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Abstract

For a nonlinear Chern-Simons-Schroedinger system on a Riemann surface, we
prove a theorem describing its adiabatic approximation by a Hamiltonian system on
a finite dimensional space, the moduli space of self-dual Ginzburg-Landau vortices,
for values of the Higgs self-coupling constant λ close to the self-dual (Bogomolny)
value of 1. The viability of the approximation scheme depends upon the fact that
self-dual vortices form a symplectic submanifold of the phase space (modulo gauge
invariance). The theorem provides a rigorous description of slow vortex dynamics
in the self-dual limit.

1 Introduction and statement of results

In this article we study vortex dynamics in the Chern-Simons-Schroedinger system (1.1)

introduced by Manton (1997). This is a gauge theoretic generalization of the two di-

mensional nonlinear Schroedinger equation whose static soliton solutions are Ginzburg-

Landau, (also known as abelian Higgs), vortices (Jaffe and Taubes 1982). The article

is organized as follows. We start by writing down the equations, and giving necessary

background including a discussion of the self-dual vortices in §1.4. We then state our

main result, theorem 1.5.2, which describes the adiabatic approximation of vortex mo-

tion in the self-dual limit. This is proved in §2 following a strategy explained in the

context of a simple model problem in §1.6. The proof uses some specialized identities

related to the self-dual (or Bogomolny) structure, presented in §3 (which may be read

separately). Various subsidiary facts and lemmas are given in the appendix.

1.1 The equations

The dependent variables are a complex field Φ(t, x), an electric field E = Ejdx
j and

a magnetic field B(t, x), all defined for (t, x) ∈ R × Σ where Σ is a two dimensional



spatial domain, taken to be a Riemann surface with metric gjkdxjdxk, area form dµg

and complex structure J : T ∗Σ → T ∗Σ (where j, k, . . . take values in {1, 2} and we use

the summation convention). The equations are

Ej +
∂B

∂xj
= −Jkj 〈iΦ, DkΦ〉

i(
∂

∂t
− iA0)Φ = −∆AΦ− λ

2
(1− |Φ|2)Φ

B =
1
2
(1− |Φ|2).

(1.1)

The electric and magnetic field can be combined to give the space-time electromagnetic

field

Fµνdx
µ ∧ dxν = Ejdt ∧ dxj +Bdµg.

This two form is obtained as the commutator of the space-time covariant derivative

D = (D0, D1, D2) = (
∂

∂t
− iA0, D1, D2)

which mediates the coupling in (1.1):

[Dµ, Dν ]Φ = −iFµνΦ, where F0k = Ek, and
1
2
Fjkdx

jdxk = Bdµg. (1.2)

(Greek indices run through 0, 1, 2 and Latin indices through 1, 2 only. Bold face is used

to indicate the spatial part of a vector or one-form etc., except in §3 where time does

not appear at all.)

We now describe this set-up briefly in geometrical terms. Assume given a one di-

mensional complex vector bundle L→ Σ, with a real inner product h locally of the form

〈a, b〉 = h<āb, and corresponding norm |a|2 = 〈a, a〉; if we employ a unitary frame over

some chart then 〈a, b〉 = <āb. We are then solving for an S1 connection on the bundle

L ≡ R × L → R × Σ, with associated covariant derivative D, and a section Φ of L.

To be more explicit, fix a smooth connection on L determined by a covariant deriva-

tive operator ∇, so that the spatial part of D, which will be written D, takes the form

Dj = ∇j− iAj for a real 1-form A = Ajdx
j ∈ Ω1

R(Σ); here ∇ is independent of time. (It

is generally not possible to choose ∇ to be flat, and it will have a curvature, determined

by a function b such that [∇j ,∇k]Φdxjdxk = −ibdµgΦ; it is always possible to choose

b = const. , and we will do this throughout.) In any case, with this procedure the space
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of connections on L can be identified with the space of real one-forms. Then at each

time t ∈ R we are solving for a section Φ(t) of L, a 1-form A(t) = A1(t)dx1 + A2(t)dx2

on Σ, and a real valued function A0(t) on Σ. The electric field is given by

Ej =
∂Aj
∂t

− ∂A0

∂xj

and the magnetic field by

Bdµg = bdµg + dA.

(Here, and elsewhere, we write d in bold face when it is necessary to indicate that only

the spatial part is taken.) The 2-form −iEjdt∧ dxj − iBdµg is the curvature associated

to the space-time covariant derivative D, as in (1.2). For the case Σ = R2, the system

was proposed by Manton (1997), who derived it as the Euler-Lagrange equation for the

Lagrangian (1.8).

Notation 1.1.1 We shall always consider conformal co-ordinate systems on Σ in which

the metric is of the form g = e2ρ
(
(dx1)2 + (dx2)2

)
and the volume element is then

e2ρdx1 ∧ dx2. On functions the Hodge operator acts as ∗f = fdµg = fe2ρdx1 ∧ dx2 and

∗2 = 1, so that ∗dω = e−2ρ(∂ω2
∂x1 − ∂ω1

∂x2 ) for 1-forms ω. On 1-forms ∗(ω1dx
1 + ω2dx

2) =

ω1dx
2 − ω2dx

1, which is just the negative of the complex structure J , represented in

conformal co-ordinates by the anti-symmetric tensor J ji with J1
2 = −1, J2

1 = +1, the other

components being zero. Correspondingly we decompose a one-form as ω = ω(1,0)dz +

ω(0,1)dz̄; in particular for the derivative df = ∂fdz + ∂̄fdz̄, with ∂̄f = 1
2( ∂f
∂x1 + i ∂f

∂x2 ),

and

DΦ = D(1,0)Φ +D(0,1)Φ = ∂AΦdz + ∂̄AΦdz̄,

with ∂̄AΦ = 1
2

(
(∇1 − iA1) + i(∇2 − iA2)

)
Φ etc.; see §3. For a 1-form A we write the

co-differential d∗A = −divA, with divA = e−2ρ(∂A1
∂x1 + ∂A2

∂x2 ), and the Laplacian on real

functions is ∆f = e−2ρ ∂2f
∂xi∂xi , (with the summation convention), and on sections of L

the covariant Laplacian is −∆AΦ = e−2ρ(D2
1 +D2

2)Φ when a unitary frame is used. The

operators div , ∗d,∆ (resp. ∆A) all depend on g (resp. g, h), but this is not indicated as

g, h are fixed, and similarly dependence of constants in estimates on (Σ, g) and h will be

suppressed throughout the article.
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Notation 1.1.2 We are dealing with sections of smooth vector bundles V over Σ with

an inner product 〈·, ·〉 induced from the Riemannian metric g and the metric h on L in

the standard way; since g, h are fixed throughout they will not be indicated. Thus, for

example,

|DΦ|2 = e−2ρ
(
〈D1Φ, D1Φ〉+ 〈D2Φ, D2Φ〉

)
.

We write Ω0(V ) for the smooth sections of V and Ωp(V ) for the smooth p-forms taking

values in V . We will make use of the Sobolev spaces Hs(V ) of sections of V whose

coefficient functions (in any frame over any open set Ω ⊂ Σ) lie in the standard Sobolev

space Hs(Ω); the corresponding Sobolev space of V -valued p-forms is denoted Hs(Ωp(V )).

In §1 and §2 we shall generally omit explicit reference to the vector bundle, since this is

usually clear, and write Hs in place of Hs(V ) etc. (and ‖ · ‖Hs for the corresponding

norms). However if it is necessary to emphasize that time is fixed, and the norm is taken

over Σ, we shall write Hs(Σ).

Further notational conventions are given in the appendix and in §3, particularly in

relation to the complex structure (see also the textbook [12, §9.1] for a treatment of the

background material).

1.2 Existence theory for the Cauchy problem

Inherent to the system (1.1) is the property of gauge invariance: let χ(t, x) be a smooth

real valued function, then (A,Φ) is a smooth solution if and only if (dχ + A,Φeiχ) is.

This introduces a large degeneracy to the solution space which may be removed by a

choice of gauge in various ways. We will adopt here the following gauge condition which

involves the time derivatives Ȧ, Φ̇, of A,Φ:

div Ȧ− 〈iΦ, Φ̇〉 ≡ e−2ρ(∂1Ȧ1 + ∂2Ȧ2)− 〈iΦ, Φ̇〉 = 0. (1.3)

We make this choice because it allows a convenient description of the complex and

symplectic structures on the moduli space of vortices (see remark 1.4.3 and §3), and also

is useful in the derivation of energy estimates for the time derivatives (see §2.2 and §2.3).

In this gauge global existence can be stated as follows:
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Theorem 1.2.1 (Global existence in gauge (1.3)) Consider the Cauchy problem for

(1.1) with initial data Φ(0) ∈ H2(Σ) and A(0) ∈ H1(Σ). There exists a global solution

satisfying (1.3) and the estimate

|Φ(t)|H2(Σ) ≤ ceαe
βt

(1.4)

for some positive constants c, α, β depending only on (Σ, g), the equations, and the initial

data. The solution has regularity Φ ∈ C
(
[0,∞);H2(Σ)

)
∩ C1

(
[0,∞);L2(Σ)

)
and A ∈

C1
(
[0,∞);H1(Σ)

)
. If the initial data are smooth, then the solution is also smooth.

It is explained in appendix A.3 how to derive this theorem from the global existence

result of [10], which is stated in another gauge. Bounds of the type (1.4) were derived

in [8] for the cubic nonlinear Schroedinger equation on R2, by means of the inequality

|u|L∞ ≤ C[1 +
√

ln(1 + ‖u‖H2)], (1.5)

valid for u ∈ H2(R2) and with C = C(‖u‖H1). The proof of global regularity for

(1.1) depends on a covariant version of this inequality (given in lemma A.11), and a

careful treatment of various commutator terms [Dµ, Dν ] which indicates that they have

a comparable strength to the cubic nonlinear term.

In conclusion, theorem 1.2.1 provides a global solution which is a continuous curve

in the space H2 where for s ∈ R we define

Hs ≡ {(A,Φ) ∈ Hs−1(Σ)×Hs(Σ)}, (1.6)

with the corresponding norm ‖ · ‖Hs . From now on we will consider only (A,Φ) which

lie (at a given time) in the space H2. The gauge group at fixed time is given by

G ≡ {g ∈ H2(Σ;S1)} (1.7)

and acts on H2 according to g · (A,Φ) = (A + g−1dg,Φg). (Restricting to the set where

Φ is not identically zero the action is free and gives a principal G−bundle structure.

The gauge condition (1.3) can be then regarded as giving a connection - i.e. a family of

horizontal subspaces - on this bundle.)
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1.3 Variational and Hamiltonian formulation

The equations (1.1) can be derived formally as the Euler-Lagrange equations associated

to the functional

S(A,Φ) =
1
2

∫
R×Σ

−A ∧ F +
(
〈iΦ, D0Φ〉+A0 + 2vλ(A,Φ)

)
dtdµg, (1.8)

where

vλ(A,Φ) =
1
2

(
B2 + |DΦ|2 +

λ

4
(1− |Φ|2)2

)
(1.9)

is the density of the Ginzburg-Landau static energy. (The parameter λ is a positive real

numbers). Although S is not manifestly gauge invariant it changes by an exact form

under gauge transformation, and the Euler-Lagrange equations (1.1) are gauge invariant.

