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Abstract We prove existence and regularity of critical points of arbitrary degree for a
generalised harmonic map problem, in which there is an additional nonlocal polyconvex
term in the energy, heuristically of the same order as the Dirichlet term. The proof of regular-
ity hinges upon a special nonlinear structure in the Euler–Lagrange equation similar to that
possessed by the harmonic map equation. The functional is of a type appearing in certain
models of the quantum Hall effect describing nonlocal Skyrmions.
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1 Introduction and statement of results

1.1 Introductory discussion

We study weak solutions of the Euler–Lagrange equations for the functional

V(φ) = 1

2

∫

�

⎛
⎝|∇φ|2 + 2φ · B(x)+ κ

∫

�

( jφ(x)− σ(x))K (x, y)( jφ(y)− σ(y)) dy

⎞
⎠ dx

(1)

where � = (R/2πZ)2 is the two dimensional torus. Smooth functions on � coincide with
smooth, 2π-periodic functions on R

2. The unknown φ is a map from � to the unit sphere
S2, embedded in R

3. The constant κ > 0 is given, and B : � → R
3 and σ : � → R are

given smooth periodic functions. In the third term

K (x, y) = (−�)−1(x, y)
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524 S. Demoulini, D.M.A. Stuart

is the integral kernel of the inverse negative Laplacian while jφ is the topological charge
density

jφ(x) = 1

2
εabφ · ∂aφ × ∂bφ.

Here we write × for the cross product in R
3 and εab for the antisymmetric tensor, with

ε12 = +1, which defines the standard complex structure on �. Thus the nonlocal term can
be regarded as a kind of Coulomb interaction energy for the charge density jφ − σ , which is
made up from a topological density jφ and a given background density σ . It is an immediate
consequence of degree theory ([1, Sect. 7.5A]) that for φ ∈ C∞(�; S2)∫

jφdx ∈ 4πZ

(since it is the pull-back of the area of the sphere). Further by density of C∞(�; S2) in
H1(�; S2) ([22, Sect. 4]) the degree is a well defined integer valued function on H1(�; S2),
which is constant on connected components. We study existence and regularity of critical
points of (1) subject to the additional topological constraint∫

�

jφ(x) =
∫

�

σ(x)dx = 4πd ∈ 4πZ (2)

for fixed d . Action functionals of this type have been introduced in [15] for the continuum
description of magnetisation in the fractional quantum Hall effect. The quantum Hall effect
refers to the phenomenon first observed by Hall in which an effectively two-dimensional
conducting sample is subjected to an electromagnetic field and the induced current (or mea-
sured conductivity) is perpendicular to the electric field. More recently phycisists observed
that the conductivity in fact takes only quantised values (which are rational multiples of a
quantity depending only on the electric charge and a universal constant). The explanation
and modelling of this phenomenon has been linked to the observation that the spins also do
not align with the induced magnetic field but form magnetic microstructure. In a continuum
model the magnetisation can be described as an S2 valued function and it is in this context
that functionals of the type of (1) have been discussed. In particular in [15] a rather gen-
eral energy functional is written down which contains, amongst other terms, the nonolocal
Skyrme (i.e. the third) term in (1). Many variants have appeared in the literature, for example
in [24] the functional (1) but with K (x, y) = |x − y|−1 appears. Also there are other non-
local variants of the harmonic map problem describing magnetic microstructure in different
physical situations, for example [5] in which regularity results are proved.

If B = 0 and κ = 0 the functional (1) is just the Dirichlet energy, whose correspond-
ing critical points are called harmonic maps. Thus in mathematical terms the functional (1)
involves a modification of the harmonic map energy by a nonlocal term of Skyrme or poly-
convex type [2,23]: indeed, if K (x, y) = δ(x − y), the additional energy is proportional to
|dφ ∧ dφ|2. Harmonic map problems involving additional terms in the energy like this were
introduced by Skyrme [23] and are studied as a phenomenological theory of nucleons. Exis-
tence theorems for minimisers of the Skyrme functional have been proved in [10,11] in the
original three space dimensional case, and in [17] in the two dimensional case, via the direct
variational method. There are many open problems regarding Skyrmions, particularly sym-
metry and regularity [12,16,18,19]. We show in this article the existence and C∞ regularity
of critical points of the nonlocal Skyrme functional (1) of arbitrary degree. This existence
statement is in contrast to the case of harmonic maps where critical points do not exist for
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Existence and regularity for generalised harmonic maps 525

degree ±1 (see the discussion following Theorem 1 and in Sect. 4). We therefore include
a discussion of the limit κ → 0+, showing weak, but generally not strong, convergence of
critical points.

For harmonic maps on two dimensional domains regularity was proved by Helein [14].
The proof hinged upon a special jacobian structure occuring in the Euler–Lagrange equation.
Of the additional terms in (1) the middle term, which is linear in φ, can easily be handled
as a mild perturbation. However, the additional nonlocal term is (heuristically speaking) of
the same order as the Dirichlet term |∇φ|2 (since, as discussed in Sect. 1.3, the fundamental
solution K = (−�)−1 defines an operator

K : f �→
∫

K (·, y) f (y)dy

of order −2 and each jφ involves two derivatives). In spite of this we show that the same
jacobian structure is still present in the Euler–Lagrange equation for (1) and deduce conse-
quences for regularity. Thus the functional (1) is to be thought of heuristically as another scale
invariant energy whose structure implies regularity through the special jacobian type nature
of the Euler–Lagrange equation. (Of course the lower order terms involving B, σ break the
scale invariance but they are less important from the regularity perspective.)

Regarding existence, direct minimisation of (1) seems to fail in 2 dimensions. Instead we
prove existence of critical points following a scheme used by Sacks and Uhlenbeck in [21]:
we approach minimisers of V by minimisers of weakly lower semi-continuous functionals
Vp obtained by replacing the Dirichlet energy term by (essentially) the p-energy, see (19).
This gives the proof of existence of critical points with arbitrary degree d ∈ Z.

1.2 Statement of results

We now write down the equations explicitly and state our main result. There are two useful
formulations of the Euler–Lagrange equation. Firstly, the standard form of the Euler–Lag-
range equation is

−�φ − |∇φ|2φ − κ∂ jφ × (
εi jφ∂ jK( jφ − σ)

) = −(B − φ · Bφ). (3)

The alternative formulation of the Euler–Lagrange equation is as a conservation law ([14,
theorem 1.3.1]):

∇ · J = φ × B (4)

where J is the R
3 valued vector field given by

Ji = φ × ∂iφ + κεi jφ∂ jK( jφ − σ). (5)

Remark Equation (4) can be obtained by using variations of the form

φε = φ + εζ ∧ φ
with ζ · φ = 0; note |φε |2 = 1 + ε2|ζ ∧ φ|2 and so |φε | = 1 + O(ε2) so that further
normalisation is not necessary for computing the Euler–Lagrange equation. Equivalently, (4)
arises when the Eq. (3) is projected on the tangent space of S2 (c.f. [14, Chap. 1.3.1]):

−φ ×�φ − φ × (∂iφ × εi jφ∂ jK( jφ)) = −φ × B (6)

which is equivalent to (4). Noting also that (3), projected in the direction in R
3 parallel to φ,

is automatically zero we deduce that φ ∈ C∞(�; S2) is a solution of (3) if and only if it is a
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526 S. Demoulini, D.M.A. Stuart

solution of (4). The vector field J also emerges from the Noether theorem as a consequence
of the symmetries of S2 (with the standard metric induced from the Euclidean metric of R

3)
and of the functional density in (1).

This is our main theorem:

Theorem 1 Given d ∈ Z, κ > 0 and smooth periodic functions B ∈ C∞(�; R
3) and

σ ∈ C∞(�) such that (4π)−1
∫
�
σ = d there exists a smooth critical point of V of degree

d, i.e. there exists φ ∈ C∞(�; S2) satisfying (2) and (3).

