CPn.

On any Kähler manifold, since gab̄ = @a@b̄K, it’s straightforward to check that the only

non-vanishing components of the Levi–Civita connection are

�a
bc = gad̄@bgcd̄ and �ā

b̄c̄ = gād@b̄gdc̄ , (5.12)

with all Christo↵el symbols that involve both holomorphic & antiholomorphic indices van-

ishing.
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5.2 Supersymmetric NLSM on Kähler Manifolds

We can now understand why Kähler geometry is the natural arena for (2,2) supersymmetry

in d = 2. (It is also the natural arena for N = 1 supersymmetry in d = 4.) If �a are chiral

superfields, then the kinetic terms
Z

R2|4
K(�, �̄) d4✓ d2x

depend on a real function K that is defined up to the transformations

K(�, �̄) 7! K(�, �̄) + f(�) + f̄(�̄) ,

since these functions of chiral superfields will not survive the integration d4✓ d2x (provided

the fields decay su�ciently rapidly at |x| ! 1 on the worldsheet). Performing the fermionic

integrals, one finds

Skin[�
a, �̄ā] =

Z

R2


� gab̄ @

µ�a@µ�̄
b̄ + igab̄  ̄

b̄
+r� 

a
+ + igab̄  ̄

b̄
�r+ 

a
�

+ Rab̄cd̄ 
a
+ 

c
� ̄

b̄
� ̄

d̄
+ + gab̄

⇣
F a � �a

cd 
c
+ 

d
�

⌘⇣
F̄ b̄ � �b̄

c̄d̄ ̄
c̄
� ̄

d̄
+

⌘�
d2x ,

(5.13)

where, as usual,

rµ 
a
± = @µ 

a
± + �a

bc @µ�
b  c

±

in terms of the connection coe�cients �a
bc, and Rab̄cd̄ is the (Riemann) curvature of �. The

kinetic terms are non–singular provided the metric is positive definite. Combining this

with a superpotential term

1

2

Z

R2|2
W (�) d2✓ d2x + c.c. =

1

2

Z

R2


F a@W

@�a
�  a

+ 
b
�

@2W

@�a@�b

�
d2x + c.c. (5.14)

and eliminating the auxiliary field F via its equation of motion

F a = �a
cd 

c
+ 

d
� � 1

2
gab̄@b̄W

allows us to write the full non-linear sigma model action as

S[�, ] =

Z

R2
�gab̄ @

µ�a@µ�̄
b̄ + igab̄  ̄

b̄
+r� 

a
+ + igab̄  ̄

b̄
�r+ 

a
� + Rab̄cd̄ 

a
+ 

c
� ̄

b̄
� ̄

d̄
+

� 1

4
gab̄@aW@b̄W � 1

2
ra@bW a

+ 
b
� � 1

2
rā@b̄W  ̄ā

� ̄
b̄
+ d2x .

(5.15)

Note that this action is invariant under holomorphic changes of coordinates on the target

space (at least on the coordinate patch where the metric gab̄ = @a@b̄K). It’s also invariant

under the supersymmetry transformations

��a = ✏+ 
a
� � ✏� 

a
+ , ��̄ā = �✏̄+ ̄ā

� + ✏̄� ̄
ā
+

� a
± = ±2i✏̄⌥@±�

a + ✏±F a , � ̄ā
± = ⌥2i✏⌥@±�̄

ā + ✏̄±F̄ ā
(5.16)
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by construction.

Now let’s set W = 0 to consider the model in the absence of a superpotential. Then,

provided we make the obvious replacements d2x !
p

h d2x,

gab̄@
µ�a@µ�̄

b̄ ! gab̄h
µ⌫@µ�

a@⌫ �̄
b̄

and include a worldsheet spin connection26 in the fermion kinetic term, it makes sense to

consider this theory not just on R2, but on a general Riemann surface ⌃27 Thus, given

complex coordinates (�a, �̄ā) on a patch U of a Kähler manifold N , we can construct a

manifestly supersymmetric sigma model describing maps � : ⌃ ! U and glue the models

together at the level of the path integral to construct a model to describe maps ⌃ ! N .

From this perspective, the worldsheet fermions should be thought of as sections

 ± 2 �(⌃,�⇤T (1,0)N ⌦ S±)  ̄± 2 �(⌃,�⇤T (0,1)N ⌦ S±) ,

where S± are the left- and right- spin bundles on ⌃.