Vortices are critical points of the static energy

Vλ(A,Φ) =
∫

Σ
vλ(A,Φ)dµg,

as will be discussed further in the next section.

To see that the system (1.1) is Hamiltonian, observe that there is a complex structure

on the phase space H2 given by J : (Ȧ, Φ̇) = (−JȦ, iΦ̇) which allows the introduction

of a symplectic structure Ω(v, w) = 〈Jv, w〉 where 〈 · , · 〉 is the L2 inner product. Using

this symplectic form the system (1.1), in temporal gauge A0 = 0, is a Hamiltonian flow

generated by the Hamiltonian functional Vλ(A,Φ), which was just defined. (A short

calculation reveals that the third equation of (1.1) is preserved by the evolution, and as

such is really only a condition on the initial data. It will be referred to as the constraint

equation.)

1.4 Self-dual vortices and dynamics in the limit λ → 1.

The system (1.1) admits soliton solutions, called abelian Higgs, or Ginzburg-Landau, vor-

tices, which are energy minimizing critical points of the static energy functional Vλ(A,Φ).

We now discuss these solutions and their uses in understanding the dynamical system

(1.1) via the adiabatic approximation. There is a special case, λ = 1, in which the

adiabatic approximation is particularly powerful because the space of vortices is then

unusually large - large enough that the motion on it can provide information on the
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dynamical interaction of several vortices. We call this the self-dual, or Bogomolny, case,

and the corresponding solutions are called self-dual vortices. Now for such a solution,

(A,Φ), with a given value of the topological integer N , (the degree of L), the field Φ will

have N zeros, counted with multiplicity. Each of these zeros can be thought of as the

centre of a vortex. Thus the static solitons can be thought of as a nonlinear superposition

of N vortices which do not interact. This was first fully understood in the case that Σ

is the upper half plane with canonical metric, when the equations were solved exactly

by Witten (1977) by reducing them to the Liouville equation. In general it is still possi-

ble to make a reduction to a nonlinear elliptic equation of Kazdan-Warner type, whose

solutions can be completely parametrized although not explicitly given. Following this,

Taubes proved an existence theorem when Σ is the Euclidean plane (Jaffe and Taubes

1982), and Bradlow (1988) did likewise for Σ a compact Riemann surface, proving the

following:

Theorem 1.4.1 (Existence of vortices on a surface,[6]) If the area of a closed Rie-

mann surface |Σ| is such that |Σ| > 4πN the Bogomolny bound is saturated: in fact the

minimum value πN of V, where

V : H2 → R (1.10)

V(A,Φ) ≡ V1(A,Φ) =
1
2

∫
Σ

(
B2 + |DΦ|2 +

1
4
(1− |Φ|2)2

)
dµg,

is achieved on a set SN ⊂ H2 of pairs (A,Φ) which solve the Bogomolny, or self-dual

vortex, equations:

∂̄AΦ = 0, B − 1
2
(1− |Φ|2) = 0.

These minimizers will be referred to as the self-dual vortices, or just vortices. The

quotient of SN by the gauge group G can be identified with SymN (Σ), the symmetric

N -fold product of Σ, via the mapping which takes Φ to the set of its zeros.

Remark 1.4.2 (Interaction and stability of vortices) The physical interpretation

of theorem 1.4.1 is that for λ = 1 the vortices do not interact; see [16] for a discussion

of this, and some related conjectures, and [25] for some stability theorems.
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Remark 1.4.3 (Bogomolny structure and Bogomolny operator) The structural

feature of V which makes theorem 1.4.1 possible was identified by Bogomolny in [5]. In

this instance it amounts to the fact that if we introduce the Bogomolny operator B to

be the nonlinear operator which maps (A,Φ) 7→
(
B − 1

2(1− |Φ|2), ∂̄AΦ
)

then

V =
1
2

∫
|B(A,Φ)|2dµg + πN

(see §3 for more information in this regard). Also see [6] for higher dimensional versions

of this decomposition, and [11] for generalizations to solutions with non-vanishing electric

field.

Remark 1.4.4 (Geometry of moduli space) Quotient spaces of the type arising in

theorem 1.4.1 are usually known as moduli spaces: in this case we define the moduli

space MN to be the space of gauge equivalence classes of self-dual vortices, so that

MN ≡ SymN (Σ). We call the space SN the vortex space and proj : SN → MN the

natural projection which takes (A,Φ) to its gauge equivalence class [(A,Φ)]. The space

MN inherits both a metric (induced from the L2 metric) and a symplectic structure

and is a Kaehler manifold (see [7]). Explicitly, we can identify the tangent space to

MN with solutions (Ȧ, Φ̇) of the linearized Bogomolny equations which also satisfy the

condition (1.3). The complex structure and symplectic structure on MN are then given

by restricting the formulas given in the previous section to such (Ȧ, Φ̇), and consequently

we will use the same notation, J and Ω, for these objects. The existence of this complex

structure onMN can be seen very clearly in the formulas in §3, in which complex notation

is used to combine the linearized Bogomolny equations with (1.3) into a manifestly

complex linear operator Dψ, for ψ = (A,Φ) ∈ SN . This can all be summarized by saying

that we have an identification

T[ψ]MN ≈ KerDψ ≡ {(Ȧ, Φ̇) : DBψ[Ȧ, Φ̇] = 0, and (1.3) holds}. (1.11)

1.5 Statement of the adiabatic limit theorem

In order to define the adiabatic limit system, we now define a Hamiltonian function

MN → R by restricting the energy Vλ to the space of vortices, and observing that by

gauge invariance this actually gives a smooth function on the quotient space MN . The

corresponding Hamiltonian flow determines the slow motion of vortices for λ close to 1:
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For ε = |λ − 1| sufficiently small, the system (1.1) can be approximated,

for times of order 1
ε , by the Hamiltonian flow on the phase space MN =

SymN (Σ) associated to the Hamiltonian function Vλ|MN
via the symplectic

form Ω.

We now move towards a precise formulation of this in theorem 1.5.2. Since we are

interested in the regime in which |λ− 1| � 1 it is useful to introduce a large parameter

µ =
1

|λ− 1|
(1.12)

and let also, for λ 6= 1,

σ =
λ− 1
|λ− 1|

= ±1 (1.13)

(also defining σ = 0 for λ = 1 where necessary). We rescale time by τ = t
µ , and A0

similarly, leading to the following rescaled equations:

∂A1

∂τ
= µ

(
− ∂1B − 〈iΦ, D2Φ〉

)
+
∂A0

∂x1
,

∂A2

∂τ
= µ

(
− ∂2B + 〈iΦ, D1Φ〉

)
+
∂A0

∂x2
,

i(
∂

∂τ
− iA0)Φ = µ(−∆AΦ− 1

2
(1− |Φ|2)Φ)− σ

2
(1− |Φ|2)Φ.

(1.14)

It is also natural to separate the energy Vλ into the (main) self-dual piece V = V1, and

a perturbation term proportional λ− 1. Under the rescaling just introduced, the energy

rescales by a factor µ, leading us to consider the Hamiltonian H = µV+U , where V ≡ V1

is as in (1.10), and the energy correction away from the self-dual, or Bogomolny, regime

is given by

U(Φ) =
σ

8

∫
Σ
(1− |Φ|2)2 dµg. (1.15)

The rescaled equations (1.14) can be written as a Hamiltonian evolution for ψ =

(A,Φ) in the form

J
∂ψ

∂τ
= µV ′ + U ′ + J(dA0, iA0Φ) (1.16)

where J is the complex structure introduced at the end of §1.3,

J(Ȧ1dx
1 + Ȧ2dx

2, Φ̇) = (−Ȧ2dx
1 + Ȧ1dx

2, iΦ̇) (1.17)

with Ȧ = ∂A
∂τ Φ̇ = ∂Φ

∂τ .
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Remark 1.5.1 (Explicit formulation of adiabatic limit system) We now write the

equations for the adiabatic limit system in an explicit way which will be useful later. The

function U is clearly gauge invariant and defines by restriction a smooth function u on

MN . Now recall (1.11): under this identification, the gradient of the function u on MN

at [ΨS ] is identified with PΨS
U ′, where PΨS

is the orthogonal projector onto KerDΨS

(see lemma 3.3.2). The Hamiltonian differential equations for u are then equivalent to

J
∂ΨS

∂τ
= PΨS

U ′. (1.18)

Given an initial value ΨS(0) = ψ0 ∈ SN , this equation has a unique solution τ 7→

ΨS(τ) ∈ SN which satisfies the gauge condition (1.3).

Main Theorem 1.5.2 (Adiabatic limit) Let Ψµ be the smooth solution of (1.16),

satisfying the gauge condition (1.3), with smooth initial data Ψµ(0), such that

(i) limµ→+∞ ‖Ψµ(0)− ψ0‖H2 = 0, for some smooth ψ0 ∈ SN , and

(ii) supµ≥1 ‖Ψµ(0)‖H2 + ‖Ψ̇µ(0)‖H1 ≤ K <∞.

Then there exists τ∗ > 0, independent of µ ≥ 1, such that for s < 2,

lim
µ→∞

sup
[−τ∗,τ∗]

∥∥Ψµ(τ)−ΨS(τ)
∥∥
Hs

= 0 (1.19)

where τ 7→ ΨS(τ) ∈ SN is a curve in the vortex space SN , also satisfying (1.3), which

is the unique solution of (1.18) with initial data ΨS(0) = ψ0. The projection onto the

moduli space MN :

τ 7→
[
ΨS(τ)

]
∈MN ,

is the unique solution of the Hamiltonian system on (SymN (Σ),Ω) associated to the

Hamiltonian u defined in remark 1.5.1, with initial value [ψ0] ∈MN .

This theorem in proved in §2, employing a strategy which is explained in §1.6, following

discussion of a very simple model problem. Some of the novel features which arise in the

implementation of this strategy for (1.14) are highlighted at the begininng of §2.

The approximation of the dynamical system (1.14) by a dynamical system through a

space of equilibria (in this case the self-dual vortices, which are the equilibria for λ = 1)
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is referred to as an adiabatic limit or approximation. It was suggested in [18], following

earlier conjectures of the same author on vortex and monopole dynamics in second order

Lorentz invariant systems discussed in [19]. Proofs of the validity of the approximation

in the case of second order dynamics were given in [26, 27]; the strategy for the proof

here, however, is different from that adopted in those references - see the discussion

in §1.6. A review of adiabatic limit problems is given in [29], mostly directed towards

infinite dimensional natural Lagrangian systems of the type appearing in classical field

theory. (Natural Lagrangian systems are those derivable from Lagrangians of the classical

“kinetic energy minus potential energy” form). For some physical consequences of the

approximation for vortex dynamics in the system (1.1), see also [15, 18, 22].

