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Spaces of complex
Nnull geodesics



In a Lorentzian manifold, the space of
ight rays Is a sphere bundle over any
Cauchy surface C:

Sd—Q N PAR

Cd—l

known as ambitwistor space

» exists for arbitrary (geodesically convex) space-time (Mg, gr)

» space-time point x corresponds to a quadric (), C PAy,
with dim(Q),) = d — 2 (generators of the null cone)



We’ll mostly work with complex (M, g) where metric is holPh¢
in the sense that Levi-Civita V : T(T};°) — T'(Ty;” @ T ")

» C-null geodesic: holomorphic integral curve of v
where g(v,v) =0 and V,(v) =0

(

The space of complex null geodesics also has a useful
symplectic description:

A =T*M//{D} V is geodesic spray

Hamiltonian H = ¢"* (X )P, P,

/
» Quotienting by scale of P yields PA as a

(non-degenerate) contact manifold, dim 2d — 3

» 0 = p,dx" descends to A and represents
contact 1-form 6 € Q'(PA, L) on PA




[LeBrun, 1983] proved that one can recover (M, [¢]) from
knowledge of the C-structure on PA . Correspondence is
stable under deformations preserving 6

» Complex structure determined by contact structure as
Ty :=ker 0 A (df)?—?

Deformations of o Deformations of

contact structure metric
00 ¢ HOY(PA,L) < 6g € Sym?T;;"

P(TNM) ~
N 71 (00) = 07 by a vanishing argument
/ \ P -V(j) a globally holomorphic section
of 77 (L*) hence P - V(j) = (m509)(P, P)

|[Baston,Mason;|L.eBrun]



Situation is similar
the C-structure of 1

'0 Penrose twistor correspondence, where
wistor space Z also determines (M, |g])

» in twistor case, contact structure 6z gives g € |g] with

Riem(g) € Q*T(E

nd Ts), SO automatically Einstein

» iIn ambitwistor case, no field equations implied / understood



Scattering amplitudes
& CHY formulae



-

Seek an Einstein metric g with g ~ ha
for prescribed asymptotic data A

» Perturbatively, take h = go + Z St
1=1
The n-particle, tree-level S-matrix M(dh;)
IS the coefficient of [], &; IN Sexu[g]

\_

» We usually choose gy = n, the flat Minkowski metric,
and Jh; = ¢; eFi T with

n_l(ki,ki) =0 Ei(kia ) =0 € ~ € + vV O k;

» Leading term in asymptotic series in A coming from
Feynman path integral (divergent for gravity)



We may expand Sgulg| In terms of tree-level Feynman
diagrams, but in gravity, these are unpleasant:

_ 1 i I
graphs
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Cachazo, He & Yuan have found that, for tree amplitudes in a
wide range of massless field theories, Feynman diagrams may
be replaced by the scattering equations:

SZ' i) o= : L= 0
()=
» determine {z;} € CP' in terms of the
external momenta
» Same equations dominate high energy,

fixed angle string scattering
|Gross,Mende; cf Fairlie,Roberts]

In the CHY picture, tree amplitudes are given by

B Obj(e€i, ki, iy - )
M= Z J&C(/‘CZ‘, Zz)
{zi | Si(z;)=0}

where Jac := det (05;/0%;) is the Jacobian obtained upon
solving the scattering equations




Different theories correspond to different choices for “Obj”:

kv -k ik, kiea ., Kkie€n;
O :}:122 o ;1n E Cll <12 “1n
kjkl 0 ko-€1
o Z21
kglfl O kn €1 C
W S ...T.L .................................. B s TZJ 7.%. C.. — = k]
T —C €1-ko €1-kn €1-€5 €1-€n e . Zij
H <12 “1n 0 Z12 €1n J7
€2°€1
En w
: €n.'el
GZ-Ijl Cnn Z1 O
4 _ )
/ / 2
Z Ptaff’ W Pfaft' W tr(1Ty---T},)
Mgrav — qu?) e I cc
Jac Z Jac | z12223 - Zn1
sols sols

Pfaff’ U 1y ---1,
= 3 PR 01T

Jac 212293 ** * Znl
sols

A particularly sharp statement of “gravity x scalar = YM?”

