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4 M. S. JOSHI AND A. J. WASSERMANNIMPORTANT NOTEThese notes are being used with the consent of the authors for the1999 course. The e-mail of the lecturer for the course is twk@dpmmsbut anyone wishing to get in touch with the authors should contactDr Wassermann. 1. IntroductionPartial di�erential equations (PDEs) play a central role in mostbranches of applied maths, theoretical physics as well as geometry,analysis, probability theory and topology. In fact most analysis wasdeveloped to solve the problems posed by di�erential equations. Forexample the theory of Hilbert spaces and the spectral theorem for self-adjoint operators was invented to solve the classical Sturm-Liouvilleproblem(see Hilbert Space course). The purpose of this course is togive a taste of many of the techniques invented to solve and analysePDEs.A PDE of order k is roughly an expression� F (x; u; @1u; : : : ; @nu; : : : ; @knu) = 0 (x 2 
 � Rn open)relating u(x), (x 2 Rn) and its derivatives of order � k. We shallsometimes say that u is a classical solution of (�), this is to distinguishfrom the notion of a weak or distributional solution which we shallintroduce later.For a multi-index � = (�1; : : : ; �n) set @�u = @j�j@x�11 :::@x�nn u wherej�j = P�i. (Sometimes we write @j�j@x�u for @�u)A linear PDE is one that can be written in the formPu = f (1.1)P = Xj�j�k a�(x)@� (1.2)where a� and f are functions of x. The order of the equation is thenk: Most of this course is devoted to studying the case where all the a�are constant - this is called a constant coe�cient linear PDE. We shallsee that these can be pretty complicated but also that they are nowwell understood.A quasi-linear equation is one where a� and f may also depend notonly on x but also @�u for j�j < k.



PARTIAL DIFFERENTIAL EQUATIONS 5There are also non-linear equations | Navier Stokes, Euler's equa-tions for geodesics, K-dV, minimal surface equations | which requirespecial methods of solution beyond this course.Hadamard introduced the concept of a well-posed problem into PDEs- this is a problem which satis�es three basic criteria - existence, unique-ness and continuous dependence of solution on data given. Note thatin a problem coming from physics one would expect all these three tobe satis�ed - the �rst two because something will happen and only onething will happen. The third because data can never be measured ex-actly and so if two solutions coming from data close together are notsimilar then one can not make a useful prediction.So in PDEs the problems we study are variants of the following.Existence Prove that there is u satisfying (�) possibly with prescribed con-ditions in a neighbourhood of a point or in 
. We also want aconstructive proof - i.e. one that tells us what u is!Uniqueness Prove that u is unique. If u is not unique, what boundary condi-tions can be imposed to make u unique?Continuity How does u depend on the boundary conditions and on f in thelinear case?Smoothness How many times di�erentiable is u? Does u have points of sin-gularity? How long is the solution valid for? Often in non-linearproblems the solution will blow-up (ie tend to in�nity) after some�nite time.1.1. The Basic Constant Coe�cient Linear PDEs. The mostimportant di�erential operator in mathematics is the Laplacian whichis equal to � = nXi=1 @2@x2iand acts on functions on Rn : It can also be de�ned on manifolds andthen becomes a variable coe�cient operator. The other linear di�eren-tial operators we will consider are@@t �� ( heat operator )2 = @2@t2 �� ( wave operator)More generally, we'll study PDEs with constant coe�cients using theFourier transform as a key tool.1.2. Symbols and De�nitions. Associated to any linear, partial dif-ferential operator is a polynomial called the total symbol obtained by



6 M. S. JOSHI AND A. J. WASSERMANNreplacing @@xj by i�j :�(P ) = p(x; �) =X� a�(x)(i�)� = e�ix:�P (eix:�) P =X� a�(x)@�:The important point is that if û is the Fourier transform of u thenP (x;D)u = � 12��n=2 Z eix:�p(x; �)û(�)d�:Proposition 1. If P is a di�erential operator of order k and Q is adi�erential operator of order l then�(PQ)(x; �) =X (�i)j�j�! @�� �(P )(x; �)@�x�(Q)(x; �)where �! = Q�i!:The principal symbol is the top order part of the symbol:�k(P )(x; �) = Xj�j=k a�(x)(i�)�:The principal symbol is particularly useful because�k+l(PQ) = �k(P )�l(Q):When the principal symbol is never zero or only ever vanishes to �rstorder - the operator is said to be of principal type and the lower orderterms have little e�ect on the qualitative behaviour of the PDE. Wede�ne the characteristic set to be the points where the principal symbolvanishes - char(P ) = f(x; �)j�k(P )(x; �) = 0g:The operator P is elliptic (of order k) at x if only if �k(P )(x; �) 6= 0for � 6= 0 and elliptic if this is true for all x.A hypersurface S is said to be characteristic for P at x if the normalvector is a characteristic vector for P . S is called non-characteristic ifit isn't characteristic at any point.Example 1. The operator P = @@x + i @@y ; on R2 (or C ) has principalsymbol �1(P )(x; y; �; �) = i� � �and so is elliptic. The Laplacian has principal symbol � nPj=1 �2j and thusis elliptic.



PARTIAL DIFFERENTIAL EQUATIONS 7However the wave and heat operators are not.char(2) = f� 2 � �2 = 0�Rn+1x;t � Rn+1�;� gchar(@t ��) = f� = 0�Rn+1x;t � Rn+1�;� gIt is traditional to classify second order operator into three main typescorresponding to the three main operators. This comes from the geom-etry of the level sets of the principal symbols. (one has to consider theprincipal symbol of the heat operator to be � � �2; rather than i� � �2or the actual value �2:)Elliptic { LaplaceParabolic { HeatHyperbolic { WaveThese of course correspond to the non-degenerate conic sections -this insight is not however particularly useful.1.3. Examples of Non-linear PDEs. These will not be treated inthis course but you should be aware they are out there.(1) The Navier-Stokes Equation in Fluid Dynamics@u@t �4u+ u�5u = f �5p; 5� u = 0f(t; x), u(t; x) 2 Rn , x 2 Rn , t 2 R (see Constantine and Foias).(2) The Euler Equations for Geodesics in an \Ideal Fluid"Typically (Yang-Mills Instantons) di�erential equations arise througha minimisation or variational problem. Let G = GL(n;R) �Mn(R) be the group of invertible matrices and let ha; bi be aninner product on Mn(R). If g : [0; 1]! G is a di�erentiable path(C1), its length e(g) = R 10 kg0(t)kdt where g0(t) = g�1 _g and itsenergy E(g) = R 10 kg0(t)k2dt. A curve g is called a geodesic if itis a critical point for the energy subject to the end points being�xed. It turns out that a C2 curve is a geodesic if and only if gsatis�es the Euler equationhdg0dt ;Xi = hg0; [g0; X]i (X 2Mn(R)):Locally geodesics also minimise length. (see Arnold).(3) Beltrami's Equation and conformal structures (linear PDE)Let ds2 = Edx2 + 2Fdxdy +Gdy2



8 M. S. JOSHI AND A. J. WASSERMANNbe a Riemannian metric on a piece of R2 (or a 2-D manifold).Setting z = x+ iy, we can writeds2 = �jdz + �dzj2where � > 0 and j�j < 1 is complex. Coordinates (u; v) are calledisothermal for ds2 if ds2 = �(du2+dv2) with � > 0. Let w = u+iv;then �jdwj2 = �jwzj2jdz + wzwz dzjso dwdz = �dwdz . This is Beltrami's equation { it can alwaysbe solved. The complex structure w is called the conformalstructure induced by the the metrics ds2 (see Ahlfors)(4) The Korteweg-de Vries equation and solutions ut� 6uux+uxxx = 0 was �rst discovered in connection with solitary waterwaves. It is an example of a completely integrable systemand its solutions form an in�nite dimensional subspace (indexedby an in�nite-dimensional Grassmannian, ie special subspaces ofan in�nite-dimensional Hilbert space). (see Drazin, Kac)(5) Minimal Surface z = u(x; y) satis�es (1 + u2y)uxx � 2uxuyuxy +(1 + u2x)uyy = 0.2. Existence and Uniqueness of Solutions for ODEs2.1. The Method of Successive Approximations.Theorem 1. (The Contraction Mapping Theorem) Let (X; d) be acomplete, non-empty, metric space and T : X ! X a map such thatd(Ty1; T y2) � kd(y1; y2) with k 2 (0; 1): Then T has a unique �xedpoint in X; in fact if y0 2 X; then Tmy0 ! �xed point as m!1.Proof. Using the geometric progression11� k = Xm�0 km;we check that Tmy0 forms a Cauchy sequence in X. So by completenessof X, Tmy0 ! y some y. But then Tm+1y0 ! Ty, so Ty = y and y isa �xed point. ClearlyTyi = yi (i = 1; 2) ) d(y1; y2) � kd(y1; y2)so d(y1; y2) = 0 and y1 = y2, Thus T has a unique �xed point.Corollary 1. Suppose that T n is a contraction mapping for some n.Then the same conclusions hold.



PARTIAL DIFFERENTIAL EQUATIONS 9Proof. By Theorem 1, T n has a unique �xed point, y: We also havethat T n(Ty) = T n+1y = T (T ny) = Ty:So Ty is also a �xed point of T n and �xed points are unique so Ty = y.AlsoTmny0 ! y Tmn+1y0 ! y, : : : , Tmn+(n�1)y0 ! y (m!1).Putting these together, we see Tmy0 ! y.Note that this result not only says there is a �xed point but alsogives a method for �nding it.Let f(t; x) be a vector-valued continuous function jt� t0j � a, kx�x0k � b where x 2 Rn . Suppose f also satis�es the Lipschitz conditionkf(t; x1)� f(t; x2)k � ckx1 � x2k:Note that a Lipschitz function is automatically continuous. It followsfrom the Mean Value Theorem that a di�erentiable is at least locallyLipschitz. Let M = sup jf(t; x)j and set h = min(a; bM ).Theorem 2. The di�erential equationdxdt = f(t; x); x(t0) = x0 (2.1)has a unique solution for jt� t0j � h:Proof. (Picard-Lindel�of)We will prove this by using the contraction mapping theorem - to doso we need a suitable metric space and a contraction mapping on it. Asdi�erential operators make things less smooth and integral operatorsmake things more smooth, we work with an equivalent problem de�nedin terms of integrals.Let (Tx)(t) = x0 + Z tt0 f(s; x(s))ds: (2.2)Clearly x solves (2.1) if only if Tx = x: (just integrate or di�erentiate).Now letX = fx 2 C([t0 � h; t0 + h];Rn) j kx(t)� x0k �M � h 8tg:This is a complete metric space ford(x1; x2) = supjt�t0j�h kx1(t)� x2(t)k;



10 M. S. JOSHI AND A. J. WASSERMANN(this follows from the fact that a uniform limit of continuous functionsis continuous.) As Mh � b Tx is well-de�ned x 2 X, and Tx is also inX: We claim kT kx1(t)� T kx2(t)k � ckk! jt� t0jk d(x1; x2):For k = 0; this is obvious, and in general it follows by induction sincekT kx1(t)� T kx2(t)k � R tt0 kf(s; T k�1x1(s))� f(s; T k�1x2(s))kds� c R tt0 kT k�1x1(s)� T k�1x2(s)kds� ck(k�1)! R tt0 js� t0jk�1 ds d(x1; x2)� ckk! jt� t0jkd(x1; x2):But then T n is a contraction mapping for n su�ciently big and theresult followsNB why, in the above proof, is the solution x is di�erentiable?2.2. Dependence of ODEs on Initial Conditions.Theorem 3. The solution of (2.1) depends continuously on the initialdata x0.Proof. The idea in this proof is to solve for all possible initial datasimultaneously, thus obtaining a continuous function both of t and theinitial data.Pick h1 < h and take � > 0 such that Mh1 + � � b.LetY = fy 2 C([t0�h1; t0+h1]�B(x0; �);Rn) : ky(t; x)�xk �M � h; y(t0; x) = xg:Again Y is complete for the supremum metric(.y1; y2) = sup ky1(t; x)� y2(t; x)k:Let (Ty)(t; x) = x+ Z tt0 f(s; y(s; x))dsSince Mh1 + � � b, T maps Y into Y and as before we can check byinduction thatkT ky1(t; x)� T ky2(t; x)k � ckk jt� t0jk d(y1; y2):So T n is a contraction mapping for n su�ciently large and T has aunique �xed point y which satis�es@y@t = f(t; y)y(t0; x) = x



PARTIAL DIFFERENTIAL EQUATIONS 11Now y is a continuous function of both t and x and if we �x x = x0then y(t; x0) solves the initial value problem (2.1) so the solution of(2.1) depends continuously on x0 which is what we wanted to prove.Note this works for any h1 < h so we have continuity everywhere onthe open interval.2.3. Vector Fields, Integral Curves and Flows. Let U be an opensubset of Rn . A time-dependent vector �eld on U is a map f(t; x)f : (��; �)� U ! Rn ;so to each time t and point x we have associated a vector. We can takef to be continuous, Ck (continuous derivatives of all orders � k) orsmooth (derivatives of all orders.)Let x0 2 U: An integral curve for f with initial condition (or startingpoint) x0 is a map ' : (��; �)! Usuch that d'dt = f(t; '(t));so the tangent vectors to ' are just the values of the vector �eld atthat point and time.A local ow for f at x0 is a map� : (��; �)� U0 ! U;where x 2 U0 open � U , such that8><>: d�(t;x)dt = f(t; �(t; x))�(0; x) = x :Thus 'x(t) = �(t; x) is an integral curve for f with initial condition x:2.4. Time-independent Vector Fields. Suppose f does not dependon t, it is just a map f : U ! Rn assigning a vector to each point of U .Let �(t; x) = �t(x) be the ow determined by f . It exists for t smallenough and is as smooth as f is.(see below) The chain rule shows thatt 7! �(t; �(t0; x)); (2.3)t 7! �(t+ t0; x) (2.4)



12 M. S. JOSHI AND A. J. WASSERMANNare integral curves of f with the same initial condition �t0(x) at t = 0.But integral curves are unique so they must coincide. Hence �t+t0 =�t � �t0 , thus �t+s = �t � �swhenever this make sense. This means that we have a local bit of anaction of R on U which may only be partially de�ned. It is called alocal 1-parameter group or dynamical system.2.5. Perturbations of Linear ODEs.Theorem 4. Let A(t; x), B(t; x) be continuous matrix-valued func-tions of t and x and let M � supt;x kBk:The solutions of the ODEsd �(t;x)dt = A(t; x)�(t; x); �(t0; x) = a(x) (vector-valued)d �(t;x)dt = B(t; x)�(t; x); �(t0; x) = b(x)satisfy supx k�(t; x) � �(t; x)k � CkA � Bk eMjt�t0j�1M + ka � bkeM jt�t0 jwhere C is a constant depending only on A and a.Proof. By the method of successive approximations, we know that thesequences de�ned by�k = a+ R tt0 A�k�1ds; �0 = a�k = b + R tt0 B�k�1ds; �0 = bwill be such that �n ! �, �k ! �: Let gk(t) = supx k�k(t; x) � �k(t; x)kand C = supk;x;t k�kk: Note that k�kkis bounded as �k is convergent which implies that k�kk is also.Then we check thatgn(t) � ka� bk + CkA�Bkj(t� t0)j+M Z tt0 gn�1(s)ds (2.5)De�ne fn by f0(t) = ka� bk and then inductively by de�ningfn(t) = ka� bk+ CkA� Bkj(t� t0)j+M Z tt0 fn�1(s)ds: (2.6)



PARTIAL DIFFERENTIAL EQUATIONS 13Comparing (2.5) and (2.6), we see thatfn � gn:As we have a contraction mapping, fn ! f where f is a solution off(t) = ka� bk + CkA�Bk(t� t0) +M Z tt0 f(s)dsSolving the corresponding di�erential equation we getf(t) = ka� bkeM jt�t0j + CkA� BkeM jt�t0j � 1MAs gn(t) � fn(t), supx k�n(t; x)� �n(t; x)k � fn(t):The theorem now follows by passing to the limit as n!1.2.6. Smoothness Properties of Flows. The smoother the vector�eld f is, the smoother we would expect the associated ow � to be.Theorem 5. If f is Ck andddt�(t; x) = f(t; �(t; x)); �(0; x) = xthen � is also Ck; 1 � k � 1:Proof. This proof is not examinable. The hardest case is k = 1, theothers follow almost trivially by induction.So we assume f is C1, ie @f@t , @f@xi exist and are continuous. Wemust show that � is also C1. Note that formally, if we set �(t; x) =�@�(t;x)@xi � = Dx� (an n � n matrix). We expect � to satisfy the linearODE d�dt = Dxf(t; �)� (1)Let � be the continuous solution of (1). We show D�a exists and equals�. Let F (s) = f(t; a+ s(b� a)). ThendFds = Dxf(t; a+ s(b� a)) � (b� a)so f(t; b)� f(t; a) = R 10 Dxf(t; a+ s(b� a)) � (b� a)ds. But thenddt(�(t; x+ y)� �(t; x))= f(t; �(t; x+ y))� f(t; �(t; x))= R 10 Dxf(t; �(t; x)) + s(�(t; x+ y)� �(t; x)) � (�(t; x+ y)� �(t; x))ds



