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2 Background analysis

2.1 Fourier series
Considerr-periodic functions on the real line:
Cr([—m, 7)) ={ue C"R) : u(x + 27) = u(z)},

per

for r € [0,00]. The caser = 0 is the continuou®r-periodic functions, while the
caser = oo is ths smooth2r-periodic functions. For functions = u(zy,...xz,) we
define the corresponding spac&s, ([—, 7]") of C" functions which ar@r-periodic

in each coordinate. (All of these definitions generalize in obvious ways for classes of
functions with periods other thadr, e.g. G, (I ]}_,[0, L;]) consists ofC" functions

per
u = u(x,...x,) which areL;-periodic inz;.)
Given a functionu € Cr, ([—n,7]) the Fourier coefficients are the sequence of
numbersi,, = u(m) given by
1 +m )
a(m) = Uy, = — e "Mu(x) dx meZ.
2 ) .

Integration by parts gives the formu@@(m) = (im)*u(m) for positive integral,
which shows that the sequence of Fourier coefficients is a rapidly decreasing (bi-infinite)
sequence: this means that s(Z) where
s(Z) ={u: Z — c such thati|, = sup |[m*a(m)| < coVa € Z, }.
meZ
This in turn means that the serigs, _, a(m)e"™* converges absolutely and uniformly

to a smooth function. The central fact about Fourier series is that this series actually

converges ta, so that each € C;¢ ([, 71]) can be represented as:
1

+7
u(z) = Zﬂ(m)ei’m, where a(m) = %/ e”™ry(z) dr .

The whole development works for periodic functioms= u(z4,...xz,) with the se-
guence space generalized to

s(z") ={a:7Z" — c such thafd|, = 5161% |m®a(m)| < oo Va € Z7 } .

Here we use multi-index notation, in terms of which we have:



Theorem 2.1.1 The mappping
Cre ([_71771-]”) - S(Zn)7

per

1 )
u — G ={u(m)}nezn where 4(m) = (27r)"/ e " u(x) dx
[777771-]71

is a linear bijection whose inverse is the map which takeés >~ ... a(m)e"* and
the following hold:

1. u(z) = Y,,cqn W(m)e™* whered(m) = ﬁf[_w - e~y (z) dz (Fourier
inversion),

2. 0°u(m) = (im)~a(m) forall m € Z", a € 77,

3. G S (@) [P dz = 32,50 [a(m)|? (Parseval-Plancherel).
2.2 Fourier transform
Define the Schwartz space of test functions:
S(R™) = {u € C®°([R") : |ulas = sup |2°0°u(z)| < 0o, Vo € Z",3 € Z1 .}
zcR"

This is a convenient space on which to define the Fourier transform because of the fact
that Fourier integrals interchange rapidity of decrease with smoothness, so the space of
functions which are smooth and rapidly decreasing is invariant under Fourier transform:

Theorem 2.2.1 The Fourier transform, i.e. the mappping
F:SR") — SR,
u U where @(§) = Fo—e(u(z)) :/ e S Ty(x) do
Rﬂ,

is a linear bijection whose inverse is the m&p ! which takesy to the functionv =
F~1(v) given by
1

olx) = €+i§'xv
(@) = g [ €O .

and the following hold:

1. u(z) = ﬁ Jon W(§)e*de whered(E) = [, e”““u(z) dz (Fourier inversion),

2. 0°u(€) = Foe(9®u(2)) = (i€)*a(€) and (9°0)(€) = Foe((—iz)u(x)) for
all z,§ e R", a € Z7,

3. Jzn 0(E)u(§) d§ = [y v(z)i(x) dz,
4. S [ 0(a(€) dE = [, v(z)u(z) dv (Parseval-Plancherel),

(271')"

5/\

* 0 = 40 whereu x v = [u(z — y)v(y) dy (convolution).
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2.3 Banach spaces

A norm on a vector spac¥ is a real function: — ||z|| such that
1. ||z|| > 0 with equality iff x = 0,
2. ||cx|| = |c|||z]| forall ¢ € C,
3. [l +yll < llzl +llyll -

(If the first condition is replaced by the weaker requiremgrthat ||z|| > 0 then the
modified conditionsl’, 2,3 define a semi-norm.) A normed vector space is a metric
space with metrid/(z, y) = || — y||. Recall that a metric oX isamapd : X x X —

[0, 00) such that

1. d(z,y) > 0 with equality iff x = v,
2. d(z,y) = d(y, )
3. d(z,z) < d(z,y) +d(y, z) forall z,y, z in X.

