Partial Differential Equations Example sheet 3

David Stuart

dmas2@cam.ac.uk

2.7 Sobolev spaces

We define the Sobolev spaces for s = 0, 1, 2, ... on various domains: On \mathbb{R}^n we have the following equivalent definitions:

$$\begin{aligned} H^{s}(\mathbb{R}^{n}) &= \{ u \in L^{2}(\mathbb{R}^{n}) : \|u\|_{H^{s}}^{2} = \sum_{\alpha:|\alpha| \leq s} \|\partial^{\alpha}u\|_{L^{2}}^{2} < \infty \} \\ &= \{ u \in L^{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} (1 + \|\xi\|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi < \infty \} \\ &= \overline{C_{0}^{\infty}(\mathbb{R}^{n})}^{\|\cdot\|_{H^{s}}} . \end{aligned}$$

In the first line the partial derivatives are taken in the distributional sense: the precise meaning is that all *distributional* (=weak) partial derivatives up to order s of the distribution T_u determined by u are distributions which are determined by square integrable functions which are designated $\partial^{\alpha} u$ (i.e. $\partial^{\alpha} T_u = T_{\partial^{\alpha} u}$ with $\partial^{\alpha} u \in L^2$ in the notation introduced previously). The final line means that H^s is the closure of the space of smooth compactly supported functions $C_0^{\infty}(\mathbb{R}^n)$ in the Sobolev norm $\|\cdot\|_{H^s}$. The quantity $\|\tilde{u}\|_{H^s}^2 = \int_{\mathbb{R}^n} (1+\|\xi\|^2)^s |\hat{u}(\xi)|^2 d\xi$ appearing in the middle definition defines a norm which is equivalent to the norm $\|u\|_{H^s}$ appearing in the first definition. (Recall that $\|\cdot\|$ and $\|\cdot\|$ are equivalent if there exist positive numbers C_1, C_2 such that $\|u\| \leq C_1 \|u\|$ and $\|\tilde{u}\| \leq C_2 \|u\|$ for all vectors u; equivalent norms give rise to identical notions of convergence (i.e. they define the same topologies).

 $On \ (\mathbb{R}/(2\pi\mathbb{Z}))^n$: In the 2π -periodic case the following definitions are equivalent:

$$\begin{aligned} H^{s}_{per}([-\pi,\pi]^{n}) &= \{ u \in L^{2}([-\pi,\pi]^{n}) : \|u\|^{2}_{H^{s}} = \sum_{\alpha:|\alpha| \le s} \|\partial^{\alpha}u\|^{2}_{L^{2}} < \infty \} \\ &= \{ \sum_{m \in \mathbb{Z}^{n}} \hat{u}(m)e^{im \cdot x} : \sum_{m \in \mathbb{Z}^{n}} (1+\|m\|^{2})^{s} |\hat{u}(m)|^{2} < \infty \} \\ &= \overline{C^{\infty}_{per}([-\pi,\pi]^{n})}^{\|\cdot\|_{H^{s}}}. \end{aligned}$$

Again the quantity apearing in the middle line defines an equivalent norm which can be used when it is more convenient. Since we are considering only the case $s = 0, 1, 2, \ldots$ the Fourier series $\sum_{m \in \mathbb{Z}^n} \hat{u}(m) e^{im \cdot x}$ always defines a square integrable function, and as s increases the function so defined is more and more regular (exercise).

These definitions require some modifications for the case of general domains Ω , starting with the notion of the weak partial derivative (since we did not define distributions in Ω).

Definition 2.7.1 A locally integrable function u defined on an open set Ω admits a weak partial derivative corresponding to the multi-index α if there exists a locally integrable function, designated $\partial^{\alpha} u$, with the property that

$$\int_{\Omega} u \,\partial^{\alpha} \chi \,dx = (-1)^{|\alpha|} \,\int_{\Omega} \,\partial^{\alpha} u \,\chi \,dx \,,$$

for every $\chi \in C_0^{\infty}(\Omega)$.

