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2.7 Sobolev spaces
We define the Sobolev spaces fors = 0, 1, 2, . . . on various domains:
On Rn we have the following equivalent definitions:

Hs(Rn) = {u ∈ L2(Rn) : ‖u‖2
Hs =

∑
α:|α|≤s

‖∂αu‖2
L2 <∞}

= {u ∈ L2(Rn) :

∫
Rn

(1 + ‖ξ‖2)s|û(ξ)|2 dξ <∞}

= C∞
0 (Rn)

‖·‖Hs

.

In the first line the partial derivatives are taken in the distributional sense: the precise
meaning is that alldistributional (=weak)partial derivatives up to orders of the distri-
butionTu determined byu are distributions which are determined by square integrable
funtions which are designated∂αu (i.e. ∂αTu = T∂αu with ∂αu ∈ L2 in the nota-
tion introduced previously). The final line means thatHs is the closure of the space of
smooth compactly supported functionsC∞

0 (Rn) in the Sobolev norm‖ · ‖Hs . The quan-
tity ‖̃u‖̃2

Hs =
∫

Rn (1+‖ξ‖2)s|û(ξ)|2 dξ appearing in the middle definition defines a norm
which is equivalent to the norm‖u‖Hs appearing in the first definition. (Recall that‖ · ‖
and ‖̃ · ‖̃ are equivalent if there exist positive numbersC1, C2 such that‖u‖ ≤ C1‖̃u‖
and ‖̃u‖̃ ≤ C2‖u‖ for all vectorsu; equivalent norms give rise to identical notions of
convergence (i.e. they define the same topologies).
On (R/(2πZ))n : In the2π-periodic case the following definitions are equivalent:

Hs
per([−π, π]n) = {u ∈ L2([−π, π]n) : ‖u‖2

Hs =
∑

α:|α|≤s

‖∂αu‖2
L2 <∞}

= {
∑

m∈Zn

û(m)eim·x :
∑

m∈Zn

(1 + ‖m‖2)s|û(m)|2 <∞}

= C∞
per([−π, π]n)

‖·‖Hs

.

Again the quantity apearing in the middle line defines an equivalent norm which can be
used when it is more convenient. Since we are considering only the cases = 0, 1, 2, . . .
the Fourier series

∑
m∈Zn û(m)eim·x always defines a square integrable function, and as

s increases the function so defined is more and more regular (exercise).



These definitions require some modifications for the case of general domainsΩ,
starting with the notion of the weak partial derivative (since we did not define distribu-
tions inΩ).

Definition 2.7.1 A locally integrable functionu defined on an open setΩ admits a weak
partial derivative corresponding to the multi-indexα if there exists a locally integrable
function, designated∂αu, with the property that∫

Ω

u ∂αχdx = (−1)|α|
∫

Ω

∂αuχ dx ,

for everyχ ∈ C∞
0 (Ω).

Then employing this notion of partial derivative we define (fors = 0, 1, 2, . . . ):

Hs(Ω) = {u ∈ L2(Ω) : ‖u‖2
Hs =

∑
α:|α|≤s

‖∂αu‖2
L2 <∞}

(with allL2 norms being defined by integration overΩ). This space is to be distinguished
from the corresponding closure of the space of smooth functions supported in a compact
subset ofΩ:

Hs
0(Ω) = C∞

0 (Ω)
‖·‖Hs

.

Since these functions are limits of functions which vanish in a neighbourhood ofΩ they
are to be thought of as vanishing in some generalized sense on∂Ω (at least in the case
s = 1, 2, . . . and if Ω has a smooth boundary∂Ω.) The cases = 1 gives the space
H1

0 (Ω) which is the natural Hilbert space to use in order to give a weak formulation of
the Dirichlet problem for the elliptic equationPu = f onΩ.

3 Elliptic equations

3.1 Notation
Let BR = {w : |w| < R} andBR = {w : |w| ≤ R} be the open and closed balls
of radiusR and more generally letBR(x) = {w : |w − x| < R} andBR(x) = {w :
|w − x| ≤ R}. We write∂BR, ∂BR(x) for the corresponding spheres, i.e.∂BR(x) =
{w : |w−x| = R} etc. In the followingΩ ⊂ Rn is always open unless otherwise stated,
Ω is its closure and∂Ω is its boundary (always assumed smooth).