14 M. S. JOSHI AND A. J. WASSERMANNLet A(t; x) = Dxf(t; �(t; x)), �(t; x) = �(t; x)y. By(t; x) = R 10 Dxf(t; �(t; x)+s(�(t; x+ y)� �(t; x)))ds, �y(t; x) = �(t; x+ y)� �(t; x). The pertur-bation theorem for ODEs applies (@�@t = A�; @�@t = B�) and implies thatsupjtj�� k�(t; x)y � f�(t; x+ y)� �(x)gk = o(kyk)So Dx� = �; since d�dt = f(t; �), this means � is C1. Now d�dt = A�.Suppose f is Ck and � is known to be Cp. Then A is Cp, so � is Cp(by induction). So Dx� is Cp. Also d�dt = f(t; �) is Cp. Hence � isCp+1 = Ck.2.7. Critical Points. Let f : U ! Rn be a vector �eld. A criticalpoint of f is a point x0 such that f(x0) = 0.Observation (1) If ' is an integral curve of f passing through acritical point x0, then ' is constant.Proof. By uniqueness, since '(t) = x0 is an integral curve.Observation (2) If limt!1'(t) = x, then x is a critical point of f .Proof. By de�nition'(t1)� '(t0) = Z t1t0 f('(s))ds:Write f('(s)) = f(x1) + g(s):Then g(s)! 0 as(s!1:) So estimating the integral, we havekf(x1)kjt1 � t0j � k'(t1)� '(t0)k+ jt1 � t0j supt1�s�t0 jg(s)j:Set t0 = R, t1 = 2R and let R!1. We get f(x) = 0.2.8. First Order Semi-Linear PDEs. Consider the semi-linear �rstorder PDE Lu � nXj=1 aj(x) @u@xj = f(x; u) (2.7)where aj, b are real C1 functions of x 2 Rn and f is C1 but possiblycomplex-valued. We want to solve this with the value of u on somehypersurface, S, given - this is called a Cauchy problem. Let A(x) bethe vector �eld (a1(x); : : : ; an(x)): Let  be an integral curve of A thenddt(u((t)) =Xj aj((t)) @u@xj ((t)): (2.8)



PARTIAL DIFFERENTIAL EQUATIONS 15So di�erentiating along integral curves of A is equivalent to applyingthe operator Pj aj(x) @@xj : This means that solving (2.7) is equivalent tosolving the ODE ddt(u((t))) = f((t); u((t)))along each integral curve : So a method of solution is now clear. Weneed to specify data on a hypersurface intersecting each integral curveonce and then solve along each integral curve.We therefore assume the data is given on a non-characteristic hy-persurface, S, this means that the normal to S, call it �, does notsatisfy X aj�j = 0that is that A is never tangent to S:Theorem 6. Locally, there is a unique solution of (2.7) which takesgiven data on a non-characteristic hypersurface S:We shall not complete the details of the proof of this theorem, aswe can deduce it (when f is real) from a more general theorem aboutsolutions of quasi-linear equations which is proved using a similar tech-nique.Example 2. Solve the PDE@u@x + 2x@u@y = u2; u(0; y) = f(y):First we �nd the integral curves of the vector �eld (1; 2x): So we havedxdt = 1; dydt = 2x:We solve this to obtainx(t) = t + c1; y(t) = t2 + 2c1t + c2:We want the integral curve y0 to start at (0; y0): So then c1 = 0 andc2 = y0: We now have to solveddt(u � y0)(t) = (u � y0)(t)2; (u � y0)(0) = f(y0):This has the solution,(u � y0)(t) = � 1t� f(y0)�1 :



16 M. S. JOSHI AND A. J. WASSERMANNIf f(y0) = 0 the solution is identically zero. We express u as a functionof (x; y) instead of (y0; t): We have x = t; y = x2 + y0 sou(x; y) = � f(y � x2)xf(y � x2)� 1 :(Note this will solve regardless of whether f(y � x2) is zero.)Note that the correspondence given here between �rst order partialdi�erential operators and vector �elds is quite an important fact andindeed in the study of di�erential geometry it is customary to identifythe two.2.9. First Order Quasi-Linear PDEs. These are a bit more generalthan semi-linear equations as we allow the coe�cients of the derivativesto vary with the solution. If S is a hypersurface we study the problemnXj=1 aj(x; u) @u@xj = b(x; u); ujS = � (2.9)where all the functions are real. The solution technique for this relieson regarding u as a variable on the same basis as x: Suppose S isparametrised by a function g that isS = fx = g(s) : s 2 Rn�1g:We work with the vector �eld(a1; a2; : : : ; an; b) on Rn+1and solve for the integral curvesdxdt = a(x; y) (2.10)dydt = b(x; y) (2.11)x(0) = g(s) (2.12)y(0) = �(s): (2.13)Our solution is then basically y(s; t) but we want it as a function of xnot (s; t): The map (s; t) 7! x(s; t)will have invertible derivative at t = 0 provided the vector(a1(g(s); �(s)); : : : ; an(g(s); �(s)))



PARTIAL DIFFERENTIAL EQUATIONS 17is not tangent to S - so we assume this is true - this is our non-characteristic condition. It then follows from the inverse function the-orem that the map has an inverse locally. We then de�neu(x) = y(s(x); t(x))and this is our solution. It clearly satis�es the initial conditions onS we need only check that the di�erential equation is satis�ed. Wecompute P aj @u@xj = P aj(P @sk@xj @u@sk + @u@t @t@xj )= P @u@sk P aj @sk@xj + @u@t P aj @t@xj= P @u@sk P @sk@xj @xj@t + @u@t P @t@xj @xj@t= P @u@sk @sk@t + @u@t @t@t= 0 + b(x; u):So we have proven the existence half ofTheorem 7. The equation (2.9) has a unique solution near S providedthe vector �eld (a1(x(s); �(s)); a2(x(s); �(s)); : : : ; an(x(s); �(s))) is nottangent to S anywhere.The uniqueness comes from the fact that the system used in theexistence part has a unique solution and that any u solving the equationwill give a solution of the system.Note if we have a semi-linear equation with real coe�cients we canuse the technique for quasi-linear equations if we wish but if it has acomplex right hand side, we must use the �rst technique.The proof was also a technique so we can use it to �nd the solutions.Example 3. Solve u@du@dx + @du@dy = 1 with u = s=2 on x = y = s: .The characteristic condition is satis�ed provided s 6= 2: We �rst �ndintegral curves dxdt = u; dydt = 1; dudt = 1;with initial data (x(s; 0); y(s; 0); u(s; 0)) = (s; s; s=2): This has solutionu = t + s=2; y = t+ s; x = t2=2 + st=2 + s:After eliminating s and t, we obtainu = 4y � 2x� y22(2� y) :Note the singularity is precisely at y = 2 where the non-characteristiccondition fails.



18 M. S. JOSHI AND A. J. WASSERMANNThe rest of section two is optional and not examinable.2.10. Formal Power Series Solutions of Holomorphic ODEs(optional). Consider the complex ODEdXdz = A(z)X(z); X(0) = X0 (2.14)where A(z) = Pm�0Amzm is a holomorphic matrix valued function de-�ned for jzj < r. We look for a formal power series solution of (2.14)of the form X(z) = Xm�0Xmzm:We get the recurrence relationmXm = Xi+j=m�1AiXj (2.15)which can we use to compute all the Xm: Our problem is to show thatthe series for X(z) will converge. >From (2.15), we have the inequalitymkXmk � Xi+j=m�1 kAikkXjk: (2.16)Let ai = kAik and de�ne xm by x0 = kX0k,mxm = Xi+j=m�1 aixj: (2.17)Clearly kXik � xi. so the radius of convergence of X(z) will be lessthan that of x(z) =Xxizi:Now if we set a(z) = P aizi; then from (2.17), x(z) is a formal solutionof dxdz = a(z)x(z)and x(0) = x0. By construction a(z) is holomorphic for jzj < r andthis scalar ODE can be explicitly integrated:x(z) = x0 exp Z z0 a(w)dw:Thus x(z) is analytic for jzj < r (since there is a unique formal solutionby (2.17).) Since kXik � xi, X(z) is also analytic for jzj < r, asrequired.So to summarise



PARTIAL DIFFERENTIAL EQUATIONS 19Theorem 8. If A(z) is a holomorphic matrix-valued function de�nedin jzj < r then there is a unique holomorphic function X(z) de�ned injzj < r solving dXdz = A(z)X(z); X(0) = X0with X0 given.Hans Lewy's Counter example.If we try to solve Lf = g when L is a complex vector �eld, wecan split up into real and imaginary parts, giving Z simultaneous realequations of the same form. The previous geometric arguments do nottherefore apply and there may be no solutions.Theorem. Let 
 = f(x; y; z) : x2 + y2 < R; jzj < Rg and let f(z) becontinuous and real valued. If there is a C1 function u on 
 satisfyingLu � @u@x + i@u@y � zi(x + iy)@u@z = f(z)then f must be real analytic on jzj < R.Proof. Let v(r; �; z) = ei�pru(pr cos �;pr sin �; z), a C 0 function on0 < r < R, � 2 [0; 2�], jzj < R with period 2� in �.By change of variablesLu = z@v@r + ir @v@� � zi@v@z ( Check! )Set V (r; z) = i R 2�0 N(r; �; z)d�, a C 0 function on 0 < r < R, jzj < R.Now @v@z + i@v@r = i R 2�0 (@v@z � 12r @v@� + i@v@r )d�= i R 2�0 i2f(z)d�= ��f(z)Let F (z) = R z0 f(s)ds and setW (z; r) = V (r; z)+�f(z). Let � = z+ir,a complex variable. So @w@� = 0 and hence W is homomorphic onjzj < R, o < r < R. Moreover W extends to a continuous functionon jzj < R, 0 < r < R with W (z; 0) = �F (z) real valued (note thatV = 0 if r = 0). By Schwartz's reection principle, the extensionW (�) = W (�) makes W holomorphic on jzj < R, jrj � R. So W is realanalytic on r = 0. Hence F (z) and f(z) are real analytic.Thus if f is continuous but not real analytic, there is no solution.The Cauchy-Kowalewski theorem for linear PDEs



20 M. S. JOSHI AND A. J. WASSERMANNWe start by showing that the Cauchy problem always has a solutionfor 1st order linear PDEs with analytic coe�cients. Then we reducethe higher order case to this one. We use the method of majoring powerseries.Theorem The Cauchy problem@Y@t = nPi=1Ai(x; t) @Y@xi +B(x; t) (�)Y (x; 0) = 0;where Y and B are vector-valued functions and A1; : : : ; An are matrix-valued with Ai, B analytic near (0; 0), has a unique analytic solutionin a neighbourhood of (0; 0).Proof. Suppose Ai(x; t) = Pm�0Aim(x)tm, B(x; t) = Pm�0Bm(x)tm whereAim(x) and Bm(x) are power series in x. Let ai, b, aim, bm be the powerseries obtained by replacing all coe�cients (matrices or vectors) bytheir norms.We look for a formal solution of (�), Y (x; t) = Pm�1 Ym(x)tm startingfrom m = 1 to satisfy the b.c.This gives the recurrence relation for m � 1mYm =Xi Xp+q=m�1Aip(x)@Yq@xi +Bm�1(x)which uniquely determines Y (x; t). Let y(x; t) = Pm�1 ym(x)tm be thesolution ofmym =Xi Xp+q=m�1 aip(x)@yq@xi + bm�1(x) (m � 1)Then clearly each coe�cient of y dominates the norm of the con.coe�cientof Y . So it su�ces to show that y(x; t) is analytic at (0; 0), ie the formalpower series converges. But y(x; t) is a solution of@u@t =X ai(x; t) @y@xi + b(x; t); y(x; 0) = 0Note that if P a�x� is convergent for jxij � r then a�rj�j ! 0 asj�j ! 1. Hence ka�k � Kr�j�j for some k > 0 and P a�x� is ma-jorised coe�cient by coe�cientKP(xr )� = K Q(1 � xir )�1. Since the coe�cients in Q(1 � xi)�1 are



PARTIAL DIFFERENTIAL EQUATIONS 21all one while those in (1 � P xi)�1 are greater than 1, we see thatQ(1� xir )�1 is majorised by (1� Pxir )�1.Since ai, b are analytic at (0; 0) they are majorised by C Q(1 �xir )�1(1� tr )�1 and hence C = (1� tr)�1(1�Pxir )�1 for some C, r > 0.But then y will be majorised by the solution of(6=) @z@t = C(1� Pxir )�1(1� tt)�1(X @z@xi + 1); z(x; 0) = 0:But if w is the solution of @w@t = C(1� tr )�1(1� sr )�1(@w@s + 1),w(s; 0) = 0 then the solution of (6=) is z(x; t) = w(Pxi; t). But thesolution of (��) is given byw(s; t) = r � s�q(r � s)2 + zr2 log(1� t=r) (check!)which is analytic at (0; 0) for s, t su�ciently small. Hence z; y and Yare analytic at (0; 0).Theorem The Cauchy problem(1) 264 @kY@tk = Pj�j+j�kA�;j(x; t)@j�j@x� @j@tj Y +B(x; t)@jY@tj (x; 0) = �j(x) (j = 0; : : : ; k � 1) (Cauchy data)where Y and B are vector valued functions, the A�;j are matrix valuedand B, A�;j are analytic near (0; 0), has a unique analytic solution ina neighbourhood of (0; 0).Proof. We reduce the problem to the 1st order case by introducingderivatives as new variables.Set y�j = @j�j@x� @j@tj Y for j < k, j�j+j � k. Then the equations become(2)266664 @@ty�;j = y�;j+1 for j�j+ j � k@@ty�;j = @@xiy�;j+1 if j�j+ j = k; j < k where �p = �p except �i = �i � 1@@tyo;k = @@t Pj+j��kj<k A�;j(x; t)@j�j@xk @j@tj Y + @B@twith initial conditions264 y�j(x; 0) = @j�j@x��j(x)y0;k(x; 0) = PA�;j @j�j@x� @j@tj Y (x; 0) +B(x; 0)= PA�;jy�j(x; 0) +B(x; 0)



22 M. S. JOSHI AND A. J. WASSERMANNA moments reection shows that system of equations (2) is equivalentto the system (1). So the problem is reduced to one of the form@Y@t =XAj(x; t) @Y@xj +B(x; t); Y (x; 0) = �(x):Setting Y (x; t) � �(x) in place of Y we reduce to the case � = 0, forwhich we have just proved the result.Remark(1) The C-K theorem is also true for quasi-linear equations, when theAj and B's depend also analytically on Y . The proof is essentiallythe same but more complicated to write down.(2) Let L be an mth order di�erential operator with analytic coe�-cients and S an analytic hyper-surface non-characteristic for L.Then the Cauchy problemLu = fD�u = � on s(j�j < m)has a unique analytic solution locally near S for any f , � analytic.In fact we make an analytic change of coordinate so that S is givenby t = 0 in Rn+1 = f(x; t)g. Since S is non-characteristic thecoe�cient of ( @@t)m must be invertible, so we are in the situationof the C-K theorem.



