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Abstract

For the equations of elastodynamics with polyconvex stored energy, and some
related simpler systems, we define a notion of a dissipative measure-valued solution
and show that such a solution agrees with a classical solution with the same initial
data, when such a classical solution exists. As an application of the method we give
a short proof of strong convergence in the continuum limit of a lattice approxima-
tion of one dimensional elastodynamics in the presence of a classical solution. Also,
for a system of conservation laws endowed with a positive and convex entropy, we
show that dissipative measure-valued solutions attain their initial data in a strong
sense after time averaging.

1. Introduction

In this article we consider the system of equations of elastodynamics, with a
stored energy function which satisfies the condition of polyconvexity introduced in
Ref. [4]. This system can be embedded into a symmetrizable hyperbolic system of
conservation laws which admits a convex entropy [9,8,19]. Using this embedding,
the existence of globally defined measure-valued solutions (which satisfy additional
geometric properties involving the null Lagrangians) was proved in Ref. [9], using
a method of variational approximation. The concept of a measure-valued solution
was introduced into the theory of conservation laws in Ref. [10], and then into the
theory of the incompressible Euler equations in Ref. [12], after the development
of Young measures and weak convergence methods for partial differential equa-
tions [13,20]. For several equations of mathematical physics it is currently the only
notion of solution which is sufficiently broad to allow for a global existence theory.
However, there are no corresponding uniqueness theorems; the framework of mea-
sure-valued solutions is clearly inadequate to distinguish those solutions which are
physically relevant, and has to be supplemented with further structural conditions
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on the solutions. Clearly a minimal requirement for any new concept of solution is
that it should agree with the classical solution when such exists, and more generally
that it be useful in determining properties of classical solutions which carry over to
the new class of solutions.

We consider the dissipative measure-valued solutions (see Definitions 2.1, 2.4,
3.1 and 4.1), which form a sub-class of the measure-valued solutions which satisfy
an averaged and integrated form of the entropy inequality (which allows for concen-
tration effects in the L p , p < ∞ setting). We prove that, when a classical solution
is present, the dissipative measure-valued solution and the classical solution coin-
cide. The method of proof is based on the idea of relative entropy and the format of
weak–strong uniqueness that was introduced in the context of conservation laws in
Ref. [7,11]. The measure-valued-strong uniqueness which we prove here handles
both oscillations and concentrations, and it is a further consequence of the method
of proof that when a classical solution exists, a dissipative measure-valued solu-
tion does not admit concentrations in the entropy. To carry out this generalization
one needs to account for concentrations in the approximating sequence as in Ref-
erences [1] and [12]. For present purposes, however, we do not need the general
representation of concentrations obtained in these articles, because we consider
concentration effects only for a single function—the entropy which appears in the
definition of dissipative solution. In Appendix A we provide a completely elemen-
tary derivation of the Young measure with concentration representation of the weak
limit of this function, see (A.6).

The second issue we study in Section 4 is the role of (the measure-valued form
of) the entropy inequality and the sense in which entropic measure-valued solutions
assume the initial data. Several authors have studied the problem of the initial trace
of solutions for conservation laws, starting with Ref. [10] and then References [6,22]
(using genuine nonlinearity) and Ref. [18] (exploiting the entropy inequality). We
show that when the Young measure associated to the family of initial data is a Dirac
mass, a time average of a dissipative measure-valued solution converges strongly to
the initial datum (see Theorem 4.3). This result, which extends the observations of
DiPerna in Ref. [10, section 6(e)] to an L p context where there is the possibility of
the development of concentrations which have to be eliminated, represents another
noteworthy consequence of the convexity of the entropy.

The relative entropy method used here to prove measure-valued-strong unique-
ness provides a clean and quick proof of strong convergence of approximation
schemes to conservation laws in the time regime in which the conservation laws
admit classical solutions. To explain this, recall that a conservative view of measure-
valued solutions is that they provide an efficient way of encoding some properties
of weakly convergent approximating sequences to a system of equations. Once
an approximation scheme is established which is stable, in the precise sense that
it generates a dissipative measure-valued solution, measure-valued-strong unique-
ness automatically implies strong convergence, without energy concentration, of
the approximating sequence to the classical solution. We illustrate this aspect by
considering a lattice approximation of the equations of elasticity (in one space
dimension) by a system of point masses connected by nonlinear springs, and prove
strong convergence of the spring-mass system to the equations of one-dimensional
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elastodynamics in the continuum limit (as long as the latter admits a classical
solution).

After the completion of this work we became aware of a recent article by Bre-
nier et al. [5] in which weak-strong uniqueness is proved for measure-valued
solutions of the Euler equations. Although the focus of our article is a different
system of equations, with specific intrinsic features—notably the lack of uniform
convexity and the embedding into the enlarged system (3.2)–(3.3) via the null La-
grangians—there is overlap both in terms of general ideology and more specifically
of the material in Section 2.1 on conservation laws with L∞ bounds. Nevertheless,
we retain this material for explanatory purposes.

The article is organized as follows: in Section 2 we introduce the problem and
then in Section 2.1 we perform the basic relative entropy computation at the level of
a system of conservation laws with L∞ bounds for an approximating sequence, and
deduce measure-valued-strong uniqueness (Theorem 2.2). Then, in Section 2.2 we
generalize to handle the situation in which the approximating sequence is bounded
only in L2: we study the quasi-linear wave equation with convex stored energy
satisfying quadratic growth conditions above and below, and show how to handle
the possibility of concentrations using the material in Appendix A. In Section 3 we
recall the global existence of measure-valued solutions for polyconvex elastody-
namics from Ref. [9] and show that they are dissipative (where the relevant entropy
is the energy, re-interpreted as the convex entropy for the enlarged system (3.2)-
(3.3)). We then show that the relative entropy computation can be performed for this
system and prove measure-valued-strong uniqueness (Theorem 3.3). In Section 4
we discuss general systems of conservation laws with L p bounds, first extending
measure-valued-strong uniqueness to the L p case in Theorem 4.2 and then proving
Theorem 4.3 on the strong attainment of the initial data. Finally, Section 5 is on the
lattice-continuum limit for one-dimensional elastodynamics.

As a final comment, the embedding of polyconvex elastodynamics into (3.6)-
(3.7) notwithstanding, Theorem 3.3 is not a consequence of Theorem 4.2 on general
systems of conservation laws; both the statement of the hypotheses for, and the proof
of, Theorem 3.3 make use of specific structural features of polyconvexity and the
proof requires the weak continuity of the null Lagrangians.

2. Relative Entropy for Measure-Valued Solutions

Consider the system of conservation laws,

∂tv + div x f (v) = 0, (2.1)

where v = (v1, . . . ,vn) are functions of x = (x1, . . . ,xd) ∈ R
d and t � 0. Attempts

to prove an existence theorem for 2.1 typically involve the study of a sequence of
functions vε which are solutions of an approximating problem

∂tv
ε + div x f (vε) = Pε, (2.2)
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where Pε → 0 in distributions. Uniform bounds for the sequence are typically a
consequence of an entropy inequality for the approximating problem:

∂tη(v
ε)+ div x q(vε) � Qε, (2.3)

again with Qε → 0 in distributions. Typically, (2.3) provides the available uniform
bounds, supε,t

∫
η(vε(x, t)) dx < ∞, for the sequence of approximate solutions.

In the limit such an approximation procedure typically yields a measure-valued
solution verifying a measure-valued version of the entropy inequality. One tech-
nical difficulty arising here, however, is that classical Young measures represent
weak limits of functions of growth strictly less than that of η but are insufficient to
represent the weak limit of η itself. The class of Young measures has to be adapted
to reflect the representation of the weak limits of the entropy function in the pres-
ence of concentrations. We present a self-contained development of a technical
tool designed to address this difficulty in Appendix A, see (A.6). The concentra-
tion measure developed there (see (A.6)) will be incorporated in the definition of
the class of dissipative measure-valued solutions studied in this article.

