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2 Background analysis

2.1 Fourier series
Consider2π-periodic functions on the real line:

Cr
per([−π, π]) = {u ∈ Cr(R) : u(x + 2π) = u(x)} ,

for r ∈ [0,∞]. The caser = 0 is the continuous2π-periodic functions, while the
caser = ∞ is ths smooth2π-periodic functions. For functionsu = u(x1, . . . xn) we
define the corresponding spacesCr

per([−π, π]n) of Cr functions which are2π-periodic
in each coordinate. (All of these definitions generalize in obvious ways for classes of
functions with periods other than2π, e.g. Cr

per(
∏n

j=1[0, Lj]) consists ofCr functions
u = u(x1, . . . xn) which areLj-periodic inxj.)

Given a functionu ∈ C∞
per([−π, π]) the Fourier coefficients are the sequence of

numberŝum = û(m) given by

û(m) = ûm =
1

2π

∫ +π

−π

e−imxu(x) dx , m ∈ Z .

Integration by parts gives the formulâ∂αu(m) = (im)αû(m) for positive integralα,
which shows that the sequence of Fourier coefficients is a rapidly decreasing (bi-infinite)
sequence: this means thatû ∈ s(Z) where

s(Z) = {û : Z → C such that|û|α = sup
m∈Z

|mαû(m)| < ∞ ∀α ∈ Z+} .

This in turn means that the series
∑

m∈Z û(m)eimx converges absolutely and uniformly
to a smooth function. The central fact about Fourier series is that this series actually
converges tou, so that eachu ∈ C∞

per([−π, π]) can be represented as:

u(x) =
∑

û(m)eimx , where û(m) =
1

2π

∫ +π

−π

e−imxu(x) dx .

The whole development works for periodic functionsu = u(x1, . . . xn) with the se-
quence space generalized to

s(Zn) = {û : Zn → C such that|û|α = sup
m∈Zn

|mαû(m)| < ∞ ∀α ∈ Zn
+} .

Here we use multi-index notation, in terms of which we have:



Theorem 2.1.1 The mappping

C∞
per([−π, π]n) → s(Zn) ,

u 7→ û = {û(m)}m∈Zn where û(m) =
1

(2π)n

∫
[−π,π]n

e−im·xu(x) dx

is a linear bijection whose inverse is the map which takesû to
∑

m∈Zn û(m)eim·x and
the following hold:

1. u(x) =
∑

m∈Zn û(m)eim·x whereû(m) = 1
(2π)n

∫
[−π,π]n

e−im·xu(x) dx (Fourier
inversion),

2. ∂̂αu(m) = (im)αû(m) for all m ∈ Zn, α ∈ Zn
+,

3. 1
(2π)n

∫
[−π,π]n

|u(x)|2 dx =
∑

m∈Zn |û(m)|2 (Parseval-Plancherel).

2.2 Fourier transform
Define the Schwartz space of test functions:

S(Rn) = {u ∈ C∞(Rn) : |u|α,β = sup
x∈Rn

|xα∂βu(x)| < ∞ , ∀α ∈ Zn
+, β ∈ Zn

+ .}

This is a convenient space on which to define the Fourier transform because of the fact
that Fourier integrals interchange rapidity of decrease with smoothness, so the space of
functions which are smooth and rapidly decreasing is invariant under Fourier transform:

Theorem 2.2.1 The Fourier transform, i.e. the mappping

F : S(Rn) → S(Rn) ,

u 7→ û where û(ξ) = Fx→ξ(u(x)) =

∫
Rn

e−iξ·xu(x) dx

is a linear bijection whose inverse is the mapF−1 which takesv to the functionv̌ =
F−1(v) given by

v̌(x) =
1

(2π)n

∫
Rn

e+iξ·xv(ξ) dξ ,

and the following hold:

1. u(x) = 1
(2π)n

∫
Rn û(ξ)eiξ·xdξ whereû(ξ) =

∫
Rn e−iξ·xu(x) dx (Fourier inversion),

2. ∂̂αu(ξ) = Fx→ξ(∂
αu(x)) = (iξ)αû(ξ) and (∂αû)(ξ) = Fx→ξ((−ix)αu(x)) for

all x, ξ ∈ Rn, α ∈ Zn
+,

3.
∫

Rn v̂(ξ)u(ξ) dξ =
∫

Rn v(x)û(x) dx ,

4. 1
(2π)n

∫
Rn v̂(ξ)û(ξ) dξ =

∫
Rn v(x)u(x) dx (Parseval-Plancherel),

5. û ∗ v = ûv̂ whereu ∗ v =
∫

u(x− y)v(y) dy (convolution).
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2.3 Banach spaces