1.6 A simple model problem and discussion of methodology

We consider here a simple two-dimensional example in order to exhibit as clearly as

possible the phenomenon under study, and the strategy which will be employed in the

proof of theorem 1.5.2. (It is the basic strategy taken in [23] for finite dimensional

natural Lagrangian systems, here adapted to the case of infinite dimensions and to take

advantage of the Bogomolny structure.) For real numbers β and µ�1, we consider a

linear first order Hamiltonian system for z(τ) = (z1(τ), z2(τ)) ∈ C2:

Theorem 1.6.1 For each µ�1, let τ 7→ Zµ(τ) ∈ C2 be the solution of

ż1 = i(z1 + βz2)

ż2 = i(βz1 + µz2),
(1.20)

with initial data satisfying |(Z1
µ(0), Z2

µ(0))− (γ, 0)| = O(µ−1) as µ→ +∞, for some fixed

γ ∈ C. Then

lim
µ→+∞

max
τ∈R

|Zµ(τ)− (γeiτ , 0)| = 0. (1.21)

Remark 1.6.2 The system (1.20) is Hamiltonian with the standard symplectic struc-

ture on C2 and with Hamiltonian function µV + U with V(z) = 1
2 z̄

2z2 and

U(z) =
1
2
z̄1z1 + β(z̄1z2 + z̄2z1).

Thus V acts as a constraining potential for µ → +∞, forcing the solution onto the set

S = C× {0} ⊂ C2 where z2 = 0. Projecting the system to S gives, formally,

iż1 + z1 = 0. (1.22)
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The theorem asserts that (1.22) indeed governs the behaviour of the limit of appropriate

sequences of solutions to (1.20).

Proof The solution with initial data z(0) = (z1(0), z2(0)) is given by:

z1(τ) =
β

β(λ+ − λ−)

[(
(1− λ−)eiλ+τ − (1− λ+)eiλ−τ

)
z1(0) + β

(
eiλ+τ − eiλ−τ

)
z2(0)

]
z2(τ) =

−1
β(λ+ − λ−)

[
(1− λ+)(1− λ−)(eiλ+τ − eiλ−τ )z1(0)

]
+

−β
β(λ+ − λ−)

[(
(1− λ+)eiλ+τ − (1− λ−)eiλ−τ

)
z2(0)

]
.

Here the λ± are the characteristic values of the system:

λ± =
1
2

(1 + µ)

[
1±

(
1− 4(µ− β2)

(1 + µ)2

) 1
2

]
,

which satisfy, by the binomial expansion,

|λ+ − µ| = O(1), |λ− − 1| = O(µ−1).

as µ → ∞. From this, and the fact that λ± ∈ R for large µ so that |eiλ±τ | = 1, the

behaviour in (1.21) follows for the solutions Zµ(τ) with initial data as described. 2

Remark 1.6.3 In this example the exact solutions indicate that while Z2
µ → 0, the time

derivatives Ż2
µ are bounded, but cannot generally be expected to have limit zero.

In the absence of explicit formulae for Zµ(τ), it is still possible to prove results like

theorem 1.6.1, either

(i) by explicit perturbative construction of solutions to the full system, using solutions

of the restricted system as a starting point, or

(ii) by obtaining uniform bounds for the Zµ(τ) which allow the extraction of convergent

subsequences, and then identifying the unique limit of all such subsequences as the

corresponding solution of the restricted system with Hamiltonian U
∣∣
S .

In the present article we will adopt the second strategy in our proof of theorem 1.5.2

(although it would be possible to use the first strategy, as in [26]). To make the structure

of the proof transparent, it is useful to consider in some detail how to execute the second

strategy to prove a variant of theorem 1.6.1:
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Theorem 1.6.4 (Weaker version of theorem 1.6.1) In the situation of 1.6.1

lim
µ→+∞

max
a<τ<b

|Zµ(τ)− (γeiτ , 0)| = 0, (1.23)

for every bounded interval [a, b] ⊂ R.

Remark 1.6.5 Although weaker than theorem 1.6.1, the proof of theorem 1.6.4 that we

give generalizes to the infinite dimensional problem (1.1), (1.14), in which the explicit

solutions corresponding to those used in the proof of theorem 1.6.1 are of course not

available.

Proof

• Differentiation of the equations (1.20) in time gives the identical system ζ = ż.

Use the energy identity:

µV(ζ(τ)) + U(ζ(τ)) = µV(ζ(0)) + U(ζ(0)),

together with identical estimate for z(τ), to deduce (using Cauchy-Schwarz) that

the solutions Zµ of theorem 1.6.1 satisfy |Zµ(τ)|+|Żµ(τ)| ≤ C, with C independent

of µ�1.

• By the previous item, deduce that the family of functions τ 7→ Zµ(τ) is uniformly

(in µ�1) bounded and equicontinuous, and so the Arzela-Ascoli theorem implies

subsequential convergence Zµj → Z in C(I) for any bounded interval I ⊂ R.

• The energy estimate implies that, for large µ there exists C > 0, independent of µ,

such that µZ̄2Z2 ≤ C. It follows that Z2
µ → 0 along any convergent subsequence.

Now consider the integrated form of the first equation of (1.20) (i.e. project the

system onto S = C × {0} ⊂ C2 where z2 = 0). Taking the limit µj → ∞,

it follows that the limit Z = (Z1, Z2) of any convergent subsequence satisfies

Z1(τ) = i
∫ τ
0 Z

1(τ ′)dτ ′ and Z1(0) = γ. This integral equation has unique solution

Z1(τ) = γeiτ , and hence the Cloc limit of any convergent subsequence is (γeiτ , 0). It

follows that Zµ converges to this limit in Cloc without restriction to subsequences.

This proves theorem 1.6.4. (In view of remark 1.6.3 we should not expect this

convergence to be in C1
loc.) 2
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The general situation to which theorem (1.6.4), and its proof, potentially generalize is

the following: on a phase spaceH we consider the integral curves Zµ(τ) for a Hamiltonian

µV+U for large µ (“the full system”). Under the assumption that S = {z ∈ H : minV =

V(z)} is a symplectic submanifold of H, we can consider the “restricted system” on S

determined by the Hamiltonian U
∣∣
S , and try to prove that this Hamiltonian system can

be used to describe the limiting behaviour of Zµ(τ) as µ→ +∞. An infinite dimensional

example of this situation is provided by the Chern-Simons-Schroedinger system (1.14):

in the next section we will provide a proof of theorem 1.5.2 employing the same strategy

to that used in the proof of theorem 1.6.4 just given.

2 Uniform bounds and proof of the main theorem

In this section we prove our main result, theorem 1.5.2, along the lines suggested by

the discussion of the simple model problem in the last section. The crucial stage is the

proof of the main estimate, theorem 2.3.1, which asserts the existence of a time interval,

independent of µ, on which the solution ψ = (A,Φ) is uniformly bounded in H2, and

its time derivative is uniformly bounded in H1 as µ→ +∞. Given this bound, theorem

1.5.2 can be deduced using a variant of the Lions-Aubin lemma, and a careful analysis

of the µ → +∞ limit of (1.14). Before obtaining the uniform bound, we collect some

identities used in the proof. Some more specialized identities related to the self-dual

structure are collected separately in §3, and referred to as needed. Specifically, we draw

the reader’s attention to the following two uses made of these more specialized identities:

(i) Differentiation in time gives rise to an equation (2.27) for ζ = ψ̇ in which the

dominant term (as µ→ +∞) involves Lψ, the Hessian of V defined in (2.36). It is

shown in §3 that this operator takes the special form

Lψ = D∗ψDψ +O(|B|), (2.24)

with Dψ complex linear (see (3.58)), and B as in remark 1.4.3. Observing that the

L2 norm is exactly preserved for equations of the form Jζ̇ = D∗ψDψζ, it is easy to

believe that the stated structure of Lψ is useful in the derivation of µ-independent

bounds for (2.27), (for initial data as in the theorem); this indeed turns out to be

the case - see the proof of theorem 2.3.1.
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(ii) After obtaining a convergent subsequence of solutions of (1.16) it is necessary to

take the limit of the equation itself along the subsequence µ = µj → +∞. For this

purpose it is very convenient to be able to eradicate the term µV ′ on the right hand

side, since this is clearly hard to control for large µ: this can be done by applying

a projection operator Pµ whose existence close to the set of self-dual vortices is

assured by the Bogomolny structure: see lemmas 3.3.1 and 3.3.2. (In geometrical

terms there is a foliation of the phase space H2, and the range of Pµ is the tangent

space to the leaves of this foliation, after dividing out by the action of the gauge

group using (1.3).)

Although our final conclusions are in terms of the standard Sobolev norms based on

the fixed connection ∇, it will be convenient to obtain bounds for the corresponding

Sobolev norms defined at each fixed time with respect to the connection D = ∇ − iA,

see (A.2). These can be related to the standard norms by (A.3)-(A.5).

2.1 The evolution equations and associated identities

In addition to the rescaled equation (1.16) for ψ = (A,Φ):

J
∂ψ

∂τ
= µV ′ + U ′ + J(dA0, iA0Φ),

we will use the differentiated equation for ζ = ψ̇ ≡ ∂ψ
∂τ . To write this down we need the

linearization of the operator V ′(ψ), i.e. the second order linear differential operator Lψ

obtained by differentiation of the map ψ 7→ V ′(ψ):

Lψ = DV ′(ψ),

or equivalently, 〈ζ, Lψζ〉L2 = d2

ds2
V(ψ + sζ)|s=0. Explicitly, with ζ = (Ȧ, Φ̇), we have

〈ζ, Lψζ〉L2 =
∫ (

|dȦ|2 + |DΦ̇|2 + |Φ|2|Ȧ|2 − 2〈DΦ,iȦΦ̇〉 − 2〈DΦ̇, iȦΦ〉 (2.25)

+ 〈Φ, Φ̇〉2 − 1
2
(1− |Φ|2)|Φ̇|2

)
dµg.

Remark 2.1.1 There is a slightly simpler version of this formula, given in (2.36) below,

when ζ is restricted by the gauge condition (1.3). Furthermore in §3 it is shown that the

self-dual structure provides a useful way of rewriting this formula as in (2.24), in terms
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of the complex structure defined in (1.17), and using the complex one-form α̇dz, where

α̇ = Ȧ1−iȦ2
2 , in place of the real one-form Ȧ1dx

1 + Ȧ2dx
2, see (3.56). Since this is used

only at one point in the proof - in lemma 2.3.8 - this formulation is presented separately

in §3, and referred to only as needed.

