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Examples of Clever Ideas

Consider the five-gluon tree-level amplitude of QCD. Enters in
calculation of multi-jet production at hadron colliders.

Described by following Feynman diagrams:

+ + + · · ·

If you follow the textbooks you discover a disgusting mess.

22

In YM and gravity - theories we care most about - 
Feynman diagrams rapidly become very messy

‣ Even individual vertices and propagators are 
complicated expressions involving many terms

In recent years, work by many people has shown 
that the amplitudes themselves have many 
fascinating structures that are completely obscured 
by their representation in terms of Feynman diagrams



Cachazo, He & Yuan have proposed several remarkable 
formulae for tree-level amplitudes in massless theories

∑

j !=i

ki · kj
zi − zj

= 0 for all i ∈ {1, . . . , n}

Up to            , these points are 
then fixed in terms of external 
data by the scattering equations

SL(2,C)

External states are associated to points zi ∈ CP1

 ‘Jac’ is Jacobian of sct. eqs.
M =

∑

solns

Obj(εi, ki, zi, . . .)

Jac
‘Obj’ depends on the theory
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For example, in gravity & Yang-Mills define

“Gravity =
Gauge x Gauge”

Mgrav =
∑

sols

Pfaff ′Ψ Pfaff ′Ψ̃

Jac

MYM =
∑

sols

Pfaff ′Ψ

Jac

[
tr(T1 · · ·Tn)

z12z23 · · · zn1
+ · · ·

]



These expressions have many weird & wonderful 
properties:

‣ manifest permutation invariance
‣ gauge / diffeo invariant term-by-term
‣ transparent behaviour in soft limits term-by-term

‣ each contribution algebraic but non-rational

‣ same scattering equations as dominate high 
energy, fixed angle string scattering[Gross-Mende]

‣ expressions also exist for Einstein-Yang-Mills, 
NLSM, DBI, scalar     , ...φ3
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What lies behind such magic formulae? What do they 
teach us about these theories?



Chiral strings on the 
space of light rays



Worldline approach to pQFT
x(t)

0T

Integrating over the Schwinger parameter (length)    T

D(x1, x0) =

∫
ddp

(2π)d
eip·(x1−x0)

p2
leads to the propagator

The basic path integral gives the heat kernel, while 
canonical quantization leads to the Klein-Gordon eq

KT (x1, x0)

∫

x(0)=x0
x(T )=x1

Dx exp

(
−1

2

∫ T

0
ẋ2 dt

)



Replacing the worldline by a graph     gives the basicΓ

structure of massless field theory

T1

T2

T3

x1

x2

x3

x

∫
d3T

∫
Dx e−SΓ[x]=

∫
ddx

3∏

i=1

ddpi
(2π)d

eipi·(xi−x)

p2i
=

eg

= 〈φ(x1)φ(x2)φ(x3)〉treeφ3



Replacing the worldline by a graph     gives the basicΓ

structure of massless field theory

‣ different pQFTs obtained from more elaborate 
worldline actions / different allowed graph topologies 

‣ integral over lengths is really an integral over the 
moduli space Met(Γ)/Diff(Γ)
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The basic structure of pQFT is thus provided by

in first-order form, where    is an einbein. Similarly, 
the basic structure of pST is the genus expansion

e

where     is now a 1-form on the worldsheet.p

‣ various pSTs (type II, heterotic, type I, ...) obtained 
by allowing more elaborate worldsheet actions or 
different worldsheet topologies 

∑

g

∫

Mg

d6g−6µ

∫
DxDp exp

(
i

∫

Σg

p dx− 1

2
p ∧ ∗p

)

∑

Γ

∫

MΓ

d|E|µ

∫
DxDp exp

(
i

∫

Γ
p dx− 1

2
ep2

)



The CHY formulae come from an intermediate theory, 
based on the purely chiral worldsheet action