As discussed in Sect. 4, the corresponding result is not true for κ = 0,B = 0, d = ±1 as
can be deduced by comparison with a classical non-existence result of Eells and Wood [9].
To explore this further we study the limit as κ → 0+. We show in Sect. 4 that critical points
of V in H1(�, S2) tend weakly in H1, as κ → 0+, to a critical point of

E(φ) = 1

2

∫

�

(|∇φ|2 + 2φ · B(x)
)

dx . (7)

However, the degree can, and in certain cases must, change in this limit and we show this
occurs by bubbling off of harmonic spheres.

The proof of the main theorem involves the construction of weak solutions which are then
shown to be smooth. Here is the definition of weak solution:

Definition 2 A weak solution of (3) is a function φ ∈ H1(�; R3) such that |φ| = 1 almost
everywhere, jφ ∈ H−1 and with the property that if η ∈ H1(�; R

3) ∩ L∞(�; R
3) then∫

�

∇η · ∇φ − η ·
[
|∇φ|2φ + κ∂iφ × (

εi jφ∂ jK( jφ − σ)
)]+η · (B − φ · Bφ)dx = 0, (8)

or, equivalently, ∫

�

(∇η · ∇φ − η · ∂ jφ × J j + η · (B − φ · Bφ)
)

dx = 0 (9)

where J is defined in (5), and is automatically square integrable under the above assumptions.

Remark (3) implies (4) weakly, i.e. a weak solution of (3) satisfies (4) in the sense that∫

�

∇ζ · J + φ × B · ζdx = 0

∀ζ ∈ H1(�; R
3).

Proof Take η = φ × ζ as test function in (8) with ζ ∈ C1(�; R
3) and use φ · ∇φ = 0

to deduce the result for such ζ . Then the statement follows by the density of C1(�; R
3) in

H1(�; R
3) and the observation that J is automatically square integrable. 	


An important feature of the harmonic map equation, identified by Helein, and also shared
by (3), is the jacobian structure. For (3) this amounts to the fact that it is possible to rewrite
it as

−�φ = ∂iφ × (φ × ∂iφ)+ ∂iφ × κεi jφ∂ jK( jφ − σ)− (B − φ · Bφ)

= ∂iφ × (φ × ∂iφ + κεi jφ∂ jK( jφ − σ))− (B − φ · Bφ)

= ∂iφ × Ji − (B − φ · Bφ) (10)
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Existence and regularity for generalised harmonic maps 527

where J is as in (4) and (5). This has consequences for regularity used in the Sect. 3.
Finally it is also useful to consider (φ, u), where u = u(φ) and

u(φ) ≡ −�−1( jφ − σ) = K( jφ − σ), (11)

as solutions of the system

−�φ = ∇φ × J − (B − φ · Bφ) (12)

Ji = φ × ∂iφ + κφεi j∂ j u (13)

−�u = ( jφ − σ). (14)

Definition 3 A pair (φ, u) ∈ H1(�; S2) × H1(�) is a weak solution of (12)–(14) if jφ ∈
H−1, if (14) holds as an equality in H−1 and if (12) holds in the sense that

∫

�

∇η · ∇φ − η ·
[
|∇φ|2φ + κ∂iφ × (

εi jφ∂ j u
)] + η · (B − φ · Bφ)dx = 0 (15)

for all η ∈ H1(�; R
3) ∩ L∞(�; R

3).

1.3 Notation

We work with the spaces Hs(�) of periodic distributions T : C∞(�) → R whose fourier
coefficients T̂ (n) = (2π)−2T (ein·x),n ∈ Z

2, satisfy

|T |2s =
∑

(1 + |n|2)s |T̂ (n)|2 < ∞.

We also denote by Ḣ s the corresponding spaces of distributions with zero mean, i.e.

Ḣ s = {T ∈ Hs : T̂ (0) = 0}.
These spaces have obvious generalisations to spaces of vector valued distributions. For s ≥ 0
Hs(�; S2) is made up on R

3 valued functions : � → R
3 such that |u(x)| = 1 almost every-

where.
We use the following basic facts:

• For any T ∈ Ḣ s there is a unique distribution u ∈ Ḣ s+2 which satisfies −�u = f with
fourier coefficients û(n) = T̂ (n)/n ·n. In particular for s = −1 we have a bounded linear
map,

K = (−�)−1 : Ḣ−1 → Ḣ1,

which is used to define u(φ) in the text.
• For integrable f we write

K f (x) =
∫

�

K (x, y) f (y)dy

and 〈 f,K f 〉 = ∫
�

∫
�

K (x, y) f (x) f (y)dxdy is equivalent to the H−1 norm on periodic
functions f ∈ Ḣ−1 ∩ L1 of zero mean.
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528 S. Demoulini, D.M.A. Stuart

We also use spaces W s,q(�), s ∈ Z
+, 1 ≤ q ≤ ∞ of measurable periodic functions

whose weak derivatives up to order s can be represented by L p functions. The corresponding
spaces of vector and S2 valued functions are defined in the usual way as above. The subscript
0 is used to indicate zero boundary values in the trace sense as usual.

We make use of the Sobolev inequality

|w|
L

2q
2−q (B(x0,r))

≤ C1(q)|∇w|Lq (B(x0,r)) q < 2 (16)

valid for w ∈ W 1,q
0 (B(x0, r)) , and the Calderon–Zygmund estimate

|w|W 2,q (B(x0,r)) ≤ C2(q)|�w|Lq (B(x0,r)), 1 < q < ∞ (17)

valid for w ∈ W 2,q(B(x0, r)) ∩ W 1,q
0 (B(x0, r)) where C1(q),C2(q) depend on q but are

independent of r for r < 1.

Lemma 4 Assume u ∈ W 1,q
0 (B(r)), is the weak solution of

−�u = ∇ · F + f F ∈ Lq(B(r)), f ∈ L∞(B(r))

in a ball B(r) of radius r < 1 with zero boundary data. For 1 < q < ∞ there exists a
number c = c(q), independent of r < 1, such that

|∇u|qLq ≤ c
(
|F |qLq + r2+q | f |qL∞

)
.

all norms being taken on B(r)).

Proof This can be proved by scaling from the case r = 1. For r = 1 the inequality involving
F is just the Calderon–Zygmund estimate, while that involving f can be proved, for example,
by writing down the integral kernel explicitly and applying the generalised Young inequality.

	


2 Existence

We use an approximation scheme which is a natural extension of that used in [21]. We aim
to construct solutions of (3) with specified degree

deg(φ) = 1

4π

∫

�

jφ(x)dx = 1

4π

∫

�

σ(x)dx = d ∈ Z (18)

by means of a study of the convergence properties of minimisers φp of the functional

Vp(φ) = 1

2

∫

�

(
(1 + |∇φ|2) p

2 − 1 + 2B · φ + κ|∇u(φ)|2)dx (19)

subject to the constraint

φ ∈ Sp ≡
{
φ ∈ W 1,p(�; S2) : 1

4π

∫

�

jφp (x)dx = d.
}

(20)

Observe that V2 = V since

u(φ) = K( jφ − σ).
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Existence and regularity for generalised harmonic maps 529

We will show that as p → 2+ the minimisers converge to φ ∈ H1(�, S2) with the same
degree d , which solves (3) in the sense of Definition 2. The first step is the construction of
minimisers for p > 2.

Lemma 5 (Minimisation of Vp) For 2 < p there exists φp ∈ C∞(�; S2) satisfying (20)
such that

Vp(φp) = min{Vp(φ) : φ ∈ W 1,p(�; S2) and deg φ = 1

4π

∫
jφ = d}

and
−∂ j

( p

2
(1 + |∇φp|2)

p−2
2 ∂ jφp

) − ∂ jφp × J p
j (φp)+ (B − φp · Bφp) = 0 (21)

where

J p
i (φ) = p

2
(1 + |∇φ|2) p−2

2 φ × ∂iφ + κεi jφ∂ jK( jφ − σ).