The linearization of U ′ is the linear operator Kψ = DU ′(ψ), given by

Kψ = (Ȧ, Φ̇) 7→
(
0,
σ

2
(τ − |Φ|2)Φ̇ + σ〈Φ, Φ̇〉Φ

)
, (2.26)

with σ defined in (1.13). Given these definitions, the chain rule implies that, if ψ is a

smooth solution of (1.16), then ζ(τ) = ψ̇(τ) solves

J
∂ζ

∂τ
= µLψζ +Kψζ + J

∂

∂τ
(dA0, iA0Φ). (2.27)

We also need identities for the evolution of the Bogomolny operator B defined in

remark 1.4.3 and discussed in more detail in §3. The first component is preserved

∂

∂τ

(
(B − 1

2
(1− |Φ|2)

)
= e−2ρ(∂1Ȧ2 − ∂2Ȧ1) + 〈Φ, Φ̇〉 = 0, (2.28)

as a consequence of (1.14). We will require that the initial data are such that B− 1
2(1−

|Φ|2) = 0 initially, and hence for all times. The second component of the Bogomolny

operator B will be denoted

η = ∂̄AΦ =
1
2
(D1 + iD2)Φ, (2.29)

(see §3), and we have the following identity:

i(∂τ − iA0)η = µ(−4∂̄A(e−2ρ∂Aη) + |Φ|2η)− σ

2
∂̄A
(
(1− |Φ|2)Φ

)
. (2.30)

(To verify this identity: substitute ∆AΦ = 4e−2ρ∂A∂̄AΦ − BΦ into the third line of

(1.14) and then apply ∂̄A to the resulting equation and use the identity (E1 + iE2)Φ =

−2µ|Φ|2∂̄AΦ which follows from the first two lines of (1.14).)

Of course, the energy

E(τ) = µV(ψ(τ)) + U(ψ(τ)) = E0 > 0 (2.31)

is independent of time τ for regular solutions, as is the L2 norm

‖Φ(τ)‖L2 = L > 0. (2.32)
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2.2 Choice of gauge condition and related estimates

The divergence of E can be calculated to be:

divE = e−2ρ(∂1E1 + ∂2E2)

= µ
(
(−∆B − e−2ρ∂1〈iΦ, D2Φ〉+ e−2ρ∂2〈iΦ, D1Φ〉

)
= µ(4e−2ρ|η|2) + 〈iΦ, ( ∂

∂t
− iA0)Φ〉 − σB|Φ|2.

In the last line we have used B = 1
2(1−|Φ|2), so that ∆B = −〈Φ,∆AΦ〉−e−2ρ(|D1Φ|2 +

|D2Φ|2), the equation for Φ and the definition of η in (2.29). Under the gauge condition

(1.3) we get the following equation for A0:

(−∆ + |Φ|2)A0 = 4µe−2ρ|η|2 − σB|Φ|2. (2.33)

Lemma 2.2.1 (Estimates for A0) Assume τ 7→ ψ(τ) = (A(τ),Φ(τ)), is a smooth

solution, of (1.16) which satisfies the gauge condition (1.3), (2.31) and (2.32). Then for

all r <∞, there exists c0(E0, L, r) > 0 such that,

‖A0(τ)‖Lr ≤ c0(E0, L, r) (2.34)

and there exists c0(E0, L) > 0 such that

‖A0(τ)‖H2 ≤ c0(E0, L)(1 + µ‖∂̄AΦ(τ)‖L∞). (2.35)

Remark 2.2.2 This shows that in the original system (before rescaling) the time com-

ponent of the potential A0 is O(|λ− 1|) in the gauge defined by (1.3).

Proof The crucial point here is the µ independence of the bounds. The second inequality

follows from standard elliptic theory once the first is established. By (2.33) it is possible

to write A0 = A+
0 + Â0 where (−∆ + |Φ|2)A+

0 = 4µe−2ρ|η|2, so that A+
0 ≥ 0 by the

maximum principle, and (−∆+|Φ|2)Â0 = −σB|Φ|2. The bounds stated in the lemma will

follow by the triangle inequality once they are proved for A+
0 , since they are immediate

for Â0. Now integrating the equation for A+
0 implies that ‖|Φ|2A+

0 ‖L1 =
∫
Σ |Φ|

2A+
0 dµg ≤

C(E0, L) since A+
0 ≥ 0; this bound is independent of µ � 1 on account of (2.31). The

standard elliptic theory for −∆u = f ∈ L1 now gives the Lr estimates for A+
0 and hence

the lemma. 2

17



Lemma 2.2.3 (Estimates for Ȧ) Let ζ = (Ȧ, Φ̇) satisfy the gauge condition (1.3), as

well as the linearized constraint equation (2.28). Then there exists a constant c1 > 0

such that ‖Ȧ‖H1 ≤ c1‖ΦΦ̇‖L2, and more generally, for any 1 < p < ∞, there exists a

constant c1(p) > 0 such that ‖Ȧ‖W 1,p ≤ c1‖ΦΦ̇‖Lp. In particular these estimates hold

for a smooth solution, τ 7→ ψ(τ) = (A(τ),Φ(τ)), of (1.16) which satisfies the gauge

condition (1.3).

Proof These are the standard estimates for the Hodge system, proved by using the

Hodge decomposition to reduce to the Calderon-Zygmund estimate for the Laplacian. 2

On the subspace of ζ = (Ȧ, Φ̇) satisfying the gauge condition (1.3), the operator Lψ

has a simpler form: Lψζ = Lψζ, where Lψ is the operator defined by

〈ζ, Lψζ〉L2 =
∫ (

|dȦ|2 + |div Ȧ|2 + |DΦ̇|2 + |Φ|2(|Ȧ|2 + |Φ̇|2) (2.36)

− 4〈DΦ, iȦΦ̇〉 − 1
2
(1− |Φ|2)|Φ̇|2

)
dµg.

Lemma 2.2.4 (The Hessian) Let ψ = (A,Φ) be smooth. Then the second order dif-

ferential operator Lψ is a self-adjoint operator with domain H2, and there exist numbers

c2, c3 such that

〈ζ, Lψζ〉L2 ≥ c2‖ζ‖2
H1

A
− c3‖ζ‖2

L2 .

The numbers c2, c3 depend only on the numbers L and E0, defined as in (2.31),(2.32).

Proof First of all, observe that∫ (
|dȦ|2 + |div Ȧ|2 + |DΦ̇|2 + |Φ|2(|Ȧ|2 + |Φ̇|2)

)
dµg ≥ c(E0, L)‖(Ȧ, Φ̇)‖2

H1
A
.

This can be proved by a straightforward contradiction argument that is very similar to

the proof of lemma 3.2.2 given below, so the details will be omitted. Next, to deduce the

stated result, just bound the final two terms in (2.36) using the Holder inequality with

1 = 1
2 + 1

4 + 1
4 , the interpolation inequality in lemma A.9 and Cauchy-Schwarz. 2

Corollary 2.2.5 Assume given a smooth solution, τ 7→ ψ(τ) = (A(τ),Φ(τ)), of (1.16)

which satisfies the gauge condition (1.3), (2.31) and (2.32). Then the quantity

E1(τ) =
1
2
〈ζ(τ), (Lψ + µ−1Kψ)ζ(τ)〉L2 , (2.37)
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where ψ = ψ(τ), satisfies for µ ≥ 1

E1 ≥ c4‖ζ‖2
H1

A
− c5‖ζ‖2

L2

with c4, c5 depending only on E0, L.

2.3 The main estimate

We say that a smooth solution, τ 7→ ψ(τ) = (A(τ),Φ(τ)), of (1.16) satisfies conditions

(AE) and (AI), if the following conditions hold:

(AE) There exists positive numbers E0, L such that ‖Φ(τ)‖L2 = L and E(τ) =

E0, for all times τ ∈ R, where E(τ) is the energy (2.31). (Recall that

both these quantities are independent of τ .)

(AI) The initial data are such that ‖ψ(0)‖H2 + ‖ψ̇(0)‖H1 ≤ K <∞.

Theorem 2.3.1 For µ ≥ 1 let τ 7→ ψ(τ) be a smooth solution of (1.16) satisfying

conditions (AE) and (AI), for some fixed numbers K,L, E0. There exist numbers τ∗ > 0

and M∗ > 0, independent of µ, such that

max
|τ |≤τ∗

∣∣∣(ψ(τ),
∂

∂τ
ψ(τ)

)∣∣∣
H2×H1

≤ M∗. (2.38)

Beginning of proof of theorem 2.3.1. By time reversal invariance it is sufficient to prove

the bound for 0 ≤ τ ≤ τ∗, for some τ∗ > 0 independent of µ. Let

ζ(τ) =
∂

∂τ
ψ(τ) = ψ̇(τ).

For any M > ‖ζ(0)‖L2 there exists a time T (M,µ) > 0 such that

sup
0≤τ≤T (M,µ)

‖ζ(τ)‖L2 ≤ M. (2.39)

We will prove that there exist positive numbers M∗, τ∗, independent of µ, such that

T (M∗, µ) ≥ τ∗, and hence sup0≤τ≤τ∗ ‖ζ(τ)‖L2 ≤ M∗. The proof proceeds by obtaining

a series of µ-independent bounds, predicated upon (2.39), which imply boundedness of(
ψ(τ), ψ̇(τ)

)
in the Hilbert space H2 defined in (1.6) for 0 ≤ τ ≤ τ∗. These bounds are

now stated in a sequence of lemmas, all of which refer to a smooth solution of (1.16),(1.3)

which verifies (AE), (AI) and (2.39) for all τ under consideration.
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Lemma 2.3.2 (Estimate for Φ in H2) There exists C1 = C1(E0, L) > 0, independent

of µ, such that

‖Φ(τ)‖H2
A
≤ C1(1 + ‖ζ(τ)‖L2) ≤ C1(1 +M).

Proof Using the third equation of (1.14) for Φ, we bound

‖∆AΦ‖L2 ≤ ‖Φ̇‖L2 + ‖A0Φ‖L2 +
1
2
‖Φ(1− |Φ|2)‖L2 .

Now, by lemma A.2.2, we can bound ‖∇A∇AΦ‖L2 ≤ ‖∆AΦ‖L2 + c(E0)‖∇AΦ‖L4 , and

hence, by lemma A.9 and Cauchy-Schwarz: ‖∇A∇AΦ‖L2 ≤ 2‖∆AΦ‖L2+c(E0, L). There-

fore, using also lemma 2.2.1, we deduce the bound ‖Φ(t)‖H2 ≤ c(1 + ‖ζ(τ)‖L2) ≤

c(1 +M), for some c = c(E0, L) > 0, and the result follows. 2

Corollary 2.3.3 ∃C2 = C2(E0, L) > 0 such that, ‖Φ(τ)‖L∞ ≤ C2

(
1 +

√
ln(1 +M)

)
.

Proof This follows from lemma A.11 and the previous lemma. 2

Lemma 2.3.4 (Energy estimate for ζ = ψ̇) There is a constant C3(E0, L) > 0 such

that, ∣∣∣∣dE1

dτ

∣∣∣∣ ≤ C3(1 + ‖Φ‖2
L∞)‖ζ‖2

H1
A

+ C3‖ζ‖6
L2 + C3‖ζ‖4

L2 . (2.40)

where E1 is the quantity defined in (2.37).

Proof Compute d
dtE1, substitute from (2.27), and use the observation that

〈Jζ̇, (dȦ0, iΦȦ0)〉L2 = 0, (2.41)

by the constraint equation B = 1
2(1− |Φ|2) in (1.1), to obtain

dE1

dτ
= 〈iΦ̇, iA0Φ̇〉L2 +

1
2
〈ζ, [ ∂

∂τ
, Lψ + µ−1Kψ]ζ〉L2 .

