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3 Parabolic equations

3.1 The heat equation on an interval

Next consider the heat equationx ∈ [0, 1] with Dirichlet boundary conditionsu(0, t) =
0 = u(1, t). Introduce the Sturm-Liouville operatorPf = −f ′′, with these boundary
conditions. Its eigenfunctionsφm =

√
2 sin mπx constitute an orthonormal basis for

L2([0, 1]) (with inner product(f, g) =
∫

f(x)g(x)dx, considering here real valued
functions). The eigenvalue equation isPφm = λmφm with λm = (mπ)2. In terms
of P the equation is:

ut + Pu = 0

and the solution with initial data

u(0, x) = u0(x) =
∑

(φm, u0)φm ,

is given by
u(x, t) =

∑
e−tλm(φm, u0)φm . (3.1)

(In all these expressions
∑

means
∑∞

m=1.) An appropriate Hilbert space is to solve for
u(·, t) ∈ L2([0, 1]) givenu0 ∈ L2, but the presence of the factore−tλm = e−tm2π2

means
the solution is far more regular fort > 0 than fort = 0.

3.2 The heat kernel
The heat equation isut = ∆u where∆ is the Laplacian on the spatial domain. For the
case of spatial domainRn the distribution defined by the function

K(x, t) =

{
1√

4πtn
exp[−‖x‖2

4t
] if t > 0,

0 if t ≤ 0,
(3.2)

is the fundamental solution for the heat equation (inn space dimensions). This can
be derived slightly indirectly: first using the Fourier transform (in the space variablex
only) the following formula for the solution of the initial value problem

ut = ∆u , u(x, 0) = f(x) f ∈ S(Rn) . (3.3)



Let Kt(x) = K(x, t) and let∗ indicate convolution in the space variable only, then

u(x, t) = Kt ∗ f(x) (3.4)

defines fort > 0 a solution to the heat equation and by the approximation lemma (see
question 2 sheet 3)limt→0+ u(x, t) = f(x). Once this formula has been derived for
f ∈ S(Rn) using the fourier transform it is straightforward to verify directly that it
defines a solution for a much larger class of initial data, e.g.f ∈ L∞(Rn).

Now theDuhamel principlegives the formula for the inhomogeneous equation

ut = ∆u + F , u(x, 0) = 0 (3.5)

asu(x, t) =
∫ t

0
U(x, t, s)ds whereU(x, t, s) is obtained by solving the family of homo-

geneous initial value problems:

Ut = ∆U , U(x, s, s) = F (x, s) . (3.6)

This gives the formula

u(x, t) =

∫ t

0

Kt−s ∗ F (·, s) ds =

∫ t

0

Kt−s(x− y)F (y, s) ds = K ~ F (x, t) ,

for the solution of (3.5), where~ means space time convolution.

3.3 Parabolic equations and semigroups
Lemma 3.3.1 (Semigoup property)The solution operator for the heat equation given
by (3.1) (respectively(3.4)):

S(t) : u0 7→ u(·, t)
defines a strongly continuous one parametersemigroup(of contractions) on the Hilbert
spaceL2([0, 1]) (respectivelyL2(Rn)).

Noting the following properties of the heat kernel:

• Kt(x) > 0 for all t > 0, x ∈ Rn,

•
∫

Rn Kt(x)dx = 1 for all t > 0,

• Kt(x) is smooth fort > 0, x ∈ Rn, and fort fixedKt(·) ∈ S(Rn),

the following result concerning the solutionu(·, t) = S(t)u0 = Kt ∗ u0 follows from
basic properties of integration (see appendix):

• for u0 ∈ L1(Rn) the functionu(x, t) is smooth fort > 0, x ∈ Rn and satisfies
ut −∆u = 0,

• ‖u(·, t)‖Lp ≤ ‖u0‖Lp andlimt→0+ ‖u(·, t)− u0‖Lp = 0 for 1 ≤ p < ∞,

• if a ≤ u0 ≤ b thena ≤ u(x, t) ≤ b for t > 0, x ∈ Rn.
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From these and the approximation lemma (see question 2 sheet 3) we can read off the
theorem:

Theorem 3.3.2 (i) The formulau(·, t) = S(t)u0 = Kt∗u0 defines foru0 ∈ L1 a smooth
solution of the heat equation fort > 0 which takes on the initial data in the sense that
limt→0+ ‖u(·, t)− u0‖L1 = 0.

(ii) The family{S(t)}t≥0 also defines a strongly continuous semigroup of contrac-
tions onLp(Rn) for 1 ≤ p < ∞.

(iii) If in addition u0 is continuous thenu(x, t) → u0(x) ast → 0+ and the conver-
gence is uniform ifu0 is uniformly continuous.

The final property of the kernel above implies a maximum principle for the heat
equation, as is now discussed in generality.