Furthermore, the minimiser satisfies

∂ j J p
j (φp) = φp × B. (22)

Proof Observe that, for each fixed p > 2,

Vp(φ) ≥ −2
(
|�| + |B|2L2(�)

)
+ 1

2
|∇φ|p

L p(�) + 1

2
κ|∇u(φ)|2L2(�)

(23)

since |φ| = 1. Therefore, we may assume the existence of a minimising sequence of smooth
S2 valued functions φn ∈ Sp such that

Vp(φn) → inf
φ∈Sp

Vp(φ),

φn is weakly convergent in W 1,p(�), and with jφn weakly convergent in H−1(�) (or equiv-
alently u(φn) = −�−1( jφn − σ) is weakly convergent in H1(�)). By Morrey’s lemma and
the assumption p > 2 we have a uniform bound on the Holder semi-norm

|φn(x)− φn(y)| ≤ c|x − y|1− 2
p

with c independent of n. Consequently the sequence is equi-continuous and by the Arzela-
Ascoli theorem there exists a subsequence (also called (φn)n) and φp ∈ W 1,p ∩ C(�) such
that, as n → ∞,

φn −→ φp uniformly on �

φn −⇀ φp weakly in W 1,p(�).

As φn −⇀ φp in W 1,p , it follows that the sequence jφn = φn · ∂1φn × ∂2φn is bounded in

L
p
2 and so for a subsequence jφn −⇀ g in L

p
2 for some g, which then also implies the L1

weak convergence of jφn since p
2 > 1. In addition ( jφn ) is bounded in H−1(�) (as follows by

the functional in (19)). We now identify g as φp ·∂1φp ×∂2φp . For this, the antisymmetrising
property of the jacobian is useful:

εi j∂iφn × ∂ jφn = εi j∂i (φn × ∂ jφn).

(This is evident as an identity for C2 functions. For H1 functions it holds as an equality of
distributions, by density of smooth S2 valued functions [22, Sect. 4]). Since the left hand side
is bounded in L

p
2 , while the right hand side is bounded in W −1,p , we have for a subsequence

∂i (φn × ∂ jφn) −⇀ τi j weakly in L
p
2 ∩ W −1,p
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530 S. Demoulini, D.M.A. Stuart

for some τi j ∈ L
p
2 ∩ W −1,p . We first show that the weak limit of φn × ∂ jφn is φp × ∂ jφp ,

from which the limit of jφn will follow. Since φn −→ φp uniformly it follows that
φn×∂φn ⇀ φp×∂φp weakly in L p (ifχ ∈ L p′

(�) then
∫
χφn×∂ jφn −→ ∫

χφp×∂ jφp

since χφn −→ χφp strongly in L p′
because φn −→ φp uniformly and ∂ jφn ⇀ ∂ jφp

weakly in L p). Thus ∂i (φn × ∂ jφn) ⇀ ∂i (φp × ∂ jφp) ≡ τi j weakly in W −1,p and also

weakly in L
p
2 by the jacobian property above. Therefore εi j∂iφn ×∂ jφn ⇀ εi j∂iφp ×∂ jφp

weakly in W −1,p ∩ L
p
2 . From this follows that

jφn −⇀ jφp weakly in L
p
2

(since if χ ∈ L(
p
2 )

′
then∫
χεi jφn · ∂iφn × ∂ jφn −→

∫
χεi jφp · ∂iφp × ∂ jφp

using again the uniform convergence of φn). Thus we conclude that∫

�

(1 + |∇φp|2)
p
2 dx ≤ lim inf

n

∫

�

(1 + |∇φn |2) p
2 dx (24)

and
1

4π

∫

�

jφp (x)dx = lim
n

1

4π

∫

�

jφn (x)dx = d. (25)

From this we now deduce information about the convergence of u(φn) = −�−1( jφn − σ).
Since the jφn are bounded and weakly convergent in H−1 ∩ L p/2 the u(φn) are bounded in

H1 ∩ W 2, p
2 by the Calderon–Zygmund estimate. Furthermore,

u(φn) ⇀ (−�)−1( jφp − σ) ≡ u(φp) weakly in H1 ∩ W 2, p
2 (26)

(since if u∗ is the weak limit of u(φn) then since jφn ⇀ jφp weakly in H−1 ∩ L p/2 we have

lim
n

∫ (
�u(φn)+ ( jφn − σ)

)
χ dx = lim

n

∫ (
u(φn)�χ + ( jφn − σ)χ

)
dx

=
∫ (

u∗�χ + ( jφp − σ)χ
)
dx

for all χ ∈ C∞. But also
∫
�

u∗ = lim
∫
�

u(φn) = 0 and hence u∗ = u(φp) as claimed).
Thus we have proved that∫

|∇u(φp)|2dx ≤ lim inf
n

∫
|∇u(φn)|2 (27)

which together with (24),(25),(26) and the linearity of the third term in Vp proves thatφp ∈ Sp

and

Vp(φp) ≤ lim inf
n

Vp(φn) = min
φ∈Sp

Vp(φ)

completing the proof that the minimum of Vp in the constraint set Sp is attained at the point
φp .

The minimiser φp ∈ W 1,p(�; S2) is a weak solution of the Euler–Lagrange equation (44)
by the usual arguments. (The constraint (20) does not affect the derivation since the degree is
unchanged by a small C1 change in φ because it is integer valued). We now discuss regularity.
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Since p > 2 the function φp is Holder continuous by Morrey’s lemma. Also jφp ∈ L p/2 so
that

u p = (−�)−1( jφp − σ) = K( jφp − σ) ∈ W 2,p/2

by the Calderon–Zygmund estimate since p > 2, so that u p ∈ W 1, 2p
4−p . But 4 > p > 2

implies 2p
4−p > 2 so that u p ∈ C

2(p−2)
p . Thus (φp, u p) is a Holder continuous solution of the

second order elliptic system

− ∂ j · ( p

2
(1 + |∇φp|2)

p−2
2 ∂ jφp

) − ∂ jφp × J p
j (φp)+ (B − φp · Bφp) = 0,

−�u p = jφp − σ. (28)

Since p > 2 it follows (as in [21]) by general theory [13,20] that (φp, u p) is smooth. 	

The next lemma implies strong convergence of the minimisers as p → 2+ in the absence

of energy concentration. To state it we introduce

η = η(r, x0;φ, u, κ) ≡ |∇u|L2(B(x0,r) + κ|∇φ|L2(B(x0,r)

as a measure of “energy” concentrated on the ball B(x0, r) ∈ �. We make use of the follow-

ing inequalities, valid respectively for w ∈ W
1, 4

3
0 (B(x0, r)) and for w ∈ W 2, 4

3 (B(x0, r)) ∩
W

1, 4
3

0 (B(x0, r)):

|w|L4(B(x0,r)) ≤ C1|∇w|
L

4
3 (B(x0,r))

(Sobolev) (29)

|w|
W 2, 4

3 (B(x0,r))
≤ C2|�w|

L
4
3 (B(x0,r))

(Calderon–Zygmund) (30)

where C1,C2 independent of r for r < 1. Below let b ∈ C∞
0 (B(x0, r)) be a cut-off function

satisfying 0 ≤ b ≤ 1, b = 1 for |x − x0| ≤ ρ < r , b = 0 for |x − x0| ≥ ρ+r
2 and

(r − ρ)|∇b(x)| + (r − ρ)2|∇2b(x)| ≤ β.