3.2 Harmonic functions
Definition 3.2.1 A functionu ∈ C2(Ω) which satisfies∆u(x) = 0 (resp. ∆u(x) ≥ 0,
resp.∆u(x) ≤ 0) for all x ∈ Ω, for an open setΩ ⊂ Rn, is said to be harmonic (resp.
subharmonic, resp. superharmonic) inΩ.

Theorem 3.2.2 Let u be harmonic inΩ ⊂ Rn and assumeBR(x) ⊂ Ω. Then for
0 < r ≤ R:

u(x) =
1

|∂Br|

∫
∂Br(x)

u(y) dy , (mean value property). (3.1)

2



Proof This is a consequence of the Green identity∫
ρ<|w−x|<r

(v∆u−u∆v) dx =

∫
|w−x|=r

(v∂νu−u∂νv) dΣ−
∫
|w−x|=ρ

(v∂νu−u∂νv) dΣ ,

(where∂ν = n · ∇ just means the normal derivative on the boundary) with the choice of
v(w) = N(w − x), whereN is the fundamental solution for∆:

N(x) =
|x|2−n

(2− n)ωn

, (n > 2)

=
1

2π
ln |x| , (n = 2) .

Hereωn =
∫
|x|=1

dΣ(x) = 2π
n
2 /Γ(n/2) is the area of the unit sphere inRn. Thus on

∂Br(x) we havev = r2−n/(2 − n)ωn, n > 2 or v = (ln r)/(2π), n = 2. Substituting
these and the corresponding ones for normal derivatives,∂νv = r1−n/ωn on ∂Br(x),
and taking the limitρ→ 0 gives the result.

Corollary 3.2.3 If u is aC2 harmonic function in an open setΩ thenu ∈ C∞(Ω). In
fact if u is anyC2 function inΩ for which the mean value property(3.1)holds whenever
Br(x) ⊂ Ω thenu is a smooth harmonic function.

Corollary 3.2.4 Let Ω ⊂ Rn be a connected open set andu ∈ C(Ω) harmonic inΩ
with M = supx∈Ω u(x) < ∞. Then eitheru(x) < M for all x ∈ Ω or u(x) = M for
all x ∈ Ω. (In words, a harmonic function cannot have an interior maximum unless it is
constant on connected components).

Corollary 3.2.5 LetΩ ⊂ Rn be open with bounded closureΩ, and letuj ∈ C(Ω) , j =
1, 2 be two harmonic functions inΩ with boundary valuesuj|∂Ω = fj. Then

sup
x∈Ω

|u1(x)− u2(x)| ≤ sup
x∈∂Ω

|f1(x)− f2(x)| , (stability or well-posedness).

In particular if f1 = f2 thenu1 = u2.

Corollary 3.2.6 A harmonic functionu ∈ C2(Rn) which is bounded is constant.

Another consequence of the Green identity is the following. LetN(x, y) = N(|x−
y|) whereN is the fundamental solution defined above.

Theorem 3.2.7 Letu be harmonic inΩ with Ω bounded andu ∈ C1(Ω). Then

u(x) =

∫
|y|=r

[
u(y)∂νyN(x, y)−N(x, y)∂νyu(y)

]
dΣ(y) ,

where∂νy = n · ∇y just means the normal derivative iny, while∂ν is the normal inx.
In fact the same formula holds withN(x, y) replaced by any functionG(x, y) such that
G(x, y)−N(x, y) is harmonic iny ∈ Ω andC1 for y ∈ Ω for eachx ∈ Ω.
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It is known from above thatu is determined by its boundary values - to determine a
harmonic functionu from u|∂Ω is theDirichlet problem. (The corresponding problem
of determiningu from its normal derivative∂νu|∂Ω is called theNeumann problem. To
get a formula for (or understand) the solution of these problems it is sufficient to get a
formula for (or understand) the correponding Green function:

Definition 3.2.8 (i) A functionGD = GD(x, y) defined onGD : Ω×Ω−{x = y} → R
such that (a)GD(x, y)−N(|x− y|) is harmonic iny ∈ Ω and continuous fory ∈ Ω for
eachx, and (b)GD(x, y) = 0 for y ∈ ∂Ω, is a Dirichlet Green function.