A norm on a vector spaceX is a real functionx 7→ ‖x‖ such that

1. ‖x‖ ≥ 0 with equality iff x = 0,

2. ‖cx‖ = |c|‖x‖ for all c ∈ C,

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ .

(If the first condition is replaced by the weaker requirement1′ that ‖x‖ ≥ 0 then the
modified conditions1′, 2, 3 define a semi-norm.) A normed vector space is a metric
space with metricd(x, y) = ‖x− y‖. Recall that a metric onX is a mapd : X ×X →
[0,∞) such that

1. d(x, y) ≥ 0 with equality iff x = y,

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in X.

(This definition does not require thatX be a vector space.) The metric space(X, d) is
complete if every Cauchy sequence has a limit point: to be precise if{xj}∞j=1 has the
property that∀ε > 0 there existsN(ε) ∈ N such thatj, k ≥ N(ε) =⇒ d(xj, xk) < ε
then there existsx ∈ X such thatlimj→∞ d(xj, x) = 0.

Definition 2.3.1 A Banach space is a normed vector space which is complete (using the
metricd(x, y) = ‖x− y‖).

Examples are

• Cn with the Euclidean norm‖z‖ = (
∑

j |zj|2)
1
2 .

• C([a, b]) with ‖f‖ = sup[a,b] |f(x)| (uniform norm).

• Spaces ofp-summable (bi-infinite) sequences{um = u(m)}m∈Z

lp(Z) = {u : Z → C such that‖u‖p = (
∑

|u(m)|p)
1
p < ∞}

and generalizations such aslp(Zn) andlp(N).

• Spaces of measurableLp functions for1 ≤ p < ∞

Lp(Rn) = {u : Rn → C measurable with‖u‖p = (

∫
|u(x)‖p dx )

1
p < ∞}

and generalizations such asLp([−π, π]n) andLp([0,∞) etc. Forp = ∞ the space
L∞(Rn) consists of measurable functions which are bounded on the complement
of a null set, and the least such bound is called the essential supremum and gives
the norm‖u‖L∞ . In this example we identify functions which agree on the com-
plement of a null set (almost everywhere).
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Completeness is important because methods for proving that an equation has a solu-
tion typically produce a sequence of “approximate solutions”, e.g. Picard iterates for the
case of ode. If this sequence can be shown to be Cauchy in some norm then complete-
ness ensures the existence of a limit point which is the putative solution, and in good
situations can be proved to be a solution. Review the proof of the existence theorem for
ode via the contraction mapping theorem in the Banach space of continuous functions
and the uniform norm.

Norms are used in the definition of well posed: if a pde can be solved for a solution
u which is uniquely determined by some set of initial and/or boundary data{fj} then
the problem is said to be well posed in a norm‖ · ‖ if the solution changes a small
amount in this norm as the data change. This would be satisfied if for example for any
other solutionv determined by data{gj} there holds:

‖u− v‖ ≤ C(
∑

j

‖fj − gj‖j) , for someC > 0 , (2.1)

where‖ · ‖j are some collection of norms which measure what kind of changes of data
produce small changes of the solution.Finding the appropriate norms such that(2.1)
holds for a given problem is a crucial part of understanding the problem - they are gen-
erally not known in advance.Once this is understood it is helpful with development of
numerical methods for solving problems on computers, and tells you in an experimental
situation how accurately you need to measure the data to make a good prediction.