Then employing this notion of partial derivative we define (for s = 0, 1, 2, ...):

$$H^{s}(\Omega) = \{ u \in L^{2}(\Omega) : \|u\|_{H^{s}}^{2} = \sum_{\alpha: |\alpha| \le s} \|\partial^{\alpha} u\|_{L^{2}}^{2} < \infty \}$$

(with all L^2 norms being defined by integration over Ω). This space is to be distinguished from the corresponding closure of the space of smooth functions supported in a compact subset of Ω :

$$H_0^s(\Omega) = \overline{C_0^\infty(\Omega)}^{\|\cdot\|_{H^s}}$$

Since these functions are limits of functions which vanish in a neighbourhood of Ω they are to be thought of as vanishing in some generalized sense on $\partial\Omega$ (at least in the case s = 1, 2, ... and if Ω has a smooth boundary $\partial\Omega$.) The case s = 1 gives the space $H_0^1(\Omega)$ which is the natural Hilbert space to use in order to give a weak formulation of the Dirichlet problem for the elliptic equation Pu = f on Ω .

3 Elliptic equations

3.1 Notation

Let $B_R = \{w : |w| < R\}$ and $\overline{B_R} = \{w : |w| \le R\}$ be the open and closed balls of radius R and more generally let $B_R(x) = \{w : |w - x| < R\}$ and $\overline{B_R(x)} = \{w : |w - x| \le R\}$. We write $\partial B_R, \partial B_R(x)$ for the corresponding spheres, i.e. $\partial B_R(x) = \{w : |w - x| = R\}$ etc. In the following $\Omega \subset \mathbb{R}^n$ is always open unless otherwise stated, $\overline{\Omega}$ is its closure and $\partial \Omega$ is its boundary (always assumed smooth).

3.2 Harmonic functions

Definition 3.2.1 A function $u \in C^2(\Omega)$ which satisfies $\Delta u(x) = 0$ (resp. $\Delta u(x) \ge 0$, resp. $\Delta u(x) \le 0$) for all $x \in \Omega$, for an open set $\Omega \subset \mathbb{R}^n$, is said to be harmonic (resp. subharmonic, resp. superharmonic) in Ω .

Theorem 3.2.2 Let u be harmonic in $\Omega \subset \mathbb{R}^n$ and assume $\overline{B_R(x)} \subset \Omega$. Then for $0 < r \leq R$:

$$u(x) = \frac{1}{|\partial B_r|} \int_{\partial B_r(x)} u(y) \, dy \,, \qquad (\text{mean value property}) \,. \tag{3.1}$$

Proof This is a consequence of the Green identity

$$\int_{\rho < |w-x| < r} \left(v \Delta u - u \Delta v \right) dx = \int_{|w-x| = r} \left(v \partial_{\nu} u - u \partial_{\nu} v \right) d\Sigma - \int_{|w-x| = \rho} \left(v \partial_{\nu} u - u \partial_{\nu} v \right) d\Sigma ,$$

(where $\partial_{\nu} = n \cdot \nabla$ just means the normal derivative on the boundary) with the choice of v(w) = N(w - x), where N is the fundamental solution for Δ :

$$N(x) = \frac{|x|^{2-n}}{(2-n)\omega_n}, \qquad (n>2) \\ = \frac{1}{2\pi} \ln |x|, \qquad (n=2).$$

Here $\omega_n = \int_{|x|=1} d\Sigma(x) = 2\pi^{\frac{n}{2}}/\Gamma(n/2)$ is the area of the unit sphere in \mathbb{R}^n . Thus on $\partial B_r(x)$ we have $v = r^{2-n}/(2-n)\omega_n$, n > 2 or $v = (\ln r)/(2\pi)$, n = 2. Substituting these and the corresponding ones for normal derivatives, $\partial_{\nu}v = r^{1-n}/\omega_n$ on $\partial B_r(x)$, and taking the limit $\rho \to 0$ gives the result.

Corollary 3.2.3 If u is a C^2 harmonic function in an open set Ω then $u \in C^{\infty}(\Omega)$. In fact if u is any C^2 function in Ω for which the mean value property (3.1) holds whenever $\overline{B_r(x)} \subset \Omega$ then u is a smooth harmonic function.

Corollary 3.2.4 Let $\Omega \subset \mathbb{R}^n$ be a connected open set and $u \in C(\overline{\Omega})$ harmonic in Ω with $M = \sup_{x \in \overline{\Omega}} u(x) < \infty$. Then either u(x) < M for all $x \in \Omega$ or u(x) = M for all $x \in \Omega$. (In words, a harmonic function cannot have an interior maximum unless it is constant on connected components).