3.4 The maximum principle
Maximum principles for parabolic equations are similar to elliptic once the correct no-
tion of boundary is understood. IfΩ ⊂ Rn is an open bounded subset with smooth
boundary∂Ω and forT > 0 we defineΩT = Ω× (0, T ] then the parabolic boundary of
the space-time domainΩT is (by definition)

∂parΩT = ΩT − ΩT = Ω× {t = 0} ∪ ∂Ω× [0, T ] .

We consider variable coefficient parabolic operators of the form

Lu = ∂tu + Pu

where

Pu = −
n∑

j,k=1

ajk∂j∂ku +
n∑

j=1

bj∂ju + cu (3.7)

is an elliptic operator with continuous coefficients and throughout this sectionajk =
akj, bj, c are continuous and

m‖ξ‖2 ≤
n∑

j,k=1

ajkξjξk ≤ M‖ξ‖2 (3.8)

for some positive constantsm, M and allx, t andξ.

Theorem 3.4.1 Letu ∈ C(ΩT ) have derivatives up to second order inx and first order
in t which are continuous inΩT , and assumeLu = 0. Then

• if c = 0 (everywhere) thenmax
ΩT

u(x, t) = max
∂parΩT

u(x, t), and

• if c ≥ 0 (everywhere) thenmax
ΩT

u(x, t) ≤ max
∂parΩT

u+(x, t), and

max
ΩT

|u(x, t)| = max
∂parΩT

|u(x, t)| .

whereu+ = max{u, 0} is the positive part of the functionu.
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Proof We prove the first case (whenc = 0 everywhere). To prove the maximum
principle bound, consideruε(x, t) = u(x, t) − εt which verifies, forε > 0, the strict
inequalityLuε < 0 . First prove the result foruε:

max
ΩT

uε(x, t) = max
∂parΩT

uε(x, t)

Since∂parΩT ⊂ ΩT the left side is automatically≥ the right side. If the left side were
strictly greater there would be a point(x∗, t∗) with 0 < x∗ < 1 and0 < t∗ ≤ T at which
a positive value is attained:

uε(x∗, t∗) = max
(x,t)∈ΩT

uε(x, t) > 0 .

By calculus first and second order conditions:∂ju
ε = 0, uε

t ≥ 0 and∂2
iju

ε
x ≤ 0 (as a

symmetric matrix - i.e. all eigenvalues are≤ 0). These contradictLuε < 0 at the point
(x∗, t∗). Therefore

max
ΩT

uε(x, t) = max
∂parΩT

uε(x, t) .

Now let ε ↓ 0 and the result follows.

3.5 Regularity for parabolic equations
Consider the Cauchy problem for the parabolic equationLu = ∂tu + Pu = f , where

Pu = −
n∑

j,k=1

∂j(ajk∂ku) +
n∑

j=1

bj∂ju + cu (3.9)

with initial datau0. For simplicity assume that the coefficients are all smooth functions
of x, t ∈ Ω∞. The weak formulation ofLu = f is obtained by multiplying by a test
functionv = v(x) and integrating by parts, leading to (where( · ) means theL2 inner
product defined by integration overx ∈ Ω):

(ut , v ) + B(u, v) = (f, v) , (3.10)

B(u, v) =

∫ (∑
jk

ajk ∂ju∂kv +
∑

bj∂juv + cuv
)
dx .

To give a completely precise formulation it is necessary to define in which sense the time
derivativeut exists. To do this in a natural and general way requires the introduction of
Sobolev spacesHs for negatives - see§5.9 and§7.1.1-§7.1.2 in the book of Evans.
However stronger assumptions on the initial data and inhomogeneous term are made a
simpler statement is possible:

Theorem 3.5.1 For u0 ∈ H1
0 (Ω) andf ∈ L2(ΩT ) there exists

u ∈ L2([0, T ]; H2(Ω) ∩ L∞([0, T ]; H1
0 (Ω))
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with time derivativeut ∈ L2(ΩT ) which satisfies(3.10) for all v ∈ H1
0 (Ω) and almost

everyt ∈ [0, T ] and limt→0+ ‖u(t) − u0‖L2 = 0. Furthermore it is unique and has the
parabolic regularityproperty:∫ T

0

(‖u(t)‖2
H2(Ω)+‖ut‖L2(Ω) ) dt+ess sup

0≤t≤T
‖u(t)‖2

H1
0 (Ω) ≤ C(‖f‖L2(ΩT )+‖u0‖H1

0 (Ω)) .

(3.11)

(The time derivative is here to be understood in a weak/distributional sense as discussed
in the sections of Evans’ book just referenced, and the proof of the regularity (3.11) is
in §7.1.3 of the same book.)

4 Hyperbolic equations

A second order equation of the form

utt +
∑

j

αj∂t∂ju + Pu = 0

with P as in (3.7) (with coefficients potentially depending upon t and x), is strictly hy-
perbolic if the principal symbol

σ(τ, ξ; t, x) = −τ 2 − (α · ξ)τ +
∑
jk

ajkξjξk

considered as a polynomial inτ has two distinct real rootsτ = τ±(ξ; t, x) for all nonzero
ξ. We will mostly study the wave equation

utt −∆u = 0 ,

starting with some representations of the solution for the wave equation. In this section
we writeu = u(t, x), rather thanu(x, t), for functions of space and time to fit in with
the most common convention for the wave equation.