PARTIAL DIFFERENTIAL EQUATIONS 233. The Fourier Transform and PDEs with ConstantCoefficients3.1. The Fourier Transform on Schwartz Functions. LetS(Rn) = ff 2 C1(Rn) j supx jx�@�f(x)j <1; 8�; �gthis is called the space of Schwartz functions. It is easy to see thatp(x)e��kxk2 lies in S(Rn) for any polynomial p and � > 0.We will be interested in maps on S(Rn) - for example the Fouriertransform - and we therefore want a notion of continuity. We thereforede�ne, kfk�;� = supx jx�@�f(x)j;for f 2 S(Rn): A linear map T on S is then continuous if for all �; �there exists k�;� such thatkTfk�;�k � C�;� Xjj;j�j � k�;�kfk;�:Roughly this says we can control the size and decay of the derivativesof Tf by those of f:Any smooth function of compact support lies in S(Rn) - it is notobvious that such functions exist. These can be constructed in thefollowing way.Lemma 1. (Bump functions) There is a smooth function, f; on Rsuch thatf(t) = 1 for jtj � 1, f(t) = 0 for jtj � 1 + � and 0 � f(t) � 1 all t.Proof. Let g(x) = 8<:exp � �11�x2� jxj < 10 jxj � 1:We have a constructed a smooth function of compact support. Now leth(x) = Z x�1 g(t)dt= Z g:Then h(x) = 0 for x � �1 and h(x) = 1 for x � 1. Moreover 0 �h(x) � 1 for all x. Taking k(x) = h(�x+ �)for suitable � and �, we get a function such that k(x) = 0 for x ��1� �, k(x) = 1 for x � �1 and 0 � k(x) � 1: Now setf(x) = k(x)k(�x):



24 M. S. JOSHI AND A. J. WASSERMANNFor f 2 L1(Rn); (see appendix) de�ne the Fourier transform f̂ byf̂(�) = 1(2�)n=2 Z e�ix:�f(x)dx (3.1)Clearly S(Rn) � L1(Rn), since(1 + kxk2)�n 2 L1(R)for example or Y(1 + x2i )�1 2 L1(Rn):We set Dj = �i @@xj - this turns out to be very useful in studying theFourier transform. ClearlyDj : S(Rn)!S(Rn) (3.2)xj : S(Rn)!S(Rn) (3.3)Lemma 2. The Fourier transform f 7! f̂ maps S into S anddDjf =�jf̂ ;dxjf =�Djf̂Proof. If we di�erentiate (3.1), we getD�f̂(�) = Z e�ix��(�x)�f(x)dxwhich is valid since x�f(x) is integrable. So f̂(�) is smooth and D�f̂ =\(�x)�f: Integrating, Z e�ix:��jf(x)dxby parts we obtain the �rst statement.So we get��D�f̂(�) = Z e�ix��D�((�x)�f(x))dx = Z e�ix:�g(x)dxwith g Schwartz.Hence sup j��D�f̂(�)j � C supY(1 + jxij2)jg(x)jwhere C = R 1Q(1+x2i )dx <1. So f 7! f̂ takes S(Rn) into S(Rn).



PARTIAL DIFFERENTIAL EQUATIONS 25These facts are useful as they show that the Fourier transform con-verts constant coe�cient linear operators into multiplication by a poly-nomial and it is also the key to one method of inverting the Fouriertransform. Before proving the Fourier inversion theorem we introducea couple of lemmas.Lemma 3. If f 2 S(Rn) and f(0) = 0 then f(x) = nPi=1 fi(x)xi withfi 2 S(Rn):Proof. An n dimensional version of Taylor's theorem says thatf(x) =XFi(x)xi (3.4)with Fi smooth but not necessarily Schwartz. (Iterate the result ofTheorem 28 (ii).) On the other hand for x 6= 0f(x) =XGi(x)xi (3.5)where Gi(x) = f(x)xi=kxik2: The functions G decay correctly but neednot be smooth at x = 0:We construct our function by taking a mixture of these two; let  be a bump function equal to 1 for t small and 0 for t � 1 and setfi(x) =  (kxk2)Fi(x) + (1�  (kxk2))Gi(x):Both these summands lie in S(Rn). As  + (1 �  ) = 1, the resultfollows.Corollary 2. If f 2 S(Rn) and f(a) = 0 then f(x) = P(xi � ai)fi(x)with fi 2 S(Rn):Proof. By the lemma f(x+ a) = Pxigi(x) with gi 2 S. Sof(x) =X(xi � ai)gi(x� a)where fi(x) = gi(x� a) 2 S:Lemma 4. Let T : S(Rn) ! S(Rn) be a linear map commuting withxj and Dj for all j. Then Tf = cffor some c 2 C :Proof. If f(a) = 0 then from the corollary above we have thatTf(x) =X(xi � ai)Tfiso Tf(a) = 0: i



26 M. S. JOSHI AND A. J. WASSERMANNSo observing that f(x) � f(a)e�kx�ak2 is zero when x = a; we havethat T (f � f(a)e�kx�ak2)(a) = 0 and henceT (f)(a) = f(a)T (e�jx�aj2)(a) = c(a)f(a)for some function c which is independent of f:Now take some particular g 2 S(Rn) with g > 0 (for example g(x) =exp(�x2)). We observe that c = Tg=gis smooth. But thencDjfTDjg = DjTg = Dj(cg) = (Djc)g + c(Djg):Hence (Djc)g = 0, so Djc � 0 and hence c is a constant function.Theorem 9. The Fourier transformf 7! f̂is an isomorphism of S onto itself with inverse given byf(x) = � 12��n=2 Z eix��f̂(�)d�:Proof. Let F (f) = f̂ : Then F 2 is a linear map on S andF 2xj = �xjF 2; F 2Dj = �DjF 2:Now let Rf(x) = f(�x). Then Rxj = �xjR, RDj = �DjR andso T = RF 2 commutes with xj and Dj. So, applying the lemma,T = RF 2 = c for some constant c.We are thus reduced the problem to computing the constant c: Letf0(x) = e�kxk2=2:Then (xj + iDj)f0 � 0:Hence (�Dj + i�j)f̂0 � 0:So f̂0(�) = c1e�k�k2=2for some c1 by the uniqueness of solutions to ODEs. Setting � = 0, weget c1 = 1(2�)n=2 Z e�kxk2=2dx = 1since R1�1 e�x2=2dx = p2�. So F 2f0 = f0, so Tf0 = f0 and hencec = 1.



PARTIAL DIFFERENTIAL EQUATIONS 273.2. Properties of the Fourier Transform. For ';  2 S(Rn) de-�ne the convolution � �  of � and  by� �  (x) = 1(2�)n=2 Z �(x� y) (y)dy:Clearly � �  =  � �.Theorem 10. For ';  2 S(Rn)(a) R '̂ = R ' ̂(b) R ' = R '̂ ̂ (Parseval's formula)(c) [' �  = '̂ ̂(d) d' = '̂ �  ̂.Proof. (a) Both sides are given by 1(2�)n=2 RR '(x) (�)e�ix��dxd�.(b) Set � =  ̂. Then �̂(�) = (2�)�n=2 R  ̂(x)eix��dx =  (�) so resultfollows from (a), replacing  by �.(c) Both sides are given by 1(2�)n RR '(x) (y)e�i(x+y)��dxdy.(d) The Fourier transform of d' is '(�x) (�x) while'̂ �  ̂ = ^̂' ^̂ = '(�x) (�x):So the result follows from (c).3.3. The Paley-Wiener Theorem (optional). In general, the Fouriertransform exchanges growth at in�nity with smoothness properties.The Paley-Wiener says that if a function is of compact support thenits Fourier transform is analytic and vice-versa. One can provide moregeneral statements that relate the boundedness of the support in cer-tain directions with analyticity in certain sectors. The idea is to realisethat f extends to the whole of C n in this case, the same idea will beused to prove that any non-zero di�erential operator p(D) with con-stant coe�cients has a fundamental solution.Theorem 11. If f 2 C10 (Rn) has support in B(0; r) = fx : kxk � rgand if f̂(z) = 1(2�)n=2 Z f(x)e�iz�xdx (z 2 C n) (1)then f̂ is entire and there are constants CN s.t.jf̂(z)j � CN(1 + jzj)�Nerj Im(z)j (N = 0; 1; 2; : : : ) (2)



28 M. S. JOSHI AND A. J. WASSERMANNConversely every entire function satisfying (2) is the Fourier-Laplacetransform of a smooth function in C10 (Rn):Proof. We start by recalling that g(z) is entire if g : C n ! C is contin-uous and separately holomorphic in each coordinate.If g vanishes on Rn then g is identically zero; to see this let a1; : : : ; anbe real variables. Then g(a1; : : : ; an) = 0 8ai. So g(a1; : : : ; an�1; zn) �0 by the one dimensional result. Continuing in this way we get g � 0.Note that if kxk � r, then je�iz�xj � er Im(z). So f̂ exists and is con-tinuous in z, since the integration need only be performed over B(0; r).By Morera's theorem applied to each coordinate of z separately, f̂ isholomorphic so entire. Moreoverz�f̂(z) = 1(2�)n=a Z (D�f)(x)e�ix�zdxHence jz�jjf̂(z)j � kD�fk1erj Im zj which immediately gives (2).Now suppose that g(z) is an entire function on C n satisfying (2) forall N . Set f(x) = 1(2�)n=2 Z g(�)eix��d�Since (1 + j�j)Ng(�) is in L1 for all N , f is C1 withD�f(x) = 1(2�)n=2 Z ��g(�)eix��d�Next we claim that for any � 2 Rnf(x) = 1(2�)n=2 Z g(� + i�)eix�(�+i�)d� (3)It clearly su�ces to check this when � = (0; : : : ; 0; �; 0; : : : ; 0) inwhich case it follows from Cauchy's theorem in one variable by takinga rectangular contour and noting that jgj ! 0 on the vertical part ofthe contour. Set � = �x with � > 0 for x 6= 0. Thenjg(� + i�)eix�(�+i�)j � CN(1 + j�j)�Ne�kxk(r�kxk)and hencejf(x)j � CN(2�)n=2 e�kxk(r�kxk) Z (1 + j�j)�Nd� (4):where N is chosen large enough for the latter integral to converge. Nowsuppose kxk > r. Let �!1 in (4); we get f(x) = 0.



PARTIAL DIFFERENTIAL EQUATIONS 29(1) follows now from the inversion formula since g(z) and f̂ agree onRn and hence C n , since they're both entire.Corollary 3. If f 2 C10 (Rn) then P (D)u = f has a solution u inC10 (Rn) if and only if f̂(�)=P (�) is entire. The solution is then uniquelydetermined and if f is supported in B(0; r) then u is also.Proof. Taking Fourier-Laplace transforms gives P (z)û(z) = f̂(z) sof̂(z)=P (z) is the entire function û(z). To prove the converse we needthe following 1 variable result.Lemma 5. Let h(z) be holomorphic and p(z) a polynomial with leadingcoe�cient a (z 2 C ). Thenjah(0)j � maxjzj=1 jh(z)p(z)j:Proof. Set q(z) = zmp (1z) wherem = deg p. Then q(0) = a and jah(0)j =jq(0)h(0)j � maxjzj�1 jq(z)h(z)j = maxjzj=1 jp(z)h(z)j.Lemma 6. Let p(z) = Pj�j�m a�z� be a polynomial of degree m. Thenthere is a real orthogonal change of coordinates such that the coe�cientof zm1 is non-zero.Proof. We may assume P (z) = Pj�j=m a�z� is homogeneous of degreem and proceed by induction on the number of coordinates. Writep(z) = Pa�k za1pa(z2; : : : ; zn). Make an orthogonal change of coordinatesin z2; : : : ; zn s.t. the coe�cients b0 of zm�a2 in pk is non-zero. Nowreplace z1 by cz1 � sz2 and z2 by sz1 + cz2 where c = cos �, s = sin �.The coe�cient of zm1 is then clearlyb0sm�aca + b1ca�1sm�a+1 + � � �with bi 2 C , b0 6= 0. This is essentially a polynomial in sc so is non-zerofor all but �nitely many values of � as required.Remark 1. This also follows from the fact that On acts irreducibly onhomogeneous polynomials of degree m.End of Proof of Corollary After an orthogonal change of coordinates,we may assume that the coe�cient of zm1 in P is non-zero. Supposeg(z) = f̂(z)=p(z) is entire. Note that the coordinate change doesn'ta�ect the bounds on f since jzj and j Im zj are not altered. Set p(�) =



30 M. S. JOSHI AND A. J. WASSERMANNp(� + z1; : : : ; zn) and h(z) = g(� + z1; : : : ; zn). By Lemma 1 jah(0)j �supj�j=1 jh(�)p(�)j, sojg(z)j � 1jaj supj�j=1 jf̂(� + z1; z2; : : : ; zn)j� CNjaj supj�j=1(1 + jz + (�; 0; : : : ; 0)j)�Nerj Im(z+�)jNow jzj � 1 + jz + �j since j�j = 1 so (1 + jzj) � z(1 + jz + �j). Hencejg(z)j � CNjaj 2�N(1 + jzj)�Nerj Im zjerSo g is the Fourier transform of a C1 function supported in kxk �r.3.4. Smooth Partitions of Unity (optional). Partitions of unityare an important idea - they allow us to localise. We divide a com-pact set up into lots of small balls where we can prove our result andthen glue together with a partition of unity. It is important to realizethis is not possible in the analytic theory where local and global areirrevocably intertwined.Theorem 12. (Smooth Partitions of Unity) Let K be a compact subsetof Rn and U1; : : : ; Un open sets in Rn such that K � [Ui. Then we can�nd fi 2 C10 (Rn) with 0 � fi(x) � 1, supp fi � Ui with P fi(x) = 1on K and P fi(x) � 1 all x:Proof. Recall that on any open ball in Rn ; we can �nd a bump functiong 2 C10 (Rn) with 0 � g � 1 and g > 0precisely on the given open openball. We shall use these functions in stead of the distance functions.Since K is compact, we can cover K by open balls B1; : : : ; Bl witheach Bj contained wholly in some Ui. Then [Bj is a bounded set inRn so contained in some closed ball B(0; R). Then B(0; R)n [ Bj iscompact and disjoint from K so can be covered by �nitely many openballs C1; : : : ; Cq all disjoint from K.For each ball Bi pick a bump function gi and each ball Cj pick abump function hj. Finally for the ball kxk > R \at 1" pick a C1function k � 0 with supp k = this ball, e.g. k(x) =  ( xkxk2R) where  is a bump function for kxk � 1.Thus Phi +P gj + k > 0 on Rn . Now set Fi = gi=Phi +P gi + k.So supp Fj = Bj and PFj(x) � 1 on Rn with equality on K (since



PARTIAL DIFFERENTIAL EQUATIONS 31hi � k = 0 on K). Finally match up the Bj's with Ui's in which theywholly lie and set fi(x) = PBj�Uj Fj(x).3.5. The Schur Test(optional). If K is a locally integrable functionon Rn � Rn then one can de�nePu(x) = Z K(x; y)u(y)dythis will be a map from smooth functions of compact support to smoothfunctions (not necessarily of compact support.) We call K the Schwarzkernel of P ( it has nothing to do with the null space. ) There areimportant connections between the properties of K and P:Let K(x; y) be a continuous function in Rn � Rn such thatsupy Z jK(x; y)jdx � C; supx Z jK(x; y)jdy � C:Then the integral operator de�ned by the kernel K has norm � Cin L2(Rn); ie(Z j Z K(x; y)f(y)dyj2dx)1=2 � C(Z jf(x)j2dx)1=2:Proof. By the Cauchy-Schwartz inequalityj ~Kf(x)j2 = j R K(x; y)f(y)dyj2� R jK(x; y)jjf(y)j2dy R jK(x; y)jdy� C R jK(x; y)jjf(y)j2dyHence R j ~Kf(x)j2dx � C R R jK(x; y)jjf(y)j2dydx � C2 R jf(y)2jdy.Corollary 4. If f 2 L1, g 2 L2 then kf � gk2 � kfk1kgk2 wherekfk1 = 1(2�)n=2 R jf(x)jdx:Proof. f � g(x) = 1(2�)n=2 Z f(x� y)g(y)dyso K(x; y) = f(x�y)(2�)n=2 so the conditions of the Schur test are satis�edwith C = kfk.Remark If kfkp is the norm kfkp = (R jf(x)jpdx)1=p and Lp(Rn) = ff jkfkp � 1g, then the Schur test is also true with L2 replaced by Lp. Theproof needs the H�older inequality R jf(x)g(x)jdx � (R jf(x)jpdx)1=p(R jg(x)jqdx)1=qwhere 1p + 1q = 1. In particular this gives kf � gkp � kfk1kgkp (see Exsheet 2).