S =

∫

Σ
Pµ∂̄X

µ − 1

2
ePµP

µ

Pµ ∈ Ω1,0(Σ) e ∈ Ω0,1(Σ, TΣ)where and

‣ complexification of worldline, or chiral string

‣ this constraint generates the gauge symmetry

‣    imposes the constraint           , so      is nulle P 2 = 0 Pµ

δXµ = αPµ δPµ = 0 δe = ∂̄α

where                        . Thus                    .      
    has no fixed scale; target is space of light rays

X ∼ X + αPα ∈ Ω0,1(Σ, TΣ)

P



The space of light rays, called projective ambitwistor 
space      , has a rich geometric structure:

‣ it is a non-degenerate            dimensional contact 
manifold with contact form                 upto scaling 

2d− 3
θ = pµdx

µ

‣ space-time point     corresponds to a quadric surfacex
Qx ⊂ PA e.g. in four dimensions Qx

∼= CP1 × CP1

‣ contact form determines complex structure via its 
kernel:     antiholomorphic iffV̄ ıV̄ (θ ∧ dθd−2) = 0

parametrizing the complex null vectors pαα̇ = λαλ̃α̇ up to scale. For the real Minkowski

slice, we set λ̃α̇ = (λα)∗ which gives the familiar celestial sphere S2 ⊂ CP1×CP1. More

generally, the correspondences between space–time M and the space of complex null

geodesics with or without scaling may be expressed in terms of double fibrations as

A M

T ∗
NM

π1 π2!
!"

#
#$

PA M

PT ∗
NM

π1 π2!
!"

#
#$

(2.4)

where, in the projective case the fibres of π2 are the unscaled complex lightcones Qx

and are compact holomorphic quadrics of complex dimension d− 2, while the fibres of

π1 are the complex null geodesics.

LeBrun [22] shows that, conversely, PA together with its contact structure on

is sufficient to reconstruct the original space–time M , together with its torsion–free

conformal structure. In outline, to reconstruct M from PA one first notes that the

non–degenerate contact structure θ defines a complex structure on PA. To see this, we

use the fact that because θ is non–degenerate, θ∧dθd−2 is a non–vanishing 2d− 3 form

on the 2d− 3 complex dimensional space. We then simply declare an antiholomorphic

vector to be a vector V which obeys V ! (θ ∧ dθd−2) = 0. Now, supposing we can find

at least one holomorphic quadric Q0 ⊂ PA with normal bundle TPd−1 ⊗ O(−1)|Q0 ,

Kodaira theory assures us that we can find a d dimensional family of nearby Qx (see

e.g. [22] for details). We then interpret this family as providing the points in space–time

M . The conformal structure onM together with its null geodesics may be reconstructed

from the intersection of these Qx in PA. LeBrun shows [22] that these geodesics arise

from a torsion–free connection precisely when PA admits a contact structure θ that

vanishes on restriction to the Qx. Furthermore, arbitrary small deformations of the

complex structure of PA which preserve the contact structure θ correspond to small

deformations of the conformal structure on M .

We will use a linearized version of this correspondence in order to generate ampli-

tudes, focussing on the gravitational case. See appendix B or [28] for a more detailed

discussion of the linear Penrose transform for the ambitwistor correspondence in the

case of general spin. Since the conformal structure of M is determined by the contact

structure of PA, to describe a fluctuation in the space–time metric we need only con-

sider a perturbation δθ of the contact structure. Up to infinitesimal diffeomorphisms,

δθ can be taken to be an antiholomorphic 1-form with values in the contact line bun-

dle. If δθ is ∂̄-exact then it does not genuinely describe a deformation of the contact

structure, but rather just a diffeomorphism of PA along a Hamiltonian vector field.

Thus non–trivial deformations correspond to elements of the Dolbeault cohomology

– 8 –

PA

π1 projects along
null geodesics

LeBrun proved that if given contact structure on      , 
can recover space-time metric. No clear field equations.