4.1 The one dimensional wave equation: general solution

The generalC2 solution ofutt − uxx = 0 is

u(t, x) = F (x− t) + G(x + t)

for arbitraryC2 functionsF, G. From this can be derived the solution at timet > 0 of
the inhomogeneous initial value problem:

utt − uxx = f (4.12)

with initial data
u(0, x) = u0(x) , ut(0, x) = u1(x) . (4.13)
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u(t, x) =
1

2

(
u0(x− t)+u0(x+ t)

)
+

1

2

∫ x+t

x−t

u1(y) dy +
1

2

∫ t

0

∫ x+t−s

x−t+s

f(s, y) dyds .

(4.14)
Notice that there is again a “Duhamel principle” for the effect of the inhomogeneous

term since
1

2

∫ t

0

∫ x+t−s

x−t+s

f(s, y) dyds =

∫ t

0

U(t, s, x)ds

whereU(t, s, x) is the solution of thehomogeneousproblem with dataU(s, s, x) = 0
and∂tU(s, s, x) = f(s, x) specified att = s.

Theorem 4.1.1 Assuming that(u0, u1) ∈ C2(R) × C1(R) and thatf ∈ C1(R × R) the
formula(4.13)defines aC2(R× R) solution of the wave equation.

4.2 The one dimensional wave equation on an interval

Next consider the problemx ∈ [0, 1] with Dirichlet boundary conditionsu(t, 0) =
0 = u(t, 1). Introduce the Sturm-Liouville operatorPf = −f ′′, with these boundary
conditions as in§3.1, its eigenfunctions beingφm =

√
2 sin mπx with eigenvaluesλm =

(mπ)2. In terms ofP the wave equation is:

utt + Pu = 0

and the solution with initial data

u(0, x) = u0(x) =
∑

û0(m)φm , ut(0, x) = u1(x) =
∑

û1(m)φm ,

is given by

u(t, x) =
∞∑

m=1

cos(t
√

λm)û0(m)φm +
sin(t

√
λm)√

λm

û1(m)φm

with an analogous formula forut. Recall the definition of the Hilbert spaceH1
0 ((0, 1)) as

the closure of the functions inC∞
0 ((0, 1))1 with respect to the norm given by‖f‖2

H1 =∫ 1

0
f 2 + f ′2 dx. In terms of the basisφm the definition is:

H1
0 ((0, 1)) = {f =

∑
f̂mφm : ‖f‖2

H1 =
∞∑

m=1

(1 + m2π2)|f̂m|2 < ∞} .

(In all these expressions
∑

means
∑∞

m=1.) As equivalent norm we can take
∑

λm|f̂m|2.
An appropriate Hilbert space for the wave equation with these boundary conditions is to
solve for(u, ut) ∈ X whereX = H1

0 ⊕ L2, and precisely we will take the following:

X = {(f, g) = (
∑

f̂mφm,
∑

ĝmφm) : ‖(f, g)‖2
X =

∑
(λm|f̂m|2 + |ĝm|2) < ∞} .

1i.e. smooth functions which are zero outside of a closed set[a, b] ⊂ (0, 1)
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Now the effect of the evolution on the coefficientsû(m, t) andût(m, t) is the map(
û(m, t)
ût(m, t)

)
7→

(
cos(t

√
λm) sin(t

√
λm)√

λm

−
√

λmsin(t
√

λm) cos(t
√

λm)

)(
û(m, 0)
ût(m, 0)

)
(4.15)

Lemma 4.2.1 The solution operator for the wave equation

S(t) :

(
u0

u1

)
7→
(

u(t, ·)
ut(t, ·)

)
defined by(4.15)defines a strongly continuousgroupof unitary operators on the Hilbert
spaceX, as in definition 5.3.1.

4.3 The wave equation onRn

To solve the wave equation onRn take the Fourier transform in the space variables to
show that the solution is given by

u(t, x) = (2π)−n

∫
expiξ·x(cos(t|ξ|)û0(ξ) +

sin(t|ξ|)
|ξ|

û1(ξ))dξ

for initial valuesu(0, x) = u0(x), ut(0, x) = u1(x) in S(Rn). The Kirchhoff formula
arises from some further manipulations with the fourier transform in the casen = 3 and
u0 = 0 and gives the following formula

u(t, x) =
1

4πt

∫
y:‖y−x‖=t

u1(y) dΣ(y) (4.16)

for the solution at timet > 0 of utt − ∆u = 0 with initial data(u, ut) = (0, u1). The
solution for the inhomogeneous initial value problem with general Schwartz initial data
u0, u1 can then be derived from the Duhamel principle, which takes the same form as in
one space dimension.

4.4 The energy identity and finite propagation speed

Lemma 4.4.1 (Energy identity) If u is aC2 solution of the wave equation show that

∂t

(u2
t + |∇u|2

2

)
+ ∂i

(
−ut∂iu

)
= 0

where∂i = ∂
∂xi .