In this section we explain, in the context of two model problems, how to prove
that, in the presence of a classical solution, a dissipative measure-valued solution
with the same initial data necessarily agrees with that classical solution (measure-
valued-strong uniqueness). The presentation is split into two: in Section 2.1, in the
presence of uniform L∞ bounds, classical Young measures are used for the defi-
nition of measure-valued solutions and the basic relative entropy computation ([8,
Section 5.2]) is shown to extend to the measure-valued situation, yielding the proof
of Theorem 2.2. In Section 2.2, we take up a model problem for the equations of
elastodynamics, the quasi-linear wave equation with convex quadratic stored
energy, where the appropriate stability framework involves uniform L2 bounds.
There, the tool of a Young measure with energy concentration developed in Appen-
dix A is used to define the appropriate notion of dissipative measure-valued solution,
and this is then used to prove Theorem 2.5 on measure-valued-strong uniqueness
in the presence of energy concentration.

2.1. Conservation Laws with L∞ Bounds

Consider the system (2.1) written in coordinate form,

∂v j

∂t
+ ∂ f jα

∂xα
= 0, (2.4)

where Latin indices i, j, k . . . are used for the target and Greek indices α, β . . .
for the domain. The summation convention will be used throughout. To avoid
inessential issues, we will work in the spatially periodic case and spatial integrals
will be over the fundamental domain of periodicity Q = (R/2πZ)d . We write
QT = Q × [0, T ) for T ∈ [0,+∞) and QT = Q × [0, T ].

We assume that (2.4) is endowed with an entropy–entropy flux pair η− q, that
is, it is equipped with an additional conservation law

∂η

∂t
+ ∂qα
∂xα

= 0, (2.5)
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and that the entropy function η is convex. Then, η − q satisfy the consistency
equations

∂η

∂v j

∂ f jα

∂vi
= ∂qα
∂vi

, (2.6)

or equivalently

∂2η

∂vk∂v j

∂ f jα

∂vi
= ∂2η

∂vi∂v j

∂ f jα

∂vk
. (2.7)

All functions f, η, q are assumed C2 and we assume positivity of the Hessian matrix
∇2η (which implies strict convexity of η).

Definition 2.1. Let ν = {νx,t }{(x,t)∈QT } be a parametrized family of probability
measures that are all supported within a compact subset D ⊂ R

n , and with the
property that for all continuous f : R

n → R

〈 ν, f 〉 = 〈 νx,t , f 〉 =
∫

f (λ) dν(λ)

is a measurable function of (x, t).

(i) The pair (v, ν) is a measure-valued solution of (2.4) with initial values v0(x),
if it verifies v = ∫

λ dν(λ) ∈ L∞(dxdt) and
∫∫ [

∂ψi

∂t
vi + ∂ψi

∂xα
〈ν, fiα〉

]

dxdt +
∫
ψi (x, 0)v0,i (x)dx = 0, (2.8)

for any test functions ψ = ψ(x, t) ∈ C1
c (QT ).

(ii) It will be called an entropic measure-valued solution of (2.4) if, in addition,
for non-negative test functions, ψ ∈ C1

c

(
QT

)
with ψ � 0, there holds:

∫∫ [
∂ψ

∂t
〈ν, η〉 + ∂ψ

∂xα
〈ν, qα〉

]

dxdt +
∫
ψ(x, 0)η(v0(x))dx � 0. (2.9)

(iii) It will be called a dissipative measure-valued solution if this inequality holds
only for non-negative test functionsψ(x, t) = θ(t) depending solely on time,
that is, if

∫∫
dθ

dt
〈ν, η〉 dxdt +

∫
θ(0)η(v0(x)) dx � 0. (2.10)

for all θ ∈ C1
c

([0, T )
)

satisfying θ � 0.

We assume that there is a classical solution of (2.4) on QT , to be precise,
a function v ∈ W 1,∞(QT ) (that is, a bounded function which is differentiable
almost everywhere with bounded derivative) which verifies the strong (or classical)
versions of (2.8) and (2.10):

∫∫ [
∂ψi

∂t
vi + ∂ψi

∂xα
fiα(v)〉

]

dxdt +
∫
ψi (x, 0)v0,i (x) dx = 0, (2.11)
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and
∫∫

dθ

dt
η(v) dxdt +

∫
θ(0)η(v0(x)) dx = 0, (2.12)

for all test functions ψ, θ as above. (Note that (2.12) is now an equality). In this
circumstance we have the following:

Theorem 2.2. Let v ∈ W 1,∞(QT ) verify (2.11) and (2.12) and let (v, ν) be a dis-
sipative measure-valued solution verifying (2.8) and (2.10). Assume there exists a
compact set D ⊂ R

n in which v takes its values, and assume also that v takes its
values in D, and that ν is supported in D. Then there exists c1 > 0, c2 > 0 such
that for t ∈ [0, T ]:

∫∫
|λ− v|2 dν(λ)dx � c1

(∫
|v0 − v0|2 dx

)

ec2t , (2.13)

and, in particular, if the initial data agree, v0 = v0 then ν = δv and v = v almost
everywhere.

Proof. Introduce the relative entropy

ηrel(λ, v) := η(λ)− η(v)− ∂η

∂v j
(v)(λ j − v j ), (2.14)

the averaged quantities

h(ν, v, v) := 〈ν, η〉 − η(v)− ∂η

∂v j
(v)(v j − v j ), (2.15)

Zkα(ν, v, v) := 〈ν, fkα〉 − fkα(v)− ∂ fkα

∂v j
(v)(v j − v j ), (2.16)

and note that, since ν is a probability measure at each x, t , it is possible to write

h(ν, v, v) =
∫ (

η(λ)− η(v)− ∂η

∂v j
(v)(λ j − v j )

)
dν(λ) =

∫
ηrel(λ, v) dν(λ).

(2.17)

Next, using (2.4) and (2.7), we calculate that:

∂

∂t

(
∂η

∂v j
(v)

)

= ∂vk

∂t

∂2η

∂vk∂v j
(v) = − ∂

∂xα
fkα(v)

∂2η

∂vk∂v j
(v)

= − ∂vl

∂xα

∂ fkα

∂vl
(v)

∂2η

∂vk∂v j
(v)

= − ∂vl

∂xα

∂ fkα

∂v j
(v)

∂2η

∂vk∂vl
(v), by (2.7).
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This is a bounded function (due to the hypothesis that v is Lipschitz). Referring to
the definition of Z in (2.15) above, we deduce that

∂

∂t

(
∂η

∂v j
(v)

)

(v j − v j )+ ∂

∂xα

(
∂η

∂vk
(v)

)(
〈ν, fkα〉 − fkα(v)

)

= ∂vl

∂xα

(
∂2η

∂vk∂vl
(v)

)

Zkα. (2.18)

Note that upon using an approximation argument,ψ and θ in (2.8), (2.9), (2.10),
(2.11) and (2.12) can be taken to be Lipschitz functions that vanish for sufficiently
large times. Now choose ψ(x, t) = θ(t) ∂η

∂v j
(v(x, t)) in (2.8) and (2.11), subtract

them, and then apply (2.18) to get:

∫∫ [
dθ

dt

∂η

∂v j
(v)(v j − v j )+ θ

∂vl

∂xα

(
∂2η

∂vk∂vl
(v)

)

Zkα

]

dxdt

+
∫
θ
∂η

∂v j
(v)

∣
∣
∣
∣
t=0

[
v0, j (x)− v0, j (x)

]
dx = 0.

Next, subtract this equation from (2.10), and also subtract (2.12), leading to:

∫∫
θ̇ h dxdτ �

∫∫
θ
∂vl

∂xα

(
∂2η

∂vk∂vl
(v)

)

Zkα dxdτ (2.19)

−
∫
θ(0)

[
η(v0)− η(v0)− ∂η

∂vi
(v0)(v0 − v0)i

]
dx,

for non-negative Lipschitz test functions θ = θ(τ ). Now let θ(τ ) be the non-nega-
tive piecewise linear function given by

θ(τ ) ≡

⎧
⎪⎨

⎪⎩

1 when 0 � τ < t,

0 when τ � t + ε,
t−τ
ε

+ 1 when t � τ < t + ε.