To handle the second term, we make use of the following bounds (written schematically,

i.e. suppressing indices and inner products which play no role):

‖Φζ3‖L1 ≤ ‖Φ‖L∞‖ζ‖L2‖ζ‖2
L4 ≤ c‖Φ‖L∞‖ζ‖2

L2‖ζ‖H1
A

‖Φ̇Ȧ∇AΦ̇‖L1 ≤ ‖∇AΦ̇‖L2‖Ȧ‖L4‖Φ̇‖L4 ≤ c‖Φ‖L∞‖ζ‖3/2

H1
A
‖ζ‖3/2

L2

‖Φ̇2∇Ȧ‖L1 ≤ ‖ζ‖2
L4‖∇Ȧ‖L2 ≤ c‖Φ‖L∞‖ζ‖2

L2‖ζ‖H1
A
.
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All of these bounds follow directly from Holder’s inequality, the interpolation inequality

in lemma A.2.1, lemma 2.2.3 and the bound

‖Ȧ‖L4 + ‖Ȧ‖H1 ≤ c‖Φ‖L∞‖Φ̇‖L2 .

It then follows, by inspection of the formulae for Lψ,Kψ in (2.25) and (2.26), that the

second term in dE1
dτ can be bounded by a sum of terms of this type, and hence:∣∣∣〈ζ, [

∂

∂τ
, Lψ + µ−1Kψ]ζ

〉
L2

∣∣∣ ≤ c(1 + ‖Φ‖2
L∞)‖ζ‖2

H1
A

+ c‖ζ‖6
L2 + c‖ζ‖4

L2 .

Also, we can bound

|〈iΦ̇, iA0Φ̇〉L2 | ≤ c‖A0‖Lr‖Φ̇‖2
L2r′ ≤ c‖A0‖Lr‖Φ̇‖2

H1
A

where r > 1 and 1/r + 1/r′ = 1. Combining these with lemma 2.2.1, we obtain (2.40),

completing the proof of the lemma. 2

Corollary 2.3.5 There is a constant C4 = C4(E0,K, L,M) > 0 such that, ‖ζ(τ)‖H1
A
≤

C4(1 + τ), for all times τ ∈ [0, T (M,µ)].

Lemma 2.3.6 (Estimate for η = ∂̄AΦ) There exists C5 = C5(E0) > 0 such that, at

each time τ ,

µ‖η‖H2
A
≤ C

(
‖Φ̇‖H1

A
+ ‖Ȧ‖2

L2 + ‖Φ‖2
L∞
)
. (2.42)

Proof From the equation (2.30) for η, and using the interpolation inequality in lemma

A.9, the elliptic term

L(A,Φ)η ≡ (−4∂̄A(e−2ρ∂Aη) + |Φ|2η)

satisfies, for some c = c(E0) > 0,

µ‖L(A,Φ)η‖L2 ≤ ‖Φ̇‖H1
A

+ ‖Φ‖L∞‖Ȧ‖L2 + c‖A0‖L4(1 + ‖η‖1/2
H1 ) + c‖Φ‖2

L∞ . (2.43)

We next see that (2.42) follows from the usual elliptic regularity estimate. Firstly,

observe that associated to the operator L(A,Φ) is the quadratic form

Q(A,Φ)(η) = 〈η,L(A,Φ)η〉L2(Σ) =
∫

Σ

(
4|∂Aη|2e−4ρ + |Φ|2|η|2e−2ρ

)
dµg,
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which is bounded below by c‖η‖2
H1

A
where c = c(E0, L) > 0 by lemma 3.2.2. It follows

that ‖η‖H1
A
≤ c‖L(A,Φ)η‖L2 , a result which can be strengthened by the following

Claim: ‖∇A∇Aη‖L2 ≤ c‖L(A,Φ)η‖L2 where c = c(E0, L) > 0.

By the Garding inequality

‖∇A∇Aη‖L2 ≤ ‖L(A,Φ)η‖L2 + c(E0, L)(‖∇Aη‖L4 + ‖η‖H1
A
).

Finally, using the interpolation inequality (A.9) and the Cauchy-Schwarz inequality, we

deduce the inequality claimed.

2

Corollary 2.3.7 There is a constant C6 = C6(E0,K, L,M) > 0 such that, µ‖∂̄AΦ(τ)‖L∞ ≤

C6(1 + τ).

Lemma 2.3.8 (Closing the argument: estimate for ζ in L2) There is a constant

C7(E0, L,M) such that ζ = ∂ψ
∂τ satisfies

‖ζ(τ)‖2
L2 ≤ ‖ζ(0)‖2

L2e
C7

R τ
0 (‖µ∂̄AΦ(s)‖L∞+‖Φ(s)‖2L∞ )ds.

Proof Compute, using (2.27), that

d

dτ
‖ζ(τ)‖2

L2 = 2〈Jζ, (µLψ +Kψ)ζ〉

since (by the gauge condition) 〈ζ, (dȦ0, iΦȦ0)〉L2 = 0, and 〈ζ, (0, iA0Φ̇)〉L2 = 0 (using

〈iΦ̇, Φ̇〉 = 0 pointwise). By corollary 3.2.1 and the formula for Kψ, there exists C7 =

C7(E0, L) > 0 such that∣∣∣∣ ddτ ‖ζ(τ)‖2
L2

∣∣∣∣ ≤ C7(µ‖∂̄AΦ(τ)‖L∞ + ‖Φ(τ)‖2
L∞)‖ζ(τ)‖2

L2

and so the stated inequality follows by the Gronwall lemma. 2

Completion of proof of theorem 2.3.1. The previous lemma allows us to validate the

claim that (2.39), and thus all the bounds in lemmas 2.3.2-2.3.8, in fact hold on a µ-

independent interval [0, τ∗], thus closing the argument. Indeed, by corollaries 2.3.3 and

2.3.7 we have µ‖∂̄AΦ(τ)‖L∞ + ‖Φ(τ)‖2
L∞ ≤ C8(1 + τ) for some C8 = C8(E0, L,M). Now

let τ∗,M∗ be such that

‖ζ(0)‖2
L2e

C7C8(τ∗+τ2
∗/2) ≤M2

∗ .
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(This is always possible for M∗ > ‖ζ(0)‖L2 and τ∗ small.) Then it follows that (2.39)

holds with T (M∗, µ) ≥ τ∗, and that the bounds given in lemma 2.3.2 through corollary

2.3.7 hold on the interval [0, τ∗]. In particular, using (A.3),(A.4) we can deduce that(
ψ(τ), ψ̇(τ)

)
is bounded in the (τ -independent) norm H2 ×H1 as claimed. 2

2.4 Proof of theorem 1.5.2

There are three stages to the proof:

• Deduce, from the uniform bounds of theorem 2.3.1 and the compactness lemma

2.4.1, that for any sequence µj → +∞, there exists a subsequence along which the

Ψµj converge.

• Identify the limit of these convergent subsequences.

• Deduce, from the uniqueness of the limit just identified, that the Ψµ do in fact

converge as µ→ +∞ (without restriction to subsequences).

The first stage of the proof depends upon the following version of the Lions-Aubin

compactness lemma (see [17, lemma 10.4]), which is proved by a modification of the

standard proof of the usual Ascoli-Arzela theorem:

Lemma 2.4.1 Assume that (V, h) is a smooth vector bundle with inner product, over a

compact Riemannian manifold (Σ, g), which is endowed with a smooth unitary connection

∇ and corresponding Sobolev norms ‖ · ‖Hs on the space of sections defined as in [20].

Assume that l, s are positive numbers with l < s. Assume fn(τ) is a sequence of smooth

time-dependent sections of V which satisfy

max
|τ |≤τ∗

(
‖fn(τ)‖Hs + ‖ḟn(τ)‖Hl

)
≤ C.

Then there exists a subsequence {fnj}∞j=1 which converges to a limiting time-dependent

section f ∈ C([−τ∗, τ∗];Hs(V )), in the sense that, max|τ |≤τ∗ ‖(fn(τ, · )−f(τ, · ))‖Hr → 0,

for every r < s.

Applying this we infer immediately the existence of a subsequence µj → +∞ along which

the solutions Ψµj = (Aµj ,Φµj ) converge to a limit ΨS(τ) in the sense that

lim
µj→∞

sup
[−τ∗,τ∗]

∥∥Ψµj (τ)−ΨS(τ)
∥∥
Hr

= 0, (2.44)
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for r < 2. It follows from corollary (2.3.7), that

lim
µ→+∞

sup
[−τ∗,τ∗]

‖∂̄AµΦµ‖L∞ = 0,

and since the other Bogomolny equation B = 1
2(1− |Φ|2) is satisfied as a constraint, we

deduce by theorem 1.4.1, that ΨS(τ) ∈ SN , i.e. the limit ΨS(τ) is a self-dual vortex for

each τ ∈ [−τ∗, τ∗]. In addition, by (2.38) we have

‖Ψµ(τ1)−Ψµ(τ2)‖H1 ≤M∗|τ1 − τ2|

so that, by (2.44), the limit ΨS will also satisfy

‖ΨS(τ1)−ΨS(τ2)‖Hr′ ≤ c|τ1 − τ2|

for r′ < 1, i.e. the limit is Lipschitz, and in particular lies in W 1,∞([−τ∗, τ∗];L2).

For the second stage, we need to identify the limiting curve τ 7→ ΨS(τ) ∈ SN as

that described in remark 1.5.1. It is clear, from the conditions on the initial data in the

statement of theorem 1.5.2, that ΨS(0) = ψ0 ∈ SN , and so it remains to deduce the

ordinary differential equation (1.18) which then determines the curve completely. To do

this it is necessary to take the limit of (1.16):

J
∂Ψµ

∂τ
= µV ′ + U ′ + J(dAµ0 , iA

µ
0Φµ) (2.45)

as µ → ∞. The first term on the right hand side is the most evidently problematic.