Lemma 6 (ε- regularity) Let φ ∈ C∞(�) be a solution of (21). Then for 0 ≤ ρ < r , and
the cut-off b (depending on ρ) as above,

(1 − (p − 2)C2 − C1C2η)|bφ|
W 2, 4

3

≤ C2|B|
L

4
3

+ c(β)C2

(
1

r − ρ
|∇φ|

L
4
3

+ 1

r − ρ2 |φ|
L

4
3

)
(31)

where all norms are taken on B(x0, r).

Proof Multiplying φ by the cut-off b gives a smooth function bφ which solves the equation

−�(bφ) = (p − 2)b

〈
∂iφ, ∂ j∂iφ

〉
1 + |∇φ|2 ∂ jφ

− 2∇b · ∇φ − (�b)φ + ∂ jφ × J p
j

(1 + |∇φ|2) p−2
2

b − (B − φ · Bφ)b

(1 + |∇φ|2) p−2
2

which, together with the pointwise inequalities:

|J p(φ)| ≤ (1 + |∇φ|2) p−2
2 |∇φ| + κ|∇u|,

|φ × J p(φ)| ≤ (1 + |∇φ|2) p−2
2 |∇φ|
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532 S. Demoulini, D.M.A. Stuart

and (22), gives (pointwise)
∣∣∣∣−�(bφ)− (p − 2)

〈
∂iφ, ∂ j∂iφ

〉
1 + |∇φ|2 ∂ jφ − ∂ j (bφ)× J p

j

(1 + |∇φ|2) p−2
2

+ b(B − φ · Bφ)

(1 + |∇φ|2) p−2
2

∣∣∣∣
≤ c(β)

( |∇φ|
r − ρ

+ |φ|
(r − ρ)2

)
.

Holder’s inequality, with 3/4 = 1/2 + 1/4, and (29)–(30), imply∣∣∣∣∣
∂ j (bφ)× J p

j

(1 + |∇ φ|2) p−2
2

∣∣∣∣∣
L

4
3

≤ |∇(bφ)|L4(|∇φ|L2 + κ|∇u|L2)

≤ C1η|(bφ)|
W 2, 4

3
(32)

where all the norms are on B(x0, r). Consequently,

|�(bφ)|
L

4
3

≤ (p − 2)|(bφ)|
W 2, 4

3

+C1η|(bφ)|
W 2, 4

3
+ |B|

L
4
3

+ c(β)

( |∇φ|
L

4
3

r − ρ
+

|φ|
L

4
3

(r − ρ)2

)

which implies the inequality as claimed. 	

We can now prove existence of weak solutions:

Theorem 7 Given d ∈ Z and smooth periodic functions B ∈ C∞(�; R
3) and σ ∈ C∞(�)

such that (4π)−1
∫
�
σ = d there exists a weak solution of (3) in the sense of Definition 2

which satisfies (18).

Proof of theorem 7 We consider for 2 < p ≤ 5/2 the minimisers φp just obtained. By (23)
they satisfy the bounds, ∫

�

|∇φp|2 + κ|∇u p|2 ≤ c(d, |B|L2 , |�|) (33)

uniformly in p ∈ (2, 5/2] and consequently there exists a subsequence as p ↓ 2 a function
φ ∈ W 1,2 and measures µ, ν such that

|∇φp|2 + κ|∇u p|2 −⇀ µ weakly in M+(�) (34)

jφp −⇀ ν weakly in M(�) ∩ H−1(�) (35)

φp −⇀ φ weakly in W 1,2(�) and weak∗ in L∞(�) (36)

φp(x) −→ φ(x) for a.e. x ∈ � (37)

where M(�) is the space of signed Radon measures on � and M+(�) the space of non-
negative Radon measures on� ([4, p.75–76]). We now show that this convergence is strong
on the complement of a finite set of points and identify the non-singular parts of µ and ν.

Lemma 8 There exists a finite point set {s1, . . . , sN } such that

µ = (|∇φ|2 + κ|∇u|2)dx +
N∑

i=1

µ({si })δsi (38)

ν = jφdx (39)
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and if x0 /∈ {s1, . . . , sN } there exists ρ > 0 such that φp → φ strongly in W 1,q(B(x0, ρ))

for q < 4. Furthermore
∫
�

jφdx = 4πd.

Proof of lemma 8 We assume we have restricted to a subsequence in p → 2+ for which
(34)–(37) hold. Using the energy bound (33) and the ε−regularity lemma 6 we first obtain
that the absolutely continuous part ofµ is given by |∇φ|2 +κ|∇u|2. Fix arbitrary ε > 0 such
that 2(1 + κ)ε < 1/(4C1C2)

2 . Let

f p = |∇φp|2 + κ|∇u p|2.
Define the set

Sε = ∩r>0{x ∈ � : µ(B(x, r)) ≥ ε/2}.
Clearly Sε is a finite set of cardinality less than 2µ(�)

ε
≤ c(d,|B|L2 ,|�|)

ε
. Consider a point

x0 /∈ Sε ; there exists r > 0 such that µ(B(x0, 2r)) < ε/2. Take a cut-off function χ ∈
C∞

0 (B(x0, 2r) with 0 ≤ χ ≤ 1 on B(x0, 2r) and χ = 1 on B(x0, r). The sequence ( f p)p>2

is bounded in L1 and weak* convergent in M+(�) to µ by (34), so that if p − 2 > 0 is
sufficiently small | ∫

�
f pχ − µ(χ)| < ε/2, which implies

∫

B(x0,r)

f pdx ≤
∫

�

f pχ ≤ µ(χ)+ ε/2 < µ(B(x0, 2r)+ ε/2 < ε.

It follows from the fact that η2
p ≤ 2(1 + κ)

∫
B(x0,r)

f p that

ηp ≡ |∇φp|L2(B(x0,r) + κ|∇u p|L2(B(x0,r) ≤ √
2(1 + κ)ε.

Restrict further p to be such that (p −2)C2 ≤ 1/4, then, together with the choice of ε above,
this implies that 1 − (p − 2)C2 − C1C2η ≥ 1 − 1/4 − C1C2

√
2(1 + κ)ε > 1/2. We apply

(31) on B(x0, r), with cut-off function b as defined prior to Lemma 6, to deduce that for
sufficiently small p − 2

|φp|
W 2, 4

3 (B(x0,ρ))
< M = M(r, ρ, |∇φp|

L
4
3
) < c (40)

where the constant c is independent of p because the L
4
3 norms of φp are bounded indepen-

dently of p by the bound in (33). Since W 1, 4
3 ⊂ L4 is compactly embedded into ⊂ Lq for

q < 4 we deduce that (possibly after redefinition on a set of measure zero)

φ ∈ W 2, 4
3 (B(x0, ρ)) ∩ C

(
B(x0, ρ)

)

and that, for 1 ≤ q < 4,

∇φp −→ ∇φ strongly in Lq(B(x0, ρ)) (41)

φp −→ φ uniformly in B(x0, ρ). (42)

The bound (40) allows us to deduce that jφp , which a priori converges to ν as a signed Radon
measure, in fact converges in L1 strongly near any point x0 /∈ Sε , and hence that near such
points ν can be represented by an L1 function. Write

jφp − jφ = (φp − φ)(∂1φp × ∂2φp)

+ φ
(
(∂1φp − ∂1φ)× ∂2φp + ∂1φ × (∂2φp − ∂2φ)

)
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and then estimate

| jφp − jφ |L1 ≤ |φp − φ|L∞|∂1φp|L2 |∂2φp|L2

+ |φ|L∞
(
|∂2φp|L2 |∂1φp − ∂1φ|L2 + |∂1φ|L2 |∂2φp − ∂2φ|L2

)

with all the norms taken on B(x0, ρ). By (41) and (42) the limit as p → 2 is zero. Thus for
every x0 /∈ Sε there exists ρ > 0 such that

jφp −→ jφ strongly in L1(B(x0, ρ))

and hence ν − jφdx is a measure supported on the finite set {s1, . . . , sN }, i.e. a finite combi-
nation of Dirac measures δsi . We now show that in fact ν = jφdx is absolutely continuous
with respect to Lebesgue measure, and further that