(This definition does not require that be a vector space.) The metric sp&ée d) is
complete if every Cauchy sequence has a limit point: to be precige Jf2, has the

property thatve > 0 there existsV(e¢) € N such thatj,k > N(e) = d(zj,zx) < €
then there exists € X such thatim,_,, d(x;,z) = 0.

Definition 2.3.1 A Banach space is a normed vector space which is complete (using the
metricd(z, y) = |lz — y|)).

Examples are
o C" with the Euclidean norjz|| = (3=, |2;[?)z.
e C([a,b]) with || f|| = sup(, 4 | f ()| (uniform norm).
e Spaces op-summable (bi-infinite) sequencés,, = u(m)} ez
"(2) = {u: Z — ¢ such thatfull, = (3 Ju(m)|")» < oo}

and generalizations such &$7") and/”(N).

e Spaces of measurahl& functions forl < p < oo
LP(R") = {u: R" — C measurable withju|, = (/ u(z)||P dz ¥ < oo}

and generalizations such &%(|—, 7]") and L*([0, co) etc. Forp = oo the space
L*>(R™) consists of measurable functions which are bounded on the complement
of a null set, and the least such bound is called the essential supremum and gives
the norm||u||.~. In this example we identify functions which agree on the com-
plement of a null set (almost everywhere).
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Completeness is important because methods for proving that an equation has a solu-
tion typically produce a sequence of “approximate solutions”, e.g. Picard iterates for the
case of ode. If this sequence can be shown to be Cauchy in some norm then complete-
ness ensures the existence of a limit point which is the putative solution, and in good
situations can be proved to be a solution. Review the proof of the existence theorem for
ode via the contraction mapping theorem in the Banach space of continuous functions
and the uniform norm.

Norms are used in the definition of well posed: if a pde can be solved for a solution
u which is uniquely determined by some set of initial and/or boundary figtathen
the problem is said to be well posed in a noffm || if the solution changes a small
amount in this norm as the data change. This would be satisfied if for example for any
other solutiorv determined by dat@y; } there holds:

lu—vl <CO_If5—gll;),  forsomeC >0, (2.1)
J

where|| - ||; are some collection of norms which measure what kind of changes of data
Eroduce small chan%es of the solutidfinding the appropriate norms such thék.1)
olds for a given problem is a crucial part of understanding the problem - they are gen-
erally not known in advanceéOnce this is understood it is helpful with development of
numerical methods for solving problems on computers, and tells you in an experimental
situation how accurately you need to measure the data to make a good prediction.
To fix ideas consider the problem of solving an evolution equation of the form

Oyu = P(0;)u

where P is a constant coefficient polynomial; e.g. the c#¥é,) = 9> corresponds
to the Schodinger equatio®,u = i9%u. If we are solving this with periodic boundary
conditionsu(z,t) = u(x + 2w, t) and with given initial data:(z,0) = uy(z) for uy €
C> (=, w]). Formally the solution can be given as

per

u(z,t) = Z etPlm)ima, i (1m) (2.2)

mEZL

and if the initial datau, = > tug(m)e™* is a finite sum of exponentials then (2.2) is
easily seen to define a solution since it reduces also to a finite sum. In the general case it
IS necessary to mvestl?ate convergence of the sum so that it does define a solution, then
to prove unigueness of this solution, and finally to find norms for which well-posedness
holds. For this final step the Parseval identity is often very helpful, and for the case
of the Schédinger equation the series (2.2) does indeed define a solution for smooth
periodic data, vy and

max/ |u(x,t)—v(x,t)|2dx§/ uo() — vo(w) P dx

teR

This inequality would be interpreted as saying that the &dimger equation is well

posed inL? (globally in time since there is no restriction 6 In question 7 of sheet Il
you are asked to prove that the solutions are unique.

In general an equation defines a well posed problem with respect to specific norms,
which encode certain aspects of the behaviour of the solutions and have to be found as
part of the investigation: the property of being well posed depends on the norm. This
Is related to the fact that norms on Infinite dimensional vector spaces (like spaces of
functions) can be inequivalent (i.e. can correspond to different notions of convergence),
unlike in Euclidean space™.



2.4 Hilbert spaces

A Hilbert space is a Banach space which is also an inner product space: the norm arises
1

as||z|| = (z,z)? where(-,-) : X x X — C satisfies:

1. (z,z) > 0 with equality iff x = 0,

2. (x,y) = (y,2),

3. (ax +by,2) =a(x,2)+b(y, z) and(z, ay + bz) = a (x,y)+b(z, 2) for complex
numbersz, b and vectors:, v, z.