However, since the limiting motion is constrained to the vortex space SN , it is only

necessary to take a limit projected onto the tangent space TΨS
SN . To this end, it is

actually most convenient to introduce Pµ(τ) = PΨµ(τ) the spectral projection operator

onto KerDΨµ(τ) = KerD∗Ψµ(τ)DΨµ(τ), discussed in lemma 3.3.2. By the final statement of

lemma 3.3.2, and the convergence of Ψµj in (2.44), we know that Pµ(τ) converge, in the

L2 → L2 operator norm, to the operator PΨS(τ), which is the spectral projection operator

onto KerDΨS(τ) = KerD∗ΨS(τ)DΨS(τ). (This latter operator is also the orthogonal L2

projector onto the tangent space TΨS
SN (subject to the gauge condition (1.3)). Apply

the operator Pµ(τ) to the equation (1.16), to obtain:

Pµ(τ)J
∂Ψµ

∂τ
= Pµ(τ)U ′(Ψµ(τ)), (2.46)
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since J(dA0, iA0Φµ) and V ′(Ψµ) are both in the kernel of Pµ by lemma 3.3.2. We can now

identify the limit of the right hand side as PΨS(τ)U
′(ΨS(τ)) at each τ , and the convergence

is strong in L2(Σ), by (2.44) and the above mentioned convergence of Pµ(τ). For the left

hand side it is necessary to consider the limit of the derivatives ∂Ψµ

∂τ . Noting that these

are bounded in e.g. L2([−τ∗, τ∗];L2(Σ)), we may assume (by restricting to a further

subsequence if necessary), the weak in L2 subsequential convergence to a limit which is

the weak time derivative of ΨS :

〈f̃ ,
∂Ψµj

∂τ
〉L2([−τ∗,τ∗];L2(Σ)) → 〈f̃ , ∂ΨS

∂τ
〉L2([−τ∗,τ∗];L2(Σ)),

for every f̃ ∈ L2([−τ∗, τ∗];L2(Σ)). Now to identify the limit along a convergent subse-

quence µj → +∞, consider the projection operator PΨS(τ). Choosing f̃(τ, ·) = PΨS(τ)(f(τ, ·)),

and using the symmetry of PΨS(τ) this implies that∫ +τ∗

−τ∗
〈f,PΨS(τ)J

∂Ψµj

∂τ
〉L2(Σ)dτ =

∫ +τ∗

−τ∗
〈PΨS(τ)f, J

∂Ψµj

∂τ
〉L2(Σ)dτ

→
∫ +τ∗

−τ∗
〈PΨS(τ)f, J

∂ΨS

∂τ
〉L2(Σ)dτ =

∫ +τ∗

−τ∗
〈f, PΨS(τ)J

∂ΨS

∂τ
〉L2(Σ)dτ,

for any f ∈ L2([−τ∗, τ∗];L2(Σ)). On the other hand, by the above mentioned convergence

of Pµ(τ) to PΨS(τ) and the bounded convergence theorem we have

∫ +τ∗

−τ∗

[
〈Pµj (τ)f, J

∂Ψµj

∂τ
〉L2(Σ)dτ − 〈PΨS(τ)f, J

∂Ψµj

∂τ
〉L2(Σ)

]
dτ → 0,

on account of the bound (2.38). Therefore, we have in the limit:∫ +τ∗

−τ∗
〈f,PΨS(τ)J

∂ΨS

∂τ
〉L2(Σ)dτ =

∫ +τ∗

−τ∗
〈f,PΨS(τ)U

′(ΨS(τ))〉L2(Σ)dτ, (2.47)

for any f ∈ L2([−τ∗, τ∗];L2(Σ)). But since the limit is known by the above to be in

W 1,∞([−τ∗, τ∗];L2), it is differentiable (with respect to τ , as a map into L2) almost

everywhere (the standard result extends to Hilbert space-valued functions, see, e.g., [2,

prop. 6.41]); the derivative lies in the tangent space TΨS
SN , which is the range of the

projector PΨS(τ). Consequently (2.47) implies that τ 7→ ΨS(τ) is a solution of (1.18),

with equality holding in L2 for almost every τ . But this in turn implies that τ 7→ ΨS(τ)

is actually continuously differentiable into L2, and we have a classical solution of (1.18).
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Finally for the third stage: we have now identified the limit as a solution of the

limiting Hamiltonian system specified using remark 1.5.1. Choosing smooth co-ordinates

onMN as in [28] we see that this is a smooth finite dimensional Hamiltonian system, and

as such its solutions (for given initial data) are unique. Therefore all subsequences have

the same limit, and so we can assert full convergence without resort to subsequences.

3 Equations and identities related to the self-dual struc-
ture

Notation change: In this section time does not appear at all, and so the boldface

A for the spatial component is not used: i.e. in this section only, A refers to the

spatial part of the connection, A = A1dx
1 +A2dx

2.

Ginzburg-Landau vortices are critical points of the static Ginzburg Landau energy

functional Vλ =
∫
Σ vλ(A,Φ)dµg introduced following (1.9). The coupling constant λ > 0

is central to the theory of critical points of the Ginzburg-Landau functional and the

value λ = 1 is special as in this case the functional admits the Bogomolny decomposition

introduced in remark 1.4.3. This allows for a detailed understanding of the critical points

not available for general values of λ, and the theory of critical points for such general

values is incomplete. (There is, however, a substantial literature on the asymptotic

behaviour of critical points in the λ→ +∞ limit, starting with [4]; see [24] and references

therein.) This decomposition of V ≡ V1 has proved to be very useful not only for the

analysis of critical points, but also for the associated time-dependent equations of vortex

motion. For our purposes we need in particular to derive a special form for the operator

Lψ associated to the Hessian of V, see (3.57).

3.1 Complex structure

To discuss the Bogomolny structure in detail it is useful to use a complex formulation

so we introduce the complex co-ordinate z = x1 + ix2 for the complex structure J on Σ.

Using this, there is a decomposition of the complex 1-forms Ω1
C = Ω1,0 ⊕ Ω0,1 into the

±i eigenspaces of J , see notation 1.1.1. Let Ωp(L) be the space of p-forms taking values
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in the bundle L: then for p = 1 there is a similar decomposition,

Ω1(L) = Ω1,0(L)⊕ Ω0,1(L).

Applying this decomposition to DΦ ∈ Ω1(L) we are led to introduce the operator D0,1

given by

D0,1Φ =
1
2

(
(∇1 − iA1) + i(∇2 − iA2)

)
Φdz = ∂̄AΦdz̄.

For real 1-forms A1dx
1 +A2dx

2 ∈ Ω1
R this decomposition reads

A1dx
1 +A2dx

2 = αdz + ᾱdz̄,

where α = A1−iA2
2 , and the map A 7→ α (resp. A 7→ ᾱ) is an R-linear isomorphism from

Ω1
R to Ω1,0 (resp. Ω0,1), and ‖A‖2

L2 = 4
∫
ᾱαe−2ρdµg. With this α notation we can write

∂̄AΦ =
∂Φ
∂z̄

− iᾱΦ.

3.2 The Hessian

The Bogomolny decomposition amounts to the observation that, with λ = 1,

V(A,Φ) ≡ V1(A,Φ) =
1
2

∫
Σ

(
4|∂̄AΦ|2e−2ρ + (B − 1

2
(
1− |Φ|2)

)2)
dµg + πN

where N = degL. If the following first order equations, called the Bogomolny equations,

∂̄AΦ = 0,

B−1
2
(1− |Φ|2) = 0

(3.48)

have solutions in a given class, they will automatically minimize V within that class.

We introduce the nonlinear Bogomolny operator associated to this decomposition,

B : Ω1
R ⊕ Ω0(L) −→ Ω0

R ⊕ Ω0,1(L)

(A,Φ) 7→
(
B − 1

2
(1− |Φ|2) , ∂̄Aφ

)
.

Using the norm ‖(β, η)‖2
L2 =

∫
(|β|2 + 4e−2ρ|η|2)dµg induced from the metric on the

target space, we see that V(A,Φ) = 1
2‖B(A,Φ)‖2

L2 + πN as in remark 1.4.3; see [6]. The

derivative of B at ψ = (A,Φ) is the map DBψ : Ω1
R ⊕ Ω0(L) −→ Ω0

R ⊕ Ω0,1(L) given by

(Ȧ, Φ̇) 7→ (∗dȦ+ 〈Φ, Φ̇〉 , ∂̄AΦ̇− i ˙̄αΦ) (3.49)
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where α = A1−iA2
2 and α̇ = Ȧ1−iȦ2

2 . Using this complex notation allows a simple unified

formulation, which takes account of the gauge condition (1.3): this condition is the real

part of

4e−2ρ∂̄α̇− iΦ¯̇Φ = 0, (3.50)

while the imaginary part of this expression is just the condition ∗dȦ + (Φ, Φ̇) = 0,

appearing in the linearized Bogomolny equations. This suggests the introduction of the

operators

Dψ :
(
Ω1,0 ⊕ Ω0(L)

)
−→

(
Ω0

C ⊕ Ω0,1(L)
)

D∗ψ :
(
Ω0

C ⊕ Ω0,1(L)
)
−→

(
Ω1,0 ⊕ Ω0(L)

) (3.51)

given by

Dψ(α̇, Φ̇) = (4e−2ρ∂̄α̇− iΦ¯̇Φ, ∂̄AΦ̇− i ¯̇αΦ)

D∗ψ(β, η) = (−∂β − iΦη̄, −4e−2ρ∂Aη − iΦβ̄).
(3.52)

We use the real inner product associated to the L2 norms induced from the metric as

above, i.e.:〈
(α̇, Φ̇), (α′,Φ′)

〉
L2

=
∫ (

4e−2ρ< ¯̇αα′ + < ¯̇ΦΦ′
)
dµg on Ω1,0 ⊕ Ω0(L)〈

(β, η), (β′, η′)
〉
L2

=
∫ (

<β̄β′ + 4e−2ρ<η̄η′
)
dµg on Ω0

C ⊕ Ω0,1(L) .

Integrating by parts we deduce that〈
Dψ(α̇, Φ̇), (β, η)

〉
L2

=
〈
(α̇, Φ̇),D∗ψ(β, η)

〉
L2

so that D∗ψ is the L2 adjoint of Dψ and

D∗ψDψ(α̇, Φ̇) =
(
− ∂(4e−2ρ∂̄α̇− iΦ¯̇Φ)− iΦ(∂̄AΦ̇ + iα̇Φ̄) , (3.53)

− 4e−2ρ∂A(∂̄AΦ̇− i ¯̇αΦ)− iΦ(4e−2ρ∂ ¯̇α+ iΦ̄Φ̇)
)

=
(
− ∂(4e−2ρ∂̄α̇) + i(∂AΦ)¯̇Φ + |Φ|2α̇ , −4e−2ρ∂A∂̄AΦ̇ + |Φ|2Φ̇ + i4e−2ρ ¯̇α∂AΦ

)
.

We compare this expression with the operator defined in (2.36):

Lψ :
(
Ω1,0 ⊕ Ω0(L)

)
−→

(
Ω1,0 ⊕ Ω0(L)

)
(3.54)
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which defines the Hessian of V on the subspace on which the gauge condition (1.3) is

satisfied, i.e.,

〈ψ̇, Lψψ̇〉L2 = D2Vψ(ψ̇, ψ̇) =
d2

dε2
|ε=0V(ψ + εψ̇), (3.55)

for ψ̇ = (Ȧ, Φ̇) satisfying (1.3). Using mixed real/complex notation for A/α, (2.36)

implies the following formula:

Lψ =
(
− 4∂(e−2ρ∂̄α̇) + |Φ|2α̇− (iΦ̇, D1Φ) + i(iΦ̇, D2Φ) ,

−∆AΦ̇− 1
2
(1− 3|Φ|2)Φ̇ + 2ie−2ρȦ ·DΦ

)
. (3.56)

Calculate Ȧ ·DΦ = 2α̇∂̄AΦ + 2¯̇α∂AΦ and −(iΦ̇, D1Φ) + i(iΦ̇, D2Φ) = i ¯̇Φ∂AΦ − iΦ̇∂̄AΦ,

from which it follows that

(Lψ −D∗ψDψ)ψ̇ =

(
−iΦ̇∂̄AΦ(
B − 1

2(1− |Φ|2)
)
Φ̇ + 4ie−2ρα̇∂̄AΦ

)
. (3.57)

(Incidentally, observing that

B(A+ Ȧ,Φ + Φ̇) = B(A,Φ) +Dψψ̇ +
(

1
2
|Φ̇|2,−i̇̄αΦ̇

)
,

with ψ̇ = (Ȧ, Φ̇) satisfying (1.3), the identity (3.57) can also be read off from the

quadratic part of the Taylor expansion for V(A+ Ȧ,Φ + Φ̇):

1
2
〈ψ̇, Lψψ̇〉L2 =

1
2
|Dψψ̇|2L2 +

〈
B(ψ) ,

(
1
2
|Φ̇|2,−i ˙̄αΦ̇

)〉
=

1
2
|Dψψ̇|2L2 +

∫
Σ

(
1
2
(B − 1

2
(1− |Φ|2))|Φ̇|2 + 4e−2ρ〈∂̄AΦ,−i ˙̄αΦ̇〉

)
dµg,

using the inner product on Ω1,0 ⊕ Ω0(L) defined above.)