To fix ideas consider the problem of solving an evolution equation of the form

∂tu = P (∂x)u

whereP is a constant coefficient polynomial; e.g. the caseP (∂x) = i∂2
x corresponds

to the Schr̈odinger equation∂tu = i∂2
xu. If we are solving this with periodic boundary

conditionsu(x, t) = u(x + 2π, t) and with given initial datau(x, 0) = u0(x) for u0 ∈
C∞

per([−π, π]). Formally the solution can be given as

u(x, t) =
∑
m∈Z

etP (im)+imxû0(m) (2.2)

and if the initial datauo =
∑

û0(m)eimx is a finite sum of exponentials then (2.2) is
easily seen to define a solution since it reduces also to a finite sum. In the general case it
is necessary to investigate convergence of the sum so that it does define a solution, then
to prove uniqueness of this solution, and finally to find norms for which well-posedness
holds. For this final step the Parseval identity is often very helpful, and for the case
of the Schr̈odinger equation the series (2.2) does indeed define a solution for smooth
periodic datau0, v0 and

max
t∈R

∫
|u(x, t)− v(x, t)|2 dx ≤

∫
|u0(x)− v0(x)|2 dx .

This inequality would be interpreted as saying that the Schrödinger equation is well
posed inL2 (globally in time since there is no restriction ont.) In question 7 of sheet II
you are asked to prove that the solutions are unique.

In general an equation defines a well posed problem with respect to specific norms,
which encode certain aspects of the behaviour of the solutions and have to be found as
part of the investigation: the property of being well posed depends on the norm. This
is related to the fact that norms on infinite dimensional vector spaces (like spaces of
functions) can be inequivalent (i.e. can correspond to different notions of convergence),
unlike in Euclidean spaceRn.
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2.4 Hilbert spaces
A Hilbert space is a Banach space which is also an inner product space: the norm arises
as‖x‖ = (x, x)

1
2 where(·, ·) : X ×X → C satisfies:

1. (x, x) ≥ 0 with equality iff x = 0,

2. (x, y) = (y, x),

3. (ax + by, z) = a (x, z)+b (y, z) and(x, ay + bz) = a (x, y)+b (x, z) for complex
numbersa, b and vectorsx, y, z.

(FuntionsX×X → C like this which are linear in the second variable and anti-linear in
the first are sometimes called sesqui-linear.) Crucial properties of the inner product in
a Hilbert space are the Cauchy-Schwarz inequality| (x, y) | ≤ ‖x‖‖y‖ and the fact that
the inner product can be recovered from the norm via

(x, y) =
1

4

(
‖x + y‖2 − ‖x− y‖2 − i‖x + iy‖2 + i‖x− iy‖2

)
, (polarization).

Examples includel2(Zn) with inner product
∑

m u(m)v(m) and L2(Rn) with inner
product(u, v) =

∫
u(x)v(x) dx. Another example is the Sobolev spaces: firstly in

the periodic case

H1(R/2πZ) = {u ∈ L2([−π, π]) : ‖u‖2
1 =

∑
m∈Z

(1 + |m|2)|û(m)|2 < ∞} , (2.3)

whereu =
∑

û(m)eimx is the Fourier representation, and secondly

H1(Rn) = {u ∈ L2(Rn) : ‖u‖2
1 =

∫
Rn

(1 + |ξ|2)|û(ξ)|2 dξ < ∞} , (2.4)

whereû is the Fourier transform.
The new structure in Hilbert (as compared to Banach) spaces is the notion of orthog-

onality coming from the the inner product. A set of vectors{en} is called orthonormal if
(en, em) = δnm. We will consider only Hilbert spaces which have a countable orthonor-
mal basis{en} (separableHilbert spaces). In such spaces it is possible to decompose
arbitrary elements asu =

∑
unen whereun = (en, u). (The case of Fourier series with

em(x) = eimx/
√

2π, m ∈ Z is an example.) The Parseval identity in abstract form reads
‖u‖2 =

∑
| (en, u) |2 and:

Theorem 2.4.1 Given an orthonormal set{en} the following are equivalent:

• (en, u) = 0 ∀n impliesu = 0, (completeness)

• ‖u‖2 =
∑
| (en, u) |2 ∀u ∈ X, (Parseval),

• u =
∑

(en, u) en ∀u ∈ X (orthonormal basis).
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A closed subspaceX1 ⊂ X of a Hilbert space is also a Hilbert space, and there is an
orthogonal decomposition

X = X1 ⊕X⊥
1

whereX⊥
1 = {y ∈ X : (x1, y) = 0∀x1 ∈ X1}. This means that anyx ∈ X can be

written uniquely asx = x1 + y with x1 ∈ X1 andy ∈ X⊥
1 , and there is a correponding

projectionPX1x = x1.
Associated to a Hilbert spaceX is its dual spaceX ′ which is defined to be the space

a bounded linear maps:

X ′ = {L : X → C , with L linear and‖L‖ = sup
x∈X,‖x‖=1

|Lx| < ∞}.