4π deg(φp) =
∫

jφp

p→2+
−→

∫
jφ = 4π deg(φ). (43)

To see this recall that, by the minimisation of Vp in Lemma 5, ( jφp )p is bounded in H−1(�).
But by the above ν = jφdx + ∑

ν({si })δsi and the singular set of {si : ν({si }) �= 0} is a
subset of Sε which is finite. In fact,
Claim ν({si }) = 0 for all si ∈ Sε .
To prove the claim recall that H1 contains unbounded functions in two dimensions (such as
f : r → ln ln |x − s|−2 ∈ H1). Smoothing these gives smooth functions χε , supported in a
neighbourhood of si , which are bounded independent of ε in H1 but with χε(si ) arbitrarily
large for small ε. Integration then gives a contradiction since | ∫ jφpχε | ≤ | jφp |H−1 |χε |H1

but
∫

jφpχε → ν({si })χε(si )+ O(1).
From this claim we deduce that ν = jφdx and hence

∫

�

jφdx = ν(�) = lim
∫

�

jφp dx

by definition of weak convergence of measures, and (43) follows.

Completion of proof of theorem 7 It remains to prove that the weak limit φ just constructed
is in fact a weak solution, i.e. satisfies (8). We start with the weak form of (21):

∫

�

( p

2
(1 + |∇φp|2) p−2

2 ∂ jφp · ∂ jη − η · ∂ jφp × J p
j + η · (B − φp · Bφp)

)
dx = 0 (44)

for all η ∈ C∞(�; R
3), which is automatically satisfied since φp is a smooth classical

solution of (21). It is sufficient to show, by taking the limit p → 2+ of this equation, that
∫

�

(
∂ jφ · ∂ jη − η · ∂ jφ × J j + η · (B − φ · Bφ)

)
dx = 0 (45)

for all η ∈ C∞(�; R
3); it will then automatically hold for η ∈ L∞ ∩ H1. We will prove

(45) by showing that the first and second terms in (44) converge to the corresponding terms
in (45), using Lemma 6. The convergence of the third term in (44) to the corresponding term
in (45) is clear from the bounded convergence theorem.
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Consider the second term: using the final equation in Lemma 5 and the Lq -strong con-
vergence of φp → φ ∀q < ∞, reduces the problem to showing that∫

�

∂ jηφp × J p
j dx →

∫

�

∂ jηφ × J j dx (46)

as p → 2+. Decompose J p as follows:

J p
i (φ) = κεi jφ∂ jK( jφ − σ)+ p

2
(1 + |∇φ|2) p−2

2 φ × ∂iφ

= K(φ)+ Lp(φ).

Again the Lq -strong convergence of φp → φ ∀q < ∞, implies that (46) holds once the
following assertions are proved:

K(φp) −⇀ K(φ) weakly in L
4
3 , and

Lp(φp) −→ L(φ) strongly in L
5
4 .

To prove the first observe that jφp −⇀ jφ weakly in H−1 and hence ∂ j K( jφp − σ) −⇀
∂ j K( jφ − σ) weakly in L2. But again using the strong L4 convergence of φp this implies

that K(φp) converges to K(φ) weakly in L
4
3 .

To prove the second it is necessary to take a covering to allow different treatment near and
away from the singular points si . Around each singular point si take an open ball B(si , ri )

and by choosing the radii small enough they may be assumed disjoint; the complement in�
of all these balls ∩B(si , ri )

c is compact. Around any point x of this complement there is a
ball B(x, ρx ) on which (40) holds for p sufficiently close to 2. By compactness there exists
a finite sub-cover of the complement

∪M
α=1 B(xα, ρα) ⊃ ∩B(si , ri )

c (where ρα = ρxα )

and a number L such that for p < 2 + 1/L

|φp|
W 2, 4

3 (B(xα,ρα))
≤ cα < ∞ (47)

for all α ∈ {1, . . . ,M}. Then by the Sobolev and Rellich theorems we may assume

max
α

sup
2<p<1/L

|∇φp|L4(B(xα,ρα)) = N < ∞, (48)

lim
p→2+ max

α
|∇φp − ∇φ|L10/3(B(xα,ρα)) = 0. (49)

(The 10/3 exponent is chosen for convenience of use in the next paragraph).
On the singular balls we can estimate e.g.

|Lp(φp)|
L

5
4 (B(si ,r))

≤ c|∇φp|p−1
L2 r

8
5 −(p−1)

by Holder’s inequality. Restricting to p < 12/5 and P ≤ 5/4 the exponent 2
P −(p−1) > 1/5.

Consequently for any δ > 0 it is possible to choose max1≤i≤N {ri } sufficiently small that

N∑
i=1

∫

B(si ,ri )

(
|Lp(φp)|5/4 + |L(φ)|5/4

)
dx < δ/4,

uniformly in p < 12/5 by (33).
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Now, pointwise a.e.,

|Lp(φp)− L(φ)| ≤ c1

(
1 + |∇φp|p−2

)
|∇φp − ∇φ| + c2(p − 2)|∇φp|2|∇φ|

which can be estimated in L5/4 using Holder’s inequality with 4/5 = 1/2 + 3/10 and (48)–
(49). It follows that for arbitrary δ > 0 it is possible to choose p − 2 sufficiently small (and
positive) that

∫

B(xα,ρα)

|Lp(φp)− L(φ)|5/4dx ≤ δ/(2M).

Therefore, using (a + b)5/4 ≤ 21/4(a5/4 + b5/4),

∫

�

|Lp(φp)− L(φ)|5/4 ≤ 21/4
N∑

i=1

∫

B(si ,ri )

(
|Lp(φp)|5/4 + |L(φ)|5/4

)
dx

+
M∑
α=1

∫

B(xα,ρα)

|Lp(φp)− L(φ)|5/4dx

< δ

which proves the strong L5/4 convergence of Lp(φp) since δ was arbitrary. To conclude

the proof of theorem 7 we apply an identical argument to show that (1 + |∇φp|2) p−2
2 ∇φp

converges to ∇φ strongly in L5/4 and hence deduce that the first term in (44) converges to
the first term in (45). 	


3 Regularity

We consider (φ, u) ∈ H1(�; S2)× H1(�)which are weak solutions of the system (12)-(14),
as in definition 3, and prove that (φ, u) ∈ C∞(�). We first show continuity and then improve
it to Holder continuity and thence smoothness.

3.1 Continuity

We show continuity of φ as a consequence of Wente’s lemma and an observation analogous
to that made for harmonic maps by Helein:

Theorem 9 Given a weak solution (φ, u) of (12)–(14), as in definition 3, φ is continuous
and in fact φ ∈ C(�) ∩ W 2,1(�) ∩ H1(�).

Proof The crucial point is that (3) can be rewritten in the jacobian form (10). This will allow
us to apply an immediate extension of Wente’s lemma to deduce the continuity of φ. This
works because (4) implies that ∇ · J ∈ L∞, so that the gradient part of J appearing in the
Hodge decomposition is more regular than L2 (which is all that is known a priori). Here are
the details.

By the Hodge decomposition

J = ∇a + ∇⊥b
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where �a = ∇ · J and �b = ∇⊥ · J . (Here a, b ∈ R
3 and ∇⊥ · J ≡ ∂2J1 − ∂1J2.) Thus

(10) can be written equivalently as

−�φ = ∇φ × ∇⊥b + f (50)

where f = ∇φ × ∇a − (B − φ · Bφ). By (4) it follows that ∇ · J ∈ L∞, and so by (17)
a ∈ W 2,q for all 1 < q < ∞ which implies a ∈ C1(�). Therefore f ∈ L2 whereas initially
one only has f ∈ L1. It follows that a weak solution φ of (3) and (50) can be decomposed
as φ = ψ + η where

−�ψ = ∇φ × ∇⊥b

−�η = f.