(2.20)

With this choice of θ , (2.19) reads

−1

ε

∫ t+ε

t

∫
h dxdτ �

∫∫
θ(τ )

∂vi

∂xα

∂2η(v̄)

∂vk∂vi
Zkα dxdτ

−
∫ [

η(v0)− η(v0)− ∂η

∂vi
(v0)(v0 − v0)i

]
dx, (2.21)

which implies, in the limit ε → 0, that

∫
h dx � c

∫ t

0

∫
max
k,α

|Zkα| dx dτ +
∫ [

η(v0)− η(v0)− ∂η

∂vi
(v0)(v0 − v0)i

]
dx

(2.22)

for t ∈ (0, T ).
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Under the working assumption that η has a strictly positive second derivative,
there exists c0 = c0(D) > 0 such that

h(ν, v, v) � c0

∫
|λ− v|2dν(λ). (2.23)

Notice, also, that for some C = C(D),

|Zkα(ν, v, v)| = |〈ν, fkα(λ)− fkα(v)− ∂ fkα

∂v j
(v)(λ j − v j )〉|

� C
∫

|λ− v|2dν(λ).

(2.24)

Hence,

c0

∫
|λ− v|2 dν(λ) dx �

∫
h dx

� c
∫ t

0

∫ ∫
|λ− v|2 dν(λ) dx dτ + c′

∫
|v0 − v0|2 dx, (2.25)

where c = c(D, |v|W 1,∞) and c′ = c′(D). Therefore Gronwall’s inequality implies
the bound (2.13) and the fact that if v0 = v0, then

∫ |λ − v|2 dν(λ) dx is zero at
later times, that is, the measure-valued solution agrees with the classical solution
v almost everywhere. ��

The above calculation is a measure-valued version of the calculation in [8,
Section 5.2]. In an analogous fashion, it can be carried through for test functions
with more general x-dependence to give a measure-valued version of Equation
(5.2.6) in that reference, but we do not pursue that here.

2.2. Quasilinear Wave Equation with Convex Energy and L2 Bounds

In this section we consider the quasi-linear wave equation:

∂2 y

∂t2 = ∇ · S(∇ y), (2.26)

where y : Q × R
+ → R

3 and S is the gradient of a strictly convex function
G : Mat3×3 → [0,∞), about which we make the following hypotheses:

(a1) G ∈ C3 and m|Z |2 � D2G(F̂)[Z , Z ] � M |Z |2;
(a2) G(F) = g0(F)+ 1

2 |F |2 where lim|F |→∞ g0(F)
1+|F |2 = 0.

(a3) lim|F |→∞ |∇F G(F)|
1+|F |2 = 0

(a4) |D3G(F)| � M , for some M > 0.

(We use the summation convention for repeated indices, the norm |F |2 =
FiαFiα and, explicitly, the second derivative is given by D2G(F̂)[Z , Z̃ ] =
∂2G(F̂)
∂Fiα∂Fjβ

Ziα Z̃ jβ .) If y is interpreted as a displacement vector, this equation could be
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regarded as a model for elastodynamics, but the assumption of convexity is known
to be physically unrealistic. We consider a more realistic model in Section 3.

A classical solution of (2.26) means a C1 function whose first derivatives are
Lipschitz and verify (2.26) almost everywhere. Alternatively, introducing the nota-
tion vi = ∂t yi and Fiα = ∂yi

∂xα
, a classical solution to (2.26) in first order form

consists of a pair (v, F) of Lipschitz functions which solve

∂vi

∂t
= ∂

∂xα

(
∂G

∂Fiα

)

(2.27)

∂Fiα

∂t
= ∂vi

∂xα
. (2.28)

Such a solution will automatically satisfy the conservation law

∂tη + ∂αqα = 0, (2.29)

where η(v, F) = 1
2 |v|2 + G(F) and qα(v, F) = vi

∂G
∂Fiα

(F), and take on the initial

data v0(x) = v(0, x) and F0(x) = F(0, x) in the uniform norm.

Definition 2.3. A measure-valued solution to (2.26) with initial data (v0, F0) ∈
L2 ⊕ L2 consists of a pair (v, F) ∈ L∞(L2)⊕ L∞(L2) and a Young measure ν =
(νx,t )x,t∈QT

generated by a sequence satisfying (2.32) such that for i, α = 1, . . . 3

∫
ψ(0, x)v0

i (x) dx +
∫∫

vi∂tψ dx dt =
∫∫ 〈

ν,
∂G

∂Fiα

〉

∂αψ dx dt (2.30)
∫
ψ(0, x)F0

iα(x) dx +
∫∫

Fiα∂tψ dx dt =
∫∫

vi∂αψ dx dt, (2.31)

for all test functions ψ = ψ(t, x) ∈ C1
c (QT ).

In order to define a sense in which a measure-valued solution satisfies the
entropy condition (2.29) as an inequality, it is necessary to introduce some method
of describing concentration effects in sequences of approximate solutions. Any nat-
ural construction of a measure-valued solution to (2.27)-(2.28), for example, by the
viscosity method or by time-discretization, produces a family of functions (vε, Fε)
of uniformly bounded energy:

sup
ε

sup
t�0

∫
η(vε, Fε) dx < +∞, (2.32)

which are therefore bounded in L∞(L2)⊕ L∞(L2). Weak limits of such approx-
imate solutions must be represented somehow. For functions of (v, F) of growth
at infinity strictly less than quadratic the ordinary Young measure as developed in
Ref. [2] is sufficient, providing a weakly measurable family of probability measures
which represent weak limits of functions of (vε, Fε), which are weakly precompact
in L1. On the other hand, in order to discuss the weak limit of quadratic quantities
such as η(vε, Fε) it is necessary to describe any limiting concentration formations
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in the sequences. In Appendix A we introduce a non-negative Radon measure γ to
measure concentration effects in the energy

γ (ψ) =
∫∫

ψ(x, t)γ (dx dt)

= 1

2
lim
ε→0

∫∫
ψ

(|vε |2 − 〈νx,t , |λ|2〉 + |Fε |2 − 〈νx,t , |M |2〉) dx dt,

(2.33)

for all bounded continuous ψ vanishing for large times, see (A.4). (Here νx,t is a
probability measure on R

3 × Mat3×3, and we write (λ,M) for the coordinates on
R

3 ×Mat3×3 used in the integration with respect to the measure ν.) For the class of
nonlinear energies G under consideration, we will then have by the Young measure
representation (subsequentially):

∫∫
ψ η(vε, Fε) dx dt →

∫∫
ψ
(〈νx,t , η〉 dx dt + γ (dx dt)

)
, (2.34)

for all such ψ .
The approximate solutions (vε, Fε) are generated by families of initial data

(vε,0(x), Fε,0(x)) = (vε(0, x), Fε(0, x)), (2.35)

converging weakly in L2 to (v0(x), F0(x)). According to the results of Section A.1,
the initial data generate a Young measure μx and an energy concentration measure
ζ (dx) with the property that (along subsequences)

∫
φ(x)g(vε,0, Fε,0) dx →

∫
φ(x)〈μx , g(λ,M)〉 dx, (2.36)

for all continuous φ and subquadratic g, and
∫
φ(x)η(vε,0, Fε,0) dx →

∫
φ(x)〈μx , η(λ,M)〉 dx +

∫
φ(x)ζ (dx), (2.37)

for all continuous φ. In this situation we shall refer to Young measure initial data
(v0, F0,μ, ζ ) for brevity. The important special case that the initial data converge
strongly corresponds to ζ ≡ 0 and to the Young measure μx being a Dirac mea-
sure. In the definition of measure-valued solutions we think of fixed initial data, or
sequences of data that converge strongly, that is, μx being a Dirac measure. The
definition can easily be adjusted to accommodate more general situations.

