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2.7 Sobolev spaces

We define the Sobolev spaces for= 0,1, 2, ... on various domains:
OnR"™ we have the following equivalent definitions:
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In the first line the partial derivatives are taken in the distributional sense: the precise
meaning is that alilistributional (=weak)partial derivatives up to orderof the distri-
butionT,, determined by: are distributions which are determined by square integrable

funtions which are designatedttu (i.e. 9°T, = The, With *u € L? in the nota-
tion introduced previously). The final line means tli&t is the closure of the space of
smooth compactly supported functiofi§®(R") in the Sobolev nornfj - || z=. The quan-
tity [|ull3. = [on (L4+1€]1%)%]0(€)]? d€ appearing in the middle definition defines a norm
which is equivalent to the norifu|| z- appearing in the first definition. (Recall tHgt|
and|| - || are equivalent if there exist positive numbérs C, such that|ul| < Ci|lu]|
and ||lu|| < Csyllul| for all vectorsu; equivalent norms give rise to identical notions of
convergence (i.e. they define the same topologies).

On(R/(27Z))" : In the27-periodic case the following definitions are equivalent:
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Again the quantity apearing in the middle line defines an equivalent norm which can be
used when it is more convenient. Since we are considering only theeasel, 2, ...

the Fourier serie§", ;. 4(m)e"™* always defines a square integrable function, and as
s increases the function so defined is more and more regular (exercise).



These definitions require some modifications for the case of general dofains
starting (\zlx)nth the notion of the weak partial derivative (since we did not define distribu-
tions in(2).

Definition 2.7.1 A locally integrable function defined on an open s@tadmits a weak
artial derivative corresponding to the multi-indexf there exists a locally integrable
unction, designate@“u, with the property that

/ w0y dr = (1) / 0%u x dx

Q Q

for everyy € C5°(92).

Then employing this notion of partial derivative we define et 0,1,2,...):
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gwith all L? norms being defined b%/ integration o¥e). This space is to be distinguished
rom the corresponding closure of the space of smooth functions supported In a compact
subset of2: "

Hy(Q) =C(Q) ™.

Since these functions are limits of functions which vanish in a neighbourhcadrafy
are to be thought of as vanishing in some generalized sen8€ ¢at least in the case
s = 1,2,... and if Q has a smooth boundaff2.) The cases = 1 gives the space

H}(Q) which is the natural Hilbert space to use in order to give a weak formulation of
the Dirichlet problem for the elliptic equatiafu = f on ).

3 Elliptic equations

3.1 Notation
Let B = {w : |w| < R} andBr = {w : |w| < R} be the open and closed balls

of radiusR and more generally l1eBg(z) = {w : |w — 2| < R} andBg(z) = {w :
|lw — x| < R}. We write 0Bgr, 0Bgr(x) for the corresponding spheres, i@Br(z) =
{w: |w—z| = R} etc. In the following2 C R" is always open unless otherwise stated,

Qs its closure and is its boundary (always assumed smooth).

3.2 Harmonic functions

Definition 3.2.1 A functionu € C?(2) which satisfie\u(x) = 0 (resp. Au(x) > 0,
resp. Au(x) < 0) for all z € Q, for an open sef2 C R™, is said to be harmonic (resp.
subharmonic, resp. superharmonic){in

Theorem 3.2.2Let v be harmonic inQ? C R"” and assumeBx(xz) C Q. Then for
0<r<R:

1
|aBT| OBr(x)

u(z) u(y) dy , (mean value property) (3.1)



Proof Thisis a consequence of the Green identity

/ (vVAu—uAv) dx :/ (vO,u—ud,v) dE—/ (vO,u—ud,v)d%,
p<|lw—z|<r |lw—z|=r lw—z|=p

(whered, = n -V just means the normal derivative on the boundary) with the choice of
v(w) = N(w — z), whereN is the fundamental solution fak:

N@) = df'ﬁ (n>2)
_ %mm, (n—2).

Herew, = f|x|:l d¥(z) = 2m2 /T(n/2) is the area of the unit sphere ¥. Thus on

0B, (x) we havev = r*™/(2 — n)w,,n > 2 0orv = (Inr)/(27),n = 2. Substituting
these and the corresponding ones for normal derivatiyes= r'~"/w, on dB,(x),
and taking the limipp — 0 gives the result.