By Wente’s lemma [14,27] ψ ∈ C(�) and by elliptic theory η ∈ H2 ⊂ C(�). Therefore

φ ∈ C(�) ∩ H1(�).

Thus the jacobian structure together with Wente’s lemma yields continuity as for har-
monic maps. In fact, for harmonic maps it is also true that φ ∈ W 2,1, again by virtue of the
jacobian determinant in (50), using [7] or [26, Chap. 13, Proposition 12.5]: as ∇⊥b ∈ L2 is
divergence-free, we have that ∇φ × ∇⊥b ∈ H1

loc, the local Hardy space. Therefore, if, as
above, ψ solves

−�ψ = ∇φ × ∇⊥b ∈ H1
loc

then ψ ∈ W 2,1(�) by the definition of the Hardy space as the subset of L1 stable under
action of singular integrals ([25, Chap. 3] or [14, Theorem 3.2.9]). Recalling that W 2,1(�) is
continuously embedded in C(�) this also gives an alternative proof of continuity. 	

3.2 Holder continuity and smoothness

In the case of harmonic maps (κ = 0 and B = 0) it can be deduced from general elliptic
theory, once continuity is known, that the harmonic map is smooth (see [3] for an argument
specific to S2 valued harmonic maps, or [26, Chap. 13] for a more general framework). In the
general κ > 0 case it seems to be necessary to prove Holder continuity in order to deduce
smoothness from general theory. This is due to the structure of the term jφ , which is not
evidently in the Hardy space as a consequence of Theorem 9, and so continuity of u = u(φ)
is not assured without further work. A technique to exploit the jacobian structure present in
the harmonic map equation to prove Holder continuity directly was given by Chang et al. in
[6]. Here we show that this technique can be modified to prove regularity for weak solutions
of (12)–(14) as in Definition 3. The main step towards establishing Holder continuity is
achieved by the following Morrey growth type estimate:

Lemma 10 Fix1 p ∈ (2,∞). For φ as in Theorem 9 there exist positive numbers θ0, β, γ,

s < 1
4 and a sequence {Ak}∞k=0 of vectors in R

3 such that if
∫

BR0

|∇φ|2 + |∇u|2 < θ0

1 In this section we study only critical points of (1) and the exponent p has nothing to do with that appearing
in the modified energy (19).
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then for any R ∈ (0, R0)∫

Bsk+1 R

|φ − Ak+1|p ≤ sγ
∫

Bsk R

|φ − Ak |p dx + β(sk R)2+2p (51)

and

|Ak+1 − Ak | ≤ c

⎛
⎜⎝ 1

|B(sk R)|
∫

Bsk R

|φ − Ak+1|p

⎞
⎟⎠

1
p

. (52)

Proof Given A0 ∈ R
3 there exists r ∈ [ R

2 , R] such that
∫

∂Br

|φ − A0|p ≤ 4

R

∫

BR

|φ − A0|p. (53)

Let h satisfy

−�h = 0

h − φ ∈ W 1,2
0 (Br )

which implies

supz∈B( r
2 )

|∇h(z)|p ≤ c1
r1+p

∫
∂Br

|h − A0|p ≤ c2
Rr1+p

∫
B(R) |φ − A0|p (54)

by the Cauchy representation and Holder’s inequality. Therefore,

−�(φ − h) = ∇ · ((φ − A0)× J )− ((φ − A0)× φ × B)− (B − φ · Bφ).

Now apply Lemma 4 with q = 2p
2+p < 2, estimating the first term using Holder’s inequality

with 1
q = 1

2 + 1
p and

|J |2L2(Br )
≤ c

∫

Br

(|∇φ|2 + |∇u|2) ≤ cθ0, for r < R0,

to deduce,

∫

Br

|∇(φ − h)|q ≤ c

⎛
⎜⎜⎝θ

q
2

0

⎛
⎜⎝

∫

Br

|φ − A0|p

⎞
⎟⎠

q
p

+ rq+2

⎞
⎟⎟⎠ . (55)

Now for s < 1
4 we have s R < R

4 < r ≤ R ≤ R0 and the Poincare and Sobolev inequalities
give

1

(s R)2

∫

Bs R

|φ − h(0)|p ≤ c

⎛
⎜⎝ 1

(s R)2

∫

Br

|φ − h|p + 1

(s R)2

∫

Bs R

|h − h(0)|p

⎞
⎟⎠

(because (a + b)p ≤ 2p−1(a p + bp) and s R < r )

≤ c

⎛
⎜⎜⎝

⎛
⎜⎝ 1

(s R)2

∫

Br

|∇(φ − h)|q
⎞
⎟⎠

p
q

+ (s R)p sup
B R

4

|∇h|p

⎞
⎟⎟⎠
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(because h − φ ∈ W 1,2
0 (Br ))

≤ c

⎛
⎜⎝ θ

p
2

0

(s R)2

∫

BR

|φ − A0|p + r
(q+2)p

q

(s R)2
+ s p R p−1

r1+p

∫

BR

|φ − A0|p

⎞
⎟⎠ ,

by (54) and (55). Therefore, recalling that R < 4r ,

∫

Bs R

|φ − h(0)|p ≤ c

⎛
⎜⎝θ p

2
0

∫

BR

|φ − A0|p + s p+2 R p+1

r1+p

∫

BR

|φ − A0|p + r
(q+2)p

q

⎞
⎟⎠

≤ C

⎛
⎜⎝θ p

2
0

∫

BR

|φ − A0|p + s p+2
∫

BR

|φ − A0|p + r
(q+2)p

q

⎞
⎟⎠ ,

for some constant C , which may be assumed to satisfy C > 1 without loss of generality.
Given s < 1

4 and define γ = γ (s) by

sγ = 2Cs p+2.

Observe that by choosing s small we may (and will) ensure that

γ = p + 2 + ln 2C

ln s
∈ (2, p + 2). (56)

Choose θ0 sufficiently small so that θ
p
2

0 < s p+2, so that Cθ p/2
0 + Cs p+2 < 2Cs p+2 = sγ

and then we have
∫

Bs R

|φ − A1|p ≤ sγ
∫

BR

|φ − A0|p + βR
(q+2)p

q

with A1 = h(0) and β = C . Since this applies to any R ≤ R0 and (q + 2)p = 2q(1 + p)
we obtain (51) with k = 0. Finally,

|A1 − A0| = |h(0)− A0|

= 1

|∂Br |

∣∣∣∣∣∣∣
∫

∂Br

|φ − A0|

∣∣∣∣∣∣∣

≤ c

⎛
⎜⎝ 1

|∂Br |
∫

∂Br

|φ − A0|p

⎞
⎟⎠

1
p

.

From this we deduce

R2|A1 − A0|p =
R∫

0

2r |A1 − A0|pdr ≤ c
∫

BR

|φ − A0|pdx
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and hence

|A1 − A0| ≤
⎛
⎜⎝ c

|BR |
∫

BR

|φ − A0|p

⎞
⎟⎠

1
p

(57)

and this completes the proof of the lemma, for some sequence Ak of vectors in R
3, since for

k ≥ 1 (14) is obtained by repeating the proof of (57) with R replaced by sk R. 	

As a corollary we obtain Holder continuity for φ:

Corollary 11 The solution φ ∈ C0,α for some α > 0 determined in (59) below.

Proof Fix x ∈ � and let Xk = Xk(x) be given by

Xk =
∫

B(x,sk R)

|φ − Ak(x)|p

where (Ak(x))k is the sequence of vectors of the lemma above. Then

Xk+1 ≤ sγ Xk + β(sk R0)
2+2p.