Corollary 3.2.5 Let $\Omega \subset \mathbb{R}^n$ be open with bounded closure $\overline{\Omega}$, and let $u_j \in C(\overline{\Omega})$, j = 1, 2 be two harmonic functions in Ω with boundary values $u_j|_{\partial\Omega} = f_j$. Then

 $\sup_{x \in \Omega} |u_1(x) - u_2(x)| \le \sup_{x \in \partial \Omega} |f_1(x) - f_2(x)|, \quad (stability or well-posedness).$

In particular if $f_1 = f_2$ then $u_1 = u_2$.

Corollary 3.2.6 A harmonic function $u \in C^2(\mathbb{R}^n)$ which is bounded is constant.

Another consequence of the Green identity is the following. Let N(x, y) = N(|x - y|) where N is the fundamental solution defined above.

Theorem 3.2.7 Let u be harmonic in Ω with $\overline{\Omega}$ bounded and $u \in C^1(\overline{\Omega})$. Then

$$u(x) = \int_{|y|=r} \left[u(y)\partial_{\nu_y} N(x,y) - N(x,y)\partial_{\nu_y} u(y) \right] d\Sigma(y)$$

where $\partial_{\nu_y} = n \cdot \nabla_y$ just means the normal derivative in y, while ∂_{ν} is the normal in x. In fact the same formula holds with N(x, y) replaced by any function G(x, y) such that G(x, y) - N(x, y) is harmonic in $y \in \Omega$ and C^1 for $y \in \overline{\Omega}$ for each $x \in \Omega$. It is known from above that u is determined by its boundary values - to determine a harmonic function u from $u|_{\partial\Omega}$ is the *Dirichlet problem*. (The corresponding problem of determining u from its normal derivative $\partial_{\nu} u|_{\partial\Omega}$ is called the *Neumann problem*. To get a formula for (or understand) the solution of these problems it is sufficient to get a formula for (or understand) the corresponding Green function:

Definition 3.2.8 (i) A function $G_D = G_D(x, y)$ defined on $G_D : \Omega \times \Omega - \{x = y\} \to \mathbb{R}$ such that (a) $G_D(x, y) - N(|x - y|)$ is harmonic in $y \in \Omega$ and continuous for $y \in \overline{\Omega}$ for each x, and (b) $G_D(x, y) = 0$ for $y \in \partial\Omega$, is a Dirichlet Green function.

(ii) A function $G_N = G_N(x, y)$ defined on $G_N : \Omega \times \overline{\Omega} - \{x = y\} \to \mathbb{R}$ such that (a) $G_N(x, y) - N(|x - y|)$ is harmonic in $y \in \Omega$ and continuous for $y \in \overline{\Omega}$ for each x, and (b) $\partial_{\nu_y} G_N(x, y) = 0$ for $y \in \partial\Omega$, is a Neumann Green function.

Given such functions we obtain representation formulas:

$$\Delta u = 0, \quad u|_{\partial\Omega} = f \implies u(x) = \int_{|y|=r} f(y) \partial_{\nu_y} G_D(x,y) \, d\Sigma(y) \, ,$$

and

$$\Delta u = 0, \quad \partial_{\nu} u|_{\partial\Omega} = g \implies u(x) = -\int_{|y|=r} g(y)G_N(x,y) \, d\Sigma(y) \,,$$

for $f, g \in C(\partial \Omega)$.

3.3 The maximum principle

We consider variable coefficient elliptic operators. Throughout this section $a_{jk}(x) = a_{kj}(x)$ is continuous and satisfies

$$m\|\xi\|^2 \le \sum_{j,k=1}^n a_{jk}\xi_j\xi_k \le M\|\xi\|^2$$
(3.2)

for some positive constants m, M and all $\xi \in \mathbb{R}^n$.

Theorem 3.3.1 Let $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfy Pu = 0 where

$$Pu = -\sum_{j,k=1}^{n} a_{jk} \partial_j \partial_k u + \sum_{j=1}^{n} b_j \partial_j u$$
(3.3)

is an elliptic operator with continuous coefficients and (3.2) holds, then $\max_{x\in\overline{\Omega}} u(x) = \max_{x\in\partial\Omega} u(x)$.