32 M. S. JOSHI AND A. J. WASSERMANN4. Definitions of Test Functions and Distributions4.1. Test Functions. The space of test functions on Rn is the spaceC10 (Rn), ie smooth functions of compact support, with the de�nitionthat fn ! f as test functions if fn, f are all supported in some �xedball B(0; R) and sup jD�(fn � f)j ! 0 (n!1) 8�:Example 4. Let f 2 C10 (Rn) be non-zero. Let fn = 1=nf then fnconverges to zero in C10 (Rn): But if we let gn(x) = f(x � n) thengn does not converge to zero in C10 (Rn) although it converges to zeropointwise.Distributions are motivated by the fact we have, provided one of fand g has compact support, thatZ D�f(x)g(x)dx = (�1)j�j Z f(x)D�g(x)dx (�)which we can write hD�f; gi = (�1)j�jhf;D�gi: This means that thederivative of a non-di�erentiable function can be de�ned in terms ofhow it pairs with a smooth function of compact support. With this inmind, we de�ne a distribution, T (a generalised function) to be a linearmap f 7! hT; fi from the space of test functions to C which satis�esthe continuity conditionfn ! f ) hT; fni ! hT; fi:It is traditional to denote this class D0(Rn) or C�1(Rn): The importantthing to note it that any locally integrable function, u; will de�ne adistribution by < u; f >= Z u(x)f(x)dx f 2 C10 :Linearity is obvious but we need to check continuity. If fn ! f in C1cthen there exists K compact such that supp(fn) is contained in K forall n: So we havejhu; fn � fij � ZK ju(x)jj(f � fn)(x)jdxwhich will tend to zero as sup jfn � f j ! 0:Note that we will generally regard locally integrable functions as asubset of distributions. (a locally integrable function is a functionwhich is in L1 when multiplied by the characteristic function of any



PARTIAL DIFFERENTIAL EQUATIONS 33compact ball) The most important distribution that is not a functionis the Dirac delta function�a : h�a; fi = f(a):We de�ne D�T by hD�T; fi = (�1)j�jhT;D�fiso hD��a; fi = (�1)j�jD�f(a):Example 5. The Heaviside function H(x) on R is zero on x < 0 andone otherwise. As it is locally integrable it de�nes a distribution. SoDH is given by hDH; fi = �hH;DF i = � 1Z0 Df(x)dxwhich by the fundamental theorem of calculus is just 1i f(0): So thederivative of the Heaviside function is the delta function.The main aim now is to extend as many operations as possible fromfunctions to distributions - convolution, Fourier Transform, change ofcoordinates. We must be careful since, for example, it will not be pos-sible to multiply distributions nor can one de�ne the Fourier transformeven for all smooth functions.A fundamental solution of p(D); where p(�1; : : : ; �n) is a polynomialand p(D) = p(�i @@x1 ; � � � ;�i @@xn ); is a distributional solution, T; ofp(D)T = �0:So the Heaviside function is a fundamental solution for @@x on R:General fact: every constant coe�cient operator P (D) has a funda-mental solution. It is not necessarily unique as we can add any solutionof p(D)T = 0: We'll �nd fundamental solutions forX @2@x2i ( Laplacian); @@t �X @2@x2i ( heat operator )and @2@t2 �X @2@x2i(wave operator or D'Alembertian).



34 M. S. JOSHI AND A. J. WASSERMANNThe reason we are interested in fundamental solutions is that we canuse them to solve PDEs as they are e�ective inverses to di�erentialoperators. Then to solve P (D)f = g, we set f = T � g, thenP (D)(T � g) = (P (D)T ) � g= (�0) � g = g:For the three operators above, T will be given very explicitly so thisgives a complete solution to the problem. We do have to be carefulthough about when do the convolutions exist and we have to under-stand what convolution means for distributions.4.2. Linear Operations on Distributions. Suppose A : C1c (Rn)!C10 (Rn) is a linear map which is continuous, i.e. fn ! f impliesA(fn)! A(f). The dual or transpose of A; if it exists is a mapA0 : C10 (Rn)! C10 (Rn)which is linear and continuous withhAf; gi = hf; A0gi 8f; g 2 C10 (Rn):If the transpose exists then we can then extend A to distributions u bythe formula hAu; fi = hu;A0fi (f 2 C10 (Rn)):It is important to realize that transposes do not always exists asC10 (Rn) is not a Hilbert space with respect to the pairinghf; gi = Z f(x)g(x)dx:Examples(a) Multiplication Af =  f where  2 C1(Rn). Clearly A0 = A soany distribution u can be multiplied by  h u; fi = hu;  fi:NB multiplication by a distribution is another matter as it is nota map on C1c (Rn) and in general is not possible.(b) Di�erentiation Af = @�f . Then A0f = (�1)j�j@�f so we geth@�u; fi = (�1)j�jhu; @�fi(c) Reection Af = ~f where ~f(x) = f(�x). Thus A0 = A: So we seth~u; fi = hu; ~fi:



PARTIAL DIFFERENTIAL EQUATIONS 35(d) Translation Taf = f(x� a) then T 0a = T 0�a: So we de�nehTau; fi = hu; T�afi:Abusing notation Tau is often written u(x� a):An important concept when dealing with distributions is that of sup-port. This is the set of points where the distribution is not identicallyzero. As is usual for distributions, we �rst de�ne the concept for func-tions and then use a backwards de�nition to do so for distributions.So if f 2 C1(Rn); we de�nesupp(f) = f�1(C � f0g):And if u 2 D0(Rn) then x 62 supp(f) if and only if there exists anopen set U such that x 2 U and if supp(f)�U then hu; fi = 0: Itcan be shown, using partitions of unity, that the de�nition implies theapparently stronger statement, if U is an open set with U \ supp u = ;and supp f � U then hu; fi = 0:For example if a function is supported in Rn�f0g then it will alwayspair with the delta function to give zero. We therefore conclude thatsupp(�0) = f0g:Clearly the only distribution whose support is empty is the zero func-tion.A related concept is that of singular support, this is the set of pointswhere the distribution is not smooth. We say x 62 singsupp(u) if thereexists a smooth function f such that x 62 supp(u � f): An equivalentde�nition is that there exists a smooth  such that  (x) 6= 0 and u 2 C1: If the singular support is empty then the distribution isgiven by a smooth function.However the operation we really want to extend to distributions, theFourier transform, can not be extended to the full class as the spaceof compactly supported smooth functions is not invariant under it.Indeed, the only smooth function of compact support whose Fouriertransform is compactly supported is the zero function - to see thisobserve that the Fourier transform will be analytic. We therefore needto work within a larger class of functions - the Schwartz functions.4.3. The Fourier Transform and Tempered Distributions. Wede�ne the space of tempered distributions, S 0(Rn); to be the space oflinear maps, u, from S(Rn) to C such that if fn ! f in S(Rn) thenhu; fni ! hu; fi:



36 M. S. JOSHI AND A. J. WASSERMANNAn important but non-obvious fact is that the space of tempered dis-tributions form a natural subspace of the space of distributions. To seethis, one needs to check two things. The �rst is that it is continuous onC1c (Rn); to see this we need to show that if fn ! f in C1c (Rn) thenit does in S(Rn) - as we then know thathu; fni ! hu; fi:The second is that if a tempered distribution vanishes on all functionsof compact support then it vanishes everywhere - this means that atempered distribution is determined by its value on C1c (Rn): This willfollow if given any Schwartz function f there exists a sequence of fn 2C1c (Rn) converging to it in S(Rn) (but not of course in C1c (Rn):)First let's show a tempered distribution is continuous on C1c (Rn): Iffn converges to f in C1c (Rn) then supp(fn) is contained in some �xedball B(0; R) for some R: So,kfn � fk�;� = sup jx�D�(fn � f)(x)j � R� sup jfn � f j;which converges to zero.Theorem 13. Given f 2 S(Rn) there exists a sequence of functionsfn in C1c (Rn) such thatsup jx�D�(fn � f)j ! 0; 8�; �as n!1:Proof. Let  � 0 be a bump function with support in kxk � 1 with (x) = 1, kxk � 12 . So D� is bounded for each �. Let R(x) =  � xR�for R > 0: Then sup jD� Rj = 1Rj�j sup jD� j; so for R � 1 the D� R'sare uniformly bounded. We setfn =  nf 2 C10 (Rn):Then sup jx�D�(fn � f)j = sup jx�D�( n � 1)f j= supkxk�n2 jx�D�( n � 1)f j� C P�1��;�1�� supkxk�n=2 jx�1D�1f jBut x�1D�1f is a Schwartz function and so is rapidly decaying at in-�nity.



PARTIAL DIFFERENTIAL EQUATIONS 37We can now de�ne the Fourier transform on tempered distributions.We have seen that the Fourier transform is a bijection on S(Rn):More-over we showed that the estimatesup j��D�f̂(�)j � C supY(1 + jxij2)j(D�(�x)�f(x))j:This shows that the Fourier transform is continuous on S: That is iffn ! f in Sthen f̂n ! f̂ in S:So if u is a tempered distribution then so is f 7! hu; f̂i; on the otherhand if f , g 2 S(Rn) we havehf̂ ; gi = hf; ĝi:So for a tempered distribution u we de�ne its Fourier transform byhû; fi = hu; f̂i:Example 6. What is the Fourier transform of the delta function �0?h�̂0; fi = h�0; f̂i= f̂(0)= � 12��n=2 Z f(x)dxSo �̂0 is the constant function � 12��n=2 :We can extend the relations we proved for the Fourier transform onSchwartz space to cover the Fourier transform on distributions too. Ifu is a tempered distribution and f is Schwartz thenhdDju; fi = hDju; f̂i= �hu;Djf̂i= hu;d�jfi= hû; �jfi= h�jû; fi:So dDju = �jû:Note here that as f is being paired with û we regard it as being afunction of � rather than x: A similar argument shows thatdxju = �Djû:



38 M. S. JOSHI AND A. J. WASSERMANNWe can now swiftly deduce that the Fourier transform of a derivativeof the delta function is a polynomial and vice-versa.We have already made some progress towards solving PDEs - if P (D)is such that p(�) is never zero - for example P (D) = ��+ 1: Then tosolve P (D)u = fwe let û = p(�)�1f̂and the fundamental solution is just given byû = p(�)�1 � 12��n=2 :A large part of the theory of PDEs is di�erent ways of dealing with thezeros of p(�):



PARTIAL DIFFERENTIAL EQUATIONS 39It is important to realize that when u is an L1 function that one cancompute the Fourier transform in the \traditional" way.Proposition 2. If u 2 L1 thenû = � 12��n=2 Z e�ix:�u(x)dxand û is a continuous function.Proof. To see the �rst statement, just observe that if f is Schwartzthen hû; fi = hu; f̂i = � 12��n=2 ZZ e�ix:�u(x)f(�)dxd�as all integrals involved are absolutely convergent there is no problemwith interchanging orders and so the result is immediate.The second statement follows from the Dominated Convergence the-orem as Z je�ix:�f(x)jdxexists.In fact, the Fourier transform will tend to zero at in�nity - this is calledthe Riemann-Lebesgue lemma. An important corollary to this for us isCorollary 5. If q(�) is smooth andjq(�)j � Ch�i�n���lfor some � > 0 then the (inverse) Fourier transform of q is C l:NB < � >= (1 + j�j2)1=2:Proof. Just observe that the D�x q̂ is the Fourier transform of an L1function.If P is an elliptic operator then p(�) is non-zero for � large enoughas jp(�)j � Cj�jm � C 0j�jm�1:So, we can �nd something almost good as a fundamental solution byputting Ê = � 12��n=2 1p(�)(1�  )(�)



40 M. S. JOSHI AND A. J. WASSERMANNwhere  2 C10 (Rn) is identically one in a neighbourhood of the zeroesof p: We then have that\P (D)E = � 12��n=2 � � 12��n=2  (�)which means that P (D)E = �0 �  ̂(�x)so E is a fundamental solution up to a Schwartz error. In fact, we canmake this Schwartz error be supported in arbitrarily small set aboutthe origin, once we have provenTheorem 14. If P (D) is elliptic of order k;  is a smooth functionof compact support identically one on a neighbourhood of the zero setof p and Ê = � 12��n=2 1p(�)(1�  )(�)then P (D)E = �0 + f(x)with f 2 S(Rn) and E is singular only at the origin.We say E is a parametrix for P:Proof. To check the singularity property, we show that if � is a smoothfunction of compact support, support in xj 6= 0 for some j then �E issmooth.We have that �E = (x�lj �)xljEso its enough to show that xljE is C� for any � for l su�ciently large.(l depending on � of course!) Now xljE is the inverse Fourier transformof Dl�  1�  (�)p(�) ! :So need to show that di�erentiating increases the decay. Any derivativefalling on � will yield something of compact support so we need onlyconsider (1� �)Dl�p�1:By using an inductive argument, we can show that Dl�p�1 is a sumof terms of the form qr=pr with qr a polynomial of order sr wheresr � lr = �k � l and the result follows.



PARTIAL DIFFERENTIAL EQUATIONS 41If we now multiply the parametrix by a bump function identically onenear zero and supported in the set jjxjj < �: We have a parametrixsupported in jjxjj < �: The existence of such a parametrix will allowus to show that the singular support of P (D)u is equal to that of u forany distribution u but �rst we have to understand what convolutionmeans for distributions.4.4. More Operations on Distributions including Convolution.We use a method going back to Schwartz to de�ne convolutions of dis-tributions. Convolutions are essential to using fundamental solutionsto invert linear partial di�erential operators and have many other usesbesides. Recall that if f; g are L1 functions of which one is compactlysupported then one can de�nef � g = Z f(x� y)g(y)dy:We can regard this as three operations.� Exterior ProductD0(Rn)
D0(Rn)! D0(R2n)(f; g) 7! f 
 g;this is the extension of the map taking (f; g) to f(x)g(y) to dis-tributions.� A Linear Change of Coordinates We wish to do the linear changeof coordinates, (x; y) 7! (x� y; y):� Push-forward - we map the distribution h(x; y) = f(x� y)g(y) toR h(x; y)dy: This will only be de�ned given certain conditions onthe support of h:We will consider each of these operations separately. Note that itis a quite useful standard technique to divide a complicated operationinto a sequence of quite simple basic operations.4.4.1. Exterior Product. If f and g are L1 functions then we couldde�ne for h 2 C1chf 
 g; hi = Z f(x)�Z g(y)h(x; y)dy�dx:So if u 2 D0(Rn); v 2 D0(Rm); we put hx(y) = h(x; y) and de�nehu
 v; hi = hu; hv; hxii:



42 M. S. JOSHI AND A. J. WASSERMANNFor this to be well-de�ned we need to know that �(x) = hv; hxi is asmooth function of x. Now we have thath(x + sej; y)� h(x; y)� s @h@xj (x; y) = s2 (x; s; y)by Taylor's theorem with  smooth. So�(x + sej)� �(x)� shv; @h@xj i = s2hv;  s;xi:But as s ! 0;  s;x tends uniformly to @ @xj (x; y) and the same is truefor the derivatives so we conclude that@�@xj (x) = hv; @h@xj xi:The smoothness then follows by induction and so our operation is well-de�ned. We need to check that u 
 v is continuous but if hn ! hthen clearly hnx ! hx so �n ! � but the argument above shows thederivatives of � will converge also and so we get a distribution.4.4.2. Linear Changes of Coordinates. If A is a linear map on Rn thenit induces a change of coordinate map on smooth functions:A�f(x) = f(Ax):The transpose of this map is(A�)tg = f(A�1) det(A)�1as Z f(Ax)g(x)dx = Z f(y)g(A�1y) det(A�1)dy:The transpose is clearly continuous so we can extend to distributionsin the standard way.4.4.3. Pairings and Push-forwards. If f 2 C1c (Rn � Rm) and g 2C1c (Rn) then we havehZ f(x; y)dy; g(x)i = Z f(x; y)g(x)dydx:So the transpose operation is the pull-back�� : C1c (Rn)! C1(Rn � Rm)given by ��g(x; y) = g(x):This is a pretty simple operation but has the problem that it mapscompactly supported functions to functions which are not compactlysupported! We have de�ned distributions to be maps from the space



PARTIAL DIFFERENTIAL EQUATIONS 43of compactly supported functions to the complex numbers so we havea problem. However, the pairing between a function and a distributioncan in fact always be de�ned provided the intersection of their supportsis compact.If K is a subset of Rn ; we denote D0(K) to be the distributionssupported in K and C1(K) to be the smooth functions supportedthere.Proposition 3. If K;L�Rn are such that K \ L is compact there isa well-de�ned pairing D0(K)� C1(L)! C :Proof. Let M = K \ L and let � = 1 on an open neighbourhood of Mand be compactly supported. We de�nehu; fi� = hu; �fi:We need to check that this is independent of the choice of � but if �1is another choice we have that the di�erence is< hu; (�� �1)fi:The support of (���1)f is disjoint from that of u so this equal to zeroand the pairing is well-de�ned.We leave to the interested reader to formulate the continuity propertiesof this pairing.Let � be the projection, �(x; y) = x: We say that a set, L�Rn �Rmis proper with respect to the projection if��1(K) \ Lis compact for every K compact in Rn :We now haveProposition 4. If u 2 D0(Rn � Rm) is proper with respect to � thenthere is a well-de�ned distribution ��(�) on Rn :Proof. We just de�ne for f 2 C10 (Rn)h��u; fi = hu; ��fi:



44 M. S. JOSHI AND A. J. WASSERMANN4.4.4. Convolution. So with all that done we can now de�ne convolu-tion to be u � v = ��A�(u
 v)where A is the map A(x; y) = (x�y; y) and � is the projection (x; y) 7!y: This of course requires the push-forward to be well-de�ned, which isimplied by requiringf(x; y) :9y; (x� y) 2 supp(u); y 2 supp(v)gto be compact for x in each compact set K:The �rst important point here is that convolutions are always de�nedprovided one of the distributions is of compact support. The deltafunction is the identity for this operation:h�0 � v; �i = h�0(x)v(y); �(x+ y)i= h�0(x); hv(y); �(x+ y)ixi= hv; �i:As hu � v; �i = hu
 v; �(x+ y)iwe have that u � v = v � u so �0 is both left and right inverse. AshD�(u � v); �i = (�1)j�jhu
 v; (D��)(x + y)iwe have that D�(u � v) = (D�u) � v = u �D�vand that D�u = D��0 � u:This last statement implies that applying any di�erential operator isequivalent to convolving with a distribution.Another important property of convolutions is associativity - withoutassociativity one can do nothing! This follows from observing thathu � (v � w); �i = hu
 v 
 w; �(x+ y + z)i;provided the right hand pairing make sense i.e. thatf(x; y; x) :x + y + z 2 K; x 2 supp(u); y 2 supp(v); z 2 supp(z)gis compact for all K compact - so provided this condition is satis�ed,we have associativity. (Of course, this requires exterior product tobe associative but it is.) Note that if E is fundamental solution thenregarding the operator P (D) as being convolution with P (D)�0 we havethat E � P (D) = �0 = P (D) � E



PARTIAL DIFFERENTIAL EQUATIONS 45and that if P (D)u = f then u = E � f provided the convolution exists!Note that while a fundamental solution is a left and right inverse - thestandard proof that left and right inverses are equal only works whenthe fundamental solutions are convolvable. So a di�erential operatorcan have many fundamental solutions. One can think of these as beinginverses on di�erent classes of functions.For example, if @u@x1 = f then if u; f = 0 for x1 large negative, wehave that u = x1Z�1 f(s; x00)dsand if u; f are zero for x1 large positive we have thatu = � 1Zx1 f(s; x00)ds:We can regard these solutions as being convolution with the fundamen-tal solutions H(x1) and H(x1)� 1:Another important fact about convolving is that convolving a distri-bution with a smooth function always yields a smooth function. (giventhe condition on supports.) The philosophical reason this is true isthat if you di�erentiate you can put all the di�erentiations onto thesmooth part which remains smooth so di�erentiating never makes theconvolution worse so it must be smooth. How do we prove it though?Let u be a distribution and f a smooth function which are convolvableand consider the map x 7! hu; gxiwhere gx = f(x � y): This is a smooth as a function of x - sameargument we used when de�ning exterior products. This is morallythe convolution - we checkhhf(x� y); u(y)ix; �(x)i = hu(y); f(x� y)�(y)i= hf(x� y)u(y); �(x)i= hf � u; �i:It is quite easy to establish an upper bound for the support of aconvolution in terms of the supports of the original distributions:supp(f � g)�fx :9y; y 2 supp(f); x� y 2 supp(g)g:This is easy to prove - one just computes the action on supports ofeach of the three basic operations.



46 M. S. JOSHI AND A. J. WASSERMANNWith all this done, we can now prove an important theorem - ellip-tic regularity. This is sometimes expressed as \weak implies strong"as it says that every weak or distributional solution is also a smoothor strong solution. This is historically very important as one can con-struct distributional solutions of elliptic PDEs using the Hahn-Banachtheorem and it is then useful to know that they are in fact ordinarysolutions too.Theorem 15. If u 2 D0(Rn) and P (D) is an elliptic di�erential oper-ator then u and P (D)u have the same singular support. In particular,P (D)u 2 C1 =) u 2 C1:Proof. Given � > 0 there is a parametrix E supported in jjxjj < �: SoP (D)E = �0 + f; EP (D) = �0 + gwith f; g smooth and supported in jjxjj < �: Sou+ g � u = E � (P (D)u):Now g � u is smooth as g is. So u and E � (P (D)u) have the samesingularities. Thus if P (D)u is smooth, so is u:If P (D)u = h is not smooth then we can write it as h1 + h2 with h2smooth and h1 supported within � of the singular support of h: So uhas the same singularities as E � h1 but E � h1 is supported within 2�of the singular support of h:This is true for any � > 0 and singular support is contained insupport so the result follows.Remark 2. While our proof required P (D) to be constant coe�cient,this result holds in the variable coe�cient case too and this is an impor-tant part of Hodge theory which relates the cohomology of a manifoldto its di�erential geometry. Note this theorem is often called \Weyl'slemma."A very important fact is that every constant coe�cient operator hasa fundamental solution.Theorem 16. If P (D) is a constant coe�cient operator on Rn thenthere exists a distribution E such thatP (D)E = �0:We will prove this only in a special (but important case), see forexample [1] for the general case.



PARTIAL DIFFERENTIAL EQUATIONS 47We assume that there exists an a 2 Rn such thatjp(� + ia)j � � > 0 8� 2 Rn :Example 7. If P (D) = @@t �Pi @2@x2i then p(�; �) = i� + �2: So,p(� + ia; �) =�2 + i(� + ia)=�2 + i� � a:So taking a < 0; we havejp(� + ia; �)j � �a > 0:Note the asymmetry here.Example 8. If P = @2@t2 �Pi @2@x2i then p(�; �) = �2� � 2: For a 2 R; wehave����2 � (� + ia)2���2 = ��2 � � 2 + a2�2 + 4a2� 2= jj�jj4 + � 4 + a4 + 4a2� 2 � 2jj�jj2� 2 � 2a2� 2 + 2a2jj�jj2= (�2 � � 2)2 + a4 + 2a2� 2 + 2a2�2� a4:Before we can prove our result we need some results on the analyt-icity and growth of Fourier transforms of compactly supported smoothfunctions so we can move contours around - this will allow us to movea towards 0:Proposition 5. (Paley-Wiener Estimate) If f 2 C10 (Rn) then f̂(�)has an analytic extension to C N ; f̂(z) andjf̂(z)j � CN(1 + jjzjj)�Nerj=Zj:Note that this implies that f̂(x+ iy) is uniformly Schwartz in x fory in a compact set - that is the norms kfk�;beta regarded as functionsof y are bounded for y in compact sets.Proof. As f is compactly supported, the integralf̂(z) = Z e�ix:zf(x)dxwill converge for any z 2 C N : This will be the extension. As everythingis smooth and compactly supported, we can di�erentiate under theintegral sign so f̂(s+ it) is smooth andz�f̂ = dD�f:



48 M. S. JOSHI AND A. J. WASSERMANNBut e�ix:z is analytic in z and so satis�es the Cauchy-Riemann equa-tions in (s; t) and so f̂ does also. Thus f̂ is analytic. To get the estimateon growth, just estimate dD�f:Now, if jp(� + a)j � � > 0 8�; for some �xed a 2 iRn : We de�nehE; �i = � 12��n=2 Z �̂(�� � a)p(� + a) d�:We computehP (D)E; �i = hE; P (�D)�i= � 12��n=2 Z �̂(�� � a)p(� + a) p(� + a)d�= � 12��n=2 Z �̂(�� � a)d�We can now shift the contour using the Paley-Wiener estimate andCauchy's theorem to conclude that this is equal to� 12��n=2 Z �̂(��)d� = �(0):So E is indeed a fundamental solution.Note that, although initially, it seems that we have a di�erent fun-damental solution for each a; if we have jp(� + a)j � � > 0 for a ina connected, compact set then the same shifting contour argument asabove yields that the fundamental solutions obtained are the same. Sofor the wave equation, we obtain two di�erent fundamental solutionsaccording to the sign of =a: For the heat equation we only obtain one- from a such that =a > 0:



PARTIAL DIFFERENTIAL EQUATIONS 495. The Laplacian5.1. Finding the Fundamental Solution. We have already provensome things about elliptic operators of which the Laplacian is a specialcase - they always have a compactly supported parametrix which issingular only at the origin and any distributional solution is always asmooth function. This implies that any fundamental solution is sin-gular only at the origin as if E is fundamental solution and P is aparametrix then �(E � P ) 2 C1and so by elliptic regularity E � P 2 C1:Now an important fact about the Laplacian is that is rotationallyinvariant. The highbrow way to see this is to observe that the Laplacianis de�ned by the metric and that rotations are an isometry. The lowbrow way is just to compute�(f(Ax)); (�f)(Ax)for an orthogonal matrix and observe that they are equal. (Indeed astwo-dimensional rotations generate, it is enough to do this for two-dimensional ones only.) One therefore expects there to exist a funda-mental solution which is rotationally invariant - indeed given that thereexists some fundamental solution, E, one can construct a rotationallyinvariant one by averaging:E 0 = ZSO(n)A�EdA:But this requires an understanding of integration over Lie groups whichis beyond our scope.Another important guide to �nding fundamental solutions is homo-geneity. A di�erentiable function, f; on Rn �f0g is (positively) homo-geneous of degree m iff(�x) = �mf(x) 8� > 0:We do not require di�erentiability or continuity at the origin as theclass would then be very small!Now, if we di�erentiate with respect to � and set � = 1 then wededuce that  x @@x �m! f = 0;



50 M. S. JOSHI AND A. J. WASSERMANNwhere x @@x = nPj=1xj @@xj : This is called Euler's relation and is in factequivalent to homogeneity. To prove this observe that if f satis�es theequation then jjxjjmf(x=jjxjj)agrees with f on jjxjj = 1 and satis�es the same equation so using ouruniqueness theorems for �rst order, real PDEs they must be equal.De�nition 1. If u 2 D0(Rn) then u is homogeneous of degree m 2 Cif  x @@x �m! u = 0:For the delta function we compute, for a test function �;hxj @@xj �; �i = �h�; @@xj (xj�)i (5.1)= �h�; �+ xj @�@xj i (5.2)= �h�; �i: (5.3)We thus deduce that the delta function is homogeneous of degree �n:Di�erentiating a distribution reduces its order of homogeneity byone; to see this@@xj  x @@x �m!u =  x @@x � (m� 1)! @u@xj :So since the Laplacian is of order 2 and has no lower order parts, weexpect its fundamental solution to be homogeneous of order 2� n andto be rotationally invariant. It also must be smooth away the origin.Thus the obvious candidate isEn = Cnjjxjj2�n;this is an L1 function near 0 and so de�nes a distribution. (In fact,this is the only distribution with these properties.) Now, away fromthe x = 0 we can compute in the usual way to �nd that�jjxjj2�n = 0so we have that �jjxjj2�n is both supported at the origin and singularthere, (using elliptic regularity). It is also homogeneous of degree �n:(We could deduce from this that it is a multiple of the delta functionbut this would require too much theory.)



PARTIAL DIFFERENTIAL EQUATIONS 51Let  be a bump function, identically 1 near 0, and  �(x) =  (x=�):The support of  yields that h�En;  ��i is independent of �: Now usingTaylor's theorem, we have thath�En; �i = �(0)hu;  �i+ Xj�j�Nh�En; x�f�i+ h�En;  �hi;where h is smooth and vanishes to N th order at x = 0: The �rst termis independent of � from the support properties and the second is zerofrom the homogeneity of �EN - its pairing with any function of theform x @@xg(x) is zero and x� = 1�!x @@xx�: The last term equalsZ jjxjj2�n�( (x=�)h)dxand this will go to zero as � ! 0 provided N is su�ciently big as hvanishes to order N:So we know we have a multiple of the delta function - we need toknow which one! Let  be smooth, radial and identically one near 0,we compute, using polar coordinates,h�jjxjj2�n;  (jxj)i =hjjxjj2�n;� (jxj)i=!n�1 1Z0 r2�nrn�1  @2 @r2 + n� 1r @ @r ! dr=!n�1 1Z0 r@2 @r2 + (n� 1)@ @r dr=(2� n)!n�1where !n�1 is the volume of the unit sphere. We have thus solved theproblem when n � 3: The argument does not quite work when n = 2as in that case jjxjj2�n is constant and so smooth. We therefore uselog(jjxjj) instead. This is not homogeneous but is almost homogeneousin that x @@x log(jjxjj) 2 C1:We then have that � log(jjxjj) is almost homogeneous and supported atthe origin which implies that it is homogeneous as a smooth functionsupported at the origin is zero. The arguments then go through asbefore and we have proven:Theorem 17. The Laplacian on Rn has the fundamental solution1(n� 2)!n�1 jjxjj2�n



52 M. S. JOSHI AND A. J. WASSERMANNfor n � 3 and for n = 2 � 12� log(jjxjj):5.2. Identities and Estimates.Theorem 18. Gauss Divergence Theorem If f 2 C(B(0; 1)), C1 inB(0; 1) then Zkxk�1 @f@xj dx = Zkxk=1 f(x) xjkxkdx (5.4)Hence Zkxk�1r� gdx = Zkxk=1 g�nxdx (5.5)where nx = xkxk is the outward normal at x 2 Sn�1 and g is vectorvalued.Proof. The second statement is just a summation of the �rst one. Take��(r) s.t. �� = 1 if r < 1 � �, � = 0 if r � 1. Then Rkxk�1 f =lim�!0hf; ��i ButZRn @f@xj ��dx = � Z f @��@xj dx= � Z f @r@xj @��@r dx= � Z f xjkxk @��@r dx= � Z Zjjxjj=r  f xjjjxjj! (r!)d!rn�1@��@r dr= Z @@r  rn�1  f xjjjxjj! (r!)d!!��drLetting �! 0 this is equal to1Z0 @@r  Z rn�1  f xjjjxjj! (r!)d!!drwhich of course just Z  f xjjjxjj! (!)d!:



PARTIAL DIFFERENTIAL EQUATIONS 53Proposition 6. Green's Identities: If u; v are C2 functions on B(0; r)then (a) ZB v�u = � ZBrv� ru+ ZS v:dud�where dud� = Pxi dudxi = r dudr and S = @B.(b) ZB v�u� u�v = ZS vdud� � udvd�Proof. (a) follows from Gauss' divergence theorem applied to vru =(v dud� )(b) follows by swapping u and v in (a) and subtracting.Remark 3. Setting v = 1, we obtain RB�u = RS dud v : There are obviousresults for spherical shells obtained by subtracting identities (a) & (b)for di�erent values of r.Proposition 7. Energy Estimate: RB jruj2 = RS udud� � RB u�u.To prove this just set u = v in (a).Thus if �u = 0 in B and either u or dud v = 0 on S, we have ru = 0 onB, ie u is a constant, necessarily 0 in �rst case. Hence we can deducethe uniqueness of solutions to some boundary value problems.Dirichlet Problem Solve for u with �u prescribed in B and u pre-scribed on S.Neumann Problem Solve for u with �u prescribed in B and dud�prescribed on S. and so to summarise we have proven:Theorem 19. The Dirichlet Problem has at most one solution and theNeumann Problem has at most one solution up to a constant. (for theunit ball)Proposition 8. Weak Maximum Principle: Let 
 be a bounded opendomain Rn with smooth boundary @
. If u 2 C(
), u 2 C2(
) with�u � 0 in 
 then supx2
 u(x) = supx2@
 u(x)Proof. If �u > 0 in 
, the result is easy. For at a local maximum in 
we must have @u@xi = 0 8i. But �u > 0 implies @2u@x2j > 0 some j. So inthe xj direction we can increase u.Now take v(x) = kxk2. Then �v > 0 and hence �(u + �v) > 0 on
. So from the �rst partsup
 (u+ �v) = sup@
 (u+ �v)



54 M. S. JOSHI AND A. J. WASSERMANNSo sup
 u � sup@
(u+ �v) � sup@
 u+ � sup@
 v. Now let �! 0 to getthe result.A function, f; such that �f is zero is often said to be harmonic.Corollary 6. If u is complex valued and harmonicsupx2
 ju(x)j = supx2@
 ju(x)j:Proof. Apply the maximum principle to Re(ei�u) where � is chosen, sothat sup
 Re(ei�u) = sup
 juj:Proposition 9. Gauss Mean Value Property:(a) The value of a harmonic function at a point is equal to its averageover any sphere centred at that point(b) The value of a harmonic function at a point is equal to its averageover any ball centred at that point.We will see that property (a) characterises harmonic functions.Proof. In fact, we prove that if �u � 0 then these are in fact true withinequalities - the result will then follow by applying the inequality foru and �u:By translation invariance, it su�ces to consider the case where thepoint is the origin.First, putting v = 1 in Green's identity we observe thatZS(r) @u@� dS = ZB(r)�udx � 0:Now, if v is the function kxk2 then �v = 2n and applying Green'sidentity we have 2n ZB(r) udx � 2r ZS(r) u(x)dSso putting �(r) = ZB(r) u dx



PARTIAL DIFFERENTIAL EQUATIONS 55we have that �0(r) = ZS(r) u dS � nr ZB(r) u(x)dx = nr �(r):This implies that ddr �r�n�(r)� � 0or that r�n�(r) is increasing so we conclude thatlimr!0 r�n�(r) � R�n�(R) � R1�nn ZS(R) u(x)dS:As the surface area of a sphere of radius R is n=R times the volumethe result now follows.Proposition 10. Strong Maximum Principle: Supposeu(�) � 1A(�) Zkx��k=� u(x) (5.6)for all � and � su�ciently small in 
. If 
 is a bounded open connecteddomain, then either u is constant or u(�) < sup@
 u(x) for all � 2 
.De�nition 2. Any u 2 C(
) satisfying (5.6) for su�ciently smallballs is said to be sub-harmonic. So any u 2 C(
), C2 in 
 such that�u � 0 is subharmonic.Proof of Strong Maximum Principle. Let M = sup u and de�ne
1 = fxju(x) =Mg 
2 = fxju(x) < Mg:Then 
 = 
1t
2 (disjoint union). The continuity of u implies that 
2is open. If we can show 
1 is also open, the result follows immediatelyfrom connectivity since either 
1 or 
2 is then empty.Say u(�) =M for � 2 
. Then0 � Avkx��k�p(M � u(x)) �M � u(�) = 0Since M �u(x) � 0 is continuous, this force u(x) =M for kx� �k � p.So 
1 is open, as required.5.3. The Dirichlet and Dual Dirichlet Problems. Let 
 be abounded open set in Rn with smooth boundary @
.(a) The Dirichlet Problem in 
 asks for a solution of �f = 0 in
 with f = h an @
.