From this and the divergence theorem it follows that

Lemma 4.4.2 (Finite speed of propagation)If u ∈ C2 solves the wave equation and
u(0, x) andut(0, x) both vanish for|x| < R thenu(t, x) vanishes for|x| < R − |t| if
|t| < R.
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5 One-parameter semigroups and groups

If A is a bounded linear operator on a Banach space its norm is

‖A‖ = sup
u∈X,u 6=0

‖Au‖
‖u‖

, (operator or uniform norm).

5.1 Definitions
Definition 5.1.1 A one-parameter family of bounded linear operators{S(t)}t≥0 on a
Banach spaceX forms a semigroup if

1. S(0) = I (the identity operator) , and

2. S(t + s) = S(t)S(s) for all t, s ≥ 0 (semi-group property).

3. It is called a uniformly continuous semigroup if in addition to (1) and (2):

lim
t→0+

‖S(t)− I‖ = 0 , (uniform continuity).

4. It is called a strongly continuous (orC0) semigroup if in addition to (1) and (2):

lim
t→0+

‖S(t)u− u‖ = 0 ,∀u ∈ X (strong pointwise continuity).

5. If ‖S(t)‖ ≤ 1 for all t ≥ 0 the semigroup{S(t)}t≥0 is called a semigroup of
contractions.

Notice that in 3 the symbol‖ · ‖ means the operator norm, while in 4 the same symbol
means the norm on vectors inX. Also observe that uniform continuity is a stronger
condition than strong continuity.

5.2 Semigroups and their generators
For ordinary differential equationṡx = Ax, whereA is ann×n matrix, the solution can
be writtenx(t) = etAx(0) and there is a1− 1 corespondence between the matrixA and
the semigroupS(t) = etA on Rn. In this subsection2 we discuss how this generalizes.

Uniformly continuous semigroups have a simple structure which generalizes the fi-
nite dimensional case in an obvious way - they arise as solution operators for differential
equations in the Banach spaceX:

du

dt
+ Au = 0 , for u(0) ∈ X given. (5.17)

Theorem 5.2.1 {S(t)}t≥0 is a uniformly continuous semgroup onX if and only if there
exists a unique bounded linear operatorA : X → X such thatS(t) = e−tA =∑∞

j=0(−tA)j/j!. This semigroup gives the solution to(5.17)in the formu(t) = S(t)u(0),
which is continuously differentiable intoX. The operatorA is called the infinitesimal
generator of the semigroup{S(t)}t≥0.

2This subsection is for background information only
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This applies to ordinary differential equations whenA is a matrix. It is not very useful
for partial differential equations because partial differential operators are unbounded,
whereas in the foregoing theorem the infinitesimal generator was necessarily bounded.
For example for the heat equation we need to takeA = −∆, the laplacian defined on
some appropriate Banach space of functions. Thus it is necessary to consider more
general semigroups, in particular the strongly continuous semigroups. An unbounded
linear operatorA is a linear map from a linear subspaceD(A) ⊂ X into X (or more
generally into another Banach spaceY ). The subspaceD(A) is called the domain ofA.
An unbounded linear operatorA : D(A) → Y is said to be

• densely definedif D(A) = X, where the overline means closure in the norm of
X, and

• closedif the graphΓA = {(u, Au)|u∈D(A)} ⊂ X × Y is closed inX × Y .

A class of unbounded linear operators suitable for understanding strongly continuous
semigroups is the class ofmaximal monotoneoperators in a Hilbert space:

Definition 5.2.2 1. A linear operatorA : D(A) → X on a Hilbert spaceX is
monotone if(u, Au) ≥ 0 for all u ∈ D(A).

2. A monotone operatorA : D(A) → X is maximal monotone if, in addition, the
range ofI + A is all of X, i.e. if:

∀f ∈ X ∃u ∈ D(A) : (I + A)u = f .

Maximal monotone operators are automatically densely defined and closed, and there is
the following generalization of theorem 5.2.1:

Theorem 5.2.3 (Hille-Yosida) If A : D(A) → X is maximal monotone then the equa-
tion

du

dt
+ Au = 0 , for u(0) ∈ D(A) ⊂ X given, (5.18)

admits a unique solutionu ∈ C([0,∞); D(A)) ∩ C1([0,∞); X) with the property that
‖u(t)‖ ≤ ‖u(0)‖ for all t ≥ 0 and u(0) ∈ D(A). SinceD(A) ⊂ X is dense the
mapD(A) 3 u(0) → u(t) ∈ X extends to a linear mapSA(t) : X → X and by
uniqueness this determines a strongly continuous semigroup of contractions{SA(t)}t≥0

on the Hilbert spaceX. OftenSA(t) is written asSA(t) = e−tA.
Conversely, given a strongly continuous semgroup{S(t)}t≥0 of contractions onX,

there exists a unique maximal monotone operatorA : D(A) → X such thatSA(t) =
S(t) for all t ≥ 0. The operatorA is the infinitesimal generator of{S(t)}t≥0 in the
sense thatd

dt
S(t)u = Au for u ∈ D(A) andt ≥ 0 (interpreting the derivative as a right

derivative att = 0).