PA



To describe (type II super-)gravity, we also add in two 
sets of chiral fermions

S =

∫

Σ
Pµ∂̄X

µ − e

2
P 2 +

2∑

r=1

1

2
ψrµ∂̄ψ

µ
r + χrPµψ

µ
r

Q =

∮
cT + c̃P 2 +

∑

r

γrP · ψr + ghosts

where     is the usual (chiral) reparametrization ghost,  
and           are ghosts associated with the gauge 
symmetries generated by 

c
(c̃, γr)

(P 2, Pµψ
µ
r )

In the absence of vertex operators, we can impose the 
gauge          ,            . The BRST operator is then e = 0 χr = 0

‣ central charge vanishes in ten dimensions



Xµ(z)Xν(w) ∼ 0 Pµ(z)X
ν(w) ∼

δ ν
µ

z − w

In this gauge we have the simple OPEs

ψµ
1 (z)ψ

ν
2 (w) ∼ 0 ψµ

1 (z)ψ
ν
1 (w) ∼

δµν
z − w

Fixed vertex operators are similar to RNS string:

U = cc̃ δ2(γ)ψµ
1ψ

ν
2 δgµν(X)

Because             , the wavefunction         never has 
anomalous conformal weight: the mass-shell and 
transversality conditions come from imposing gauge 
constraints rather than from the stress tensor.

XX ∼ 0 δgµν

There are no massive states in the spectrum.

in ‘NS-NS’ sector



In the absence of vertex operators, we can impose the 
gauge          . e = 0

These chiral strings cannot oscillate

Usually in string theory, worldsheet 
oscillations lead to an infinite (Regge) 
tower of extra states, entering at a 
scale set by the string tension 1/α′

S =

∫

Σ
Pµ∂̄X

µ

since     constrains              , implying       is constantXµPµ ∂̄Xµ = 0



Inserting    such vertex operators has two main 
geometric effects:

n

‣ can no longer use               to move to gauge         
as, like conformal structure,    now has moduli

δe = ∂̄α e = 0
e

‣ for momentum eigenstates, δgµν(X) = εµε̃ν e
ik·X

so the     dependence of the path integral is
∫

Σ

(
Pµ∂̄X

µ +
n∑

i=1

δ(z − zi)ki ·X
)

X

Integrating out the non-zero modes of     leads to

Pµ(z) =
n∑

i=1

kiµdz

z − zi != 0

P 2(z) = (dz)2
∑

i,j

ki · kj
(z − zi)(z − zj)⇒

X



T ∗Mg,n

Mg,n

marked curves on which
               identicallyP 2(z) = 0

P 2(z; zi; ki)

In the presence of vertex operators,          is a 
meromorphic quadratic differential, ie, a cotangent 
vector to the moduli space of the marked curve

P 2(z)



Moduli of     are           Beltrami differentials      . Weµαn− 3e {
Q, b̃

(
e−

∑

α

sαµα

)}

introduce the BRST trivial term

leading to 

∑

α

∫

Σ

(
P 2sαµα + b̃ qαµα

) sα: bosonic moduli
qα: BRST partners

in the action. Integrating over the moduli parameters & 
their fermionic BRST partners then gives the measure

∏

α

∫

Σ
(b̃, µα)

∏

α

δ

(∫

Σ
P 2µα

)

on the moduli space of the gauge field   .e



At genus zero, a meromorphic quadratic differential 
vanishes identically iff           of its residues vanishn− 3

whose vanishing is the scattering equations!

The scattering equations precisely ensure that 
the theory does indeed live on the space of light 
rays, even in the presence of vertex operators

With a standard choice of Beltrami differentials, 

ResziP
2(z) = dz

∑

j !=i

ki · kj
zij

For momentum eigenstates,

δ

(∫

Σ
µαP

2

)
= δ̄

(
ReszαP

2(z)
)



With vertex operators

∫

Σ
V =

∫

Σ
(Pµ + ψµ

1 k · ψ1) (P
ν + ψν

2 k · ψ2) δ̄(k · P )εµε̃νe
ik·X

the n-point correlation function at genus zero gives 
exactly the CHY formula for tree-level gravity