Corollary 3.2.3 If u is aC?* harmonic function in an open s@tthenu € C>(Q). In
fact if u is anyC? function in{2 for which the mean value propert$.1) holds whenever

B, (xz) C Qthenu is a smooth harmonic function.

Corollary 3.2.4 LetQ C R" be a connected open set ande C(Q2) harmonic in{Q2
with M = sup,.qu(xz) < oco. Then eithern(z) < M for all x € Q or u(x) = M for

all z € Q. (In words, a harmonic function cannot have an interior maximum unless it is
constant on connected components).

Corollary 3.2.5 Let{2 C R" be open with bounded closufg and letu; € C(Q), j =
1, 2 be two harmonic functions ift with boundary values;|sn = f;. Then

sup |uq (z) — ug(z)| < sup |fi(z) — fo(x)], (stability or well-posedness).
e €N

In particular if f; = f5 thenu; = us.
Corollary 3.2.6 A harmonic functiont € C?(R™) which is bounded is constant.

Another consequence of the Green identity is the following./ét, y) = N(|x —
y|) whereN is the fundamental solution defined above.

Theorem 3.2.7 Letu be harmonic ir®2 with Q bounded and. € C*(Q). Then
we) = [ [s0,N )~ N u)iuem] asw),
y|l=r

whered,, = n - V, just means the normal derivative in while 9, is the normal inz.
In fact the same formula holds witki(z, y) replaced by any functio&(x, y) such that
G(z,y) — N(z,y) is harmonic iny € Q andC" for y € Q for eachz € Q.
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It is known from above that: is determined by its boundary values - to determine a
harmonic function: from u|sg, is the Dirichlet problem (The corresponding problem
of determiningu from its normal derivativé), u|s, is called theNeumann problemTo

et a formula for (or understand) the solution of these problems it is sufficient to get a
ormula for (or understand) the correponding Green function:

Definition 3.2.8 (i) A functionGp = Gp(x,y) defined orGp : Q@ x Q —{z =y} —= R
such that ()G p(z,y) — N (| — y|) is harmonic iny € © and continuous foy € Q for
eachz, and (b)Gp(z,y) = 0 for y € 01, is a Dirichlet Green function.

(i) A function Gy = Gn(z,y) defined onGy : Q x Q — {z = y} — R such that
(@) Gy(z,y) — N(|z — y|) is harmonic iny € Q and continuous foy € (2 for eachz,
and (b)0,,Gn(x,y) = 0 fory € 092, is a Neumann Green function.

Given such functions we obtain representation formulas:

Au =0, u|39 =f = U(iU) = / f(y)auyGD(ma 3/) dZ(y) )

lyl=r
and
Au=0, duon=g — ulz)= - / 9(y)Gr(z,y) d=(y).

ly|=r

for f,g € C(09).

3.3 The maximum principle

We consider variable coefficient elliptic operators. Throughout this seatign) =
aj(z) is continuous and satisfies

mlgl® <) apéisn < M|E|P (3.2)

Gik=1
for some positive constants, M and all¢ € R™.
Theorem 3.3.1Letu € C(Q) N C%*(Q) satisfyPu = 0 where

Pu= — Y apd;Ou+ > bjoju (3.3)
j=1

g k=1
is an elliptic operator with continuous coefficients g8i2) holds, themmax, g u(z) =
maX,eg0 ().

Theorem 3.3.2Letu € C(Q2) N C%(Q) satisfyPu = 0 where
Pu= — Z a;10;0ku + Z bjoju + cu (3.4)
G k=1 j=1
is an elliptic operator with continuous coefficients af82) holds andc > 0 every-
where, themax, g u(z) < maxgego v’ (z) whereu™ = max{u, 0} is the positive part
of the function.



Corollary 3.3.3 In the situation of theorem 3.318ax . |u(2)| = max,epn |u(z)|.