Corollary 3.2.1 Let J denote the complex structure defined in (1.17). There exists a

number c > 0, independent of ψ = (α,Φ) and ζ = ψ̇ = (α̇, Φ̇) ∈ Ω1,0 ⊕ Ω0(L), such that

|〈Jζ, Lψζ〉L2 | ≤ c |B(ψ)|L∞ |ζ|2L2

Proof By (3.57) |〈Jζ, Lψζ〉L2−〈DψJζ,Dψζ〉L2 | ≤ |B(ψ)|L∞ |ζ|2L2 . Now the complex struc-

ture J written in complex notation, i.e. acting on Ω1,0 ⊕ Ω0
(L), is given by J(α̇, Φ̇) =

(−iα̇, iΦ̇). Correspondingly, on Ω0
C⊕Ω0,1(L) we introduce the complex structure J′(β, η) =

(iβ,−iη). Then, by observation

DψJζ = −J′Dψζ. (3.58)
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Therefore, writing w = Dψζ, we have 〈DψJζ,Dψζ〉L2 = 〈−J′w,w〉L2 = 0 by skew-

symmetry, and the result follows. 2

Lemma 3.2.2 Assume there are positive numbers L, E0 such that |Φ|L2 = L, and Vλ(A,Φ) =

E0 and λ > 0. Then the quadratic forms

Q̃Φ(β) =
∫

Σ
4|∂β|2e−2ρ + |Φ|2|β|2dµg on ⊕ Ω0

Cand

Q(A,Φ)(η) =
∫

Σ
4e−4ρ|∂Aη|2 + e−2ρ|Φ|2|η|2dµg on Ω0,1(L)

are strictly positive, and in fact bounded below by (respectively) C‖β‖2
H1 and C‖η‖2

H1
A

where C is a positive number depending only upon the numbers L, E0.

Proof We will present the proof for the quadratic form Q(A,Φ)(η) as the other is similar

but easier. Clearly Q(A,Φ)(η) ≥ 0 and in fact Q(A,Φ)(η) = 0 if and only if η ≡ 0 on

Σ (because if ∂Aη ≡ 0 then η has isolated zeros (as in [16], sec. 3.5); if Φη ≡ 0 then

η ≡ 0 since Φ = 0 a.e. contradicts
∫
Σ |Φ|

2 = L > 0. Furthermore, we show that

Q(A,Φ)(η) ≥ c|η|2L2 for a constant c; to be precise there exists c = c(L, E0) such that

Q(A,Φ)(η) ≥ c, for all η such that ‖η‖L2 = 1. (3.59)

We will prove this by contradiction. First we obtain some bounds. By gauge invariance

we are free to assume that the Coulomb gauge condition divA = 0 holds. With this

gauge condition, we have the bound ‖A‖H1 ≤ c(E0) and so A is bounded in every Lp

space. Now use ‖∂η‖Lp ≤ ‖∂Aη‖Lp + ‖Aη‖Lp to deduce that

‖∂η‖2
Lp ≤ C(1 +Q(A,Φ)(η))

for every p < 2, by Holder’s inequality. This in turn implies, by the Lp estimate for

the inhomogeneous Cauchy-Riemann system, that η is bounded similarly in L4, and so

since A is also we can bound ∂η in L2 and hence η in H1. Finally, since A and η are

bounded similarly in L4, this imples that ‖η‖2
H1

A
≤ C(1 +Q(A,Φ)(η)), with C depending

only upon E0, L. To conclude, in Coulomb gauge the A,Φ, η are all bounded in H1 in

terms of L, E0, Q(A,Φ)(η).

The contradiction argument now starts: assume (3.59) fails. Then, by the bounds just

obtained and the Banach-Alaoglu and Rellich theorems, there is a sequence (Aν ,Φν , ην)
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with

‖Aν‖H1 + ‖∇Φν‖L2 ≤ K(E0, L),

‖Φν‖L2 = L and ‖ην‖L2 = 1, such that

Q(Aν ,Φν)(ην) −→ 0

Aν −→ A weakly in H1

Φν −→ Φ weakly in H1 and strongly in Lp for any p <∞

ην −→ η weakly in H1 and strongly in Lp.

This implies that |Φ|L2 = L > 0, Q(A,Φ)(η) = 0 which implies as above that Φ = 0 a.e.

and contradicts as above that |Φ|L2 is constant. This leads to

Q(A,Φ)(η) ≥ c1|η|2L2 where c1 = c1(L, E0).

Finally just apply the bound above for ‖Dη‖L2 to improve this up to the H1
A lower bound

claimed. 2

3.3 The Bogomolny foliation

We introduce a foliation associated to the Bogomolny operator, which we regard as a

map between the following Hilbert spaces:

B : H1
(
Ω1

R ⊕ Ω0(L)
)
−→ L2

(
Ω0

R ⊕ Ω0,1(L)
)
,

(A,Φ) 7→
(
B − 1

2
(1− |Φ|2) , ∂̄Aφ

)
.

With this choice of norms B is a smooth function. The next result shows that it is a

submersion if the energy is close to the minimum value:

Lemma 3.3.1 There exists θ∗ > 0 such that ‖∂̄AΦ‖L2 < θ∗ implies that KerD∗Ψ = {0},

and KerDΨ is 2N dimensional (where N = degL).

Proof D∗(β, η) = 0 is equivalent to

− ∂β − iΦη̄ = 0

− 4e−2ρ∂Aη − iΦβ̄ = 0.
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Apply the operations 4∂̄ to the first and 4∂̄A to the second of these equations to deduce

that

− 4e−2ρ∂̄∂β + |Φ|2β − 4ie−2ρ∂̄AΦη̄ = 0

− 4∂̄A(e−2ρ∂̄Aη) + |Φ|2η − i(∂̄AΦ)β = 0

The first two terms of these two equations are respectively the Euler- Lagrange operators

associated to the quadratic forms Q̃Φ(β) and QA,Φ(η) studied in the previous lemma.

Then we get the estimates

Q̃Φ(β) ≤ c|∂̄AΦ|L2 |β|L4 |η|L4

QA,Φ(η) ≤ c|∂̄AΦ|L2 |β|L4 |η|L4

which implies the result, since Q̃Φ(β) ≥ c|β|2H1 and QA,Φ(η) ≥ c|η|2
H1

A
. 2

The natural geometrical context for the results of this section will now be explained.

Define O∗ ≡ {(A,Φ) ∈ H1(Ω1
R⊕Ω0(L)) : ‖∂̄AΦ‖L2 < θ∗} which is an open set containing

{ψ = (A,Φ) : B(ψ) = 0} ⊂ H1(Ω1
R ⊕ Ω0(L)). Furthermore, the previous lemma implies

that Dψ : (Ω1,0 ⊕Ω0(L)) −→ (Ω0
C ⊕Ω0,1(L)) is surjective for ψ ∈ O∗. By the discussion

in the paragraph preceding (3.51), this implies that DBψ : Ω1
R⊕Ω0(L) −→ Ω0

R⊕Ω0,1(L)

is also surjective for ψ ∈ O∗, and hence the level sets of B form a foliation of O∗ whose

leaves have tangent space equal to KerDBψ by [1, §3.5 and §4.4]. The intersection of

this tangent space with SLψ = {(Ȧ, Φ̇) : (Ȧ, Φ̇) satisfies (1.3)} is KerDΨ.

Lemma 3.3.2 Assume ψ ∈ (Ω1,0⊕Ω0
C(L))∩O∗. The operators D∗ψDψ defined in (3.53)

are self-adjoint operators on L2, with domain H2, with 2N -dimensional kernel equal to

KerDψ, and:

‖D∗ψDψζ‖L2 + ‖ζ‖L2 ≥ c‖ζ‖H2 . (3.60)

Let Pψ be the orthogonal spectral projector onto KerD∗ψDψ = KerDψ. Then Pψ(V ′(ψ)) =

0 and Pψ(J(dχ, iχΦµ)) = 0 for any smooth real valued function χ. Finally, if also

ψ(j) ∈ (Ω1,0 ⊕Ω0
C(L))∩O∗, and supj ‖ψ(j)‖H2 <∞ and limj→+∞ ‖ψ(j) −ψ‖Hr = 0, for

all r < 2, the corresponding projectors Pψ(j) converge to Pψ in L2 → L2 operator norm.

Proof The first assertion and the bound (3.60) follow from lemma 3.3.1 and standard

elliptic theory. The next statement follows by noting that if n ∈ KerDψ, then differen-
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tiation of V(ψ) = 1
2

∫
|B(ψ)|2dµg + πN yields

〈n,V ′(ψ)〉L2 =
d

ds

∣∣∣∣
s=0

V(ψ + sn) = 〈B(ψ), DBψ(n)〉L2 = 0

since KerDψ ⊂ KerDBψ by the discussion preceding (3.51). Next, n ∈ KerDψ implies

that Pψ(J(dχ, iχΦµ)) = 0 since integration by parts reduces this to the fact that n solves

the first component of DBψn = 0 in (3.49).