56 M. S. JOSHI AND A. J. WASSERMANN(b) TheDual Dirichlet Problem in 
 asks for a solution of �f = gin 
 with f = 0 on @
.These problems are more or less equivalent:(a)) (b): De�ne ~g to be the distribution obtained by setting ~g = gon 
 and 0 on Rnn
. Set f1 = E � ~g where E = �nd solution of �.Then �f1 = ~g. Solve �h = 0, h = f1 on @
 using (a). Then �(f1 �h) = g and f1 � h = 0 on @
.(b) ) (a): Extend h to a function ~h on 
 which is C2 on 
. Solve�k = �~h in 
, k = 0 on @
. Then �(~h� k) = 0 in 
 and ~h� k = hon @
.5.4. The Dual Dirichlet Problem for the Unit Ball. We have tosolve �f = g for kxk < 1f = 0 for kxk = 1:We shall assume that g 2 C(B) with g 2 C1 in B. (Actually once aformula for the solution has been obtained, it will be clear that far lessrestrictive conditions on g are needed for a solution.)We start by looking at f1 = E � ~g where ~g is the distribution = g onB and 0 on RnnB. (Here E is the fundamental solution of � obtainedbefore.) Clearly �(E � ~g) = ~g as distributions. We assume n � 3. (wewill discuss n = 2 later.)Lemma 7. f1 2 C1(Rn) and @f1@xj = @E@xj � ~g: We also have that f1; @f1@xjare of order kxk2�n; kxk1�n for x large.Proof. We show all the derivatives are continuous functions. We com-pute @E@xj � ~g: This is a convolution of a locally integrable function and afunction of compact support and so can be computed directly. Supposekx� x0k � �; then in some �xed ball�����@f1@xj (x)� @f1@xj (x0)����� � Z ����� @E@xj (x� y)� @E@xj (x0 � y)����� jg(y)jdy� Z��kx�yk�1 ����� @E@xj (x� y)� @E@xj (x0 � y)����� jg(y)jdy+2 sup jgj Zkx�yk��+� ����� @E@xj (x� y)�����dy



PARTIAL DIFFERENTIAL EQUATIONS 57The second integral is small if �+ � is small. The �rst integral is smallwill go to zero as x� x0 ! 0 as it is smoothly dependent on them.Hence @f@xj is continuous. To see the bounds, observe that if jxj > 2then jx� yj � jxj=2 for jyj < 1 and then just estimateZjyj�1 E(x� y)g(y)dyand Zjyj�1 @E@xj (x� y)g(y)dy:Lemma 8. f1 is C1 in kxk < 1 and kxk > 1; in fact f1 is harmonicin kxk > 1.Proof. This is an immediate consequence of elliptic regularity.At the moment we have �f1 = g but f1 has the wrong boundaryvalue on kxk = 1. The way round this, due to Kelvin, is through themethod of reection. We putKf = kxk2�nf  xkxk2! :We then have that Kf1 and f1 are equal on the unit sphere and sof1 � Kf1 is zero there. We will show that K almost commutes withthe Laplacian and so will be able to deduce that Kf1 is harmonic inkxk < 1 and so �(f1 �Kf1) = �f1 = gin the ball - thus solving the problem!Lemma 9.�(Kf) = kxk�4K(�f); r @@rKf = (�n + 2)Kf �K(r @@rf)Here r @@r = P xi @@xi .Proof. Observe that the Laplacian and the Kelvin transform are ro-tationally invariant and thus so is the statement of the lemma. Thismeans it is enough to show it is true at the pointx = (kxk; 0; : : : ; 0):



58 M. S. JOSHI AND A. J. WASSERMANNAt such a point, for j > 1;@2@x2j (f(x=kxk2)) = kxk�4@2f@y2j � 2kxk�3 @f@y1and @2@x21 (f(x=kxk2)) = kxk�4@2f@y21 + 2kxk�3 @f@y1 :So �(f(x=kxk2)) = kxk�4(�f)(x=kxk2) + 2(2� n)kxk�3 @f@y1 :Using, �(ab) = b�a + 2ra:rb + a�bthe result then follows.For the second equality, reduce to the same case as above and thencompute as for one dimension.Now let f2 = Kf1. By the lemma, f2 is harmonic near each x 6= 0with kxk < 1: However we have to check it does satisfy the equationat x = 0:Lemma 10. f2 is harmonic near 0.Proof. We must show that if ' 2 C1c (Rn) with supp' � B(0; p) thenh�f2; 'i = 0, i.e. hf2;�'i = 0. Buthf2;�'i = Z f2�'= Zkxk�� f2�' + Zkxk�� f2�'= Zkxk�� f2�' + Zkxk���f2'� Zkxk=� f2d'd� + Zkxk=� df2d� '= Zkxk�� f2�'� Zkxk=� f2d'd� + Zkxk=� df2d� '>From the lemmas, f2 and df2d� are O(kxk0); O(kxk�1) for kxk small.So the integrals tend to 0 as �! 0. Hence hf2;�'i = 0 as required.So tracing through the arguments above, we haveTheorem 20. For n � 3, letG(x; y) = kx� yk2�n!n�1(2� n) � kxk2�nk xkxk2 � yk2!n�1(2� n)



PARTIAL DIFFERENTIAL EQUATIONS 59Then f(x) = Rkyk<1G(x; y)g(y)dy solves the dual Dirichlet problem.G(x; y) is called the Green's function. When n = 2, we obtainG(x; y) = 12�flog kx� yk � log kkxk�2x� ykg:Note that while the Kelvin transform may seem a little mysterious,it can be given a geometric interpretation: map Euclidean space to thesphere by stereographic projection and then reect in the equator andthen map back to the plane.The energetic can check that the appropriately modi�ed argumentsalso work in the two dimensional case.5.5. Deduction of the Poisson formula for the Dirichlet prob-lem. We now wish to solve �f = 0 in B, f = h on S: We compute fnear a point a such that kak < 1:According to the previous prescription, we extend h to a continuousfunction ~h on B, C2 on B.Set ~h(x) = h( xkxk) (kxk) where  is a bump function identically 1near 1 and supported in [1 � �; 1 + �] where kak < 1 � �. Set k(x) =R G(x; y)�~h(y)dy. Then k = 0 on S and �k = �~h in B. So �(~h�k) =0 and ~h� k = h on S. So we set f(x) = ~h(x)� k(x).Thus we getf(x) = h( xkxk) (kxk)� ZB G(x; y)�(h( ykyk) (kyk))dyNow let x = a. Using Green's formula and the fact that G(x; y) isharmonic in y for y 6= x, we getf(a) = ZS ddnyG(x; y)h( ykyk) (kyk)dy� ZS G(a; y)h( ykyk) ddny (kyk)dy= ZS dG(a; y)dny h(y)dysince  (1) = 1 and  (r) = 1 for r near 1, so that r @@r = 0 for r = 1.Thus we get for kxk < 1f(x) = ZS dG(x; y)dny h(y)dy � ZS P (x; y)h(y)dy



60 M. S. JOSHI AND A. J. WASSERMANNSince Pni=1 yi @@yi 1ky�akn�2 = (2� n)kyk2�ha;yiky�akn , we getP (x; y) = dG(x; y)dny= 1!n�1 1� hx; yikx� ykn � kxkn�2!n�1 (1� h xkxk2 ; yi)k xkxk2 � ykn= 1!n�1 1� hx; yikx� ykn � kxk2 � hx; yi!n�1kx� ykn= 1� kxk2!n�1kx� yknThus the Poisson formula P (x; y) = 1!n�1 1�kxk2kx�ykn . (This is also valid forn = 2)5.6. The Dirichlet Problem for the Unit Ball with non-smoothdata. The preceding deduction requires the data to be smooth andso we now verify the formula directly in the case where the data iscontinuous.Let P (x; y) = 1!n�1 1�kxk2kx�ykn be the Poisson kernel in Rn for kxk < 1and kyk = 1, where !n�1 = area of unit sphere in Rn . Note that ifz = x� y P (x; y) = �(2hy; zikzk�n + kzk2�n)=!n�1= �(2X yizikzkn + 1kzkn�2 )=!n�1Thus, for �xed y, P (x; y) is a harmonic function in kxk < 1 since 1kxkn�2and its derivation @@xi ( 1kxkn�2 ) = �(n�2)xikxkn are harmonic in x 6= 0.The constant function 1 is the unique solution to the Dirichlet prob-lem with boundary value 1 so we conclude from the Poisson formula inthe case we have proven it thatZkwk=1 P (x; w)dw = 1: (5.7)(One could also prove this directly thus avoiding the reliance on thepreviously proved case.)Proposition 11. Poisson's formula can be used to solve for any fcontinuous on the unit sphere.



PARTIAL DIFFERENTIAL EQUATIONS 61Proof. Near any point in the interior, the integrand is smooth in x andso we can commute the integration with the Laplacian. As P (x; y) isharmonic in x we conclude thatF (x) = Z P (x; y)f(y)dyis too. It therefore su�ces to show that F (ry)! f(y) uniformly in yas r " 1. But, using (5.7)jF (ry)� f(y)j � Z P (ry; w)jf(w)� f(y)jdw� supky�wk�� jf(w)� f(y)j+ 2 sup jf j Zkw�yk�� P (ry; w)dwThe �rst term is small because f is uniformly continuous on S: Toestimate the second time we estimate the denominator bykw � ryk � kw � yk � ky � ryk � �� (1� r) � �2 ;for r > 1� �2 :Remark 4. A simple rescaling argument shows that if f is harmonicin kxk < r and continuous in kxk � r then f can be recovered from itsboundary values by f(x) = Zkyk=r Pr(x; y)f(y)dywhere Pr(x; y) = 1r!n�1 r2�kxk2kx�ykn . There is an analogous result for ballsnot centred at the origin.We now know that the Dirichlet problem for the unit ball has aunique solution for continuous data on the unit ball.An immediate consequence isProposition 12. If u is continuous and satis�es the Mean Value Prop-erty for small balls then u is harmonic.Proof. On each small ball, we can pick a v agreeing with u on theboundary and harmonic. Applying the strong maximum principle tou� v we deduce that u = v so u is harmonic too.Corollary 7. If fn is a sequence of harmonic functions which convergeuniformly to a function f then f is harmonic.Proof. The mean value property is preserved by uniform convergence.



62 M. S. JOSHI AND A. J. WASSERMANN5.7. Harnack's Convergence Theorem. We start by provingTheorem 21. Harnack's Inequality: Let f be a non-negative continu-ous function on kxk � R harmonic for kxk < R.Then if kxk = r < R we haveRn�2(R� r)(R + r)n�1 f(0) � f(x) � Rn�2(R + r)(R� r)n�1 f(0)Proof. Poisson's kernel P (x; y) = 1R�n�1 R2�kxk2kx�ykn . If kyk = R, kxk = rwe have R � r � kx� yk � R + rSo 1R�n�1 R2 � r2(R + r)n � P (x; y) � 1R�n�1 R2 � r2(R � r)nHence, since f(x) = Rkyk=R P (x; y)f(y)dy1R�n�1 R2 � r2(R + r)n Zkyk=R f(y)dy � f(x) � 1R�n�1 R2 � r2(R� r)n Zkyk=R f(y)dyBut, since f is harmonic, f(0) = 1�n�1Rn�1 Rkyk=R f(y)dy SoRn�2(R� r)(R + r)n�1 f(0) � f(x) � Rn�2(R + r)(R� r)n�1 f(0)Theorem 22. Harnack's Convergence Theorem: If un ! u point-wise and monotonically, with un harmonic, then un ! u uniformlyon bounded sets and u is harmonic.Proof. For kxk � p < R0 � un(x)� um(x) � c(un(0)� um(0)) n � m:So supkxk�p jun(x)� um(x)j ! 0. So un ! u uniformly on kxk � p, allp > 0. Hence u is harmonic from the Mean Value Property.5.8. Solution of the Dirichlet Problem by Perron's Method.Let 
 be a bounded open domain in Rn with boundary @
. Considerthe Dirichlet Problem �f = 0 in 
, f = h on @
. Let u 2 C(
) beany sub-harmonic function, ie u(a) � 1A Rkx�ak=� u(x) then if u � f on



PARTIAL DIFFERENTIAL EQUATIONS 63@
 we have u � f in 
 by the maximum principle. So the solutionshould be given by Perron's formulafh(x) = supu sub-harmonicu�h on @
 u(x) (5.8)We now show that this yields a solution.Theorem 23. Let 
 be a bounded open domain in Rn with the propertythat each point x 2 @
 has a barrier function, i.e. a sub-harmonicfunction g such that g(x) = 0 and g(y) < 0 for y 2 
nfxg then (5.8)solves the Dirichlet problem.Remark 5. x 2 @
 has a barrier function if there is a ball, centred ata; touching 
 only at x. For then E(y�a)�E(x�a) (or its negative)will provide a barrier function.Lemma 11. The maximum of a �nite number of subharmonic func-tions is subharmonic.Proof. If v = maxfv1; v2g then R v � R v1; R v2 over any set and sov(x) � 1A R v on small spheres.Lemma 12. If u is sub-harmonic in 
 and x 2 
 is such that B�(x)�
then there exists a subharmonic function v which is harmonic on B�(x)�
and is equal to u outside B�(x): We also have u � v:Proof. We obtain v by solving the Dirichlet problem on B�x with dataequal to u on the boundary. We have that v � u from the maximumprinciple. It is trivial that v is sub-harmonic.Proof of theorem. Let E be the set of subharmonic functions which areless than h on the boundary of 
:First we note that any element of E will be bounded by the maximumof h on the boundary and so the supremum does exist.We �rst show that fh is continuous in 
: If x 2 
 and xn ! x thenlet unj (xn)! fh(xn)with unj 2 E :We let vk be the maximum of unj with j; n � k then vk is still in Eand vk(xn)! fh(xn);for all n: This all remains true if we replace vk by wk with wk harmonicin a ball about x: We then have wk converges uniformly to a function



64 M. S. JOSHI AND A. J. WASSERMANNw which is harmonic (and so continuous) on the ball and equal to fhon the sequence xn: So fh(xn)! fh(x)and u is continuous.We next show fh is sub-harmonic. Fix a point x: Given � > 0; thereexists u 2 E such that u(x) > fh(x) � �: We then replace u by v withv harmonic in a ball of radius � with � �xed and independent of �: Wethen havefh(x) < v(x) + � � � + 1A Zky�xk=�0 v(y)dy � �+ 1A Zky�xk=�0 fh(y)dy:This is for any � > 0 and any �0 < 1 so we conclude that fh is sub-harmonic.It remains to show that fh is continuous on the closure of 
 and thatit has the right boundary values. Let y be a boundary point. Take gsub-harmonic with g(y) = 0 and g < 0 on 
nfyg. Consideru(x) = h(y)� � +Kg(x) where � > 0Then u is sub-harmonic if K > 0. Clearly u � h near y on @
 forkz � yk � r independent of K. For @
 kz � yk � r we can choose Kso large that u � h everywhere. Hence h(y)� �+Kg(x) � fh(x): So,lim infx!y fh(x) � h(y):That is f is lower semi-continuous.We need to establish the corresponding estimate from above. Weput f�h(x) = sup u(x);with u subharmonic and less than or equal to �h on the boundary. So�f�h; is the in�mum of U with �U sub-harmonic and U � h on theboundary. (the in�mum of superharmonic functions bigger than h onthe boundary.) So if u 2 E then u�U � 0 on the boundary and henceeverywhere for any such U: So,fh � �f�h:The same argument as above shows the lower semi-continuity of f�hand so the upper semi-continuity of �f�h and fh:We thus have that fh 2 E :We now use the mean value property to see that fh is actually har-monic. If it does not satisfy the mean value property at a point p wecan replace by a function v which is harmonic in a small ball around



PARTIAL DIFFERENTIAL EQUATIONS 65p and is bigger than fh: But v 2 E so must be smaller than fh so wehave a contradiction. So fh is harmonic in 
:



66 M. S. JOSHI AND A. J. WASSERMANN5.9. Remarks on the two dimensional Dirichlet Problem.5.9.1. Cauchy-Riemann equations. Note that ( @@x+i @@y )( @@x�i @@y ) = �.So if E is a fundamental solution of � = @2@x2 + @2@y2 then ( @@x � i @@y )Eis a fundamental solution of the Cauchy-Riemann operator @@x + i @@y .(Recall that f is holomorphic , @f@x + i@f@y = 0). This gives( @@x � i @@y ) 14� log(x2 + y2) = 14� 2(x� iy)x2 + y2 = 12� 1x� iy :5.9.2. Separation of Variables. The above analysis of the dual Dirichletproblem extends to n = 2, but we omit it. There is another interestingmethod involving separation of variables.Recall that in polar coordinates � = @2@r2 + 1r @@r + 1r2 @2@�2 : If we lookfor a solution of the form u(r; �) = f(r)�(�)and separate variables, we are led to the equations@2�@�2 + �� = 0 (5.9)r2@2f@r2 + r@f@r � �f = 0: (5.10)Since � has to be 2� periodic, there are solutions only when � = n2and these are cos(n�); sin(n�): For such �; the solutions of (5.10) arer�n; rn and since we want a smooth solution we discard the �rst one.This leads us to solutions of the formrn(an cos(n�) + bn sin(n�))which of course tend to an cos(n�) + bn sin(n�) as r! 1: So now givenan f on the boundary, we can expand it as a Fourier seriesa0 +X an cos(n�) + bn sin(n�)and then we have a putative solutionao +X rn (an cos(n�) + bn sin(n�)) :This will converge to a harmonic function in the interior provided thereis a uniform bound for an; bn: It will be continuous up to the boundarygiving the right boundary value provided P janj+ jbnj converges - thiswill happen, for example, if f is piecewise smooth. For a general f; onecan always compute the coe�cients and see if the sum converges!