Theorem 3.3.2 Let $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfy Pu = 0 where

$$Pu = -\sum_{j,k=1}^{n} a_{jk} \partial_j \partial_k u + \sum_{j=1}^{n} b_j \partial_j u + cu$$
(3.4)

is an elliptic operator with continuous coefficients and (3.2) holds and $c \ge 0$ everywhere, then $\max_{x\in\overline{\Omega}} u(x) \le \max_{x\in\partial\Omega} u^+(x)$ where $u^+ = \max\{u, 0\}$ is the positive part of the function u.

Corollary 3.3.3 In the situation of theorem 3.3.2 $\max_{x\in\overline{\Omega}} |u(x)| = \max_{x\in\partial\Omega} |u(x)|$.

Theorem 3.3.4 Let $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfy Pu = f with Dirichlet data $u|_{\partial\Omega} = 0$, where

$$Pu = -\sum_{j,k=1}^{n} a_{jk} \partial_j \partial_k u + \sum_{j=1}^{n} b_j \partial_j u + cu$$
(3.5)

is an elliptic operator with continuous coefficients and (3.2) holds and

$$c(x) \ge c_0 > 0 \tag{3.6}$$

everywhere, for some constant $c_0 > 0$, and $f \in C(\overline{\Omega})$, then $\max_{x \in \overline{\Omega}} u(x) \leq \max_{x \in \overline{\Omega}} f(x)/c_0$. If $Pu_j = f_j$ are two such solutions then $\max |u_1 - u_2| \leq \max |f_1 - f_2|/c_0$ (stability or well-posedness in uniform norm).

3.4 Stability in Sobolev spaces

In this section we consider results analogous to those in theorem 3.3.4 but using L^2 based norms. We consider P in a special form to facilitate integration by parts.

Theorem 3.4.1 Let $a_{jk} = a_{kj} \in C^{\infty}([-\pi,\pi]^n)$ and $c \in C^{\infty}([-\pi,\pi]^n)$ be smooth periodic coefficients for the elliptic operator

$$Pu = -\sum_{jk} \partial_j (a_{jk}\partial_k u) + cu$$

and assume (3.2) and (3.6) hold for some pointive constants m, M, c_0 . Assume Pu = f with $f \in L^2([-\pi, \pi]^n)$, then there exists a number L such that then

$$||u||_{H^1} \le L ||f(x)||_{L^2}.$$

If $Pu_j = f_j$ are two such solutions then

$$||u_1 - u_2|| \le L||f_1 - f_2||$$

(stability or well-posedness in H^1).

3.5 Existence of solutions

Definition 3.5.1 A weak solution of $Pu = f \in L^2([-\pi, \pi]^n)$, with P as in theorem 3.4.1, is a function $u \in H^1_{per}([-\pi, \pi]^n)$ with the property that

$$\int \sum_{jk} a_{jk} \,\partial_j u \partial_k v + cuv \, dx = \int f v \, dx$$

for all $v \in H^1_{per}([-\pi,\pi]^n)$.

Theorem 3.5.2 Let P be as in theorem 3.4.1 and assume that (3.2) and (3.6) exist. Then given $f \in L^2([-\pi,\pi]^n)$ there exists a unique weak solution of Pu = f in the sense of definition (3.5.1).

This definition has various generalizations: to obtain the correct definition of weak solution for a given elliptic boundary value problem the general idea is to start with a classical solution and multiply by a test function and integrate by parts using the boundary conditions in their classical format. This will lead to a weak formulation of both the equation and the boundary conditions. For example the weak formulation of the Dirichlet problem

$$Pu = f, \qquad u|_{\partial\Omega} = 0,$$

where

$$Pu = -\sum_{j,k=1}^{n} \partial_j (a_{jk} \partial_k u) + \sum_{j=1}^{n} b_j \partial_j u + cu$$
(3.7)

for continuous functions $a_{jk} = a_{kj}, b_j$ and c, is to find a function $u \in H^1_0(\Omega)$ such that

$$B(u, v) = L(v), \quad \forall v \in H_0^1(\Omega),$$

where $L(v) = \int f v \, dx$ (a bounded linear map/functional), and B is the bilinear form:

$$B(u,v) = \int \left(\sum_{jk} a_{jk} \partial_j u \partial_k v + \sum b_j \partial_j u v + c u v\right) dx.$$

By the Lax-Milgram lemma we have

Theorem 3.5.3 In the situation just described assume (3.2) and (3.6) hold. Then if $||b_j||_{L^{\infty}} = \sup_x |b_j(x)|$ is sufficiently small (for all j) there exists a unique weak solution.