5.2.1 Anomalies in R-symmetries

The global R-symmetries acting as

U(1)V : �(x±, ✓±, ✓̄±) 7! e2iq� �(x±, e�i�✓±, ei� ✓̄±)

U(1)A : �(±, ✓±, ✓̄±) 7! �(x±, e⌥i↵✓±, e±i↵✓̄±)

of the classical models (with quasi-homogeneous superpotentials) may or may not be pre-

served at the quantum level. This is because although these transformations do preserve the

classical action, �S = 0, they may not also preserve the path integral measure, �([D�]) 6= 0.

In general, when a symmetry that is valid in the classical theory is broken by the quantum

theory, we say the symmetry is anomalous.

Let’s investigate whether the U(1)V and U(1)A symmetries above can be anomalous.

To begin, we’ll consider a simpler example of a single, massless, charged Dirac fermion  

living on a worldsheet torus T 2 = C/⇤. We let the gauge field be A and take the usual

action

S = i

Z

T 2
 ̄+Dz + +  ̄�D̄z̄ � d2z , (5.17)

where z = x + iy is a local coordinate on T 2, and Dz = @z + Az while D̄z̄ = @z̄ + Az̄.

This action is invariant under global transformations

 ± ! e�i(↵±�) ±  ̄± ! e+i(↵±�) ̄± A ! A (5.18)

26In two dimensions, with Euclidean signature, the Lorentz group is SO(2) ⇠= U(1), so this spin con-

nection is just an Abelian connection, with spinors changing just by a phase under worldsheet Lorentz

transformations.
27Recall that a Riemann surface is a 1-dimensional complex manifold. Thought of as a real 2-manifold,

it’s metric can always be put in the form

h = hµ⌫(x)dx
µ dx⌫ = e2⌦

�
(dx1)2 + (dx2)2

�

in any coordinate patch U ⇢ ⌃. Thus, locally, Riemann surfaces are always conformally flat.
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of the fermions. However, suppose

k =

Z

T 2
c1(E) =

i

2⇡

Z

T 2
F > 0

so that the gauge field A has non-zero instanton number. Then, by the index theorem

dim(ker D̄z̄) � dim(ker Dz) =

Z

T 2
c1(E) > 0

so that the number of  + zero modes is k larger than the number of  � zero modes. Now,

complex conjugation both swaps the sign of the U(1) charge of a particle, and exchanges

z $ z̄. Therefore ( +)⇤ =  ̄�, and likewise ( �)⇤ =  ̄+. Thus complex conjugation

implies that the number of  � zero modes is the same as the number of  ̄+ zero modes,

and likewise for  + and  ̄i. Because the path integral measure [D ] is an instruction to

integrate over all modes of the fields  ± and  ̄±, it transforms as

[D ] ! e2ik� [D ]

under the U(1) transformations (5.18), with the transformations of all the (infinitely many)

non-zero modes cancelling out. Hence the vector U(1) transformation  ± ! e�i↵ ± is

not anomalous and remains a symmetry of the quantum theory, whilst the axial U(1)

 ± ! e⌥i� ± is broken quantum mechanically in the presence of an instanton with k 6= 0.

If k 6= 0 then at least some of the fermion fields must have zero modes. By definition,

these zero modes do not contribute to the action, and so the partition function (on a

worldsheet T 2) vanishes by Grassmann integration over these modes in the path integral.

To get something non-vanishing, we must compute a correlation function with enough

fermions inserted to saturate the zero-mode integral. Although our index computation

above only told us the di↵erence between the number of  + and  � zero modes, It turns

out that, for a generic U(1) gauge field of instanton number k on T 2, there will be exactly

k zero modes of  + (and  ̄�) and no  � (or  ̄+) zero-modes. In this generic case, the

correlator

h +(z1) +(z2) · · · +(zk) ̄�(w1) ̄�(w2) · · ·  ̄�(wk)i

is non-vanishing, with the fermion insertions at points {z1, . . . , zk, w1, . . . , wk} 2 T 2 exactly

saturating the zero-mode integrals. This is again a common theme in QFT: anomalies in

global symmetries impose selection rules on which correlation functions can be non-zero.

These selection rules are really just a modification of the usual selection rules attendant to

any symmetry via Ward identities, but take into account the non-trivial transformation of

the path integral measure (perhaps in the presence of a gauge field instanton).