Theorem 3.3.4Letu € C(Q) N C?(Q) satisfyPu = f with Dirichlet datau|sq = 0,
where

Pu= — Z ajkﬁj(?ku + Z bj(?ju + cu (35)
j=1

j,k=1

is an elliptic operator with continuous coefficients &(3d2) holds and

c(x) > >0 (3.6)

everywhere, for some constapt> 0, andf € C(Q2), thenmax, g u(z) < max,q f(z)/co.
If Pu; = f; are two such solutions thenax |u; — us| < max|f1 — f2|/co (Stability or
well-posedness in uniform norm).

3.4 Stability in Sobolev spaces

In this section we consider results analogous to those in theorem 3.3.4 but/iising
based norms. We considerin a special form to facilitate integration by parts.

Theorem 3.4.1Leta;, = ai; € C®([—nm,7]") andc € C®(|—m,n]") be smooth
periodic coefficents for the elliptic operator

Puy= — Z 0;(ajk0ku) + cu

jk

and assumé¢3.2) and (3.6) hold for some poitive constants, M, co. AssumePu = f
with f € L*([—, 7|"), then there exists a numbérsuch that then

lullan < LI f(2) ] 2
If Pu; = f; are two such solutions then
lur =zl < LI fr = fo

(stability or well-posedness if'!).

3.5 Existence of solutions

Definition 3.5.1 A weak solution ofPu = f € L*([—=,«|"), with P as in theorem
3.4.1,is a functiont € H! ([—=,n]™) with the property that

per

/ Z ajk Ojudkv + cuv dx = / fudr
ik

forall v € H), ([—m, x]").



Theorem 3.5.2 Let P be as in theorem 3.4.1 and assume {{3a2)and(3.6)exist. Then
givenf € L?([—m, w|") there exists a unique weak solutionf, = f in the sense of
definition(3.5.1)

This definition has various generalizations: to obtain the correct definition of weak so-
lution for a given elliptic boundary value problem the general idea is to start with a
classical solution and multiply by a test function and integrate by parts using the bound-
ary conditions in their classical format. This will lead to a weak formulation of both
the ec?uatlon and the boundary conditions. For example the weak formulation of the
Dirichlet problem

PU:f, U\BQZOa
where

Pu= — > 0;(ajdhu) + > bjdju+cu (3.7)
j=1

G k=1
for continuous functions;;, = ay;, b; ande, is to find a function: € H;j(2) such that
B(u,v) = L(v), Yove€ Hy(Q),
whereL(v) = [ fvdz (a bounded linear map/functional), aids the bilinear form:
B(u,v) = / (Z ajr, Ojudyv + Z b;0juv + cuv) da .
ik
By the Lax-Milgram lemma we have

Theorem 3.5.3In the situation just described assur(®2) and (3.6) hold. Then if
1bj]| L= = sup, |b;(z)] is sufficiently small (for alj) there exists a unique weak solution.

This solution has various regularity properties, the simplest of which is that if in addition
a;r, € C1(Q2) then in any ball such thas, (y) C Q2 there holds for some constafit> 0:

ull g2, ) < CUflez + ull2@) » (interior H? regularity),

and if in addition all the coefficients are smooth then we have, for arbitraryN and
someC; > 0:

2B () < Cs(|| f]

~ Togetregularity up to the boundary it is necessary to assume that the boundary itself
is smooth: in this case the interior regularity estimate can be improved to

|| ul o) + [[ullz2)) (higher interior regularity)

HUHHQ(Q) < C/(HfHLQ(Q) + HUHLQ(Q)) , (boundaryH2 regularity),
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1. Recall that ifu € C*(R?) andAu > 0 thenw is called subharmonic. State and
prove a mean value property for subharmonic functions. Also state the analogous
result for superharmonic functions, i.e. th@s&functions which satisfyA\u < 0.

2. Letg € C'(R") be absolutely integrable witfi ¢(z)dz = 1. Assumef € C(R")
is bounded withsup | f(z)| < M < oco. Defineg.(z) = e "¢(x/¢) and show

64 1) = £@) = [ (7la = cw) = f@)o(w)du
(where the integrals are over). Now deduce thapproximation lemma

¢ f(x) — f(r) ase—0

and uniformly if f is uniformly continuous. (Hint: split up the integral into
an integral over the baBr = {w : |w| < R} and its complemenB¢, for large
R).*Prove thatiff € LP(R"),1 < p < oo thenlim,_¢ ||¢c * f(x) — f(x)||z» = 0.