U = cc̃ δ2(γ)ψµ
1ψ

ν
2 εµε̃ν e

ik·X

‣     actually represents the Penrose transform of a 
linearized graviton to the space of light rays
V

‣ Pfaffians of     and     come from fermion correlators Ψ Ψ̃

‣ States in Ramond sectors flesh out type II 
supergravity multiplets, as in RNS string



Curved background



While much of the story is parallel to RNS strings, 
these chiral strings cannot oscillate and amplitudes 
have no      corrections. Field theory, not string theory.α′

‣ On curved background, Einstein eqns should 
be exact conditions for consistency

‣ Linearized eoms for vertex operators came 
from BRST algebra

G(z) G̃(z) =
H

z − w
H = P 2

G̃ = Pµ(ψ
µ
1 − iψµ

2 )

G = Pµ(ψ
µ
1 + iψµ

2 )

rather than OPE with   .T

‣ Expect Einstein eqs from anomaly here, rather 
than from   -functionsβ



H0 = gµν
(
Πµ − Γκ

µλψ̃κψ
λ
)(

Πν − Γρ
νσψ̃ρψ

σ
)
− 1

2
Rκλ

µνψ̃κψ̃λψ
µψν

G0 = ψµΠµ G̃0 = gµνψ̃µ

(
Πν − Γρ

νσψ̃ρψ
σ
)

Classically, the only non-trivial Poisson bracket is
                    , reflecting the existence of ambitwistors {G0, G̃0} = H0

Though the action remains free, the currents are 
deformed

S =

∫

Σ
Pµ∂̄X

µ + ψ̃µD̄ψµ =

∫

Σ
Πµ∂̄X

µ + ψ̃µ∂̄ψ
µ

D̄ψµ = ∂̄ψµ + Γµ
νλψ

ν ∂̄Xλ Πµ = Pµ + ψ̃νγ
ν
µλψ

λ

Unlike twistor space, ambitwistor space exists for 
any (geodesically complete) manifold.



This theory is actually an example of a ‘curved     -
system’. Bosonic versions are subtle, due to anomlies 
in chiral determinants, but easier with SUSY.

[Malikov,Schechtman,Vaintrob; Nekrasov; Witten; Frenkel,Nekrasov,Losev]

βγ

‣ Operator                                             obeys OPEOV = V µ(X)Πµ + ∂νV
µ ψ̃µψ

ν

OV (z)OW (w) ∼
O[V,W ]

z − w
with no higher poles, so

generates space-time diffeomorphisms

While all the basic fields transform correctly,       shows 
that the composite currents                   have anomalous 
behaviour under target space diffeomorphisms. 

(H0,G0, G̃0)

OV



The required modifications of      &      turn out to beG0 G̃0

G̃ = G̃0 + ∂(Lgµν ψ̃µ∂ν
logΩ)G = G0 + ∂(Lψµ∂µ logΩ)

where     is the Lie derivative and Ω =
√
g dX1 ∧ · · · ∧ dX10L

or                                                   in the presence of a 
dilaton.

Ω = e−2Φ(X)√g dX1 ∧ · · · ∧ dX10

OV (z)G(w) ∼ · · ·+ LV G
z − w

OV (z) G̃(w) ∼ · · ·+ LV G̃
z − w

These modified currents have the desired OPEs

respecting target space diffeomorphisms.

To get something sensible, we must add quantum 
corrections to the currents.



To ensure these modified currents remain worldsheet 
primaries, we must also modify the stress tensor

T = T 0 − 1

2
∂2 log(e−2Φ√g)

Again this is similar, but not identical, to the way a 
dilaton is incorporated into the usual string.