(FuntionsX x X — c like this which are linear in the second variable and anti-linear in
the first are sometimes called sesqui-linear.) Crucial properties of the inner product in

a Hilbert space are the Cauchy-Schwarz inequalityy) | < [|z[|||ly[| and the fact that
the inner product can be recovered from the norm via

1 : : : : o
(w.y) = 7 (le+yl* = llz —yI” —ille +dy|* + il —yl") . (polarization)

Examples include€?(Z") with inner product}_  wu(m)v(m) and L*(R™) with inner
product(u,v) = [wu(z)v(z)dx. Another example is the Sobolev spaces: firstly in
the periodic case

H'(R/27Z) = {u € L*([=m.a]) « Jullf = Y (L+mf)|a(m)]® < oo},  (2.3)

meZ

whereu = >~ i(m)e"™? is the Fourier representation, and secondly

H'E) = {ue D) Julf = [ (+lePlatefds <o), (24

whereu is the Fourier transform. . .
The new structure in Hilbert (as compared to Banach) spaces is the notion of orthog-

onality coming from the the inner product. A set of vectfrs} is called orthonormal if

(€n, €m) = Onm- We will consider only Hilbert spaces which have a countable orthonor-
mal basis{e, } (separableHilbert spaces). In such spaces it is possible to decompose
arbitrary elements as = > u,e,, whereu,, = (e,, u). (The case of Fourier series with

em(z) = €™ /\/21,m € Zis an example.) The Parseval identity in abstract form reads
lull* = 32| (en, u) |* and:

Theorem 2.4.1 Given an orthonormal sefte,, } the following are equivalent:
e (e,,u) =0 Vnimpliesu = 0, (completeness)
o [[ul|>=>"](en,u)|? Vu € X, (Parseval),

o u=> (e, u)e, Yu e X (orthonormal basis).



A closed subspac&; C X of a Hilbert space is also a Hilbert space, and there is an
orthogonal decomposition

X=X oX{

whereXi = {y € X : (z1,y) = OVz; € X;}. This means that any € X can be
written uniquely asc = z; + y with 2, € X, andy € Xi-, and there is a correponding
projectionPyx,z = x;.

Associated to a Hilbert space is its dual space&’ which is defined to be the space
a bounded linear maps:

X'={L:X —cC, with Llinearand||L|| = sup |Lz| < oo}.
zeX,||z]|=1

The definition of the norm oX” ensures thatL(z)| < || L]|||=]|-

Theorem 2.4.2 (Riesz representation)Given a bounded linear map on a Hilbert
spaceX there exists a unique vectgre X such thatLz = (y,z); also || L|| = ||y|.

The correspondence betweerandy gives an identification of the dual spadg with
the original Hilbert spaceX.

A generalization of this (for non-symmetric situations) is:

Theorem 2.4.3 (Lax-MiIgf_ram lemma) Given a bounded linear map : X — Ron a
Hilbert spaceX, and a bilinear map3 : X x X — R which satisfies (for some positive
numbers| B/, 7):

o |B(z,y)| < |Bllllz|lly| Vz,yeX (continuity),
e B(z,x) >v|z||* Vxe X (coercivity),
there exists a unique vectgre X such thatLz = B(y, z)Vx € X.

A bounded linear operatdB : X — X means a linear maff — X with the prop-

erty that there exists a numbgB|| > 0 such thatl| Bu|| < ||B]||ju||Vu € X. Asin
Sturm-Liouville theory we say a bounded linear operator is diagonalizable if there is an
orthonormal basige,,} such thatBe,, = \,e,, for some collection of complex numbers

A» Which are the eigenvalues.

2.5 Distributions
Definition 2.5.1 A periodic distributionl” € C2 ([—m, w|")" is a continuous linear map

T:Cx.([=m ") — C, where continuous r%eans thatfif and all its partial deriva-
tiveso* f,, converge uniformly t¢f thenT'(f,,) — T'(f). Here we callCys, ([~ 7]")
the space of test functions.

A tempered distributiol” € S’(R") is a continuous linear mafi’ : S(R") — C,
where continuous means that|jif, — f|l.,s — 0 for every Schwartz semi-norm then

T(f,) — T(f). Here we callS(R") the space of test functions.

In both cases fox, € R™ any fixed point (which may be taken to lie jr7, 7]" in the
periodic case) the Dirac distribution defineddy(f) = f(xo) gives an example.