Now let’s return to the sigma model on a Kähler manifold M . The fermion terms in

the action are the kinetic term

i

Z

T 2
gab̄ ̄

b̄
�rz 

a
� + gab̄ ̄

b̄
+r̄z̄ 

a
� d2z ,

together with the 4-fermion interaction Rab̄cd̄ 
a
+ 

c
� ̄

b̄
� ̄

d̄
+. For the purposes of computing

anomalies, we can ignore this 4-fermi interaction, because we can always choose to write

– 58 –



the path integral measure in terms of integrals over the eigenmodes of the Dirac operator

�µrµ coupled to the pullback of the holomorphic28 tangent bundle �⇤T (1,0)M . In this case,

the relevant instanton number is given by

k =

Z

T 2
c1(�

⇤T (1,0)M) =
i

2⇡

Z

T 2
tr(R)

where R is the curvature 2-form29 of the (pullback to T 2 of) the Levi-Civita connection on

M .

Just as in the Abelian case above, whenever k 6= 0 there is a mismatch between the

numbers of  a
+ and  a

� zero-modes, leading to an anomaly in the U(1)A symmetry of the

sigma model. An important class of target spaces for which this anomaly vanishes are

Calabi-Yau manifolds, which are Kähler manifolds with tr(R) = 0.

5.2.2 The �-function of a NLSM

On a two-dimensional worldsheet, scalar fields �a have mass dimension zero, whilst all

fermions  have mass dimension 1
2 . Thus (when W = 0) the NLSM

S[�, ] =

Z

T 2
�gab̄ hµ⌫@µ�

a@⌫ �̄
b̄ + igab̄  ̄

b̄�µrµ 
a
+ + Rab̄cd̄  

a
+ 

c
� ̄

b̄
� ̄

d̄
+

p
h d2x

is invariant under scale transformations

hµ⌫ ! �2hµ , �µ ! ��1�µ , �a ! �a ,  a
± ! ��

1
2 a

± (5.19)

for � 2 R>0. (Note that the scaling behaviour of the Dirac matrices �µ is fixed by

{�µ, �⌫} = 2hµ⌫ .)

Whether or not this scale invariance is preserved in the quantum theory will again

turn out to depend on c1(T (1,0)M), just as for the U(1)A symmetry above. We saw above

that if k = i
2⇡

R
T 2 tr(R) 6= 0, then the correlators

f(g, h) = h( �)k( ̄+)kih

(with the target space indices chosen in some way, and with the fields inserted at various

points on the worldsheet T 2) would be able to saturate the U(1)A anomaly. We call

this correlator f(g, h) to emphasize that it is computed with target space metric gab̄ and

worldsheet metric hµ⌫ .

Since  a
� and  ̄b̄

+ are each invariant under both the Q+ and Q� supersymmetry trans-

formations30, we expect that this correlator is amenable to localization. In particular, the

28Note that the connection r here always acts on a fermion with a holomorphic target space index.
29In general, the curvature of a connection should be thought of as a 2-form (the antisymmetric field-

strength tensor) whose entries take values in endomorphisms of the gauge bundle (so can themselves be

thought of as matrices). This perspective should be familiar in non-Abelian gauge theories, and is equally

true of the curvature of a tangent bundle.
30Recall that these transformations are associated with the parameters ✏̄� and ✏+, respectively, in (5.16).

One reason for choosing the worldsheet to be a torus is that, unlike on a generic genus g Riemann surface,

these parameters can be treated as constants globally. In particular, we choose fermions to be periodic

around each of the two non-contractible 1-cycles of T 2.
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correlator f(g, h) turns out to be independent of the scalings (5.19), so that

f(g, h) = f(g,�2h)�k (5.20a)

Localisation also implies that the correlator receives contributions only from holomorphic

maps � : T 2 ! M , and then

f(g, h) = nh e�Ag , (5.20b)

where Ag =
R
T 2 gab̄ hµ⌫@µ�̄b̄@⌫�a

p
h d2x is the area of the image of the worldsheet in M ,

and nh is some number that depends on the worldsheet metric h, but not on the details of

the map � or target space metric g. Combining these two properties shows that

f(g, h) = f(g,�2h)�k = n�2he
�(Ag�k ln� = f(�2h, g0) , (5.21)

where g0 is a new metric on the target space such that Ag0 = Ag � k ln�. In other words,

if we rescale the worldsheet metric as h ! �2h (as in the renormalization group) then we

must also change the target space metric from g ! g0 in order for the correlation function

to remain the same.