- J




The CHY expressions have welird & wonderful properties:

» diffeo/gauge invariant sol"-by-sol"

» manifest permutation/cyclic invariance for gravity/YM
» transparent behaviour in soft limits sol"-by-sol"

» each contribution algebraic, but non-rational

They are also very much in Penrose’s spirit: look like the
output of a localisation calculation, but describe dynamics

» similar formulae also known for scattering amplitudes
in Einstein-YM, DBI, NLSM, scalar ¢° theory;, ...

-

G

Where do these ‘magic’ expressions come from? What
does their very existence teach us about these theories”?

J




Chiral strings In
ambpitwistor space



(

\_

Ambitwistor strings are a chiral theory based (in flat space-
time) on the worldsheet action

- 1 P,u S P(Za K)
5 = / P,0X" — —eP,P"
> 2 e < Qo’l(E,Tz)

» complexification of worldline theory for massless particle

~

J

The constraint P* = 0 and associated gauge transformations

0XH =aP*  6P,=0 Jde=0a acl(X,Ty)

implement Marsden-Weinstein quotient. Identifying K with

the pullback of L, the theory describes holomorphic maps

Y : Y — PA

» the action is just / Y6
2.



However simple it may appear, the chiral model S = / POX
IS actually inconsistent as it stands. >

» problem lies with target space diffeomorphisms

XH — fMX) P, — g)‘éupy

and the second transformation requires regularization

» from the path integral perspective, perturbing around a
constant map X : ¥ — z¢ € M, we get a chiral determinant

1
det(éX*TM

) :/DPDXe_fPaX

which again is not Diff (M) invariant

[Vaintrob,Malikov,Schechtman;Witten;Nekrasov]

Familiar in curved S -systems



The simplest way to cure this is to add in 2d real fermions

2
_ 1 _
S:/ (PM(?XM o §€P2+ E wruﬁlb#_FergPM)
2 r=1

» note that both sets of fermions are left-moving

» the corresponding fermionic currents ¢! P, are also
gauged, and the BRST operator is taken to be

Q%(CT—FéPQ—FZ%awT-P)

where c is the usual (holomorphic) reparametrization
ghost, and (¢, ~,-) are ghosts associated to (PZ, v, - P)

The theory is anomaly free and Q° = 0 iff d = 10



The simplest BRST-closed (NS-NS) vertex operators are

U(2) := cc 8 ()40l €,,e" ™

which look very similar to the RNS string, but again recall that
everything in sight here Is left-moving

-

Usually in string theory, worldsheet
oscillators create an infinite (Regge) tower
of extra states, entering at a scale set by
the string tension 1/a’.

| 24

XH(2) X (w) ~ 0 Pu(2) X"(w) ~ — Pu(z) Py(w) ~ 0

< — W
In particular, since XX ~ 0, ¢+ has vanishing conformal
weight, no matter the value of £,,. There is no Regge tower.

Chiral / holomorphic strings cannot oscillate




» requiring that these vertex operators are annihilated by
the currents (P24, - P) inside BRST operator leads to
the conditions k* =0 and €-k =0

There are no massive states in the spectrum

» Including the R-sectors, the spectrum of the theory is
just Type Il (A/B) supergravity

» integrated (NS-NS) vertex operators are slightly unusual:

U(2) i 202 e
[ V= [800 P (P gl ) (P 05 ) ™
> >

and represent deformations of contact structure



Inserting n vertex operators, the X dependence becomes

SO performing the X path integral constrains

ki dz
P“(Z):Zziz-

1=1

This in turn implies P*(z) = (dz)?
s in turn implies 2) Z T2 Z_Z])

which is generically not zero, threatenmg our whole
Interpretation in terms of ambitwistors

» the scattering equations, coming from the factors of §(k; - P)
N the integrated vertex operators, save the day



At ¢ = 0, any meromorphic quadratic differential vanishes
identically if it has fewer than four (simple) poles

Res, P° = Z i - R (= k; - P(%)) the scattering
ity 1T A equations!