The final statement follows by [13, § IV.3], if it can be established that Tj ≡ D∗
ψ(j)Dψ(j)

converges to T ≡ D∗ψDψ in the generalized sense of Kato (see [13, §IV.2.6]), or equiva-

lently in the norm resolvent sense:

lim
j→∞

‖(i+ T )−1 − (i+ Tj)−1‖L2→L2 = 0. (3.61)

To verify this convergence, it is convenient first of all to verify it in Coulomb gauge. So

let ψ̃(j) = (Ã(j), Φ̃(j)) = eiχj · ψ(j) and ψ̃ = (Ã, Φ̃) = eiχ · ψ be gauge transforms (as

defined following (1.7)), such that div Ã(j) = 0 = div Ã. The assumed properties of ψ(j)

ensure that sup ‖χj‖H2 <∞ and that lim ‖χj −χ‖Hr = 0, ∀ r < 2 so that also ψ̃(j) → ψ̃

in Hr for r < 2. Now observe that in Coulomb gauge the formula (3.53) does not involve

any derivatives of the connection one-form A at all. From this it is then immediate by

inspection that (writing T̃j ≡ D∗
ψ̃(j)Dψ̃(j) , and T̃ ≡ D∗

ψ̃
Dψ̃,)

‖(T̃ − T̃j)ζ‖L2 ≤ δj‖ζ‖H2 ≤ cδj(‖ζ‖L2 + ‖T̃ ζ‖L2) (3.62)

where δj → 0 as j → +∞. But this last fact implies (by [13, Theorems IV.2.24-25]) that

T̃j converges to T̃ in the generalized sense, and hence in the resolvent sense:

lim
j→∞

‖(i+ T̃ )−1 − (i+ T̃j)−1‖L2→L2 = 0. (3.63)

This would establish the convergence of the corresponding spectral projectors in Coulomb

gauge. To go back to the original ψj it is just necessary to make use of the following

gauge invariance property: on ζ = (α̇, Φ̇) the induced action of the gauge group is

g • (α̇, Φ̇) = (α̇, gΦ̇) for any S1 valued function g, and

T̃
(
eiχ • ζ

)
= eiχ • (Tζ) ,

and similarly with Tj , χj replaced by T, χ. This gauge invariance property implies that

(i+ Tj)−1 = e−iχj ◦ (i+ T̃j)−1 ◦ eiχj and (i+ T )−1 = e−iχ ◦ (i+ T̃ )−1 ◦ eiχ, where by ◦
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we mean operator composition, and eiχ is shorthand for the operator eiχ• etc. Finally,

using lim ‖χj −χ‖Hr = 0, ∀ r < 2 we see that (3.62) and (3.63) imply (3.61), completing

the proof. 2

Appendix

A.1 Operators

To describe in detail the Laplacian operators which appear in the text, we assume Σ to be

covered by an atlas of charts Uα on each of which is a local trivialisation of L determined

by a choice of a local unitary frame. (A smooth section Φ of L then corresponds to a

family of smooth functions Φα : Uα → C so that on Uα ∩Uβ we have Φα = eiθαβΦβ with

eiθαβ : Uα ∩Uβ → S1 smooth.) We assume given a smooth connection D = ∇− iA on L

acting as a covariant derivative operator on sections of L. Working in such a chart, and

suppressing the index α, the Laplacian on sections Φ of L is given by:

−∆AΦ = − 1
√
g
Dj

(
gij
√
gDiΦ

)
= −e−2ρ

(
DiDiΦ

)
. (A.1)

This satisfies 〈−∆AΦ,Φ′〉L2 = d
dε

1
2 |D(Φ + εΦ′)|2L2 |ε=0.

Next we need the Laplacian on one-forms. Starting with A = A1dx
1 +A2dx

2 ∈ Ω1
R,

the negative Laplacian is the Euler-Lagrange operator associated to the Dirichlet form
1
2

∫
(|divA|2 + |dA|2)dµg (with the norms inside the integral determined by g in the

standard way). Transferring to complex form α = 1
2(A1 − iA2) ∈ Ω1,0, this Dirichlet

form is just I(α) = 8
∫
e−4ρ∂̄α∂̄α dµg. The corresponding negative Laplacian −∆1,0 is

then defined by 〈−∆1,0α, β〉L2 = d
dεI(α+εβ)|ε=0 where we use the induced inner product

Ω1,0 as in §3. This leads to the following formula for the negative Laplacian −∆1,0 on

α ∈ Ω1,0:

−∆1,0α = −4∂(e−2ρ∂̄α),

which is precisely the operator appearing in §3. Similarly, on Ω0,1(L) the negative

Laplacian is

−∆0,1
A η = −4∂̄A(e−2ρ∂Aη),

which is the operator in (2.30).
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A.2 Norms and inequalities

We define the Sobolev norms defined with the covariant derivative D = ∇A = ∇− iA.

(We write ∇A in place of D for emphasis here.) The first Sobolev norm is defined by

|Φ|2H1
A

=
∫

Σ

(
|Φ|2 + |∇AΦ|2

)
dµg. (A.2)

In the above integral the inner products are the standard ones induced from h and g.

The higher norms H2
A, . . . are defined similarly, as are the W k,p

A norms for integral k

and any p ∈ [1,∞]. The Lp norms of the higher covariant derivatives arising from the

connections ∇A and ∇ are related as expressed schematically in the following:

‖∇Φ‖Lp ≤ ‖∇AΦ‖Lp + c‖A‖L∞‖Φ‖Lp , (A.3)

‖∇∇Φ‖Lp ≤ ‖∇A∇AΦ‖Lp + c‖A‖L∞‖∇AΦ‖Lp (A.4)

+c(1 + ‖∇A Φ‖Lp + ‖A‖2
L∞‖Φ‖Lp),

‖∇∇∇Φ‖Lp ≤ ‖∇A∇A∇AΦ‖Lp + c‖A‖L∞‖∇A∇AΦ‖Lp (A.5)

+c(1 + ‖∇A‖L∞ + ‖A‖2
L∞)‖∇AΦ‖Lp

+c
(
1 + ‖∇2A‖Lq‖Φ‖Lr + ‖A‖3

L∞‖Φ‖Lp

)
,

where q−1 + r−1 = p−1.

We now collect together some inequalities from [10].

The system of equations

B = f divA = g (A.6)

(where as above div : Ω1 → Ω0 is minus the adjoint of d) is a first order elliptic system

which can be solved for A subject to the condition on
∫
fdµg dictated by an integer N ,

the degree of L. It can be rewritten

dA = (f − b)dµg divA = g (A.7)

and solved via Hodge decomposition as long as the right hand sides have zero integral.

There is a solution unique up to addition of harmonic 1-forms which satisfies ‖A‖W 1,p ≤

cp(1 + ‖f‖Lp + ‖g‖Lp) for p <∞.
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Lemma A.2.1 (Covariant Sobolev and Gagliardo-Nirenberg inequalities) For

(Σ, g) as above and for (A,Φ) ∈ (H1 ×H2
A)(Σ) then ∇AΦ ∈ L4(Σ) and

‖∇AΦ‖L4 ≤ c‖∇AΦ‖H1
A

(A.8)

and also for all 1 ≤ p <∞, H2
A ↪→W 1,p

A ↪→ L∞ continuously on Σ. Also

‖∇AΦ‖L4 ≤ c‖∇AΦ‖1/2
L2

(
‖∇AΦ‖1/2

L2 + ‖∇A∇AΦ‖1/2
L2

)
(A.9)

where c depends only on (Σ, g).

Lemma A.2.2 (Covariant version of the Garding inequality) For Ψ = (A,Φ) such

that the norms on Σ appearing below are finite we have

‖∇A∇AΦ‖L2 ≤ ‖∆AΦ‖L2 + c‖B‖1/2
L∞‖∇AΦ‖L2 + c‖Φ‖1/2

L∞‖∇AΦ‖1/2
L2 ‖∇B‖

1/2
L2 (A.10)

where c is a number depending only on (Σ, g).

Lemma A.2.3 (Covariant version of the Brezis-Gallouet inequality) If A ∈ H1(Σ)

and Φ ∈ H2
A(Σ) then

‖Φ‖L∞(Σ) ≤ c
(
1 + ‖Φ‖H1

A

√
ln(1 + ‖Φ‖H2

A
)
)

(A.11)

where c depends only on (Σ, g).

A.3 Global existence results and different choices of gauge

In this section we will summarize the existence theory for (1.1) from [3] and [10], and

explain how theorem 1.2.1 can be deduced from it. Existence theory can be worked

out using various gauge conditions, and a choice of gauge is usually made to facilitate

the calculations. The simplest condition for the statement of the theorem, which also

is convenient if we wish to make the Hamiltonian structure manifest - see §1.3, is the

temporal gauge condition A0 = 0; however, the regularity is stronger in Coulomb gauge

divA = 0. We have the following statements.

Theorem A.3.1 (Global existence in temporal gauge) Given data Φ(0) ∈ H2(Σ)

and A(0) ∈ H1(Σ), there exists a global solution for the Cauchy problem for (1.1) sat-

isfying A0 = 0, with regularity Φ ∈ C
(
[0,∞);H2(Σ)

)
∩ C1

(
[0,∞);L2(Σ)

)
and A ∈
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C1
(
[0,∞);H1(Σ)

)
. Furthermore, it is the unique such solution satisfying A0 = 0 and

satisfies the estimate

‖Φ(t)‖H2(Σ) ≤ ceαe
βt
,

for some positive constants c, α, β depending only on (Σ, g), the equations, and the initial

data.

This can be derived from theorem 1.1 in [10], by applying a gauge transformation to

put the solution obtained there into temporal gauge. To be precise the cited result gives

a global solution (a0,a, φ) of the system (1.1) satisfying the parabolic gauge condition

a0 = diva, and the gauge invariant growth estimate

‖φ‖H2
a(Σ)(t) ≤ ceαe

βt
. (A.12)

The solution satisfies φ ∈ C
(
[0,∞);H2(Σ)

)
∩ C1

(
[0,∞);L2(Σ)

)
, a ∈ C

(
[0,∞);H1(Σ)

)
and a0 ∈ C

(
[0,∞);L2(Σ)

)
. Now define χ ∈ C1

(
[0,∞);L2(Σ)

)
by ∂tχ + a0 = 0 and

χ(0) = 0. Define (Φ, A) = (φeitχ, a + dχ): this gives a solution to (1.1) satisfying the

properties asserted in theorem A.3.1. (Most of this can be read off immediately, except

perhaps to verify that A ∈ C1
(
[0,∞);H1(Σ)

)
, but this follows from the first equation

in (1.1), using the fact that A0 = 0 and the right hand side is continuous into L2.)

An alternative approach to local existence is given in [3], where it is shown that,

in Coulomb gauge, systems of the type (1.1) can be put in the form of an abstract

evolution equation to which Kato’s theory ([14]) applies. This yields the existence of a

local solution denoted (A′,Φ′) with Φ′ continuous into H2 on a time interval of length

determined by the H2 norm of the initial data. But the estimate (A.12) above is gauge

invariant, and allows continuation of the local solution to provide a global solution in

Coulomb gauge with regularity Φ′ ∈ C
(
[0,∞);H2(Σ)

)
∩ C1

(
[0,∞);L2(Σ)

)
and A′ ∈

C
(
[0,∞);H3(Σ)

)
∩C1

(
[0,∞);H1(Σ)

)
satisfying the Coulomb gauge condition divA′ = 0.

Finally, we explain how to obtain theorem 1.2.1 from these results. Given a solution

A′,Φ′ in Coulomb gauge, as just described, define χ(t, x) to be the solution of

(−∆ + |Φ′|2)χ̇ = div Ȧ′ − 〈iΦ′, Φ̇′〉 = −〈iΦ′, Φ̇′〉,

with χ(0, x) = 0. Then it is easy to verify that A = A′ + dχ,Φ = Φ′eiχ satisfies (1.3).

Under the condition ‖Φ(t)‖2
L2(Σ) = L > 0 the solution exists and is unique at time t; this
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condition is natural because ‖Φ(t)‖L2(Σ) is independent of time for solutions of (1.1).

Now by the above mentioned Coulomb gauge regularity and the basic estimates for the

Laplacian we deduce that χ ∈ C1([0,∞);H2). This gives the global existence theorem

in the gauge stated in theorem 1.2.1.
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