The definition of the norm onX ′ ensures that|L(x)| ≤ ‖L‖‖x‖.

Theorem 2.4.2 (Riesz representation)Given a bounded linear mapL on a Hilbert
spaceX there exists a unique vectory ∈ X such thatLx = (y, x); also ‖L‖ = ‖y‖.
The correspondence betweenL andy gives an identification of the dual spaceX ′ with
the original Hilbert spaceX.

A generalization of this (for non-symmetric situations) is:

Theorem 2.4.3 (Lax-Milgram lemma) Given a bounded linear mapL : X → R on a
Hilbert spaceX, and a bilinear mapB : X ×X → R which satisfies (for some positive
numbers‖B‖, γ):

• |B(x, y)| ≤ ‖B‖‖x‖‖y‖ ∀x, y ∈ X (continuity),

• B(x, x) ≥ γ‖x‖2 ∀x ∈ X (coercivity),

there exists a unique vectory ∈ X such thatLx = B(y, x)∀x ∈ X.

A bounded linear operatorB : X → X means a linear mapX → X with the prop-
erty that there exists a number‖B‖ ≥ 0 such that‖Bu‖ ≤ ‖B‖‖u‖ ∀u ∈ X. As in
Sturm-Liouville theory we say a bounded linear operator is diagonalizable if there is an
orthonormal basis{en} such thatBen = λnen for some collection of complex numbers
λn which are the eigenvalues.

2.5 Distributions
Definition 2.5.1 A periodic distributionT ∈ C∞

per([−π, π]n)′ is a continuous linear map
T : C∞

per([−π, π]n) → C, where continuous means that iffn and all its partial deriva-
tives∂αfn converge uniformly tof thenT (fn) → T (f). Here we callC∞

per([−π, π]n)
the space of test functions.

A tempered distributionT ∈ S ′(Rn) is a continuous linear mapT : S(Rn) → C,
where continuous means that if‖fn − f‖α,β → 0 for every Schwartz semi-norm then
T (fn) → T (f). Here we callS(Rn) the space of test functions.

In both cases forx0 ∈ Rn any fixed point (which may be taken to lie in[−π, π]n in the
periodic case) the Dirac distribution defined byδx0(f) = f(x0) gives an example.
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Remark 2.5.2 The notion of convergence onC∞
per([−π, π]n andS(Rn) used in this defi-

nition makes these spaces into topological spaces in which the convergence must be with
respect to a countable family of semi-norms. These are examples of Frechet spaces, a
class of topological vector spaces which generalize the notion of Banach space by using
a countable family of semi-norms rather than a single norm to define a notion of con-
vergence. Using this notion of convergence one can check that the Fourier transformF
is continuous as is its inverse, and the Fourier inversion theorem can be summarized by
the assertion thatF : S(Rn) → S(Rn) is a linear homeomorphism with inverseF−1.

Remark 2.5.3 Notice that integrable functions define distributions in a natural way:
in the simplest case ifg is continuous2π-periodic function then the formulaTg(f) =∫

[−π,π]
g(x)f(x) dx defines a periodic distribution and clearly the mappingg 7→ Tg is an

injection ofCper([−π, π]) into (C∞
per([−π, π]))′. Similarly if g is absolutely integrable

on Rn then the formulaTg(f) =
∫

Rn g(x)f(x) dx defines a tempered distribution. The
mappingg 7→ Tg is, properly interpreted, injective: ifg ∈ L1(Rn) thenTg(f) = 0
for all f ∈ S(Rn) implies thatg = 0 almost everywhere. On account of this remark
distributions are often called “generalized functions”. The Dirac example indicates
that there are distrubutions which do not arise asTg.