Assume now that (vε, Fε) is a sequence bounded in L∞(L2)⊕ L∞(L2), veri-
fying (2.35)–(2.37), which generates the measure-valued solution verifying (2.30)–
(2.31), and the entropy inequality
∫
ψ(0, x)η(vε,0, Fε,0) dx +

∫∫
∂tψη(v

ε, Fε)+ ∂αψ qα(v
ε, Fε) dxdt � 0,

for ψ ∈ C1(QT ). Taking the limit ε → 0 and using (2.34), (2.37) (with μx a Dirac
measure, ζ ≡ 0) motivates the following definition of dissipative measure-valued
solution:
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Definition 2.4. Given initial data (v0, F0) ∈ L2⊕L2, a dissipative measure-valued
solution with concentration to (2.27)–(2.28) and (2.29) consists of a pair (v, F) ∈
L∞(L2)⊕ L∞(L2), a Young measure ν = (νx,t )x,t∈QT

and a non-negative Radon
measure γ ∈ M+(QT ) such that (v, F, ν) is a measure-valued solution verifying
(2.30)–(2.31), and in addition:

∫∫
dθ

dt

(〈νx,t , η〉 dx dt + γ (dx dt)
) +

∫
θ(0)η(v0, F0) dx � 0, (2.38)

for all non-negative functions θ(t) ∈ C1
c ([0, T )).

Theorem 2.5. Consider a dissipative measure-valued solution with concentration
to (2.27)–(2.28) as just defined, associated to initial data (v0, F0).

(i) If (v̂, F̂) ∈ W 1,∞(QT ) is a Lipschitz classical solution with initial data
(v̂0, F̂0), there exist c1, c2 > 0 such that for 0 � t � T :
∫

〈ν, |λ− v̂|2+|M − F̂ |2〉 dx �c1

( ∫
|v0−v̂0|2+|F0 − F̂0|2 dx

)
ec2t .

(2.39)

(ii) If, in addition, v0 = v̂0 and F0 = F̂0 almost everywhere, then (v, F) =
(v̂, F̂), and νx,t = δ

v̂(x,t),F̂(x,t) almost everywhere and the concentration
measure γ is null in QT .

Proof. Let (v, F, ν, γ ) be a dissipative measure-valued solution satisfying (2.30),
(2.31) and (2.38). We note that using an approximation argument, (2.30)–(2.31) can
be extended to hold for Lipschitz test functions ψ that vanish for large times. Here
we use the assumption that ν is generated by a sequence verifying (2.32) which
ensures that all quantities in (2.30)–(2.31) lie in L1 under the hypotheses (a1)–(a4),
and so the bounded convergence theorem applies. By contrast, (2.38) cannot be
extended to this class in the absence of further information about the concentration
measure γ .

Assume that (v̂, F̂) is a classical solution as defined above. It will satisfy (2.38)
as an equality:

∫∫
dθ

dt
〈νx,t , η̂〉 dx dt +

∫
θ(0)η̂0(x) dx = 0, (2.40)

where η̂ = η(v̂, F̂) is the energy evaluated along the solution. Now subtracting
from (2.30)–(2.31), the corresponding equations for the classical solution (v̂, F̂),
and choosing the test functions in the resulting equations to be, respectively, θ(t)v̂i ,
and θ(t) ∂G

∂Fiα
(F̂), where θ is a C1 function of time vanishing for sufficiently large

times, we obtain the following identity:
∫
θ(0) v̂i (0, x)(vi −v̂i )(0, x) dx+

∫
θ(0)

∂G

∂Fiα
(F̂iα(0, x))

(
Fiα(0, x)− F̂iα(0, x)

)
dx
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+
∫∫ [

(vi − v̂i )v̂i + (Fiα − F̂iα)
∂G

∂Fiα
(F̂)

]
∂tθ dxdt

=
∫∫

θ (∂αv̂i )

〈

νx,t ,
∂G(M)

∂Fiα
− ∂G(F̂)

∂Fiα

− ∂2G(F̂)

∂Fiα∂Fjβ
(M jβ − F̂jβ)

〉

dx dt ≡ Q. (2.41)

This calculation is very similar to, but simpler than, one given in full in the next
section, and so will not be written out.

Define the relative entropy as

ηrel(λ,M; v̂, F̂) ≡ 1

2
|λ− v̂|2 + G(M)− G(F̂)

−∂G(F̂)

∂Fiα
(Miα − F̂iα), (2.42)

and its t = 0 version as

ηrel,0 = ηrel(λ,M; v̂0, F̂0) ≡ 1

2
|λ− v̂0|2 + G(M)− G(F̂0)

−∂G(F̂)

∂Fiα

(
Miα − F̂0

iα

)
. (2.43)

Hypotheses (a1) and (a2) guarantee that ηrel (resp. ηrel,0) are bounded above and
below by multiples of |λ− v̂|2+|M − F̂ |2 (resp. |λ− v̂0|2+|M − F̂0|2). Combining
(2.38), (2.40) and (2.41), we obtain

∫∫
θ̇
(〈νx,τ , ηrel(λ,M; v̂, F̂)〉 dx dτ + γ (dx dτ)

)

+ θ(0)
∫
ηrel(v

0, F0; v̂0, F̂0) dx � −Q, (2.44)

where θ = θ(τ ) ∈ C1
c ([0, T )). We would like to choose θ as in (2.20), but this is

not C1. Therefore we choose a sequence of functions θn ∈ C1
c ([0, T )) which are

bounded (uniformly in n), non-increasing and have the property that θ̇n(τ ) → θ̇ (τ )

for τ �= t, t + ε. Since θ̇n � 0 and γ � 0, we can discard θ̇nγ in the inequality
(2.44). Referring to (2.41) and substituting in θn(τ ), we use assumption (a4) to
deduce that there exists C1 = C1(|v̂|W 1,∞ ) such that for all n

|Q| � C1

∫ t+ε

0

∫
〈 νx,t , |M − F̂ |2〉 dx dτ. (2.45)

To take the limit n → ∞, note that θ̇n are bounded and so are
∫ 〈νx,τ , ηrel(λ,M;

v̂, F̂)〉 dx (by the assumption on the generation of ν by a sequence verifying (2.32))
so that by bounded convergence the time integrals converge. We obtain

1

ε

∫ t+ε

t

∫
〈νx,τ , ηrel〉 dx dτ �

∫
ηrel(v

0, F0; v̂0, F̂0) dx

+ C1

∫ t+ε

0

∫
〈 νx,t , |M − F̂ |2〉 dx dτ.
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Assumptions (a1) and (a2) imply that 〈νx,τ , ηrel〉 � 1
C2

〈νx,τ , |λ− v̂|2 +|M − F̂ |2〉
for some C2 > 0. Consider the function Var(τ ) = ∫ 〈νx,τ , |λ− v̂|2 +|M − F̂ |2〉 dx ,
which is an averaged variance of the Young measure; it satisfies

1

εC2

∫ t+ε

t
Var(τ ) dτ �

∫
ηrel(v

0, F0; v̂0, F̂0) dx + C1

∫ t+ε

0
Var(τ ) dτ.

Using Lebesgue’s theorem, in the limit ε → 0, Var(t) satisfies

Var(t) � C2

∫
ηrel(v

0, F0; v̂0, F̂0) dx dx + C1C2

∫ t

0
Var(τ ) dτ,

for almost every t ∈ (0, T ). Therefore by Gronwall’s inequality

Var(t) � C2eC1C2t
∫
ηrel(v

0, F0; v̂0, F̂0) dx .