These equations simply state that our theory indeed lives on
ambitwistor space (even in the presence of vertex operators)

4 )

» Pfaffians of ¢ and ¥ come from fermion correlators

Pfaff’ U Pfaff’ U
Mambi — Z — Mgrav

Jac

sols

» integral over My ,, iIs completely localized by the
scattering equations

G J




Since it plays such a key role, it’s worth understanding how
this localization arises. There are two main facts!©hmor:

» first, since we independently gauge both T and P?, the
(bosonic) moduli space of the ambitwistor string is really
T M, , rather than just M, ,,

~—
\/ isolated curves on

which P? =0 identically



Let ¢ represent local coords in a neighbhd of p € Mg, with
complex structure corresponding to some 0 -operator on X

» nearby we have 0 — 0 + u(t)0 and also

e =e(s,t) = Z Sa€a(t)

84

where the e, form a basis of H' (2, Ts(—{zi})) 2 TMy sz
(the moduli of the field e on the marked curve)

Near p, the worldsheet action becomes
_ 1 1 -
>
where (du, de) are constant fermionic parameters added to

cancel BRST variations of the moduli (u, e) \Witten; Ohmori]



» The second fact is that the chiral theory depends only on the
holomorphic moduli, and provides a (top, 0)-form on T M, ,,

\

i Ohmori picks an integration cycle defined by downward
gradient flow of the Morse function

_Re ( /E LT + e(t, S)P2>

This Morse function is exactly the real part of the (bosonic)
moduli dependence in the action

critical pt

gradient flow of /
Morse function /—_

» The integration cycles

start from a critical point,

\ then flow away to infinity
\




The dependence on the moduli is BRST exact:

) 1 1 -
>

:/Ep.éx+<cg/ (b——ets)b)}

so we |ocalise on critical points of the Morse function. These
are determined by

(%/Ee(s,t)zﬂzo %(/E,u(t)TJre(s,t)PQ) =0

» In a standard basis, % /e(s,t)P2 = /eoé(t)P2 = Res,, P’
s )

whose vanishing is exactly the scattering equations




Curved backgrounds



Because there are no oscillators / no o’ corrections, the
Einstein egns should be exact conditions for consistency on
a curved background

» linearized eoms for vertex operators came from algebra
- H G = (Y1 + )P
G(Z)G(U})Nz_w ) ( L 2) H H:P2
G = (wl — i¢2)ﬂpu
rather than OPE with 1", so expect Einst. egs. from
anomaly here, not from g-function.

4 )

For the curved theory, we take the action to be

? :/ P,OX" + ¢, Dyt = | m,0X" + 1), 00"
P A

Dipt = gt + TH p* 9 X L, = P+ by’




his Is a ‘curved Bvy-system’. Bosonic versions are subtle, due
to anomalies in chiral determinants, but easier with SUSY

[Malikov,Schechtman,Vaintrob; Nekrasov; Witten; Frenkel,Nekrasov,LosevV]

» action remains free, but currents are deformed. Classically:
=y G0 = gy (T — Tl 0 )
A0 = g (11, —Aadet®) (L~ T, 0,07 ) — 5 B, dutbrir e
» operator Oy = VH#(X)IL, 4 9, V*1),1" obeys OPE
Ov (2) O (1) ~ VW

< — W
target space diffeomorphisms

with no higher poles, so generates

While all the basic fields transform correctly, Oy shows that the
composite currents (H,G", G°) have anomalous behaviour
under target space diffeomorphisms