S → S +
1

8π

∫

Σ
RΣ log(e−2Φ√g)

         . No field equations imposed here.
‣ Stress tensor OPE takes usual form provided only
d = 10

‣              locally, so short distance OPEs unchangedRΣ = 0



Because the curved space action is trivial, we can 
compute OPEs exactly. One finds

just requires the usual Bianchi identities on          , whileRκ
λµν

G(z) G̃(w) ∼ 2

(z − w)3

(
R+ 4∇µ∇µΦ− 4∇µ∇µΦ− 1

12
H2

)

+2gνλ
(Γµ

κν∂X
κ + ψµψ̃ν)

(z − w)2

(
Rµλ + 2∇µ∇λΦ− 1

4
HµρσH

ρσ
λ

)

+
ψµψν − ψ̃µψ̃ν)

(z − w)2
(
∇κH

κ
µν − 2Hκ

µν∇κΦ
)
+

H
z − w

(also allowing for a B-field)

G(z)G(w) ∼ 0 G̃(z) G̃(w) ∼ 0

where     (        + quantum corrections) generalizes H = H0 P 2



The Einstein, B-field and dilaton eqns are the exact 
conditions for a consistent background

In flat space,                                            and requiringG(z)G̃(w) ∼ H

z − w
=

P 2

z − w

this algebra to hold in the presence of vertex operators 
imposed the scattering equations

Vertex operators are infinitesimal deformations of these 
currents. Requiring the same algebra to hold 
nonlinearly amounts to the full nonlinear field equations

Quantum Scattering
Equations

Einstein Field
Equations



Further directions



Given the worldsheet theory, can look at higher genus.

‣ At genus g, still have ∂̄Pµ(z) =
n∑

i=1

kiµ δ(z − zi) dz

but this now implies

basis of H0(Σ,KΣ)

Pµ(z) =
g∑

α=1

!µωα −
n∑

i=1

kiµ ∂ lnE(z − zi; τ)

prime form

‣ Again          is a meromorphic quadratic differential, 
now with                  moduli.

P 2(z)

3g − 3 + n

Higher genus analogue of the scattering equations is
Reszi P

2 = 0 P 2(zj) = 0

at exactly enough points to ensure                identicallyP 2(z) = 0



For example, at genus 1

Pµ(z) =

(
!µ +

n∑

i=1

kiµ
θ′1(z − zi, τ)

θ1(z − zi, τ)

)
dz

and the scattering equations enforce                    

ResziP
2 = 0 i ∈ {1, 2, . . . , n−1}for

P 2(zj) = 0 at any one point zj

‣ Not an arbitrary prescription, but dictated by the 
BRST procedure at higher genus (with moduli)

‣ Agrees with Gross-Mende saddle point when 
[Casali,Tourkine]
n = 4



The genus 1 amplitude is (even spin structure part)

M1 =

∫
d10! dτ δ̄(P 2(zn; τ))

n∏

i=1

δ̄(ki · P (zi; τ))

×
∑

α,β

(−1)α+βZα,β(τ) Pfaff
′(Ψ) Pfaff ′(Ψ̃)

where the Pfaffians come from free fermion correlators 
on the torus. We’ve checked the amplitude has:

‣ correct behaviour in separating degeneration

‣ correct behaviour in IR limit 

‣ correct      tensor structure at four points                 
and is the integral of a rational function

R4

[Casali,Tourkine]

but do not yet have a complete proof this is gravity.



Conclusions



I’ve argued that the CHY formulation of massless 
amplitudes really means there’s an underlying theory in 
the space of light rays

‣Hybrid form of complexified worldline & infinite tension 
chiral string
‣ Spectrum contains only massless states. Amplitudes are 
CHY formula for gravity
‣ Scattering equations are the avatars of nonlinear field 
equations



I’ve argued that the CHY formulation of massless 
amplitudes really means there’s an underlying theory in 
the space of light rays

‣Can we prove loop formula is correct?
‣How many other models exist? (e.g. Einstein-Yang-Mills)
‣Compute on other backgrounds? Are there worldsheet 
instantons?

There are many open questions

‣Hybrid form of complexified worldline & infinite tension 
chiral string
‣ Spectrum contains only massless states. Amplitudes are 
CHY formula for gravity
‣ Scattering equations are the avatars of nonlinear field 
equations



Thank you



C

Can also regard ambitwistors as
PT ∗C for any Cauchy surface C