5.3 Unitary groups and their generators
Semigroups arise in equations which are not necessarily time reversible. For equations
which are, e.g. the Schrödinger and wave equations, each time evolution operator has an
inverse and the semigroup is in fact a group. In this subsection3 we give the definitions
and state the main result.

3In this subsection you only need to know definition 5.3.1. The remainder is for background informa-
tion.
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Definition 5.3.1 A one-parameter family of unitary operators{U(t)}t∈R on a Hilbert
spaceX forms a group of unitary operators if

1. U(0) = I (the identity operator) , and

2. U(t + s) = U(t)U(s) for all t, s ∈ R (group property).

3. It is called a strongly continuous (orC0) group of unitary operators if in addition
to (1) and (2):

lim
t→0

‖U(t)u− u‖ = 0 ,∀u ∈ X (strong pointwise continuity).

A maximal monotone operatorA which is symmetric (=hermitian), i.e. such that

(Au, v) = (u, Av) for all u, v in D(A) ⊂ X (5.19)

generates a one-parametergroupof unitary operators{U(t)}t∈R, often writtenU(t) =
e−itA, by solving the equation

du

dt
+ iAu = 0 , for u(0) ∈ D(A) ⊂ X given. (5.20)

It is useful to introduce the adjoint operatorA∗ via the Riesz representation theorem:
first of all let

D(A∗) = {u ∈ X : the mapv 7→ (u, Av) extends to a bounded linear functionalX → C}

so thatD(A∗) is a linear space, and foru ∈ D(A∗) there exists a vectorwu such that
(wu, v) = (u, Av) (by Riesz representation). The mapu → wu is linear onD(A∗)
and so we can define an unbounded linear operatorA∗ : D(A∗) → X by A∗u = wu,
and since we started with a symmetric operator it is clear thatD(A) ⊂ D(A∗) and
A∗u = Au for u ∈ D(A); the operatorA∗ is thus an extension ofA.

Definition 5.3.2 If A : D(A) → X is an unbounded linear operator which is symmetric
and ifD(A∗) = D(A) thenA is said to be self-adjoint and we writeA = A∗.

Theorem 5.3.3 Maximal monotone symmetric operators are self-adjoint.

Theorem 5.3.4 (Stone theorem)If A is a self-adjoint operator the equation(5.20)has
a unique solution foru(0) ∈ D(A) which may be writtenu(t) = UA(t)u(0) with
‖u(t)‖ = ‖u(0‖ for all t ∈ R. It follows that theUA(t) extend uniquely to define
unitary operatorsX → X and that{UA(t)}t∈R constitutes a strongly continuous group
of unitary operators which are writtenUA(t) = e−itA.

Conversely, given a strongly continuous group of unitary operators{U(t)}t∈R there
exists a self-adjoint operatorA such thatU(t) = UA(t) = e−itA for all t ∈ R.
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6 Appendix: integration

The aim of this appendix4 is to give a brief review of facts from integration needed -
completeness of theLp spaces, dominated convergence and other basic theorems. We
first consider the case of functions on the unit interval[0, 1]. A main achievement of
the Lebesgue integral is to constructcompletevector spaces of functions where the
completeness is with respect to a norm defined by an integral such as theL2 norm‖ ·‖L2

defined by

‖f‖2
L2 =

∫ 1

0

|f(x)|2 dx .

This is a perfectly good norm on the space of continuous functionsC([0, 1]), but the
resulting normed vector space is not complete (and so not a Banach space) and is not
so useful as a setting for analysis. The Lebesgue framework provides a larger class of
functions which can be potentially integrated - themeasurable functions. The complete
Lebesgue spaceL2 which this construction leads to then consists of (equivalence classes
of) measurable functionsf with ‖f‖2

L2 < ∞; here it is necessary to consider equivalence
classes of functions because functions which are non-zero only on sets which are very
small (in a certain precise sense) are invisible to the integral, and so have to be factored
out of the discussion. The “very small” sets in question are called null sets and are now
defined.

6.1 Null sets and measurable functions on[0, 1]

An interval in [0, 1] is a subset of the form(a, b) or [a, b] or (a, b] or [a, b) (respectively
open,closed, half open). In all cases the length of the interval is|I| = b−a. A collection
of intervals{Iα} coversa subsetA if A ⊂ ∪αIα.

Definition 6.1.1 (Null sets) For a setA ⊂ [0, 1] we define theouter measureto be

|A|∗ = inf
{In}∞n=1 ∈C

{∑
n

|In| : A ⊂ ∪In

}
,

whereC consists of countable families of intervals in[0, 1]. A setN ⊂ [0, 1] is null if
|I|∗ = 0, i.e. if for all ε > 0 there exists{In}∞n=1 ∈ C which coversA with

∑
|In| < ε.