Remark 2.5.4 In these definitions distributions are elements of the dual space of a
space of test functions with a specified notion of convergence ( a topology). Another
frequently used class of distributions is the dual space ofC∞

0 (Rn) the space of com-
pactly supported smooth functions, topologized as follows:fn → f in C∞

0 if there is a
fixed compact setK such that allfn, f are supported inK and if all partial derivatives
of ∂αfn converge (uniformly) to∂αf . This class of distributions is more convenient for
some purposes, but not for using the Fourier transform, for which purpose the tempered
distributions are most convenient because of remark 2.5.2, which allows the fourier
transform to be defined on tempered distributions “by duality” as we now discuss.

Operations are defined on distributions by using duality to transfer them to the test func-
tions, e.g.:

• Given T ∈ S ′(Rn) an arbitrary partial derivative∂αT is defined by∂αT (f) =
(−1)|α|T (∂αf).

• GivenT ∈ S ′(Rn) its fourier transformT̂ is defined byT̂ (f) = T (f̂).

• Given T ∈ S ′(Rn) andχ ∈ S(Rn) the distributionχT is defined byχT (f) =
T (χf).

It is useful to check, with reference to the fact in remark 2.5.3 that distributions are
generalized functions, that all such defintions of operations on distributions are designed
to extend the corresponding definitions on functions: e.g. for a Schwartz functiong we
have

∂αTg = T∂αg ,

where on the left∂α means distributional derivative while on the right it is the usual
derivative from calculus applied to the test functiong. The same principle is behind the
other definitions.

There are various alternate notations used for distributions:

T (f) = 〈T , f〉 =

∫
T (x)f(x) dx
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where in the right hand version it should be remembered that the expression is purely
formal in general: the putative functionT (x) has not been defined, and the integral
notation is not an integral - just shorthand for the duality pairing of the definition. It is
nevertheless helpful to use it to remember some formulae: for example the formula for
the distributional derivative takes the form

∂αT (f) =

∫
∂αT (x)f(x) dx = (−1)|α|

∫
T (x)∂αf(x) dx = (−1)|α|T (∂αf) ,

which is “familiar” from integration by parts. The formula
∫

δ(x−x0)f(x) dx = f(x0)
and related ones are to be understood as formal expressions for the proper definition of
the delta distribution above.

2.6 Positive distributions and Measures
In this section1 we restrict to2π-periodic distributions on the real line for simplicity. The
delta distributionδx0 has the property that iff ≥ 0 thenδx0(f) ≥ 0; such distributions
are called positive. Positive distributions have an important continuity property as a
result: ifT is any positive periodic distribution, then since

−‖f‖L∞ ≤ f(x) ≤ ‖f‖L∞ , ‖f‖ = sup |f(x)|

for eachf ∈ C∞
per([−π, π]) it follows from positivity thatT (‖f‖L∞ ± f) ≥ 0 and hence

by linearity that
−c‖f‖L∞ ≤ T (f) ≤ c‖f‖L∞

wherec = T (1) is a positive number. This inequality, applied withf replaced by
f − fn, means that iffn → f uniformly thenT (fn) → T (f), i.e. positive distributions
are automatically continuous with respect touniform convergence, in strong contrast to
the continuity property required in the original definition. In fact this new continuity
property ensures that a positive distribution can be extended uniquely as a map

L : Cper([−π, π]) → [0,∞)

i.e. as a continuous linear functional on the space of continuous functions. This exten-
sion is an immediate consquence of the density of smooth functions in the continuous
functions in the uniform norm (which can be deduced from the Weierstrass approxima-
tion theorem). A much more lengthy argument allows such a functional to be extended
as an integralL(f) =

∫
f dµ which is defined for a class of measurable functionsf

which contains and is bigger than the class of continuous functions. To conclude: pos-
itive distributions automatically extend to define continuous linear functional on the
space of continuous functions, and hence can be identified with a class ofmeasures
(Radon measures) which can be used to integrate much larger classes of functions (ex-
tending further the domain of the original distribution).

1This is an optional section, for background only
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3 Example sheet 2

1. Let ∆ =
∑n−1

j=1 ∂2
j be the laplacian. For which vectorsa ∈ Rn−1 is the operator

P = ∂2
t u + ∂t

∑n−1
j=1 aj∂ju−∆u hyperbolic.