By (56) above there exists γ1 ∈ (2, γ ) so that we can write β̃ = βR2+2p−γ1
0 and then

Xk+1 ≤ sγ Xk + β̃Rγ1
0 skγ1

so that for the first three terms we have

X1 ≤ sγ X0 + β̃Rγ1
0

X2 ≤ sγ (sγ X0 + β̃Rγ1
0 )+ β̃sγ1 Rγ1

0

X3 ≤ sγ (s2γ X0 + sγ β̃Rγ1
0 + β̃sγ1 Rγ1

0 )+ s2γ1 β̃Rγ1
0 .

By induction in general

Xk+1 ≤ s(k+1)γ X0 + β̃(sk R0)
γ1

k∑
j=0

s(γ−γ1) j

≤ s(k+1)γ X0 + β̃(sk R0)
γ1

1

1 − sγ−γ1

so that

Xk+1 ≤ s(k+1)γ X0 + β̃sγ1k Rγ1
0

1 − sγ−γ1

≤ Cskγ1 (58)

where C = C(S, γ, γ1, X0, R0). Since γ1 > 2 this also implies by (52)

|Ak+1(x)− Ak(x)| ≤ Cs(γ1−2)k −→ 0

and so the sequence {Ak(x)}∞k=1 has a limit which will be denoted A(x).

Claim 1: A(x) = φ(x) for a.e. x
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Proof By Lebesgue differentiation, we have for a.e. x ∈ �:

|φ(x)− A(x)| =

∣∣∣∣∣∣∣
lim
r→0

1

|B(x, r)|
∫

B(x,r)

(
φ(z)− A(x)

)
dz

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
lim

k→∞
1

|B(x, sk R)|
∫

B(x,sk R)

(
φ(z)− Ak(x)

)
dz

∣∣∣∣∣∣∣

≤ lim
k→∞

⎛
⎜⎝ 1

|B(x, sk R)|
∫

B(x,sk R)

|φ(z)− Ak(x)|pdz

⎞
⎟⎠

1
p

= 0,

and the claim is proved. 	

We now show that, redefining φ on a set of zero measure, Ak(x) converges uniformly to

a Holder continuous function φ(x).

Claim 2: |Ak(x)− Ak(y)| ≤ C |x − y| (γ1−2)
p .

Proof Let R = |x − y| then

|B(x, 2R) ∩ B(y, 2R)| |Ak(x)− Ak(y)|
=

∫

{|z−x |≤2R}∩{|z−y|≤2R}
|Ak(x)− φ(z)+ φ(z)− Ak(y)|dz

=
∫

B(x,2R)

|Ak(x)− φ(z)|dz +
∫

B(y,2R)

|Ak(y)− φ(z)|dz

≤ |Ak(x)− φ|L p(B(x,2R))|B(x, 2R)|1− 1
p

+ |Ak(y)− φ|L p(B(y,2R))|B(y, 2R)|1− 1
p

≤ 2cR
γ1
p |B2R |1− 1

p ,

where the last line follows by (58). Dividing by |B(x, 2R) ∩ B(y, 2R)| ≥ πR2 leads to

|Ak(x) − Ak(y)| ≤ 2cR
(γ1−2)

p and we conclude that the continuous representative of φ is
C0,α with

α = (γ1 − 2)

p
, (59)

concluding the proof of the claim and of Corollary 11. 	

Given Holder continuity smoothness now follows by general theory:

Lemma 12 If the pair is a weak solution of (12)–(14) as in definition 3 and φ is Holder
continuous then (φ, u) ∈ C∞.

Proof First of all observe that the topological density

jφ(x) = 1

2
εabφ · ∂aφ × ∂bφ

123



542 S. Demoulini, D.M.A. Stuart

is the product of a Holder continuous function and a function in the local Hardy space H1
loc,

and as such is itself in H1
loc by [26, Chap. 13, Proposition 12.5]. It follows that u is also con-

tinuous by [26, Chap. 13, Corollary 12.12] since an H1
loc function differs from an element of

H1 by a C∞
0 function ([25, Sect. 5.17]). Therefore, (u, φ) form a continuous weak solution of

the elliptic system (12)–(14) in which the first derivatives appear at most quadratically: this
system satisfies the conditions for [26, Chap. 14, Corollary 12B.5] from which smoothness
follows. 	


4 The harmonic map limit κ → 0+

In this section we discuss the behaviour of the solutions in the limit κ → 0+ in which the
functional becomes (at least for B = 0) the harmonic map functional. This is motivated by
a comparison of theorem 1 with the following classical result of Eells and Wood:

Theorem 13 ([9]) There is no harmonic map of degree ±1 from the two dimensional torus
� to the sphere S2.

This is proved by showing that any such map would have to be holomorphic (or anti-holo-
morphic), and recalling from complex analysis that there is no degree ±1 holomorphic map
� → S2 (since this would give a doubly periodic meromorphic function with exactly one
pole and one zero, which is impossible by [8, Lemma 4.2]). In fact it is proved more generally
in [9] that a degree d harmonic map φ : X → Y between two closed Riemann surfaces is
automatically holomorphic (or anti-holomorphic) if e(X)+|d| > 0, where e(X) is the Euler
characteristic of X .

It follows from a comparison of Theorem 13 with Theorem 1 that the limit κ → 0+
is singular and the convergence of the corresponding solutions must fail to be strong (thus
allowing for a change of the topological degree in the limit). In this section we investigate
this process, showing that the change of topology occurs via bubbling off of harmonic maps
S2 → S2. As a setting for the discussion assume given a sequence κν → 0+ and correspond-
ing smooth solutions φν, uν = u(φν) to the system (12)–(14) satisfying |φν(x)| = 1 and the
uniform bounds

|∇φν |2L2 + κν |∇uν |2L2 ≤ M2

with M independent of ν, and such that

φν −⇀ φ weakly in H1(�) and weak* in L∞(�).

Lemma 14 The weak limit φ is a critical point of E , the functional defined in (7).

Proof Each φν is a smooth solution of

−�φν = ∇ · (
φν × J ν

) − (
φν × (φν × B)

) − (B − φν · Bφν) (60)

where

J ν
i = φν × ∂iφν + κνφνεi j∂ j uν (61)

−�uν = ( jφν − σ). (62)

Also recall that
∇ · J ν = φν × B (63)
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Noting that
√
κν |∇uν |L2 ≤ M we deduce that J ν converges to φ × ∇φ weakly in Lq for

q < 2 (since by Rellich’s theorem φν converges strongly in Lr , r < ∞). Then writing the
weak formulation of (60):∫

�

∇η · (∇φν − φν × J ν
) − η

((
φν × (φν × B)

) + (
B − φν · Bφν

)) = 0 (64)

and letting ν → ∞ it follows again from weak L2 convergence of ∇φν and strong Lr

convergence of φν that the limit satisfies∫

�

∇η · (∇φ − φ × (φ × ∇φ)) − η
((
φ × (φ × B)

) + (
B − φ · Bφ

)) = 0. (65)

Taking the weak limit of (63) implies that∫

�

∇ζ · (φ × ∇φ)+ ζφ × B = 0

for all ζ ∈ H1. Together these imply that φ is a critical point of E . 	

A crucial fact is the following ε−regularity lemma in which we consider a fixed ball

Br = B(x0, r) and concentric sub-balls Bρ′ ⊂ Bρ ⊂ Br for ρ′ < ρ < r .