Definition 6.1.2 We sayf = g almost everywhere (a.e.) iff(x) = g(x) for all x /∈ N
for some null setN . We say a sequence of functionsfn converges tof a.e. iffn(x) →
f(x) for all x /∈ N for some null setN .

Equality a.e. defines an equivalence relation, and two equivalent functionsf, g are said
to be Lebesgue or measure theoretically equivalent. One way to think about measurable
functions is provided by the Lusin theorem, which says a measurable function is one
which is “almost continuous” in the sense that it agrees with a continuous function on
the complement of a set of arbitrarily small outer measure:

4This section gives a brief introduction to the results on Lebesgue integral which we make use of. You
should be able to use the results listed here but will not be examined on the proofs or on any subtleties
connected with the results.
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Definition 6.1.3 (Measurable functions)A functionf : [0, 1] → R is measurable if for
everyε > 0 there exists a continuous functionf ε : [0, 1] → R and a setF ε such that
|F ε|∗ < ε and f(x) = f ε(x) for all x /∈ F ε. We writeL([0, 1]) for the space of all
measurable functions so defined.

Theorem 6.1.4L([0, 1]) is a linear space closed under almost everywhere convergence:
given a sequencefn ∈ L([0, 1]) of measurable functions which converges to a function
f a.e. it follows thatf ∈ L([0, 1]).

Definition 6.1.3 is not the usual definition of measurability - which involves the
notion of a distinguished collection of sets, theσ-algebra of measurable sets - but is
equivalent to it by what is called theLusin theorem(see for example§2.4 and§7.2 in
the bookReal Analysisby Folland). The Lusin theorem gives a helpful way of thinking
about measurability (the Littlewood 3 principles - see§3.3 in the bookReal Analysis
by Royden and Fitzpatrick). A companion to the Lusin theorem is theEgoroff theorem
which states that given a sequencefn ∈ L([0, 1]) of measurable functions which con-
verges to a functionf a.e. then for everyε > 0 it is possible to find a setE ⊂ [0, 1] with
|E|∗ < ε such thatfn → f uniformly onEc = [0, 1] − E. Thus two of Littlewood’s
principles say that “ a measurable function is one which agrees with a continuous func-
tion except on a set which may be taken to have arbitrarily small size” and “a sequence
of measurable functions which converges almost everywhere converges uniformly on
the complement of a set which may be assumed to be arbitrarily small”.

6.2 Definition of Lp([0, 1])

Definition 6.2.1 For 1 ≤ p < ∞ defineLp([0, 1]) to be the linear space of measurable
functions on[0, 1] with the property that

‖f‖p
Lp =

∫ 1

0

|f(x)|p dx < ∞ .

For the casep = ∞: firstly, say thatf is essentially bounded above with upper (essen-
tial) boundM if f(x) ≤ M for x /∈ N for some null setN . Then let esssup f be the
infimum of all upper essential bounds. Then:

Definition 6.2.2 L∞([0, 1]) is the linear space of measurable functions on[0, 1] with
the property that

‖f‖L∞ = esssup |f | < ∞ .

The crucial fact is that considering the spaces of equivalence classes of functions
which agree almost everywhere we obtain Banach spaces , also writtenLp([0, 1]): these
“Lebesgue spaces” are vector spaces of (equivalence classes of) functions which are
complete with respect to the norm‖ · ‖Lp . (The fact that strictly speaking these the
elements of these spaces are equivalence classes of functions which agree almost every-
where is often taken as understood and not repeatedly mentioned each time the spaces
are made use of.)

The spacesLp([0, 1]) which arise in this way are special cases ofLp(M) spaces
which arise from abstract measure spacesM on which a measureµ (and aσ-algebra of
measurable sets) is given. Other examples used in this course are

• Lp([a, b]) with norm(
∫ b

a
|f(x)|p dx)

1
p , and

• Lp(Rn) with norm(
∫

Rn |f(x)|p dx)
1
p .
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6.3 Assorted theorems on integration

Theorem 6.3.1 (Holder inequality)
∫

fgdx ≤ ‖f‖Lp‖g‖Lq for any pair of functions
f ∈ Lp, g ∈ Lq (on any measure space) withp−1 + q−1 = 1 andp, q ∈ [1,∞].

Corollary 6.3.2 (Young inequality) If f ∈ Lp(Rn) andg ∈ L1(Rn) thenf∗g ∈ Lp(Rn)
and‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 for 1 ≤ p ≤ ∞.

Theorem 6.3.3 (Dominated convergence theorem)Let the sequencefn ∈ L1 con-
verge tof almost everywhere (on any measure space) and assume that there exists a
nonnegative measurable functionΦ ≥ 0 such that|fn(x)| ≤ Φ(x) almost everywhere
and

∫
Φ < ∞. Thenlimn→∞

∫
fn =

∫
f and limn→∞ ‖fn − f‖L1 = 0 .