(ii) A functionGN = GN(x, y) defined onGN : Ω× Ω − {x = y} → R such that
(a)GN(x, y)−N(|x− y|) is harmonic iny ∈ Ω and continuous fory ∈ Ω for eachx,
and (b)∂νyGN(x, y) = 0 for y ∈ ∂Ω, is a Neumann Green function.

Given such functions we obtain representation formulas:

∆u = 0 , u|∂Ω = f =⇒ u(x) =

∫
|y|=r

f(y)∂νyGD(x, y) dΣ(y) ,

and

∆u = 0 , ∂νu|∂Ω = g =⇒ u(x) = −
∫
|y|=r

g(y)GN(x, y) dΣ(y) ,

for f, g ∈ C(∂Ω).

3.3 The maximum principle

We consider variable coefficient elliptic operators. Throughout this sectionajk(x) =
akj(x) is continuous and satisfies

m‖ξ‖2 ≤
n∑

j,k=1

ajkξjξk ≤M‖ξ‖2 (3.2)

for some positive constantsm,M and allξ ∈ Rn.

Theorem 3.3.1 Letu ∈ C(Ω) ∩ C2(Ω) satisfyPu = 0 where

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑

j=1

bj∂ju (3.3)

is an elliptic operator with continuous coefficients and(3.2)holds, thenmaxx∈Ω u(x) =
maxx∈∂Ω u(x).

Theorem 3.3.2 Letu ∈ C(Ω) ∩ C2(Ω) satisfyPu = 0 where

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑

j=1

bj∂ju+ cu (3.4)

is an elliptic operator with continuous coefficients and(3.2) holds andc ≥ 0 every-
where, thenmaxx∈Ω u(x) ≤ maxx∈∂Ω u

+(x) whereu+ = max{u, 0} is the positive part
of the functionu.
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Corollary 3.3.3 In the situation of theorem 3.3.2maxx∈Ω |u(x)| = maxx∈∂Ω |u(x)|.

Theorem 3.3.4 Let u ∈ C(Ω) ∩ C2(Ω) satisfyPu = f with Dirichlet datau|∂Ω = 0,
where

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑

j=1

bj∂ju+ cu (3.5)

is an elliptic operator with continuous coefficients and(3.2)holds and

c(x) ≥ c0 > 0 (3.6)

everywhere, for some constantc0 > 0, andf ∈ C(Ω), thenmaxx∈Ω u(x) ≤ maxx∈Ω f(x)/c0.
If Puj = fj are two such solutions thenmax |u1 − u2| ≤ max |f1 − f2|/c0 (stability or
well-posedness in uniform norm).

3.4 Stability in Sobolev spaces

In this section we consider results analogous to those in theorem 3.3.4 but usingL2

based norms. We considerP in a special form to facilitate integration by parts.

Theorem 3.4.1 Let ajk = akj ∈ C∞([−π, π]n) and c ∈ C∞([−π, π]n) be smooth
periodic coefficents for the elliptic operator

Pu = −
∑
jk

∂j(ajk∂ku) + cu

and assume(3.2)and (3.6)hold for some poitive constantsm,M, c0. AssumePu = f
with f ∈ L2([−π, π]n), then there exists a numberL such that then

‖u‖H1 ≤ L‖f(x)‖L2 .

If Puj = fj are two such solutions then

‖u1 − u2‖ ≤ L‖f1 − f2‖

(stability or well-posedness inH1).

3.5 Existence of solutions
Definition 3.5.1 A weak solution ofPu = f ∈ L2([−π, π]n), with P as in theorem
3.4.1, is a functionu ∈ H1

per([−π, π]n) with the property that∫ ∑
jk

ajk ∂ju∂kv + cuv dx =

∫
fv dx

for all v ∈ H1
per([−π, π]n).
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Theorem 3.5.2 LetP be as in theorem 3.4.1 and assume that(3.2)and(3.6)exist. Then
givenf ∈ L2([−π, π]n) there exists a unique weak solution ofPu = f in the sense of
definition(3.5.1).