Remark 2.5.2 The notion of convergence 6ifs, ([—7, 7" andS(R") used in this defi-

nition makes these spaces into topological spaces in which the convergence must be with
respect to a countable family of semi-norms. These are examples of Frechet spaces, a
class of topological vector spaces which generalize the notion of Banach space b?/ using
a countable family of semi-norms rather than a single norm to define a notion of con-
vergence. Using this notion of convergence one can check that the Fourier transform

is continuous as is its inverse, and the Fourier inversion theorem can be summarized by

the assertion thaf : S(R") — S(R") is a linear homeomorphism with inverge™!.

Remark 2.5.3 Notice that integrable functions define distributions in a natural way:
in the simplest case if is continuou2w-periodic function then the formuld, (f) =

fH,ﬂ g(z) f (z) dz defines a periodic distribution and clearly the mapping- 7, is an
injection of C,,., ([—m, 7]) into (C52 ([—m, w]))’. Similarly if g is absolutely integrable

per

onR" then the formuldl,(f) = [,. 9(z)f(x) dx defines a tempered distribution. The
mappingg — T, is, properly interpreted, injective: i € L'(R") thenT,(f) = 0
for all f € S(R™) implies thatg = 0 almost everywhere. On account of this remark

distributions are often called “generalized functions”. The Dirac example indicates
that there are distrubutions which do not arise’gs

Remark 2.5.4 In these definitions distributions are elements of the dual space of a
space of test functions with a specified notion of convergence ( a topology). Another
frequently used class of distributions is the dual spac€p{R") the space of com-
pactly supported smooth functions, topologized as follofys— f in Cg° if there is a

fixed compact st such that allf,,, f are supported ik and if all partial derivatives

of 0% f,, converge (uniformly) t@® f. This class of distributions is more convenient for
some purposes, but not for using the Fourier transform, for which purpose the tempered
distributions are most convenient because of remark 2.5.2, which allows the fourier
transform to be defined on tempered distributions “by duality” as we now discuss.

Operations are defined on distributions by using duality to transfer them to the test func-
tions, e.g.:

e GivenT € S'(R™) an arbitrary partial derivativé“T is defined byo“T'(f) =
(=Dl f).

e GivenT e S'(r") its fourier transforni” is defined byl'(f) = T'(f).

e GivenT € S'(R") andy € S(R™) the distributiony7" is defined byyT'(f) =
T(xf)-

It is useful to check, with reference to the fact in remark 2.5.3 that distributions are
generalized functions, that all such defintions of operations on distributions are designed
to extend the corresponding definitions on functions: e.g. for a Schwartz furmctien

have
aaTg == Taag 5

where on the lefv® means distributional derivative while on the right it is the usual
derivative from calculus applied to the test functipnlhe same principle is behind the
other definitions.

There are various alternate notations used for distributions:

T(f) = (T, f) = / T(2)f () da
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where in the right hand version it should be remembered that the expression is purely
formal in general: the putative functioh(x) has not been defined, and the integral
notation is not an integral - just shorthand for the dualit?/ pairing of the definition. It is
nevertheless helpful to use it to remember some formulae: for example the formula for
the distributional derivative takes the form

1() = [ 0T (@) f(e)dn = (<1 [ T(@)0" f(a) dn = (1T (@ ).

which is “familiar” from integration by parts. The formulad(z — z¢) f (z) dz = f(z)

and related ones are to be understood as formal expressions for the proper definition of
the delta distribution above.

2.6 Positive distributions and Measures

In this sectioh we restrict tr-periodic distributions on the real line for simplicity. The
delta distribution,, has the property that if > 0 thend,,(f) > 0; such distributions

are called positive. Positive distributions have an important continuity property as a
result: if 7" is any positive periodic distribution, then since

—[[flleee < fz) < flleee,  [IfI] = sup [f(2)]

for eachf € Cp,([—, «1]) it follows from positivity that?'(|| f[| .~ 4 f) > 0 and hence
by linearity that
—c|[fllpee <T(f) < cllfllz=

wherec = T'(1) is a positive number. This inequality, applied withreplaced by

f — fa, means that iff,, — f uniformly thenT'(f,,) — T7'(f), i.e. positive distributions
are automatically continuous with respecuttiform convergengen strong contrast to
the continuity property required in the original definition. In fact this new continuity
property ensures that a positive distribution can be extended uniquely as a map

L: Cper([=m,7]) — [0, 00)

i.e. as a continuous linear functional on the space of continuous functions. This exten-
sion is an immediate consquence of the density of smooth functions in the continuous
functions in the uniform norm (which can be deduced from the Weierstrass approxima-
tion theorem). A much more lengthy argument allows such a functional to be extended
as an integral(f) = [ fdu which is defined for a class of measurable functighs
which contains and is bigger than the class of continuous functions. To conclude: pos-
itive distributions automatically extend to define continuous linear functional on the
space of continuous functions, and hence can be identified with a classasfures
(Radon measures) which can be used to integrate much larger classes of functions (ex-
tending further the domain of the original distribution).