Furthermore, for the flat metric h = �, we have

Ag =

Z

T 2
gab̄ hµ⌫@µ�̄

b̄@⌫�
a

p
h d2x

= i

Z

T 2
gab̄

⇣
@z�̄

b̄@z̄�
a + @z̄�̄

b̄@z�
a
⌘

dz ^ dz̄

= 2i

Z

T 2
gab̄@z�̄

b̄@z̄�
adz ^ dz̄ +

Z

T 2
�⇤!

in terms of the pullback of the Kähler form on M . For holomorphic maps, the first term

in the last line vanishes, so we have

Ag =

Z

T 2
�⇤! (5.22)

and thus the e↵ect of the scaling transformation h ! �2h is to change the Kähler class of

the target as

[!] ! [!0] = [!] � i

2⇡
ln� [tr(R)] (5.23)

using our earlier expression for k. (The square brackets here indicate that it is the coho-

mology class of ! must change: adding an exact form on to ! will have no e↵ect in the

integral (5.22).) Again we see that if M is Calabi-Yau, so that tr(R) = 0, the model is

invariant under worldsheet scaling transformations even at the quantum level.

These scaling transformations are, of course, intimately connected to the behaviour of

the theory under renormalization group flow. Let’s first consider a purely bosonic NLSM

describing maps � : ⌃ ! M where M is any Riemannian manifold. The action is

S[�] =
1

2

Z
gij hµ⌫ @µ�

i @⌫�
j
p

h d2x
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as always, and is classically invariant under hµ⌫ ! �2hµ⌫ with � unchanged. We choose

Riemann normal coordinates centred on a point �0 2 M and expand the target metric as

gij(�0 + ⇠) = �ij � 1

3
Rikjl(�0) ⇠

k⇠l + O(⇠3)

in terms of flucuations ⇠ around this point. Then, to lowest order in perturbation theory

around constant maps ⌃ ! �0, the action becomes

S[⇠] =
1

2

Z

⌃

✓
@µ⇠i@µ⇠i � 1

3
Rikjl(�0)⇠

k⇠l@µ⇠i@µ⇠
j + O(⇠5)

◆
, d2x . (5.24)

for a flat worldsheet metric. The first term gives the usual 1/k2 propagator in 2d momentum

space, while the second term is a valency-4 vertex. We have the 2-point function

h⇠i(x)⇠j(y)i1�loop =

Z
d2k

(2⇡)2
eik·(x�y)

k2


�ij +

1

3

Z
d2p

(2⇡)2
1

p2
Rij(�0)

�

to 1-loop accuracy, where the first term (proportional to �ij) is just the classical contribution

from a single propagator joining the two ⇠ insertions, while the second term is a 1-loop

correction arising from a further insertion of the 4-⇠ vertex. As usual, the loop integral is

divergent. We can regularize by introducing UV and IR cuto↵s in momentum space. Then

Z

leq|p|⇤

d2p

(2⇡)2
1

p2
=

1

2⇡

Z ⇤

µ

dp

p
=

1

2⇡
ln

⇤

µ

Comparing this to the classical propagator, we see we can absorb the UV divergence ⇠ ln ⇤

if we include counterterms so that the metric is

gij + �gij(⇤) = �ij � 1

6⇡
Rij(�0) ln

⇤

�

in terms of some arbitrary renormalization scale �. The renormalized metric is then

gij(�, µ) = �ij +
1

6⇡
Rij(�0) ln

�

µ
(5.25)

and remains finite (at 1-loop) as the UV cuto↵ ⇤ ! 1. This renormalized metric runs

with scale �, with �-function given by

�ij = �
dgij
d�

=
1

6⇡
Rij

and so is proportional to the Ricci curvature. We thus have three possible cases:

- If Rij > 0 then the model is asymptotically free. The curvature of the target space

is less and less important as we focus in on smaller and smaller distances on the

worldsheet, and in the limit we have a free theory. Thus this asymptotically free

theory makes sense.

- If Rij < 0 then the theory is valid at most as an e↵ective theory, and becomes

increasingly weakly coupled in the IR.
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- Finally, if Rij = 0 the theory is scale (and in fact conformally) invariant, at least

to 1-loop order. Of course, the �-functions may well receive corrections at higher

loops. Having Rij = 0 means the target space metric is Ricci-flat, and hence solves

the vacuum Einstein equations.

The same calculations can be performed for a supersymmetric NLSM, and again one

finds that at 1-loop the metric is renormalized as gab̄ ! gab̄ + cRab̄ for some constant c.

For a Kähler manifold, tr(R) / Rab̄d�
a ^ d�̄b̄ and in particular vanishing Ricci tensor

Rab̄ = 0 implies vanishing first Chern class, so that NLSMs with Calabi-Yau targets are

fixed under RG flow, at least at 1-loop. While there are indeed higher-loop corrections

to this (in fact, for the (2,2) supersymmetric model above, they start only at 4-loops

in worldsheet perturbation theory!), in the supersymmetric theory our exact localization

calculation above shows that the Kähler class [!] of the metric lways remains unchanged

on a Calabi-Yau target.
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