In particular, if the initial data (v0, F0) = (v̂0, F̂0) almost everywhere, then the
right-hand side vanishes, the Young measure has zero variance for almost every x, t ,
and νx,t = δ

v̂(x,t),F̂(x,t). Going back to (2.38) we deduce that
∫∫
θ̇γ (dx dt) � 0

for all θ ∈ C1
c ([0, T )) with θ � 0 and so the concentration measure γ � 0 is, in

fact, identically zero. ��
Remark 2.6. In writing (2.30) in Definition 2.3, assumption (a3) is used in order to
represent the weak limit of the stress. The situation should be contrasted to the Euler
equations, where the flux is of the same order as the energy and the description of
concentrations enters into the definition of measure-valued solutions, see Diperna
and Majda [12].

3. Polyconvex Elastodynamics

In this section we consider the system of elasticity

∂2 y

∂t2 = ∇ · S(∇ y), (3.1)

where y : Q × R
+ → R

3 stands for the motion, F = ∇ y, v = ∂t y, and S stands
for the Piola–Kirchoff stress tensor obtained as the gradient of a stored energy func-
tion, S = ∂W

∂F . Here we assume that W is polyconvex, that is, W (F) = G(�(F)),
where G : Mat3×3 × Mat3×3 × R → [0,∞) is a strictly convex function and
�(F) = (F, cof F, det F) ∈ Mat3×3 × Mat3×3 × R stands for the vector of null-
Lagrangians, F , the cofactor matrix cof F and the determinant det F .

We recall certain formal properties of the equations of polyconvex elasticity,
referring to References [8,9,19] for details. Smooth solutions of (3.1) satisfy the
system of conservation laws

∂vi

∂t
= ∂

∂xα

(
∂G

∂�A
(�(F))

∂�A

∂Fiα
(F)

)

(3.2)

∂�A(F)

∂t
= ∂

∂xα

(
∂�A

∂Fiα
(F)vi

)

. (3.3)
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In checking this it is necessary to make use of the fact that the null-Lagrangians
�(F) satisfy

∂

∂xα

(
∂�A

∂Fiα
(F)

)

= 0. (3.4)

Given this, (3.3) follows from the chain rule and the formulae [9, (2.12–2.2)] for
the derivatives of the null Lagrangians. In writing the above relations it is implic-
itly assumed that F is a gradient (which, if it holds initially, is a consequence of
∂t F = ∇xv, and this equation is included as the first part of (3.3) since the com-
ponents of F constitute the first nine components of �(F)). Smooth solutions of
(3.2)–(3.3) automatically satisfy the conservation of mechanical energy

∂t

(1

2
|v|2 + G(�(F))

)
− ∂α

(

vi
∂G

∂�A
(�(F))

∂�A

∂Fiα
(F)

)

= 0. (3.5)

Using these observations, the equations of polyconvex elasticity can be embed-
ded into a symmetrizable hyperbolic system that determines the evolution of an
enlarged vector� = (F, Z , w), taking values in Mat3×3 ×Mat3×3 ×R and treated
as a new dependent variable:

∂vi

∂t
= ∂

∂xα

(
∂G

∂�A
(�)

∂�A

∂Fiα
(F)

)

(3.6)

∂�A

∂t
= ∂

∂xα

(
∂�A

∂Fiα
(F)vi

)

. (3.7)

Smooth evolutions of this system preserve the constraints�A = �A(F). Moreover,
the enlarged system admits the strictly convex entropy:

η(v, F, Z , w) = 1

2
|v|2 + G(F, Z , w), (3.8)

with corresponding flux

qα = vi
∂G

∂�A
(�)

∂�A

∂Fiα
(F). (3.9)

We now discuss the various notions of solutions. A strong (or classical) solu-
tion is a W 2,∞ function which satisfies (3.1); its derivatives automatically verify
(3.2)–(3.3) and the strong form of the conservation of energy (3.5). A weak entropy
solution is a weak solution of (3.1) which verifies (3.5) as an inequality. In order to
make sense of the weak forms, the integrability of all quantities which appear has
to be guaranteed.

The notion of measure-valued solution that we use is motivated by the form
of the extended system (3.6)–(3.7) and the existence theory of measure-valued
solutions developed in Ref. [9]. A measure-valued solution will consist of a map
y : Q × R

+ → R
3, with distributional derivatives F = ∇ y ∈ L∞(L p),
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v = ∂t y ∈ L∞(L2), and a Young measure ν = (ν(x,t))(x,t)∈QT
generated by a

sequence satisfying

sup
ε,t

∫
η(vε, Fε, Z ε, wε) dx < ∞,

which represents weak limits in the following way:

wk- lim
ε→0

f (vε, Fε, Z ε, wε)=
∫

f (λv, λ�)dν(x,t)(λv, λ�)

∀ continuous f = f (λv, λ�) with lim|λv |+|λ�|→∞
f (λv, λ�)

1
2 |λv|2 + G(λ�)

= 0,

(3.10)

where λv ∈ R
3, λ� = (λF , λZ , λw) ∈ Mat3×3 × Mat3×3 × R = R

19. The Young
measure is connected with the map y through the requirements that (almost every-
where)

F = 〈ν, λF 〉, v = 〈ν, λv〉, � = 〈ν, λ�〉. (3.11)

The action of the Young measure is well defined on all functions that grow slower
than the energy norm. This is the natural framework under the existence of energy
norm bounds. With this in mind we define:

Definition 3.1. A measure-valued solution to (3.1) consists of a map y, with dis-
tributional time and space derivatives (v, F) ∈ L∞(L2) ⊕ L∞(L p) and a Young
measure ν = (νx,t )x,t∈QT

as just described, such that for i = 1, . . . ,3

∂tvi − ∂α
〈
ν,

∂G

∂�A
(λ�)

∂�A

∂Fiα
(λF )

〉 = 0 (3.12)

and for A = 1, . . . ,19

∂t�
A(F)− ∂α

(
∂�A

∂Fiα
(F)vi

)

= 0, (3.13)

in distributions with

� = �(〈ν, λF 〉) = �(F). (3.14)

The solution is said to be a dissipative measure-valued solution with concen-
tration if it is a measure-valued solution which verifies, in addition,

∫∫
dθ

dt

(
〈ν, η〉 + γ

)
dx dt +

∫
θ(0)η0(x)dx � 0, (3.15)

for all non-negative functions θ = θ(t) ∈ C1
c [0, T ) with θ � 0. Here, η0 means

the entropy η evaluated on the initial data and γ is the non-negative concentration
measure defined in Section A.2.
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The measure-valued solution satisfies the momentum Equation (3.6) in the aver-
aged (with respect to the Young measure) sense, but the constraint Equation (3.7)
in the classical weak sense. This is due to the weak continuity of the null-Lagran-
gians (see References [4], [9, lemma 3]) and the weak continuity of the trans-
port identities (3.3) which follows from the equation ∂t F = ∇v for functions
v ∈ L∞(L2), F ∈ L∞(L p) with p > 4, [9, lemmas 4 and 5].

The existence of a measure-valued solution satisfying (3.12)–(3.14) is proved
in Reference [9, Section 3] under the following hypotheses on the function G:

(H1) G ∈ C3(Mat3×3 × Mat3×3 × R; [0,∞)) is a strictly convex function satis-
fying for some γ > 0 the bound D2G � γ > 0.

(H2) G(F, Z , w) � c1(|F |p + |Z |q + |w|r + 1)− c2 where p ∈ (4,∞), q, r ∈
[2,∞).

(H3) G(F, Z , w) � c(|F |p + |Z |q + |w|r + 1)

(H4) |∂F G| p
p−1 + |∂Z G| p

p−2 + |∂wG| p
p−3 � C(|F |p + |Z |q + |w|r + 1).

The function

Ḡ = α|F |p + β|Z |q + γ |w|r + |F |2 + |Z |2 + w2 (3.16)

verifies (H1)–(H3). It will also verify (H4) under the restrictions p � 2q � 4, p �
3r � 6.

Theorem 3.2. Let G satisfy (H1) − (H4). Given initial data (v0, F0) ∈ L2 ⊕
L p, p � 4, there exists a dissipative measure-valued solution to (3.12)–(3.15) in
the sense of Definition 3.1.