3. Starting with the mean value property for harmanie C?(R?) deduce that ify €
Cs°(R?) has total integral ¢(x)dz = 1 and is radialy(x) = ¥(|z]) , ¢ € C§°(R)
thenu = ¢. * u where¢.(z) = ¢ 3¢(x/e). Deduce that harmonic functions

u € C%*(R?) are in factC*. Also foru € C*(2) harmonic in an open sét € R?
deduce that, is smooth in the interior of? (interior regularity).

4. If u;, uy are twoC? harmonic functions ilBBz = {w : |w| < R} which agree on
the boundary) B = {w : |w| = R} show thatu; = u, thoroughout ouBp.

5. (i) Using the Green identities show thatfif, f, both lie inS(R™) then the corre-
sponding Schwartzian solutions, u, of the equation-Au + u = f, i.e.

(A +Duy = f (A +1Duz = fo
satisfy

(+) (/Ww—wﬁ+mrwﬁ§c/m—hf

where the integrals are ove. (This is interpreted as implying the equation
—Au +u = f is well-posed in theZ! norm (or “energy” norm) defined by the
left hand side of (*).) Now try to improve the result so that #é norm:

Julfye = 3 [ 0P

lor| <2

appears on the left. (The sum is over all multi-indices of order less than or equal
to 2).

(if) Prove a maximum principle bound farin terms off and deduce thatipg. |u; —

U] < supgs | f1 — fal-



6. Prove a maximum principle for solutions efAu + V' (z)u = 0 (on a bounded
domain{) with smooth boundary() with V' > 0: if ©|0Q2 = 0 thenu < 0in Q.

(Assumeu € C%(Q) N C(2). Hint: exclude the possibility of. having a strictly
positive interior maximum).

What does the maximum principle reduce to for one dimensional harmonic func-
tions i.e.C? functions such that,, = 0?

7. Write down the definition of a weak'! solution for the equation-Au + u +
V(z)u = f € L*(R®) on the domairk3. Assuming that/ is real valued, con-
tinuous, bounded ant(z) > 0 for all « prove the existence and uniqueness of
a \1ve_ak solution. Formulate and prove well posedness (stability}irior this
solution.

How about the case th&t is pure imaginary valued?

8. The Dirichlet problem in half-space:
Let H = {(z,y) : * € R",y > 0} be the half-space ik"™'. Consider the
problemA,u + dju = 0, whereA, is the Laplacian in the: variables only)

andu(z,0) = f(x) with f a bounded and uniformly continuous function ®h
Define

u(x,y) = P, f(z) = / P,(z — 2)f(2)dz

R™

whereP,(z) = W for z € R™ andy > 0. (This is the Poisson kernel
wn(|z|*+y 2

for half-space.) Show that for an appropriate choicevpfu is harmonic on the

half-spacef{ and is equal tg for y = 0.

(Hint: first differentiate carefully under the integral sign; then note fat:) =

y‘"Pl(i) whereP; (z) = # i.e. an approximation to the identity) and
wn (1+|xz|¢) 2

use the approximation lemma to obtain the boundary data).

(if) Assume instead thagt € S(R™). Take the Fourier transform in thevariables

to prove the same result.

9. Formulate and prove a maximum principle for a 2nd order elliptic equ&tios
f in the case of periodic boundary conditions. Take = — % | ajdu +
2?21 b;0;u + cu with a;;, = ai;,b;,c and f all continuous an®r - periodic
in each variable and assumeis a C? function with same periodicity. Assume

uniform ellipticity (3.2) ande(x) > ¢o > 0 for all z. Formulate and prove well-
posedness foPu = f in the uniform norm.

10. Formulate a notion of wealt* solution for the Sturm-Liouville problen?u = f

on the unit intervall0, 1] with inhomogeneous Neumann data: assufie =
—(pu') + qu with p € C*([0,1]) andq € C(|0, 1]) and assume there exist con-
stantsm, ¢y such thatp > m > 0 andg > ¢, > 0 everywhere, and consider
boundary conditions’(0) = « andu/(1) = (5. (Hint : start with a classical solu-
tion, multiply by a test functionm € C*(]0, 1]) and integrate by parts). Prove the
existence and uniqueness of a we#ksolution for givenf ¢ L2.