To get something sensible, we must add quantum corrections
to the currents

» modifications of g% & G° turn out to be
G=G"+0(Lyna, logQ)  G=G"+ (L 5 logQ)
with Q = e 22X /gdX Ao A dX 1O

These modified currents have the desired OPEs

Ov(2)Gw)~ -+ Y9 0p(2)Gw) ~ -t 2V

< — W < — W
respecting target space diffeomorphisms

» there are also modifications of the worldsheet stress
tensor that ensure the new operators are primaries

1
S — 54 /Rg log(e™**/q)
ST D




Because the curved space action is trivial, we can compute
OPEs exactly. One finds

G(2)G(w) ~ 0 G(2)G(w) ~ 0

just requires the usual Bianchi identities on R™, ,,,, while
(also allowing for a B-field)

- % 1
G(2) G(w) ~ EE—mE (R + 4V, VFD — 4V, VI 12H2>
vV FﬁuﬁX& + : ~V 1 o
+2g A( (Z—’LU)ZD 4 ) (RMA—I—Q\/M\/)\(I)— ZHMOJHA’O )
plapY — ) . . - H
S Pa—— (VeH", —2H"%, V. P) A S

where H(= H° + quantum corrections) generalizes P?



he Einstein, B-field and dilaton egns are the exact conditions
for a consistent background

» requiring the flat space algebra

~ H P?

G G Y p—

(2) G(w) ~ —— = ——

to hold in the presence of vertex operators imposed the
scattering equations

Vertex operators are infinitesimal deformations of these

currents. Requiring the same algelbra to hold nonlinearly
amounts to the full nonlinear field equations

Quantum Scattering > Einstein Field
Equations Equations



Quantum corrections



It's natural to expect quantum corrections to scattering
amplitudes to arise from higher genus Curves

» at higher genus, still have 9P, ( Z ki 0(2 — 2;)

but this now iImplies

g n
P,(z) = Zzuwa — Z kinOInE(z — z;;7)

a=1 1=1
/ k orime form

basis of H° (%, Ky,)

» again P*(z) is a meromorphic quadratic differential, now

with 3g — 3 + n modull

\_

i Higher genus analogue of the scattering equations is

Res,,P°=0  P*(z;) =0

at exactly enough points to ensure P?(z) = 0 identically
[Adamo,Casali,DS]

\

J




For example, at genus 1
2y T)
P, 14 k; d
( _I_Z 'u(911 Z—ZZ,T)) -

and the scattering equations enforce

Res, P =0 fori e {1,2,...,n — 1}

P?(z;) = 0 at any one point z;

» again, these eq"s arise from the moduli of e

» agrees with Gross-Mende saddle point when n =4
[Casali, Tourkine]



The (even spin structure part of the) genus 1 amplitude is

M! /dloédré P?(zp; T H5 (ki - P(z;7))
X Z(—1)a+bza,b( ) Pfaft’ (U)Pfaff’ (0)
a,b

the Pfafflans coming from free fermion correlators on the torus

» modular invariant when d = 10

» correct behaviour under factorizations & IR limits
[Adamo,Casali,DS]

However, these elliptic objects seem far removed from the
rational function we’'d expect for the Feynman loop integrand
of a field theory

» explicitly shown to be rational when n = 4
» correct R* tensor structure (Casali Tourkine]




The proof that this is indeed 1-loop supergravity came in a
beautiful Oaper[Geyer,I\/Iason,l\/lonteiro,Tourkine]

» main idea was to integrate by parts in moduli space

dq 1
2 _ 2 _
6(P?(z)) = 5 P?(z,)) = —dq d(q P2 ()

-

» remaining scattering equations now become

ki (0 ki - 0 ki -k
0 = Z
Z — 20 2 — Zoo J#zz—zj

and kill the polar part of P(z), leaving us with P?(z) = ¢?




t8~8R4/ d'™/ 3 1
C-kory (€ (ko) +ko(2) + ko) - ko(2) € ko(ay

0'654

There’s some (expected) ambiguity in the definition of £, :

which propagator
does it represent?