Proof. The existence of a measure-valued solution is the main theorem in Refer-
ence [9]. The fact that this solution satisfies (3.15) is proved by using the Young
measure representation with concentration from Section A.2 to take the limit of
Equation (3.16) in Reference [9], using the piecewise constant interpolations vh, ξ h

defined in (4.3) in Reference [9], which generate the Young measure ν in the solu-
tion. Using these definitions Equation (3.16) in [9] implies that

∫ ∞

h

θ(t + h)− θ(t)

h

∫
η(vh, ξ h) dx dt

+ 1

h

∫ h

0
θ(t + h) dt

∫
η(vh(x, 0), ξ h(x, 0)) dx � 0

for all non-negative functions θ(t) ∈ C1
c ([0, T )). We know that θ(t+h)−θ(t)

h → θ̇ (t)
uniformly as h → 0, But since

∫
η(vh, ξ h) dx is uniformly bounded, this implies

that in this limit we can replace θ(t+h)−θ(t)
h by θ̇ (t), and then applying (A.4) we

obtain (3.15). ��
The next objective is to prove the measure-valued-strong uniqueness theorem.

In fact, the uniqueness theorem applies to a slightly more general class of nonlinear-
ities. We retain the hypotheses (H1)–(H3) on G, but replace (H4) by the (slightly)
weaker hypothesis
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(H4)′ |∂F G| + |∂Z G| p
p−1 + |∂wG| p

p−2 � o(1)(|F |p + |Z |q + |w|r + 1)
where o(1) → 0 as |�| → ∞.

A hypothesis like (H4)′ is necessary in order to represent the weak limit of the

Piola–Kirchhoff stress giα = ∂G
∂�A

(
�
)
∂�A

∂Fiα
(F). To this end, notice that

|giα|
G(�)

= 1

G(�)

∣
∣ ∂G

∂�A

(
�
) ∂�A

∂Fiα
(F)

∣
∣

� |∂F G| + |∂Z G||F | + |∂wG||F |2
|F |p + |Z |q + |w|r + 1

= o(1) as |�| → ∞. (3.17)

The last inequality follows from (H4)′ and Young’s inequality ab � 1
p a p +

1
p′ bp′

, a, b � 0, 1
p + 1

p′ = 1. By (3.17) and (3.10) the average Piola–Kirch-
hoff stress < ν, giα > is then a well defined locally integrable function which is
the weak L1 limit of giα evaluated along an approximating sequence. As an exam-
ple, notice that the function Ḡ in (3.16) will satisfy (H4)′ provided p > q � 2 and
p > 2r � 4. We prove:

Theorem 3.3. Let G satisfy (H1)− (H3), (H4)′ and let (y, ν, γ ) be a dissipative
measure-valued solution in the sense of Definition 3.1. If the initial data equal those
of a Lipschitz bounded solution (v̂, F̂) ∈ W 1,∞(QT ):

(v(x, 0),�(x, 0)) = (v̂(x, 0),�(F̂(x, 0))),

then γ is zero, (v,�) = (v̂,�(F̂)) and ν = δ
v̂,�(F̂).

Proof. The proof is based on a generalization of the relative entropy computation
to the polyconvex case. Let (y, ν) be the measure-valued solution with v, � as in
(3.11), and let v̂, �̂ := �(F̂) be the Lipschitz solution satisfying (3.2)–(3.3). As
explained in Section 2.2 we may take the test functions in (3.12) and (3.13) to be
Lipschitz functions which vanish for large time. To start with, subtract the weak
form of the equations of motion for the measure-valued and the Lipschitz solutions.
For i = 1, . . . ,3

∫
ψ(x, 0)(vi − v̂i )(x, 0) dx +

∫∫
(vi − v̂i )∂tψ dx dt (3.18)

=
∫∫ (〈

ν,
∂G

∂�A

(
λ�

)∂�A

∂Fiα
(λF )

〉

− ∂G

∂�A

(
�̂
)∂�A

∂Fiα
(F̂)

)

∂αψ dx dt

and for A = 1, . . . ,19

∫
ψ(x, 0)

(
�A(x, 0)− �̂A(x, 0)

)
dx +

∫∫
(�A − �̂A)∂tψdx dt

=
∫∫ (

∂�A

∂Fiα
(F)vi − ∂�A

∂Fiα
(F̂)v̂i

)

∂αψ dx dt,
(3.19)
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where ψ is a Lipschitz test function that vanishes for sufficiently large times.
Now choose ψ in (3.18) to be θ(t)v̂i , and in (3.19) to be θ(t) ∂G

∂�A (�(F̂)), where

θ ∈ C1
c ([0, T )). Adding the resulting equations leads to the identity:

∫
θ(0)

[
v̂i (x, 0)(vi − v̂i )(x, 0)+ ( ∂G

∂�A
(�̂A)

(
�A − �̂A))(x, 0)

]
dx

+
∫∫ [

(vi − v̂i )v̂i + (�A − �̂A)
∂G

∂�A
(�̂)

]
∂tθ dx dt

= −
∫∫ [

(vi − v̂i )∂t v̂i + (
�A − �̂A)∂t

(
∂G

∂�̂A
(�̂)

)

−∂αv̂i

〈

ν,
∂G

∂�A
(λ�)

∂�A

∂Fiα
(λF )

〉

+ ∂αv̂i
∂G

∂�A
(�̂)

∂�A

∂Fiα
(F̂)− ∂α

( ∂G

∂�A
(�̂)

)

×
(
∂�A

∂Fiα
(F)vi − ∂�A

∂Fiα
(F̂)v̂i

)]

θ dx dt.

We now calculate, using the fact that (v̂, F̂) is a classical solution of (3.6)–(3.7),
and obtain the following identities for the quantity in square brackets:

I := (∂t v̂i )(vi − v̂i )+ ∂t

( ∂G

∂�̂A
(�̂)

)(
�A − �̂A)

− ∂αv̂i

(〈
ν,

∂G

∂�A
(λ�)

∂�A

∂Fiα
(λF )

〉
− ∂G

∂�A
(�̂)

∂�A

∂Fiα
(F̂)

)

− ∂α
( ∂G

∂�A
(�̂)

)
(
∂�A

∂Fiα
(F)vi − ∂�A

∂Fiα
(F̂)v̂i

)

= −(∂αv̂i )

[〈
ν,

∂G

∂�A
(λ�)

∂�A

∂Fiα
(λF )

〉
− ∂G

∂�A
(�̂)

∂�A(F̂)

∂Fiα

− ∂2G

∂�A∂�B
(�̂))

∂�A(F̂)

∂Fiα
(�B − �̂B)

]

− ∂α
( ∂G

∂�A
(�̂)

)
(
∂�A

∂Fiα
(F) vi − ∂�A

∂Fiα
(F̂) v̂i − ∂�A

∂Fiα
(F̂) (vi − v̂i )

)

= −(∂αv̂i )
∂�A(F̂)

∂Fiα

〈

ν,
∂G

∂�A
(λ�)− ∂G

∂�A
(�̂)− ∂2G

∂�A∂�B
(�̂)

(
λ�B − �̂B

)〉

− (∂αv̂i )

〈

ν,
( ∂G

∂�A
(λ�)− ∂G

∂�A
(�̂)

)(∂�A

∂Fiα
(λF )− ∂�A

∂Fiα
(F̂)

)〉

− ∂α
( ∂G

∂�A
(�̂)

)(∂�A(F)

∂Fiα
− ∂�A(F̂)

∂Fiα

)
(vi − v̂i )
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− (∂αv̂i )
∂G

∂�A
(�̂)

〈

ν,
∂�A

∂Fiα
(λF )− ∂�A

∂Fiα
(F̂)

〉

− ∂α
(∂G(�̂))

∂�A

)
v̂i

(∂�A(F)

∂Fiα
− ∂�A(F̂)