1This is an optional section, for background only
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3 Example sheet 2

1.

0o

LetA = Z;:ll 8? be the laplacian. For which vectouse R"! is the operator

P = d2u+ 0, "~} a;0;u — Au hyperbolic.

Consider 2nd order constant coeffcient operatérs >, ._,  a;;0;0;, deter-
mined by a non-degenerate (i.e. invertible} » matrixa;; = a;;. Forn = 4 find

a matrixa,; such that” cannot be written as either elliptic or hyperbolic even after
making a linear transformation of the coordinates. How aboutfer1, 2, 37

Obtain and solve the ode satisfied by characteristic curveg(z) for the equa-
tion (2% + 2)%uy, — (22 + 1)*u,, = 0. Show that there are two families of
such curves which can be written in the fopm— = + 272 arctan2 2z = 1S

andy +x — 272 arctan 272z = n, for arbitrary real number§ n. Now consider-
ing the change of coordinatés, y) — (£, n) so determined find the form of the
equation in the coordinate systémn).

Which of the following functions of: lie in Schwartz spac&(R): (a) (1 +
22)71,(b) e, (c)e~*" /(1 + 22)? Show that iff € S(R) then so isf(z)/P(x)
whereP is any strictly positive polynomial (i.eP(z) > 6 > 0 for some reab.

. Solve the following initial value problem

O = Ou u(0,2) = f(x)

for + € [—m, n] with periodic boundary conditions(¢, —7) = wu(t,7) and f
smooth an@r-periodic. Discuss well-posedness properties of your solutions for
the L2 norm, i.e. |ju(t)|| 2 = (77 Ju(t,)[*dz)?, using the Parseval-Plancherel
theorem.

Show that the heat equation: = 92u, with boundary conditions as in 1 is well-

posed forwards in time iB? norm, but not backwards in time (even locally). (Hint
compute the? norm of solutions.,, for negativet corresponding to initial values

U, (0, 1) = n~tem®)

(i) Use fourier series to solve the Schrodinger equation
O = i0u u(0,z) = f(x)

for initial value f smooth and periodic. Prove there is only one smooth solution.

(i) Use the fourier transform to solve the Schrodinger equationsfar R and
initial value f € S(R). Find the solution for the cage= e~*".

(i) Verify that the tempered distributianon the real line defined by the function
(2m)~te~™ll, (for positivem), solves

_ 2

(W —|— m2)u = 60



10.

11.

in S’ (R).
(i) Verify that the function on the real ling(z) = 1 forz < 0 andg(z) = e™®
for x > 0 defines a tempered distributi@f) which solves inS'(R)
T"+T = —d.
Define, for positive integral, the norm|| - || on the space of smoothr-periodic
function ofz by
12 =D (L +m?)|f(m)]?
meZ

wheref (n) are the fourier coefficients gf. (This is called the SoboleiZ* norm).

(i) What are these norms ¥ = 0? Write down a formula for these norms for
s=0,1,2... interms of f(z) and its derivatives directly. (Hint Parseval).

(i) If u(t,x) is the solution you obtained for the heat equation in 2 them forl
ands =0, 1,2,,, find a numbelC; > 0 such that

Ju(t, )lls < Csllu(0, )]0 -

(iif) Show that there exists a numbér > 0 which does not depend ofiso that
max | f(z)| < C| f||: for all smooth2r-periodicf.

(iv)* Try to generalize (i)-(iii) to periodic functiong’ = f(z1,...x,) of n vari-
ables.

Write down the precise distributional meaning of the equation
—A(|z|™h) = 4mdy in S'(R?)

in terms of test functions, and then use the divergence theorem to verify that it
holds. (Hint: apply the divergence theorem on the rediorc |z| < R} — {0 <
|z| < €} for R sufficiently large and take the limit— 0 carefully).

(i)* For each of the following equations find the most general tempered distribu-
tion T which satisfies it (see Friedlandg.7)

T =0, zdl/dx =0, 2*T =6, xdT/dx =&

dT/dx = &y, dT/dx +T =6 T — (d/dx)*T = b.
(i)* Solve the equation:™T = 0 in S'(R).
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