PARTIAL DIFFERENTIAL EQUATIONS 67Remark 6. One could deduce the Poisson formula in the plane fromthe Fourier expansion - see for example Petrovsky p173.



68 M. S. JOSHI AND A. J. WASSERMANN6. The Wave Operator6.1. The Problems. The wave operator or d'Alembertian is the ar-chetypal hyperbolic operator and exists very di�erent behaviour fromthe Laplacian reecting the fact that it describes a system evolving intime rather than a steady state system:2 = @2@t2 ��;where � = P @2@x2i :We principally want to solve two problems. The �rst is the forcingproblem 2u =f; (6.1)u =0; t << 0 (6.2)f =0; t << 0 (6.3)and the second is the Cauchy problem2u =0; (6.4)ujt=0 =u0; (6.5)@u@t =u1 (6.6)with u0; u1 given functions. We will actually solve the second problemby reducing it to the �rst one.One way in which the wave operator is very di�erent from the Lapla-cian is that it is not elliptic and we shall see that it can have singularsolutions.6.2. Finding the Fundamental Solution. We have already shownthat two fundamental solutions exist and are given byhE�; �i = � 12��n+12 Z �̂(�(� � i�);��)jj�jj2 � (� � i�)2 d�d�;with � a positive number. However we would like to have more explicitknowledge of what they are - that is we need to invert the Fouriertransform. First, we invert in t: Note that1p2� 1Z0 e�at�it�dt = 1p2� 1i� + a



PARTIAL DIFFERENTIAL EQUATIONS 69if <a > 0: So the inverse Fourier transform of 1i�+a is p2�e�atH(t):Now,hE+; fi =� 12��n+12 ZZ f̂(�� + i�;��)jj�jj2 � (� � i�)2d�d� (6.7)=� 12��n+12 ZZ de�tf(��;��)jj�jj2 � (� � i�)2d�d� (6.8)=� 12��n+12 ZZ de�tf(��;��)2ik�k  1i� + �� ik�k � 1i� + �+ ik�k! d�d�:(6.9)(using partial fractions.) So writing, ft(x) = f(t; x) and using the factthat the Fourier transform is equal to the inverse Fourier transform upto a reection, we havehE+; fi = � 12��n=2 ZRn 1Z0 e�tf̂t(��)2ik�k �e�(��ik�k)t � e�(�+ik�k)t� dtd�;the e�t terms cancel and we havehE+; fi = � 12��n=2 ZRn 1Z0 f̂t(��)sin(k�kt)k�k dtd�:So our next task is to compute the inverse Fourier transforms of thesedistributions. Note that as the functions are independent of rotationin k�k so are the inverse Fourier transforms. The computation of thisFourier transform turns out to be very dimension dependent but thereis a technique for calculating the Fourier transform in n � 1 from theone in n dimensions. So we start with n = 3:So we compute the inverse Fourier transform of sin(tk�k)=k�k in R3 :Actually computing it is hard so we start from the answer and checkit works. Let u be de�ned byhu; fi = Zkxk=t f(x)dx:This is a compactly supported distribution andhû; fi = hu; f̂i;= Zkxk=t Z e�ix:�f(�)d�dx= Z Zkxk=t e�ix:�dxf(�)d�:



70 M. S. JOSHI AND A. J. WASSERMANNSo we have to compute Zkxk=t e�ix:�dxand by rotational invariance it is enough to take � = (j�j; 0; 0): Sotaking spherical polar coordinates �; � this is equal tot2 �Z0 2�Z0 e�i cos(�)j�jt sin(�) d�d�:Integrating in � gives us a factor of 2� and integrating in � we get2�t2 " 1�ij�jte�i cos(�)j�jt#�0which is equal to 2�t�ij�jt �eitj�j � e�itj�j� = 4�tj�j sin(j�jt):So we deduce that the forward fundamental solution in three (space)dimensions is hE3;+; fi = 1Z0 14�t Zkxk=t f(x; t)dxdt:Rescaling, we can rewrite this ashE3;+; fi = 1Z0 t4� Zkxk=1 f(xt; t)dxdt:Put y = xt regarding (x; t) as polar coordinates, we also havehE3;+; fi = 14� ZR3 f(kxk; x)kxk dx:This is the forward fundamental solution as it is supported in t � 0: Ifwe had taken � < 0; we would have got the backwards solution, sup-ported in t � 0: Note that the forward fundamental solution in threespace dimension is supported on t = kxk - this reects Huygens prin-ciple which is that waves travel precisely at speed 1 and will thereforeonly be detectable at precisely distance t at time t:We also want to compute the fundamental solution in two dimen-sions. Now we can regard sin(tj�j)j�j in two dimensions as the restrictionof the corresponding function in three dimensions to the hyperplane�3 = 0: Restricting a Fourier transform of a Schwartz function to �3 is



PARTIAL DIFFERENTIAL EQUATIONS 71equivalent to integrating the function with respect to x3: The equiva-lent statement for distributions is that provided the push-forward in x3exists, its Fourier transform is the restriction of the higher dimensionalFourier transform to �3 = 0: Now as E3:+ is supported in kxk � t thepush-forward is proper and is de�ned via pull-backs so we deduce thathE2;+; �(t; x1; x2)i = hE3;+; �(t; x1; x2)i:So we need to compute what Zkxk=t  (x1; x2)is. But we can regard x1; x2 as parametrising the sphere byx3 = �(t2 � x21 � x22) 12 :And so if we cut into the two hemispheres we obtain,Zkx1;x2k�t  (x1; x2)(t2 � kxk2) 12 dx1dx2and thus thathE2;+; fi = 12� 1Z0 Zkx1;x2k�t (t; x)(t2 � kxk2) 12 dxdt:Now in one dimension there is a much easier approach, if one per-forms a change of coordinates w = t + x; y = t � x then the waveoperator becomes c @2@w@ywhich has the fundamental solutionH(w)H(y)and so we deduce that (taking care with constants)hE1;+; fi = 12 1Z0 Zjxj<t f(x; t)dxdt:In fact, in all dimensions the forward fundamental solution is sup-ported inside the light cone and in any odd dimension bigger than 1it is supported on the light cone. These support conditions guaranteethat these are the only fundamental solutions supported in t � 0 as ifL is another such fundamental solution, the convolution K � L existsand so E+ � (2�0 � L) = (E+ �2�0) � L



72 M. S. JOSHI AND A. J. WASSERMANNand thus E+ = L:Alternatively, 2(E+ � L) = (2E+) � L = E+(2L):Reversing the sign of t; we obtain E� the backwards fundamentalsolution and the Feynmann fundamental solution is just the average ofthe two 12(E+ + E�):6.3. The Method of Descent. Our argument above to evaluate theFourier transforms is really the method of descent which is that if Kis a fundamental solution for the wave operator in n dimensions thenpushing forward in xn will give the fundamental solution in one lowerdimension provided the push-forward exists. We computeh2n�1��Kn; �i = h��Kn;2n�1�i= hKn; ��2n�ias ��� is independent of xn = hKn;2n���i= h��2nKn; �i= h���0; �i= h�0; �i:6.4. Solving the forcing problem. So we now have the forwardfundamental solution, we can solve the forcing problem2u = f;with u; f = 0 in t << 0 simply byu = K+ � f;even for distributional f - the convolution will exist because K+ issupported inside the light cone. So, given the vanishing in the past,u will be smooth if and only if f is and u is uniquely determinedby f: However, if we drop the past vanishing condition life is morecomplicated: if u is a twice-di�erentiable function on the real line andj!j = 1 then 2u(t� x:!) = 0:(in fact, for any distribution this is true) So, there is no version ofelliptic regularity and solutions are not unique.



PARTIAL DIFFERENTIAL EQUATIONS 73Using the backwards solution, a similar approach works for datavanishing in the future. So given any f 2 D0 we can solve2u = fby putting f1 =  (t)f; f2 = f � f1with  identically one in t > 1 and zero in t < �1: The solution willnot be unique though.6.5. The Cauchy Problem. The uncertainty in solutions of the waveoperator is expressible in terms of Cauchy data - there is a uniquesolution of 2u = fwith ut=t0 = u0; @u@t jt=t1 = u1for given u0; u1 2 C1: (one could consider more general data) We cansolve the forcing problem so after subtracting a solution of it, it isenough to consider the case when f = 0:Now as @2u@t2 = �uwe deduce that @2u@t2 t=t0 = �u0and iterating we can recover all the derivatives i.e. the Taylor seriesof u on t = t0: So we certainly have not speci�ed too little data. Oneapproach is to then sum the Taylor series, however there is no reasonthis should converge except on t = t0: (if the data were analytic thenit would)However the sum does exist in a more generalised sense:Theorem 24. The Borel Lemma - given any sequence of smooth func-tions fj(x) there exists a function f(t; x) such thatf (j)(0; x) = fj(x):So using the Borel lemma, one can pick a function u such that 2uvanishes to in�nite order on t = t1 and u; @u@t have the right value ont = t0: Now if 2u = f then f1 = H(t � t0)f and f2 = H(t0 � t)fare smooth functions because of the in�nite order vanishing. So, wededuce that u0 = u�K+ � f1 �K� � f2



74 M. S. JOSHI AND A. J. WASSERMANNis a solution as K+ �f1 is supported in t � t0 and so vanishes to in�niteorder on t = 0 and similarly for f2 using K�:So there is a solution. We can use the same technique to showuniqueness - if u1; u2 solve then let u = u1� u2; we have that u and its�rst derivative in t vanish on t = t0 and thus arguing as above that allits derivatives in t vanish on t = t0: This meansu = u+ + u�with u� supported in �(t� t0) � 0 and smooth. We then have that2u� = 0and thus since the forcing problem in a half space has a unique solution,we conclude that u� = 0:We now prove the Borel lemma:Proof. The idea is to use cut o� functions, cutting o� closer and closerto the origin so that the sum is always �nite so if � is a bump functionwe put f(t; x) =Xj tjj!fj(x)�(ejt)where ej ! +1: As �(ejt) is supported in C=ej the sum is �nite foreach t and so converges. We want it to converge uniformly and we alsowant all its derivatives to converge uniformly. (for x in compact sets)Let x 2 K; a �xed compact set, then the supremum of tjj!fj(x)�(ejt)is less than supx2K(jfjj) Cej!j :So picking e0;j su�ciently large this will be less than 1=j2 and we haveuniform convergence and thus f is continuous.To get di�erentiability in x we needX tjj!D�xfj(x)�(ejt)to converge uniformly. We therefore pick e�;j as above to get uniformconvergence.Of course, we want the same ej for all �: We do this by diagonalisa-tion. Just let ej = maxj�j�j e�;j



PARTIAL DIFFERENTIAL EQUATIONS 75then for any �; we eventually haveej;� � ejand the sum f(t; x) =Xj tjj!fj(x)�(ejt)converges uniformly as do all its x derivatives to a function which issmooth in x but only continuous in t:However, we can now play the same game again. If we di�erentiatein t; k times and take D�)x; we obtain a sum of termskXl=0 tj�l(j � l)!ek�lj �(k�l)(t)D�xfj(x):Letting D = maxj�k j�(j)(t)j and taking j > k (which we can do as we areinterested in behaviour for large j) this is less than or equal to(C=ej)j�kD supx2K jD�xfj(x)jekj :As before, picking ej = ej;�;k su�ciently large this will converge.So we now do a diagonalisation - thus we letej = maxl;j�j;k�j el;�;k:Then for any �; k once j is su�ciently large, we haveej � ej;�;k:So the sum X tjj!�(ejt)fj(x)converges uniformly in all derivatives and the result follows.(note the stage where we did the x derivatives alone was not neces-sary but has been added as a \warm-up" proof)We have speci�ed initial data on a very special hypersurface - t = t0:In fact, we can specify data on a large class of hypersurfaces but notall. There are three basic classi�cations - depending on the geometryof the normals - space-like, time-like and characteristic. Recall thatthe symbol of the wave operator is �(� 2 � �2):De�nition 3. A hypersurface H in Rn � R is space-like if � 2 � �2 isgreater than 0 where (�; �) is the normal vector. H is characteristic if� 2 � �2 = 0 and time-like if � 2 � �2 < 0:



76 M. S. JOSHI AND A. J. WASSERMANNWe recall that a hypersurface is the zero set of a real-valued, smoothfunction which has non-zero derivative at every point of its zero set. Atypical example is the set ft = g(x)g with g smooth and real.So, a cone is characteristic and the plane t = t0 is space-like. Wecan, in general, solve the Cauchy problem for space-like hypersurfaces- on a Lorentzian manifold this would be the only notion as there is nospecial time function.We proceed similarly to before. The hypersurface can be written inthe form H = ft = �(x)gand so we can take a Taylor series expansion of the solution u in tabout t = �(x) u � 1Xj=0 (t� �(x))jj! fj(x):And so computing 2u has the Taylor expansion1Xj=2 (t� �(x))j�2(j � 2)! fj(x)� 1Xj=1 (t� �(x))j�1(j � 1)! (r�:rfj(x) + ��fj)+ 1Xj=0 (t� �(x))jj! �fj(x)� jr�j2 1Xj=2 (t� �(x))j�2(j � 2)! fj(x):Now if we equate coe�cients of (t � �(x))j to zero, we get for j > 1that (1� jr�j2)fj is equal to a function of the lower order coe�cients.We can solve this for fj as long as (1 � jr�j2) in non-zero, that is aslong as the hypersurface is non-characteristic. So then applying theBorel lemma, we have a function u with the correct Cauchy data suchthat 2u vanishes to in�nite order on H:As before, we can break up 2u into two pieces supported, f�; oneither side of H and then apply the two fundamental solutions to thetwo pieces. This will work as before except that we need to knowthat the K� � f� is still supported on one side of H - this will happenprovided the surface is space-like. The point being that the support ofK+ � f+ is contained in the union of forward cones with tips on H -the fact that the normal points inside the cone means that the tangentplane to H (which is precisely the orthogonal to the normal to H) willmeet the cone at the tip only. (this only works locally , wave hands toget globally.)