∂Fiα

)
. (3.20)

Using the fact that < ν, ∂�
A

∂Fiα
(λF ) � ∂�A

∂Fiα
(F) and the null Lagrangian property

(3.4), we see that the last two terms can be written as a divergence, and their
contribution integrates to zero. For a test function θ ∈ C1

c ([0, T )) we obtain:

∫
θ(0)

[
v̂i (x, 0)(vi − v̂i )(x, 0)+

( ∂G

∂�A
(�̂)

(
�A − �̂A)

)
(x, 0)

]
dx

+
∫∫ [

(vi − v̂i )v̂i + (�A − �̂A)
∂G

∂�A
(�̂)

]
∂tθ dx dt =

∫∫
Qθdx dt, (3.21)

where (−Q) stands for the first three terms in (3.20),

Q = (∂αv̂i )
∂�A(F̂)

∂Fiα

〈

ν,
∂G

∂�A
(λ�)− ∂G

∂�A
(�̂)− ∂2G

∂�A∂�B
(�̂)(λ�B − �̂B)

〉

(∂αv̂i )

〈

ν,
( ∂G

∂�A
(λ�)− ∂G

∂�A
(�̂)

)(∂�A

∂Fiα
(λF )− ∂�A

∂Fiα
(F̂)

)〉

∂α
( ∂G

∂�A
(�̂)

)(∂�A(F)

∂Fiα
− ∂�A(F̂)

∂Fiα

)
(vi − v̂i )

=: Q1 + Q2 + Q3.

(3.22)

Defining the relative entropy as

ηrel(v,�; v̂, �̂) := 1

2
|v − v̂|2 + G(�)− G(�̂)− ∂G

∂�A
(�̂) (�A − �̂A)

(3.23)

we prove that Q can be bounded by the averaged relative entropy:

Lemma 3.4. Under Hypothesis (H1) − (H3), (H4)′, there exists C = C(|(v̂,
�̂)|W 1,∞ ) such that

|Q| � C〈ν, ηrel〉, 〈ν, ηrel〉 =
∫
ηrel(λv, λ�; v̂, �̂) ν(dλv, dλ�).

Proof of the lemma. We start by estimating the term Q2 in (3.22). Let K ⊂ R
19

be a compact set containing the values of �̂(x, t) for (x, t) ∈ QT . We will show
that there is a constant C such that for all λ� ∈ R

19 and �̂ ∈ K there holds

|Q2| =
∣
∣
∣
∣

( ∂G

∂�A
(λ�)− ∂G

∂�A
(�̂)

)(∂�A

∂Fiα
(λF )− ∂�A

∂Fiα
(F̂)

)∣∣
∣
∣ � CGrel(λ�; �̂),

(3.24)

where

Grel(λ�; �̂) = G(λ�)− G(�̂)− D�G(�̂) · (λ� − �̂). (3.25)
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Note that the assumptions (H1)− (H2) imply the lower bound

Grel(λ�; �̂) � max{γ (|λ� − �̂|2, α(|λF |p + |λZ |q + |λw|r + 1)− A} (3.26)

for some constants α, γ and A, which depend upon |�|L∞ and the constants c1, c2
appearing in (H1)− (H2).

Define now LR = {|λF |p +|λZ |q +|λw|r +1 � R} with R chosen sufficiently
large so that K ⊂ (LR)

c, and also

α(|λF |p + |λZ |q + |λw|r + 1)− A � α

2
(|λF |p + |λZ |q + |λw|r + 1) on LR .

For λ� ∈ LR and �̂ ∈ K we have, upon using Young’s inequality, hypothesis
(H4)′, selecting R sufficiently large, and using (3.26), that

|Q2| � C
[
(1 + |∂F G(λ�)|)+ (1 + |λF |)(1 + |∂Z G(λ�)|)

+ (1 + |λF |2)(1 + |∂wG(λ�)|)
]

� α

4
|λF |p + Cα

(
|∂F G| + |∂Z G| p

p−1 + |∂wG| p
p−2

)

� α

2

(|λF |p + |λZ |q + |λw|r + 1
)

� CGrel(λ�; �̂) λ� ∈ LR, �̂ ∈ K .

With R now fixed, observe that for λ� ∈ (LR)
c

|Q2| � CR |λ� − �̂|2

� CR

γ
Grel(λ�; �̂) λ� ∈ (LR)

c, �̂ ∈ K .

Therefore, (3.24) follows.
The term Q1 is estimated using the bound

|Q1| = ∣
∣ ∂G

∂�A
(λ�)− ∂G

∂�A
(�̂)− ∂2G

∂�A∂�B
(�̂)(λ�B − �̂B)

∣
∣

� CGrel(λ�; �̂) λ� ∈ R
19, �̂ ∈ K , (3.27)

which follows from an argument similar to the derivation of (3.24) above (using the
fact from H4′ that the derivatives of G grow more slowly than G itself at infinity).

Finally, the term Q3 is estimated using

|v − v̂|2 = |
∫
(λv − v̂)dν|2 �

∫
|λv − v̂|2 dν

� C
∫
ηrel(λv, λ�; v̂, �̂) dν(λv, λ�), (3.28)

the weak continuity property < ν, ∂�
A

∂Fiα
(λF ) >= ∂�A

∂Fiα
(F) and the estimation (in

the spirit of (3.24))

∣
∣
∣
∂�A

∂Fiα
(λF )− ∂�A

∂Fiα
(F̂)

∣
∣
∣
2

� CGrel(λ�; �̂) λ� ∈ R
19, �̂ ∈ K .
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Combining these, we obtain

∣
∣
∣
∂�A

∂Fiα
(F)− ∂�A

∂Fiα
(F̂)

∣
∣
∣
2 =

∣
∣
∣

∫
(∂�A

∂Fiα
(λF )− ∂�A

∂Fiα
(F̂)

)
dν

∣
∣
∣
2

�
∫ ∣

∣
∣
∂�A

∂Fiα
(λF )− ∂�A

∂Fiα
(F̂)

∣
∣
∣
2
dν

� C
∫

Grel(λ�; �̂) dν(λ�),

and hence, by (3.28) and Cauchy–Schwarz,

|Q3| � C
∫
ηrel(λv, λ�; v̂, �̂) dν(λv, λ�). (3.29)

The proof of the lemma is completed by referring to (3.27), (3.24) and (3.29). ��
To conclude, from the definition of the dissipative measure-valued solution

(3.15) and the equations (3.21), (3.22), and Lemma 3.4, we derive the equation for
the relative entropy

∫∫
dθ

dt

(
〈ν, ηrel〉 dxdt + γ (dx dt)

)

+ θ(0)
∫ [

η0 − η̂0 − v̂i (vi − v̂i )− ∂G

∂�A
(�̂A)

(
�A − �̂A)

]

t=0
dx

� −C
∫

〈ν, ηrel〉 dx dt, (3.30)

for all θ = θ(t) ∈ C1
c ([0, T )), θ � 0. The proof can now be completed as in the

proof of Theorem 2.5, leading to the bound
∫

〈ν, ηrel〉 dx
∣
∣
t � C2eC1C2t

∫ [
η0 − η̂0 − v̂i (vi − v̂i )

− ∂G

∂�A
(�̂A)

(
�A − �̂A)

]

t=0
dx .