Lemma 15 (ε- regularity) Let (φν, uν) be as just dscribed. Then if
√
κνC1C2 M < 1

4 and
|∇φν |L2(Br )

< 1
4C1C2

and ρ′ < ρ < r:

|bφν |W 2,4/3(Bρ) ≤ c = c(M, r, ρ, β, |B|
L

4
3 (Br )

) (66)

|bφν |W 2,P (Bρ′ ) ≤ c = c(M, r, ρ, ρ′, β, P, |B|
L

4
3 (Br )

) for all P < ∞. (67)

Proof The first bound is proved by considering the p = 2 version of (31):

(1 − C1C2ην(r))|bφν |
W 2, 4

3

≤ |B|
L

4
3

+ c(β)

(
1

r − ρ
|∇φν |

L
4
3

+ 1

r − ρ2 |φν |
L

4
3

)
, (68)

where the cut-off b was defined just prior to Lemma 6, and

ην(r) = |∇φν |L2(B(x0,r)) + κν |∇uν |L2(B(x0,r)).

For ν large we may assume that
√
κνC1C2 M < 1/4. Then if |∇φν |L2(B(x0,r)) < 1/(4C1C2)

the first term in brackets is greater than 1/2, leading to the inequality (66).
To derive (68) multiply φν by the cut-off b giving a smooth function bφν which solves

the equation

−�(bφν) = −2∇b ·∇φν− (�b)φν+∂ j (bφν)×J ν
j (φν)−∂ j bφν×J ν

j (φν)− (B−φ ·Bφ)b
(69)

which together with the pointwise inequalities

|J ν(φν)| ≤ |∇φν | + κν |∇uν |,
|φ × J ν(φ)| ≤ |∇φ|
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gives (pointwise)
∣∣∣−�(bφν)− ∂ j (bφν)× J ν

j (φν)+ b(B − φ · Bφ)
∣∣∣ ≤ c(β)

( |∇φν |
r − ρ

+ |φν |
(r − ρ)2

)
. (70)

Holder’s inequality implies∣∣∣∂ j (bφν)× J ν
j (φν)

∣∣∣
L

4
3

≤ c|∇(bφν)|L4(|∇φν |L2 + κν |∇uν |L2)

≤ c1ην |(bφν)|
W 2, 4

3
(71)

where all the norms are on B(x0, r). Consequently,

|�(bφν)|
L

4
3

≤ C1ην |(bφν)|
W 2, 4

3
+ |B|

L
4
3

+ c(β)

( |∇φν |
L

4
3

r − ρ
+

|φν |
L

4
3

(r − ρ)2

)

which implies (68).
To derive the second bound first apply the Sobolev inequality to deduce a bound for bφν

in W 1,4(Br ), and hence of φν in W 1,4(Bρ). Now write down (69) but with cut-off supported
in Bρ instead of Br and equal to 1 on Bρ′′ for ρ′′ ∈ (ρ′, ρ). The Calderon–Zygmund estimate
then gives a W 2,2(Bρ′′) bound, which by the Sobolev inequality implies a W 1,P (Bρ′′) bound
for all P < ∞. Again using (69) (but with cut-off supported in Bρ′′ and equal to 1 on Bρ′ )
the Calderon–Zygmund estimate gives (67). 	


Lemma 15 indicates that strong convergence can only fail due to concentration of |∇φν |2,
so we introduce a concentration measure λ ∈ M+(�) such that (restricting to a subsequence)

|∇φν |2 −⇀ λ weakly in M+(�). (72)

The idea is to show first that convergence is strong on the complement of a finite set of points,
and then to analyse the behaviour at those points by a blow up argument.

Lemma 16 There exists a finite point set {s1, . . . , sN } such that

λ = |∇φ|2 +
N∑

i=1

λ({si })δsi (73)

and if x0 /∈ {s1, . . . , sN } there exists ρ0 > 0 such that φν → φ in C1(B(x0, ρ0)).

Proof Firstly we deduce from the ε− regularity lemma 15 that the absolutely continuous part
of λ is given by |∇φ|2. Assume ν is sufficiently large that

√
κνC1C2 M < 1/4, fix arbitrary

ε ∈ (0, 1/(2(4C1C2)
2) and define the set

Sε = ∩r>0{x ∈ � : λ(B(x, r)) ≥ ε/2}.
Clearly Sε is a finite set of cardinality less than 2λ(�)

ε
≤ c = c(M). Let fν = |∇φν |2, and

consider a point x0 /∈ Sε ; there exists r > 0 such that λ(B(x0, 2r)) < ε/2. Take a cut-off
function χ ∈ C∞

0 (B(x0, 2r) with 0 ≤ χ ≤ 1 on B(x0, 2r) and χ = 1 on B(x0, r). The
sequence fν is bounded in L1 and weak* convergent in M+(�) to λ by (72), so that if ν is
sufficiently large | ∫

�
fνχ − λ(χ)| < ε/2, which implies

∫

B(x0,r)

fνdx ≤
∫

�

fνχ ≤ λ(χ)+ ε/2 < λ(B(x0, 2r))+ ε/2 < ε.
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It follows that |∇φν |L2(B(x0,r)) <
1

4C1C2
for such ν and so (66)–(67) hold.

Since W 2,P for P > 2 is compactly embedded into C1
loc we deduce that for small ρ0, and

possibly after redefinition on a set of measure zero,

φ ∈ C1(B(x0, ρ0)
)

and that

∇φν −→ ∇φ uniformly in B(x0, ρ) (74)

φν −→ φ uniformly in B(x0, ρ), (75)

which completes the proof. 	

We now prove, following [21].

Theorem 17 In a neighbourhood of one of the concentration points s j the sequence con-
verges in C1

loc, after rescaling, to a non constant finite energy harmonic map R
2 → S2

(which has an extension to a non constant harmonic map S2 → S2.)

Proof It is immediate from Lemma 15 that if |∇φν |L∞(B(y,r)) ≤ L < ∞ for some r > 0
then y /∈ {s1, . . . , sN } and convergence is strong in a neighbourhood of y. Consequently for
each s j , and each θ > 0, there exists a sequence of points xν → s j such that

bν = max
x∈B(s j ,θ)

|∇φν(x)| = |∇φν(xν)| → ∞.

Define φ̃ν(z) = φν(xi + z/bν) then φ̃ν : B(0, bνθ) → S2 satisfies

|∇φ̃ν(0)| = 1 (76)

|∇φ̃ν(z)| ≤ 1 for |z| ≤ bνθ (77)

−�φ̃ν = ∇φ̃ × J̃ ν − b−2
ν (B − φ̃ν · Bφ̃ν) (78)

J̃ ν = φ̃ν × ∇φ̃ν + κνφ̃νεi j∂ j ũν (79)

−�ũν = ( jφ̃ν − b−2
ν σ̃ν), (80)

where ũν = uν(xν + z/bν) and σ̃ν(z) = σ(xν + z/bν). Notice that the radii of the balls
on which these hold have limit +∞. Therefore on any ball B(0, R) the following hold for
large ν,

sup
|z|≤R

|∇φ̃ν(z)| ≤ 1

∫

B(0,R)

|∇φ̃ν |2 + κν |∇ũν |2 ≤ M2, (81)

(the latter by conformal invariance of the Dirichlet integral). Therefore by a Cantor argument
there exists a subsequence φ̃ν converging in C0

loc to a limit φ. Now the system (78)–(80) is of
the same form as (12)–(14) and so the bounds (66)–(67) proved in Lemma 15 hold on balls
of sufficiently small size (by (77)). As a consequence of the compact embedding of W 2,P

into C1
loc for P > 2 we have φ̃ν → φ in C1

loc and hence φ solves

−�φ − ∇φ × (φ × ∇φ) = 0

in the sense of distributions (since |κν∇ũν |L2(B(0,R)) ≤ √
κνM → 0). The condition

|∇φ̃ν(0)| = 1 implies |∇φ(0)| = 1 which ensures that the limit is a non-constant harmonic
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546 S. Demoulini, D.M.A. Stuart

map, smooth by Helein’s theorem and of finite energy by Fatou’s lemma. Consequently, as
in [21], it has an extension to a smooth harmonic map S2 → S2. 	
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