This solution has various regularity properties, the simplest of which is that if in addition $a_{jk} \in C^1(\Omega)$ then in any ball such that $\overline{B_r(y)} \subset \Omega$ there holds for some constant C > 0:

$$||u||_{H^2(B_r(y))} \le C(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}),$$
 (interior H^2 regularity),

and if in addition all the coefficients are smooth then we have, for arbitrary $s \in \mathbb{N}$ and some $C_s > 0$:

$$\|u\|_{H^{s+2}(B_r(y))} \le C_s(\|f\|_{H^s(\Omega)} + \|u\|_{L^2(\Omega)}), \qquad \text{(higher interior regularity)}.$$

To get regularity up to the boundary it is necessary to assume that the boundary itself is smooth: in this case the interior regularity estimate can be improved to

 $||u||_{H^2(\Omega)} \le C'(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}),$ (boundary H^2 regularity),

4 Example sheet 3

- 1. Recall that if $u \in C^2(\mathbb{R}^3)$ and $\Delta u \ge 0$ then u is called subharmonic. State and prove a mean value property for subharmonic functions. Also state the analogous result for superharmonic functions, i.e. those C^2 functions which satisfy $\Delta u \le 0$.
- 2. Let $\phi \in C(\mathbb{R}^n)$ be absolutely integrable with $\int \phi(x) dx = 1$. Assume $f \in C(\mathbb{R}^n)$ is bounded with $\sup |f(x)| \leq M < \infty$. Define $\phi_{\epsilon}(x) = \epsilon^{-n} \phi(x/\epsilon)$ and show

$$\phi_{\epsilon} * f(x) - f(x) = \int (f(x - \epsilon w) - f(x))\phi(w)dw$$

(where the integrals are over \mathbb{R}^n). Now deduce the *approximation lemma*:

$$\phi_{\epsilon} * f(x) \to f(x) \quad \text{as } \epsilon \to 0$$

and uniformly if f is uniformly continuous. (Hint: split up the w integral into an integral over the ball $B_R = \{w : |w| < R\}$ and its complement B_R^c for large R).*Prove that if $f \in L^p(\mathbb{R}^n), 1 \le p < \infty$ then $\lim_{\epsilon \to 0} \|\phi_{\epsilon} * f(x) - f(x)\|_{L^p} = 0$.

- 3. Starting with the mean value property for harmonic u ∈ C²(ℝ³) deduce that if φ ∈ C[∞]₀(ℝ³) has total integral ∫ φ(x)dx = 1 and is radial φ(x) = ψ(|x|), ψ ∈ C[∞]₀(ℝ) then u = φ_ϵ * u where φ_ϵ(x) = ϵ⁻³φ(x/ϵ). Deduce that harmonic functions u ∈ C²(ℝ³) are in fact C[∞]. Also for u ∈ C²(Ω) harmonic in an open set Ω ∈ ℝ³ deduce that u is smooth in the interior of Ω (interior regularity).
- 4. If u_i, u_2 are two C^2 harmonic functions in $B_R = \{w : |w| < R\}$ which agree on the boundary $\partial B_R = \{w : |w| = R\}$ show that $u_i = u_2$ thoroughout out B_R .
- 5. (i) Using the Green identities show that if f_1, f_2 both lie in $\mathcal{S}(\mathbb{R}^n)$ then the corresponding Schwartzian solutions u_1, u_2 of the equation $-\Delta u + u = f$, i.e.

$$(-\Delta + 1)u_1 = f_1 \qquad (-\Delta + 1)u_2 = f_2$$

satisfy

(*)
$$\int |\nabla(u_1 - u_2)|^2 + |u_1 - u_2|^2 \le c \int |f_1 - f_2|^2$$

where the integrals are over \mathbb{R}^n . (This is interpreted as implying the equation $-\Delta u + u = f$ is well-posed in the H^1 norm (or "energy" norm) defined by the left hand side of (*).) Now try to improve the result so that the H^2 norm:

$$||u||_{H^2}^2 \equiv \sum_{|\alpha| \le 2} \int |\partial^{\alpha} u|^2 dx,$$

appears on the left. (The sum is over all multi-indices of order less than or equal to 2).