This definition has various generalizations: to obtain the correct definition of weak so-
lution for a given elliptic boundary value problem the general idea is to start with a
classical solution and multiply by a test function and integrate by parts using the bound-
ary conditions in their classical format. This will lead to a weak formulation of both
the equation and the boundary conditions. For example the weak formulation of the
Dirichlet problem

Pu = f , u|∂Ω = 0 ,

where

Pu = −
n∑

j,k=1

∂j(ajk∂ku) +
n∑

j=1

bj∂ju+ cu (3.7)

for continuous functionsajk = akj, bj andc, is to find a functionu ∈ H1
0 (Ω) such that

B(u, v) = L(v) , ∀v ∈ H1
0 (Ω) ,

whereL(v) =
∫
fv dx (a bounded linear map/functional), andB is the bilinear form:

B(u, v) =

∫ (∑
jk

ajk ∂ju∂kv +
∑

bj∂juv + cuv
)
dx .

By the Lax-Milgram lemma we have

Theorem 3.5.3 In the situation just described assume(3.2) and (3.6) hold. Then if
‖bj‖L∞ = supx |bj(x)| is sufficiently small (for allj) there exists a unique weak solution.

This solution has various regularity properties, the simplest of which is that if in addition
ajk ∈ C1(Ω) then in any ball such thatBr(y) ⊂ Ω there holds for some constantC > 0:

‖u‖H2(Br(y)) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)) , (interiorH2 regularity),

and if in addition all the coefficients are smooth then we have, for arbitrarys ∈ N and
someCs > 0:

‖u‖Hs+2(Br(y)) ≤ Cs(‖f‖Hs(Ω) + ‖u‖L2(Ω)) , (higher interior regularity).

To get regularity up to the boundary it is necessary to assume that the boundary itself
is smooth: in this case the interior regularity estimate can be improved to

‖u‖H2(Ω) ≤ C ′(‖f‖L2(Ω) + ‖u‖L2(Ω)) , (boundaryH2 regularity),
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4 Example sheet 3

1. Recall that ifu ∈ C2(R3) and∆u ≥ 0 thenu is called subharmonic. State and
prove a mean value property for subharmonic functions. Also state the analogous
result for superharmonic functions, i.e. thoseC2 functions which satisfy∆u ≤ 0.

2. Letφ ∈ C(Rn) be absolutely integrable with
∫
φ(x)dx = 1. Assumef ∈ C(Rn)

is bounded withsup |f(x)| ≤M <∞. Defineφε(x) = ε−nφ(x/ε) and show

φε ∗ f(x)− f(x) =

∫ (
f(x− εw)− f(x)

)
φ(w)dw

(where the integrals are overRn). Now deduce theapproximation lemma:

φε ∗ f(x) → f(x) asε→ 0

and uniformly if f is uniformly continuous. (Hint: split up thew integral into
an integral over the ballBR = {w : |w| < R} and its complementBc

R for large
R).*Prove that iff ∈ Lp(Rn), 1 ≤ p <∞ thenlimε→0 ‖φε ∗ f(x)− f(x)‖Lp = 0.

3. Starting with the mean value property for harmonicu ∈ C2(R3) deduce that ifφ ∈
C∞

0 (R3) has total integral
∫
φ(x)dx = 1 and is radialφ(x) = ψ(|x|) , ψ ∈ C∞

0 (R)
thenu = φε ∗ u whereφε(x) = ε−3φ(x/ε). Deduce that harmonic functions
u ∈ C2(R3) are in factC∞. Also for u ∈ C2(Ω) harmonic in an open setΩ ∈ R3

deduce thatu is smooth in the interior ofΩ (interior regularity).

4. If ui, u2 are twoC2 harmonic functions inBR = {w : |w| < R} which agree on
the boundary∂BR = {w : |w| = R} show thatui = u2 thoroughout outBR.