Exploiting this in a smart way, GMMT showed that this indeed
agrees with the known 1-loop integrand for Type |l supergravity

[Brink,Green,Schwarz]



What’s so striking about GMMT’s

derivation is that by localizing to « X

g = 0, the story ends up being no

more complicated than for trees! X X >

Generalising, they give natural
looking conjectures for multi-loop
expressions, shown to be correct
now also for (g,n) = (2,4) & (1,n)

We're left with an integral over the zero modes ¢,,. This is (of
course!) UV divergent - it's d = 10 supergravity.



Scattering and
null INnfinity



Amplitudes are inherently holographic; they are meaningful,
diffeo invariant observables in asymptotically flat space-times

» we usually compute them non-holographically, by
evolving metric fluctuations through the bulk

Projective ambitwistor space is a
sphere bundle over any Cauchy
surface C:

S4=2— PA

Cd—l

» the ambitwistor spaces of two
Cauchy surfaces C— are
related by a diffeomorphism




For scattering theory, it's natural to take limiting case C—

» choose coordinates adapted to ZT as follows:
(u,py,) € RIT

with constraint p? = 0
and equivalence relation

(uvpu) ~ (au, O‘pu)

» coordinates for A = T*Z* are then given by
(u, ppu;w, ) ~ (au,ap,;w/a,q" /a+ Bp*)
p> =0 uww —p-q =70
and the symplectic potential on ambitwistor space is

© = wdu — ¢"dp,




Any V e Diff(Z") (such as a BMS transformation) can be
ifted to a V € Dif(T*I") = Diff(A), generated by Hg, := VO

» 6.9. bulk Poincare transform §X* = w¥, X" + a* gives

ou=a-p Sw =0
0Py = —Ww", Pu 0q" = w",q" + wa"

with associated vector field & Hamiltonian

i 9 9 B 9
e <p“5’u I wﬁq“> T (q Dqt p”c?p)

Hy =w(a-p)—wh,q¢'p, =Hr + Hp

(BMS supertranslations and superrot”s instead correspond to

Hgr = wf(p) Hsr = —w',(p) ¢"pu
| so the translation/rotation varies around cuts of ZT )




The Hamiltonians are worldsheet charges for the ambitwistor
string, generating transformations of the target:

e.g. Q[a]:%Ha:%wa-p:jI{a“PM

he vertex operators correspond to Hamiltonian deformations
of the contact structure, so can also be thought of as charges

otk-X eik-q/w
/ V = 7{ e P, P, 4 fermions = 7{@0 e pupy + -
>

k-P k-p
“Yn m, | MV A
:%w )i Pvax + - -
k-p k-p
o .
generates supertranslations generates superrotations

A particularly direct illustration of the relation between BMS
transformations and soft gravitons [Strominger et al



» Sub-subleading terms generate diffeomorphisms of
A= T*TT but not of Z7 itself

4 )

In flat space, all the null geodesics
emanating from a point a € 7~
reconverge at a point b € Z

This is no longer the case in the
presence of gravitational
radiation / black holes / etc...

- J

» The ambitwistor string realises a picture of scattering as a
diffeomorphism A;- — A7+ telling us where light rays

emanating from Z~— endup on Z*
[Adamo,Casali,DS; Geyer,Lipstein,Mason]




Conclusions



he CHY formulation of massless amplitudes really means

there’s an underlying theory in the space of light rays

» spectrum contains only massless states - Type |l sugra
» worldsheet correlators give CHY formula for gravity

amplite

» generalizat

» Scatteri
equations

des

ions to loop level now known & understood

Ng equations are the avatars of nonlinear field

Of course there are many open questions

» IS there an ambitwistor string for Einstein-Yang-Mills?
» what is ambitwistor string field theory?

<

NOt a supe
DOSONIC SU

r Riemann surface, but a super bundle over a
rface...

Now IS all t

Nis related to standard string theory??



Thank you
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