(ii) Prove a maximum principle bound for u in terms of f and deduce that $\sup_{\mathbb{R}^n} |u_1 - u_2| \le \sup_{\mathbb{R}^n} |f_1 - f_2|$.

Prove a maximum principle for solutions of -Δu + V(x)u = 0 (on a bounded domain Ω with smooth boundary ∂Ω) with V > 0: if u|∂Ω = 0 then u ≤ 0 in Ω. (Assume u ∈ C²(Ω) ∩ C(Ω). Hint: exclude the possibility of u having a strictly positive interior maximum).

What does the maximum principle reduce to for one dimensional harmonic functions i.e. C^2 functions such that $u_{xx} = 0$?

7. Write down the definition of a weak H^1 solution for the equation $-\Delta u + u + V(x)u = f \in L^2(\mathbb{R}^3)$ on the domain \mathbb{R}^3 . Assuming that V is real valued, continuous, bounded and $V(x) \ge 0$ for all x prove the existence and uniqueness of a weak solution. Formulate and prove well posedness (stability) in H^1 for this solution.

How about the case that V is pure imaginary valued?

8. The Dirichlet problem in half-space:

Let $H = \{(x, y) : x \in \mathbb{R}^n, y > 0\}$ be the half-space in \mathbb{R}^{n+1} . Consider the problem $\Delta_x u + \partial_y^2 u = 0$, where Δ_x is the Laplacian in the x variables only) and u(x, 0) = f(x) with f a bounded and uniformly continuous function on \mathbb{R}^n . Define

$$u(x,y) = P_y * f(x) = \int_{\mathbb{R}^n} P_y(x-z)f(z)dz$$

where $P_y(x) = \frac{2y}{\omega_n(|x|^2+y^2)^{\frac{n+1}{2}}}$ for $x \in \mathbb{R}^n$ and y > 0. (This is the Poisson kernel for half-space.) Show that for an appropriate choice of $\omega_n u$ is harmonic on the half-space H and is equal to f for y = 0.

(Hint: first differentiate carefully under the integral sign; then note that $P_y(x) = y^{-n}P_1(\frac{x}{y})$ where $P_1(x) = \frac{2}{\omega_n(1+|x|^2)^{\frac{n+1}{2}}}$, i.e. an approximation to the identity) and use the approximation lemma to obtain the boundary data).

(ii) Assume instead that $f \in \mathcal{S}(\mathbb{R}^n)$. Take the Fourier transform in the x variables to prove the same result.

- 9. Formulate and prove a maximum principle for a 2nd order elliptic equation Pu = f in the case of periodic boundary conditions. Take $Pu = -\sum_{jk=1}^{n} a_{jk} \partial_{jk}^2 u + \sum_{j=1}^{n} b_j \partial_j u + cu$ with $a_{jk} = a_{kj}, b_j, c$ and f all continuous and 2π periodic in each variable and assume u is a C^2 function with same periodicity. Assume uniform ellipticity (3.2) and $c(x) \ge c_0 > 0$ for all x. Formulate and prove well-posedness for Pu = f in the uniform norm.
- 10. Formulate a notion of weak H^1 solution for the Sturm-Liouville problem Pu = fon the unit interval [0, 1] with inhomogeneous Neumann data: assume Pu = -(pu')' + qu with $p \in C^1([0, 1])$ and $q \in C^([0, 1])$ and assume there exist constants m, c_0 such that $p \ge m > 0$ and $q \ge c_0 > 0$ everywhere, and consider boundary conditions $u'(0) = \alpha$ and $u'(1) = \beta$. (Hint : start with a classical solution, multiply by a test function $v \in C^1([0, 1])$ and integrate by parts). Prove the existence and uniqueness of a weak H^1 solution for given $f \in L^2$.