5. (i) Using the Green identities show that iff1, f2 both lie inS(Rn) then the corre-
sponding Schwartzian solutionsu1, u2 of the equation−∆u+ u = f , i.e.

(−∆ + 1)u1 = f1 (−∆ + 1)u2 = f2

satisfy

(∗)
∫
|∇(u1 − u2)|2 + |u1 − u2|2 ≤ c

∫
|f1 − f2|2

where the integrals are overRn. (This is interpreted as implying the equation
−∆u + u = f is well-posed in theH1 norm (or “energy” norm) defined by the
left hand side of (*).) Now try to improve the result so that theH2 norm:

‖u‖2
H2 ≡

∑
|α|≤2

∫
|∂αu|2dx,

appears on the left. (The sum is over all multi-indices of order less than or equal
to 2).

(ii) Prove a maximum principle bound foru in terms off and deduce thatsupRn |u1−
u2| ≤ supRn |f1 − f2|.
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6. Prove a maximum principle for solutions of−∆u + V (x)u = 0 (on a bounded
domainΩ with smooth boundary∂Ω) with V > 0: if u|∂Ω = 0 thenu ≤ 0 in Ω.
(Assumeu ∈ C2(Ω) ∩ C(Ω). Hint: exclude the possibility ofu having a strictly
positive interior maximum).

What does the maximum principle reduce to for one dimensional harmonic func-
tions i.e.C2 functions such thatuxx = 0?

7. Write down the definition of a weakH1 solution for the equation−∆u + u +
V (x)u = f ∈ L2(R3) on the domainR3. Assuming thatV is real valued, con-
tinuous, bounded andV (x) ≥ 0 for all x prove the existence and uniqueness of
a weak solution. Formulate and prove well posedness (stability) inH1 for this
solution.
How about the case thatV is pure imaginary valued?

8. The Dirichlet problem in half-space:
Let H = {(x, y) : x ∈ Rn, y > 0} be the half-space inRn+1. Consider the
problem∆xu + ∂2

yu = 0, where∆x is the Laplacian in thex variables only)
andu(x, 0) = f(x) with f a bounded and uniformly continuous function onRn.
Define

u(x, y) = Py ∗ f(x) =

∫
Rn

Py(x− z)f(z)dz

wherePy(x) = 2y

ωn(|x|2+y2)
n+1

2
for x ∈ Rn andy > 0. (This is the Poisson kernel

for half-space.) Show that for an appropriate choice ofωn u is harmonic on the
half-spaceH and is equal tof for y = 0.
(Hint: first differentiate carefully under the integral sign; then note thatPy(x) =
y−nP1(

x
y
) whereP1(x) = 2

ωn(1+|x|2)
n+1

2
, i.e. an approximation to the identity) and

use the approximation lemma to obtain the boundary data).

(ii) Assume instead thatf ∈ S(Rn). Take the Fourier transform in thex variables
to prove the same result.

9. Formulate and prove a maximum principle for a 2nd order elliptic equationPu =
f in the case of periodic boundary conditions. TakePu = −

∑n
jk=1 ajk∂

2
jku +∑n

j=1 bj∂ju + cu with ajk = akj, bj, c and f all continuous and2π - periodic
in each variable and assumeu is aC2 function with same periodicity. Assume
uniform ellipticity (3.2) andc(x) ≥ c0 > 0 for all x. Formulate and prove well-
posedness forPu = f in the uniform norm.

10. Formulate a notion of weakH1 solution for the Sturm-Liouville problemPu = f
on the unit interval[0, 1] with inhomogeneous Neumann data: assumePu =
−(pu′)′ + qu with p ∈ C1([0, 1]) andq ∈ C([0, 1]) and assume there exist con-
stantsm, c0 such thatp ≥ m > 0 andq ≥ c0 > 0 everywhere, and consider
boundary conditionsu′(0) = α andu′(1) = β. (Hint : start with a classical solu-
tion, multiply by a test functionv ∈ C1([0, 1]) and integrate by parts). Prove the
existence and uniqueness of a weakH1 solution for givenf ∈ L2.
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