PARTIAL DIFFERENTIAL EQUATIONS 776.6. Domains of Dependence. Suppose for f; u0; u1; smooth we know2u =f;ujt=0 =u0;@u@t t=0 =u1;has a unique solution which is smooth. If we just want to know thevalue of f at a point (t; x) where do we need to know f; u0; u1? Fort > 0 we know from our construction of the solution that the value off in t < 0 is irrelevant. So consider u+ = H(t)u then2u+ = @2@t2 (H(t)u)��u:So we compute thath2u+;  i = 1Z0 Z u(x)@2 @t2 dxdt� hu+;��iwhich on integrating by parts is equal to� Z u(x; 0)@ @t (x; 0)dx+Z @u@t (x; 0) (x; 0)dx+ 1Z0 Z @2u@t2 (x; t) (x; t)dxdt:Now we have that @u@t (x; 0) = u1 and u(x; 0) = u0 and in t > 0 thatu(x; t) = u+(x; t) which is equal to K+ �2u+ so we have a formula foru(x; t) in terms of the data. We can rewrite this asu+ = K+ � (H(t)f) +K+ � (�(t)u1)�K+ � (�0(t)u0):The �rst term evaluated at (x; t) is just a weighted integral of f on theset jy � xj � t� s in dimensions 1; 2 and on the set jy � xj = t� s indimension 3: Now we can writehK+; �i = 1Z0 hKt; �tiwhere hKt; �ti is a weighted integral over jyj <� t or jyj = t: Unravel-ling the convolutions, we deduceu(x; t) = Et � u1(x) + @@tEt � u0 + tZ0 Et�s � fsdswhere � is now convolution in x: This is called Kirchho�'s formula.An immediate consequence of this, in all dimensions, is that thevalue of u(x; t) is determined by the value of f(y; s) on and in the conejx�yj � t� s and by u0(y); u1(y) on the set jx�yj � t: This expresses



78 M. S. JOSHI AND A. J. WASSERMANNthe property of �nite speed of propagation - one need only know thedata within distance t of the point at time t:In three dimensions, E+ is supported on the cone so we have that thevalue at u(x; t) is determined by f on the surface of the cone jx� yj =t � s and by u0; u1 on jx � yj = t: This expresses Huygen's principlein three dimensions that light travels exactly at one speed with noback-wash.6.7. Energy Estimates. If 2u = 0 then integrating over all space inx and over [0; T ] in t we have0 = ZZ ut(utt � uxx)dxdt= ZZ (ututt + utxux)dxdt= ZZ 12(u2t + u2x)tdxdt= �12 Z (u2t + u2x)dx�T0which proves the statement. This is of limited utility as it does notapply if the functions are not compactly supported however there isa local version which also gives a proof of �nite speed propagationof information which does work. (to get this integrate over a conejx� x0j < R� t; 0 � t � T:)The local version is that the energy in the jx� x0j < R at time T isless than or equal to the energy in the ball jx � x0j < R + T at timeT: This expresses the idea that the total amount of energy is preservedand that it can move around at a maximum rate of 1:7. The Heat Equation7.1. Symmetries. The heat operator is given by@@t ��and so it invariant under isometries of Rn in x and translations in t: Itis not invariant under reections in t unlike the wave equation.Note that @@t ��! (u(ax; a2t)) = a2   @@t ��! u! (ax; a2t)



PARTIAL DIFFERENTIAL EQUATIONS 79reecting the di�erent homogeneities of the operator in x and t: Wewill �nd that the factor jxj2=t will appear often in the study of thisoperator.7.2. The Fundamental Solution. As usual we start by constructingthe fundamental solution; we know that a fundamental solution is givenby hE; �i = � 12��n+1 Z �̂(�� + i�;��)k�k2 + i(� � i�)d�d�where � > 0: Of course, we want to compute what this is on the non-Fourier transform side.hE; �i = � 12��n+1 ZZ de�t�(��;��)k�k2 + � + i� d�d�= � 12��n+1 1Z0 Z e�t�̂t(��)e�(k�k2+�)tdtd�= � 12��n+1 1Z0 Z e�t�̂t(�)e�(k�k2+�)tdtd�= � 12��n 1Z0 Z �t(x) e� kxk24t(2t)n=2dxdt:So the fundamental solution isK(t; x) = 8<:� 14�t�n=2 e� kxk24t t � 00 t < 0 :Note that we do not get a corresponding fundamental solution if wereverse the sign of t - the heat equation expresses a de�nite directionof time.The only singularity of the fundamental solution of the heat operatoris at x = 0; t = 0:We can therefore construct a parametrix for the heat operator sup-ported in any small ball B� and so the arguments in the elliptic caseapplied here implyProposition 13. The singularities of u and � @@t ���u are the samefor any u 2 D0:



80 M. S. JOSHI AND A. J. WASSERMANNThis property is sometimes called hypo-ellipticity - expressing thatwhile the operator is not elliptic it behaves similarly in this regard.The standard problem we want to solve for the heat operator is @@t ��! u = g; t > 0limt!0+u(x; t) = u0with u0; g given. Writing Kt(x) = K(t; x)the solution of this is given byu(t; x) = Kt � u0 + tZ0 Kt�s � gsds:The second term here is just the application of the forward funda-mental solution to g - this will make sense for any g continuous andbounded on t = 0 as the exponential decay of Kt�s will ensure thatthe convolution converges. The fact that the integral of K(t; x) withrespect to x is 1 for any t tells us that Kt�s � gs is bounded by sup gand so the ds integral will converge too. This also shows thattZ0 Kt�s � gsds! 0at t! 0 + :This reduces us to studying the problem for g = 0:We check directlythat Kt � u0 solves. That it is a solution of the heat equation is clearas  @@t ��!Kt = 0:It is also smooth as Kt is. We check that it is continuous up to t = 0with the correct boundary value. Let � > 0; �x z 2 Rn and take � suchthat jx� zj < � implies thatju0(x)� u0(z)j < �



PARTIAL DIFFERENTIAL EQUATIONS 81then jKt � u0(x)� u0(z)j = ����Z K(x� y; t)(u0(y)� u0(z))dy����� Zjy�xj<�=2 K(x� y; t)ju0(y)� u0(z)jdy+ Zjy�xj>�=2 K(x� y; t)ju0(y)� u0(z)jdy� Zjy�zj<� K(x� y; t)ju0(y)� u0(z)jdy+ 2 sup jgj Zjy�zj>�=2 K(x� y; t)dy� � Z K(x� y; t)dy+ 2 sup jgj Zjy�zj>�=2 K(x� y; t)dy:The �rst term equals � so we need only check that for any �xed � thatZjxj>� K(x; t)! 0as t ! 0 + : Performing the change of variables ~x = t� 12x the integralis equal to Cn Zj~xj>�t� 12 e�~x2=4d~xand the result follows. So we have the existence of a solution and onecould deduce from the representation that there is continuous depen-dence on initial data. We still need to check uniqueness - in fact thisonly holds if we make constraints on the solution and we look at this inthe next section using maximum principles which also give a methodof proving continuous dependence on initial data.If we study the homogeneous problem with g = 0 and we take u0to be a positive compactly supported smooth function then as Kt > 0;we have that the solution u(t; x) > 0 for all t > 0; and all x so heatpropagates at in�nite speed - this is in contrast to the wave equationwhere waves propagate at �nite speed. This does not appear veryphysical! But the solution is decaying exponentially fast so these extrae�ects are very small.



82 M. S. JOSHI AND A. J. WASSERMANN7.3. Maximum Principles. As usual, we wish to have some controlover the solution - it should be unique and depend continuously on ininitial data. Surprisingly, there are smooth functions u which satisfythe heat equation and tend to zero at t = 0+ which are not identicallyzero. We therefore need to make some restrictions on our class ofsolutions to avoid this. One approach is to make the requirement thatu be positive which is su�cient to guarantee uniqueness and is thephysical case. The analysis however is rather long so instead we use aboundedness condition to get a maximum principle.First, we consider a bounded domain,
 = fjx� yj � r; 0 < t < T:gProposition 14. If ( @@t � �)u � 0 in 
 and u is continuous on �
then the maximum value of u in 
 is attained on fjx � yj � r; t =0g [ fjx� yj = r; 0 � t � Tg:Proof. First suppose that ( @@t ��)u < 0 in 
: We let
� = fjx� yj < r; 0 < t < T � �g:Suppose that u has a local maximum inside 
� then at such a point,we have ut = 0;�u � 0which contradicts our supposition so u must attain its maximum onthe boundary of 
�: Now if the maximum is attained at a point infjx�yj < r; t = T��g then at such a point we have ut � 0 and �u � 0which contradicts the assumption. So we have that the maximum isattained on fjx� yj � r; t = 0g [ fjx� yj = r; 0 � t � T � �: Taking aunion over all positive � the result follows in this case.One can reduce the general case to the already proved case by sub-tracting kt from u; applying the result and then letting k ! 0:Uniqueness and continuous dependence on initial data is now imme-diate if we consider the problem of specifying data on the set wherethe maximum is attained.A general maximum principle with x unbounded also applies, pro-vided we make an assumption on the function's growth.Theorem 25. Let u be continuous on 
 = Rn � [0; T ) and smooth inthe interior with  @@t ��! u � 0



PARTIAL DIFFERENTIAL EQUATIONS 83and with u bounded above by M andu(x; 0) = f(x)then for (x; t) 2 
; u(x; t) � sup u(x; 0)in 
:Proof. We start by �xing a point (y; s) 2 
; with s > 0 where we shallestimate the value of u: As the problem is translation invariant in y weshall take y = 0:Let v�(x; t) = u(x; t)� �(x2 + 2nt)then applying the maximum principle to the cylinder jxj � �; 0 � t � Twe have v�(x; t) � max( supjxj��(v�(x;0)); supjxj=�;t2[0;T ](v�(x; 0))) :Now, supjxj=�;t2[0;T ](v�(x; 0)) �M � ��2and supjxj��(v�(x; 0)) � sup(v�(x; 0)) � sup u(x; 0):So we have u(0; s)� �s � maxfsup u(x; 0);M � ��2g:So given � we pick � so that �s < � and then � such that M � ��2 �sup u(x; 0) and conclude thatu(0; s) � � + sup u(x; 0)and as � is arbitrary the result follows.We remark that our condition on u is unnecessarily stringent andthat this result could be proved under the assumption thatju(x; t)j � Ceajjxjj2:(see for example [2].)Uniqueness in the class of bounded solutions and continuous depen-dence on initial data are now clear. (use the maximum principle for uand �u:)



84 M. S. JOSHI AND A. J. WASSERMANN7.4. Group Law. If we are given initial data u0 at time 0 for the heatequation, ow for time s to get us and then using this as initial dataow of time t to get (us)t; then this this will be equal to us+t fromthe uniqueness of solutions. As the problem is translation invariant intime, if write the solution operator at time t as e�t this says thate�(s+t) = e�se�t s; t > 0and e�t ! Id; t! 0 + :This says that e�t is an operator semi-group and there is a large theoryof such semi-groups.One can do something similar with the wave equation - working withpairs (u0; u1) rather than with u0: As we can ow backwards in time,we get a group rather than a semi-group.7.5. Arrow of time. We have only solved the forward problem forthe heat operator - we specify initial data at time 0 and then computewhat the solution is in positive time. Unlike the wave equation, thebackwards problem is not solvable for the heat equation - one can notrecover the initial value of a distribution from its future behaviour. Forexample, whatever initial data we start with, we always have a smoothfunction in all positive time.7.6. Brownian Motion. One can regard the heat kernel K(x; t) fora �xed t as a probability density function as it is positive and hasintegral equal to 1: This reects the fact that the heat equation canbe interpreted as a limit coming from Brownian motion. If we have aparticle at y as time 0 then it will be distributed at time t accordingto the density function K(x � y; t): So if one imagines there being aparticle of heat at a point y at t = 0 then it is smeared out accordingto the density K at time t - this is a rather antiquated notion from thepoint of view of physics but can useful mathematically.7.7. Finite Di�erence Methods. In this section, we look at how theone dimensional heat equation can be realized as a limit of �nite di�er-ence equations. This gives a numerical method of computing the solu-tion. It should be noted, although we shall not do this here, that thisapproach actually gives a method of proving the existence of solutionsfor variable coe�cient operators by showing that the approximationsconverge to a solution which is not a priori given.



PARTIAL DIFFERENTIAL EQUATIONS 85What is the �nite di�erence analogue of the heat equation? Weassume h; k > 0 are given and �xed (Later, we will vary them.) andwork on a lattice �h;k = f(lh;mk); l; m 2 Z; l � 0g:If u is a function on the lattice, we de�ne�u = u(x; t+ h)� u(x; t)h � u(x+ k; t)� 2u(x; t) + u(x� k; t)k2 :Note that this will converge to the heat operator as k; h ! 0+ (useL'Hopital's rule.)We can regard this as a recipe for computing u(x; t+h) from u(y; t);if �u = dthenu(x; t+ h) = u(x; t) + hk2 (u(x+ k; t)� 2u(x; t) + u(x� k; t)) + hd:If we let k:k be the supremum norm in x then we have thatku(:; t+ h) � j1� 2hk�2jku(:; t)k+ 2hk�2ku(:; t)k+ hkd(:; t)k:If we assume that assume that ��� hk2��� � 12 then we haveku(:; t+ h)k � ku(:; t)k+ hkd(:; t)k:So if u has initial data f on t = 0 then iterating, we deduce thatku(:; lh)k � kfk+ lhkd(:; t)kor putting t = lh thatku(:; t)k � kfk+ t sups�t kd(:; s)k: (7.1)Now suppose we have a solution u of @@t ��! u = d(x; t) (7.2)u(0; t) = f0: (7.3)We want to compare it to the solutions obtained from the �nite di�er-ence methods by iteration. Suppose we have a nested sequence of lat-tices �� given as above with hk�2 �xed independent of � and h; k! 0as � !1: We have then for each � a solution u�: Putting U equal tothe union of �� over all �; we expect the limiting values of u�(x; t) to



86 M. S. JOSHI AND A. J. WASSERMANNconverge to u(x; t) for (x; t) 2 U: We prove this subject to a regularityassumption on u:Theorem 26. Suppose u is a solution of (7.2),(7.3) and @u@t ; @u@x ; �uare uniformly bounded and uniformly continuous then for all (x; t) 2 Uwe have that u�(x; t)! u(x; t):Proof. The uniform continuity and boundedness guarantee thatu(x; t+ h)� u(x; t)h � @u@tand u(x+ k; t)� 2u(x; t) + v(x� k; t)k2 ��utend to zero uniformly as h; k ! 0 that is as � !1: (use L'Hopital'srule) Given � > 0; we have for � su�ciently big we thatj��u� dj < �:We therefore have that j��(u� u�)j < �with initial data zero. So from our estimate (7.1), we haveju(x; t)� u�(x; t)j < �t;which proves the result. 8. Appendix8.1. Integration. For convenience, we have used some theorems fromLebesgue integration. Here we just run over the notions and theoremswe need.The basic space is L1(Rn) - a function f will be in L1(Rn) if both itand its modulus are Riemann integrable and the integrals converge atin�nity. Much more general functions are in the space but will not beneeded in this course.We say a function is locally integrable if it is integrable when multi-plied by the characteristic function of any ball. This space is denotedby L1loc:The main theorem we will use is ( a weakened version of ) the dom-inated convergence theorem.



PARTIAL DIFFERENTIAL EQUATIONS 87Theorem 27. Let hn be a sequence of functions in L1 such that thereexists g 2 L1 with jhnj � g and such that hn converges to a function hpointwise then h is in L1 andlimn!1 Z hn = Z h:8.2. Taylor's Theorem. While a smooth function does not in generalhave a convergent power series, it can be approximated accurately bya �nite series to whatever order we like.Theorem 28. (i) Let f(t; x) be a smooth function then for all N 2 Nf(t; x) = N�1Xj=0 f (j)(0; x)j! tj + tZ0 (t� s)N�1(N � 1)! f (N)(s; x)ds:[Note that the error is a smooth function vanishing to order N att = 0:](ii) Under the conditions of (i), if f (j)(0; x) = 0 for 0 � j � N � 1then f(t; x) = tn�(t; x)with �(t; x) a smooth function.Proof. (i) (This is just the proof you know and love dressed up a bit tomake a change.) By the fundamental theorem of calculus,f(t; x) = f(0; x) + tZ0 f (1)(s; x)ds:If we iterate this we get,f(t; x) = N�1Xj=0 f (j)(0; x)j! sj + tZ0 s1Z0 � � � sN�1Z0 f (N)(sN)dsNdsN�1 : : : ds1:The result then follows by reversing the order of integration.(ii) By part (i) f(t; x) = tZ0 (t� s)N�1(N � 1)! f (N)(s; x)ds;so making the linear change of variable s = tu we havef(t; x) = tn�(t; x)



88 M. S. JOSHI AND A. J. WASSERMANNwith �(t; x) = 1Z0 (1� u)N�1(N � 1)! f (N)(ut; x)du:Standard theorems about di�erentiating under the integral sign showthat � is smooth.It's important to remember that there are function whose Taylorseries vanishes to in�nite order at t = 0 but are positive for t 6= 0: Forexample e�t�2 : References[1] F.G. Friedlander, Introduction to the Theory of Distributions, CUP 1982,QA324[2] F. John, Partial Di�erential Equations, Springer-Verlag 1982, QA1.A647[3] I.G. Petrovksy, Lectures on Partial Di�erential Equations, Dover 91,QA377.P433[4] M.E. Taylor, Partial Di�erential Equations,Springer 96, QA1.A647