Corollary 6.3.4 (Differentiation through the integral) Let g ∈ C1(Rn × Ω) where
Ω ⊂ Rm is open, and considerF (λ) =

∫
Rn g(x, λ)dx. Assume there exists a measurable

functionΦ(x) ≥ 0 such that

•
∫

Rn Φ(x) dx < ∞ ,

• supλ(|g(x, λ) + |∂λg(x, λ)|) ≤ Φ(x) .

ThenF ∈ C1(Ω) and∂λF =
∫

Rn ∂λg(x, λ) dx.

Corollary 6.3.5 If f is aCk(Rn) function with all partial derivatives∂αf of order|α| ≤
k bounded, andg ∈ L1(Rn) thenf ∗g ∈ Ck(Rn) and∂α(f ∗g) = (∂αf)∗g for |α| ≤ k.

Theorem 6.3.6 (Tonelli) If f ≥ 0 is a nonnegative measurable functionf : Rl×Rm →
R then∫∫

Rl×Rm

f(x, y) dxdy =

∫
Rl

∫
Rm

f(x, y) dy

 dx =

∫
Rm

∫
Rl

f(x, y) dx

 dy .

Theorem 6.3.7 (Fubini) If f is a measurable functionf : Rl × Rm → R such that∫∫
Rl×Rm

|f(x, y)| dxdy < ∞

then ∫∫
Rl×Rm

f(x, y) dxdy =

∫
Rl

∫
Rm

f(x, y) dy

 dx =

∫
Rm

∫
Rl

f(x, y) dx

 dy .

Remark 6.3.8 In these two results it is to be understood that when we write down re-
peated integrals that an implicit assertion is that the functionsy 7→

∫
f(x, y)dx and

x 7→
∫

f(x, y)dy are measurable and integrable.
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Theorem 6.3.9 (Minkowski inequality) If f is a measurable functionf : Rl×Rm → R
andg : Rm → R is measurable, then

‖
∫

Rm

f(x, y)g(y) dy‖Lp(dx) ≤
∫

Rm

‖f(x, y)‖Lp(dx)|g(y)| dy . (6.21)

where

‖f(x, y)‖p
Lp(dx) =

∫
Rl

|f(x, y)|p dx ,

with the understanding as above that this means that if the right hand side of(6.21) is
finite then the functionf(x, y)g(y) is integrable iny for almost everyx and the resulting
functionx 7→

∫
f(x, y)g(y) dy is measurable and(6.21)holds.
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7 Example sheet 4

1. (a) Use the change of variablesv(t, x) = etu(t, x) to obtain an “x-space” formula
for the solution to the initial value problem:

ut + u = ∆u u(0, · ) = u0(·) ∈ S(Rn).

Hence show that|u(t, x)| ≤ supx |u0(x)| and use this to deduce well-posedness
in the supremum norm (fort > 0 and allx).

If a ≤ u0(x) ≤ b for all x what can you say about the possible values ofu(t, x)
for t > 0.
(b) Use the Fourier transform inx to obtain a (Fourier space) formula for the
solution of:

utt − 2ut + u = ∆u u(0, · ) = u0(·) ∈ S(Rn), ut(0, ·) = u1(·) ∈ S(Rn).

2. Show that ifu ∈ C([0,∞)×Rn)∩C2((0,∞)×Rn) satisfies (i) the heat equation,
(ii) u(0, x) = 0 and (iii) |u(t, x)| ≤ M and |∇u(t, x)| ≤ N for someM, N
thenu ≡ 0. (Hint: multiply heat equation byKt0−t(x − x0) and integrate over
|x| < R, a < t < b. Apply the divergence theorem, carefully letR →∞ and then
b → t0 anda → 0 to deduceu(t0, x0) = 0.)

3. Show that ifS(t) is a strongly continuous semigroup on a Banach spaceX with
norm‖ · ‖ then

lim
t→0+

‖S(t0 + t)u− S(t0)u‖ = 0 , ∀u ∈ X and∀t0 > 0 .

4. Let Pu = −(pu′)′ + qu, with p and q smooth, be a Sturm-Liouville operator
on the unit interval[0, 1] and assume there exist constantsm, c0 such thatp ≥
m > 0 andq ≥ c0 > 0 everywhere, and consider Dirichlet boundary conditions
u(0) = 0 = u(1). Assume{φn}∞n=1 are smooth functions which constitute an
orthonormal basis forL2([0, 1]) of eigenfunctions:Pφn = λnφn. Show that there
exists a numberγ > 0 such thatλn ≥ γ for all n. Write down the solution to the
equation∂tu + Pu = 0 with initial datau0 ∈ L2([0, 1]) and show that it defines
a strongly continuous semigroup of contractions onL2([0, 1]), and describe the
large time behaviour.