2. Consider 2nd order constant coeffcient operator sP =
∑

i,j=1,...n aij∂i∂j, deter-
mined by a non-degenerate (i.e. invertible)n×n matrixaij = aji. Forn = 4 find
a matrixaij such thatP cannot be written as either elliptic or hyperbolic even after
making a linear transformation of the coordinates. How about forn = 1, 2, 3?

3. Obtain and solve the ode satisfied by characteristic curvesy = y(x) for the equa-
tion (x2 + 2)2uxx − (x2 + 1)2uyy = 0. Show that there are two families of
such curves which can be written in the formy − x + 2−

1
2 arctan 2−

1
2 x = ξ

andy + x− 2−
1
2 arctan 2−

1
2 x = η, for arbitrary real numbersξ, η. Now consider-

ing the change of coordinates(x, y) → (ξ, η) so determined find the form of the
equation in the coordinate system(ξ, η).

4. Which of the following functions ofx lie in Schwartz spaceS(R): (a) (1 +

x2)−1,(b) e−x, (c)e−x4
/(1 + x2)? Show that iff ∈ S(R) then so isf(x)/P (x)

whereP is any strictly positive polynomial (i.e.P (x) ≥ θ > 0 for some realθ.

5. Solve the following initial value problem

∂tu = ∂3
xu u(0, x) = f(x)

for x ∈ [−π, π] with periodic boundary conditionsu(t,−π) = u(t, π) and f
smooth and2π-periodic. Discuss well-posedness properties of your solutions for
theL2 norm, i.e.‖u(t)‖L2 = (

∫ +π

−π
|u(t, x)|2dx)

1
2 , using the Parseval-Plancherel

theorem.

6. Show that the heat equation∂tu = ∂2
xu, with boundary conditions as in 1 is well-

posed forwards in time inL2 norm, but not backwards in time (even locally). (Hint
compute theL2 norm of solutionsun for negativet corresponding to initial values
un(0, x) = n−1einx.)

7. (i) Use fourier series to solve the Schrodinger equation

∂tu = i∂2
xu u(0, x) = f(x)

for initial valuef smooth and periodic. Prove there is only one smooth solution.

(ii) Use the fourier transform to solve the Schrodinger equation forx ∈ R and
initial valuef ∈ S(R). Find the solution for the casef = e−x2

.

8. (i) Verify that the tempered distributionu on the real line defined by the function
(2m)−1e−m|x|, (for positivem), solves

(−d2

dx2
+ m2

)
u = δ0
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in S ′(R).

(ii) Verify that the function on the real lineg(x) = 1 for x ≤ 0 andg(x) = e−x

for x > 0 defines a tempered distributionTg which solves inS ′(R)

T ′′ + T ′ = −δ0.

9. Define, for positive integrals, the norm‖ · ‖s on the space of smooth2π-periodic
function ofx by

‖f‖2
s ≡

∑
m∈Z

(1 + m2)s|f̂(m)|2

wheref̂(n) are the fourier coefficients off . (This is called the SobolevHs norm).

(i) What are these norms ifs = 0? Write down a formula for these norms for
s = 0, 1, 2 . . . in terms off(x) and its derivatives directly. (Hint Parseval).

(ii) If u(t, x) is the solution you obtained for the heat equation in 2 then fort > 1
ands = 0, 1, 2, , , find a numberCs > 0 such that

‖u(t, ·)‖s ≤ Cs‖u(0, ·)‖0 .

(iii) Show that there exists a numberC > 0 which does not depend onf so that
max |f(x)| ≤ C‖f‖1 for all smooth2π-periodicf .

(iv)* Try to generalize (i)-(iii) to periodic functionsf = f(x1, . . . xn) of n vari-
ables.

10. Write down the precise distributional meaning of the equation

−∆(|x|−1) = 4πδ0 in S ′(R3)

in terms of test functions, and then use the divergence theorem to verify that it
holds. (Hint: apply the divergence theorem on the region{0 < |x| < R} − {0 <
|x| < ε} for R sufficiently large and take the limitε → 0 carefully).

11. (i)* For each of the following equations find the most general tempered distribu-
tion T which satisfies it (see Friedlander§2.7)

xT = 0, xdT/dx = 0, x2T = δ0, xdT/dx = δ0

dT/dx = δ0, dT/dx + T = δ0 T − (d/dx)2T = δ0.

(ii)* Solve the equationxmT = 0 in S ′(R).
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