5. (i) Let ∂tuj + Puj = 0 , j = 1, 2 whereP is as in (3.7) and the functionsuj have
the regularity assumed in theorem 3.4.1 and satisfy Dirichlet boundary conditions:
uj(x, t) = 0∀x ∈ ∂Ω, t ≥ 0. Assuming, in addition to (3.8), that

c ≥ c0 > 0 (7.22)

for some positive constantc0 prove that for all0 ≤ t ≤ T :

sup
x∈Ω

|u1(x, t)− u2(x, t)| ≤ e−tc0 sup
x∈Ω

|u1(x, 0)− u2(x, 0)|.
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(ii) In the situation of part (i) with

Pu = −
n∑

j,k=1

∂j(ajk∂ku) +
n∑

j=1

bj∂ju + cu , (7.23)

assuming in addition to (3.8) and (7.22) also thatajk, bj areC1 and that
n∑

j=1

∂jbj = 0 , in ΩT ,

prove that for all0 ≤ t ≤ T :∫
Ω

|u1(x, t)− u2(x, t)|2 dx ≤ e−tc0

∫
Ω

|u1(x, 0)− u2(x, 0)|2 dx.

6. (i) Let Kt be the heat kernel onRn at timet and prove directly by integration that

Kt ∗Ks = Kt+s

for t, s > 0 (semi-group property). Use the Fourier transform and convolution
theorem to give a second simpler proof.
(ii) Deduce that the solution operatorsS(t) = Kt∗ define a strongly continuous
semigroup of contractions onLp(Rn)∀p < ∞.
(iii) Show that the solution operatorS(t) : L1(Rn) → L∞(Rn) for the heat initial
value problem satisfies‖S(t)‖L1→L∞ ≤ ct−

n
2 for positive t, or more explicitly,

that the solutionu(t) = Stu(0) satisfies‖u(t)‖L∞ ≤ ct−
n
2 ‖u(0)‖L1, or:

sup
x
|u(x, t)| ≤ ct−n/2

∫
|u(x, 0)|dx

for some positive numberc, which should be found.
(iii) Now let n = 4. Deduce, by consideringv = ut, that if the inhomogeneous
termF ∈ S(R4) is a function ofx only, the solution ofut − ∆u = F with zero
initial data converges to some limit ast →∞. Try to identify the limit.

7. (i) Letu(t, x) be a twice continuously differentiable solution of the wave equation
on R × Rn for n = 3 which is radial, i.e. a function ofr = ‖x‖ andt. By letting
w = ru deduce thatu is of the form

u(t, x) =
f(r − t)

r
+

g(r + t)

r
.

(ii) Show that the solution with initial datau(0, ·) = 0 andut(0, ·) = G, whereG
is radial and even function, is given by

u(t, r) =
1

2r

∫ r+t

r−t

ρG(ρ)dρ.

(iii) Hence show that for initial datau(0, ·) ∈ C3(Rn) andut(0, ·) ∈ C2(Rn) the
solutionu = u(t, x) need only be inC2(R × Rn). Contrast this with the case of
one space dimension.
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8. Write down the solution of the Schrodinger equationut = iuxx with 2π-periodic
boundary conditions and initial datau(x, 0) = u0(x) smooth and2π-periodic in
x, and show that the solution determines a strongly continuous group of unitary
operators onL2([−π, π]). Do the same for Dirichlet boundary conditions i.e.
u(−π, t) = 0 = u(π, t) for all t ∈ R.

9. (i) Write the one dimensional wave equationutt − uxx = 0 as a first order in time
evolution equation forU = (u, ut).

(ii) Use Fourier series to write down the solution with initial datau(0, ·) = u0 and
ut(0, ·) = u1 which are smooth2π-periodic and have zero mean:ûj(0) = 0.

(iii) Show that ‖u‖Ḣ1
per

=
∑

m6=0 |m|2|û(m)|2 defines a norm on the space of
smooth2π-periodic functions with zero mean. The corresponding complete Sobolev
space is the cases = 1 of

Ḣs
per = {

∑
m6=0

û(m)eim·x : ‖u‖Ḣs
per

=
∑
m6=0

|m|2s|û(m)|2 < ∞} ,

the Hilbert space of zero mean2π-periodicHs functions.

(iv) Show that the solution defines a group of unitary operators in the Hilbert space

X = {U = (u, v) : u ∈ Ḣ1
per andv ∈ L2([−π, π])} .

(v) Explain the “unitary” part of your answer to (iv) in terms of the energy

E(t) =

∫ π

−π

(u2
t + u2

x) dx .

(vi) Show that‖U(t)‖Ḣs+1
per ⊕Ḣs

per
= ‖(u0, u1)‖Ḣs+1

per ⊕Ḣs
per

(preservation of regular-
ity).

10. (a) Deduce from the finite speed of propagation result for the wave equation
(lemma 4.4.2) that a classical solution of the initial value problem,2u = 0,
u(0, t) = f, ut(0, x) = g, with f, g ∈ D(Rn) given is unique.

(b) The Kirchhoff formula for solutions of the wave equationn = 3 for initial data
u(0, ·) = 0, ut(0, ·) = g is derived using the Fourier transform wheng ∈ S(Rn).
Show that the validity of the formula can be extended to any smooth function
g ∈ C∞(Rn).(Hint: finite speed of propagation).
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