This implies the uniqueness assertion in the theorem statement for appropriate
initial data. ��

4. Conservation Laws with L p Bounds

In this section we consider a measure-valued solution for the system of n conser-
vation laws (2.4) in the presence of L p bounds for 1 < p < ∞. We first show how
to generalize Theorem 2.2 on recovery of classical solutions to this case. We also
discuss the problem of the initial trace, that is, the sense in which a measure-valued
solution assumes the initial data. In this latter regard we show that the presence of
a convex entropy yields strong convergence of the averages 1

τ

∫ τ
0 v(·, t)dt to the

initial data, thus extending a result of DiPerna [10] to the L p framework.
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We assume that (2.1) is equipped with an entropy–entropy flux pair η− q as in
Section 2.1, with the entropy η satisfying the hypotheses:

η is positive and strictly convex, D2η � γ > 0 (4.1)

α
(|λ|p + 1

) − A � η(λ) � C
(|λ|p + 1

)
λ ∈ R

n (4.2)

for some α, γ, A,C > 0 and for p ∈ [2,∞), while the flux f in (2.4) verifies the
growth restriction

| f (λ)|
η(λ)

= o(1) as |λ| → ∞. (4.3)

The entropy identity provides stability in an L p-framework, p < ∞. In contrast to
the L∞ case treated in Section 2.1, such a framework permits the development of
concentrations in approximating sequences, which we describe using the measure
γ defined in Appendix A. Using the Young-measure associated to the family {vε}
and the concentration measure γ � 0, we have

g(vε) ⇀ 〈νx,t , g(λ)〉, ∀ g continuous s.t. lim|λ|→∞
g(λ)

η(λ)
= 0, (4.4)

η(vε) dx dt ⇀ 〈νx,t , η〉 dx dt + γ (dx dt), (4.5)

where ν and γ in (4.5) are as introduced in Appendix A.
For the initial data {vε0} of the approximating problem (2.2), we assume weak

convergence tov0 in L p with associated Young measureμx and also allow the devel-
opment of concentrations in η described by a concentration measure ζ (dx) � 0,
such that

g(vε0) ⇀ 〈μx , g(λ)〉, ∀ g continuous s.t. lim|λ|→∞
g(λ)

η(λ)
= 0, (4.6)

η(vε0) dx ⇀ 〈μx , g(λ)〉 dx + ζ (dx). (4.7)

Definition 4.1. A dissipative measure-valued solution with concentration to (2.1)
consists of v ∈ L∞(L p), a Young measure (νx,t )x,t∈QT

and a non-negative Radon
measure γ ∈ M+(QT ) such that

∫∫
〈νx,t , λ〉ψt dx dt +

∫∫
〈νx,t , f (λ)〉ψx dx dt +

∫
v0(x)ψ(x, 0) dx = 0

(4.8)

for any ψ ∈ C1
c (Q × [0, T )), and

∫∫
θ̇
(〈νx,t , η(λ)〉 dx dt + γ (dx dt)

) +
∫
θ(0)

(〈μx , η〉 dx + ζ (dx)
)

� 0,

(4.9)

for all θ = θ(t) ∈ C1
c ([0, T )) with θ � 0.
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4.1. Recovery of Classical Solutions from Measure-Valued Solutions

We first state the generalization of Theorem 2.2 in the L p framework:

Theorem 4.2. Let (v, ν, γ ) be a dissipative measure-valued solution as in Defini-
tion 4.1, and suppose that there exists a strong solution v ∈ W 1,∞(QT ) verifying
(2.11) and (2.12). If for the initial data ζ = 0 and μx = δv0(x), then ν = δv and
v = v almost everywhere on QT .

Proof. The initial calculations are identical to the L∞ case in the proof of Theo-
rem 2.2 up to (2.22). Since the support of ν is no longer bounded, it is necessary to
replace (2.24). This is done as follows: define ηrel(λ, v) by (2.14) and let K ⊂ R

n

be a compact set containing the values of v̄(x, t) for (x, t) ∈ QT . Using (4.1),
(4.2), (4.3) and an argument as in the proof of (3.24) (see Lemma 3.4), there exists
a constant C1 > 0 such that

∣
∣ fkα(λ)− fkα(v)− ∂ fkα

∂v j
(v)(λ j − v j )

∣
∣ � C1ηrel(λ; v̄) λ ∈ R

n, v̄ ∈ K ,

(4.10)

and hence integrating over λ we obtain that

|Zkα(ν, v, v)| � C1h(ν, v, v), (4.11)

where we use the definitions (2.14)–(2.15). This inequality serves as a suitable
replacement of (2.24) to complete the transposition of the proof of Theorem 2.2 to
the L p setting. Under the assumption ζ = 0 there holds

∫
h(ν, v, v) dx � c1

∫
ηrel(λ, v0)dμ(λ) dx ec2t , (4.12)

and in particular if v(x, 0) = v0(x) and μx = δv0(x) then νx,t = δv(x,t) and
v(x, t) = v(x, t) for t > 0, and γ = 0. ��

4.2. On the Initial Trace of Measure-Valued Solutions

DiPerna [10, section 6(e)] gave an argument indicating that the measure-val-
ued version of the entropy condition, used in the case of strict convexity of the
entropy, leads to a strong initial trace for a measure-valued solution in the L∞
setting. Below, this result is extended to the L p functional setting, p < ∞.

Theorem 4.3. Let v, νx,t and γ (dx dt) be a dissipative measure-valued solution
with concentration to (2.1). If the Young measure associated with the data satisfies
ζ ≡ 0 and μx = δv0(x), then as τ → 0+

1

τ

∫ τ

0
v(·, t)dt → v0, in L p(Q). (4.13)
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Proof. We first show that as a consequence of the definition of a measure-valued
solution

1

τ

∫ τ

0
v(·, t)dt ⇀ v0, weakly in L p(Q). (4.14)

To achieve this, apply (4.8) to the test function ψ(x, t) = ϕ(x)θ(t), where ϕ ∈ C1

(Q) and

θ(t) ≡
{

1 − t
δ

when 0 � t � δ,

0 when δ � t.
(4.15)

Then we obtain

−1

δ

∫ δ

0

∫

Q
v(x, t)ϕ(x)dx dt +

∫ δ

0

∫

Q
〈νx,t , f (λ)〉ϕ(x)θ(t)dx dt

+
∫

Q
v0(x)ϕ(x)dx = 0.

Passing to the limit δ → 0, we conclude

lim
δ→0

∫

Q

(
1

δ

∫ δ

0
v(x, t)dt

)

ϕ(x)dx →
∫
v0(x)ϕ(x)dx . (4.16)

Since
∫

Q

∣
∣
∣
∣
1

δ

∫ δ

0
v(x, t)dt

∣
∣
∣
∣

p

dx � 1

δ

∫

Q

∫ δ

0
|v|pdx dt � ‖v‖p

L∞(L p). (4.17)

Equation (4.16), together with an approximation argument, implies that the

sequence
{

1
δ

∫ δ
0 v(·, t)dt

}
converges weakly to v0 in L p(Q).

Consider now the functional I : L p(Q) → R defined by

I [v] =
∫

Q
η(v)dx .

Due to the convexity of η the functional I is weakly lower semicontinuous. Hence
(4.14) implies

∫

Q
η(v0(x)) dx � lim inf

δ→0

∫

Q
η

(
1

δ

∫ δ

0
v(x, t)dt

)

dx . (4.18)

Fix θ as in (4.15) and consider a sequence of C1 functions θn → θ that are
monotone decreasing, vanish for large t , and satisfy θn(0) = 1 and θ̇n(t) → θ̇ (t)
for t �= 0, δ. We apply (4.9) to the test functions θn and use the hypotheses for the
initial measure and the property γ � 0 to obtain

∫

Q
η(v0(x))dx � −

∫∫
dθn

dt
〈νx,t , η(λ)〉 dxdt.
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Passing to the limit n → ∞ and then δ → 0 and using v(x, t) = ∫
λdνx,t (λ) and

Jensen’s inequality, we conclude that

∫

Q
η(v0(x))dx � lim sup

δ→0

1

δ

∫ δ

0

∫

Q

∫
η(λ)dνx,t (λ)dx dt

= lim sup
δ→0

∫

Q

1

δ

∫ δ

0

∫
η(λ)dνx,t (λ)dt dx

� lim sup
δ→0

∫

Q

1

δ

∫ δ

0
η

(∫
λdνx,t (λ)

)

dt dx

= lim sup
δ→0

∫

Q

1

δ

∫ δ

0
η(v(x, t))dt dx

� lim sup
δ→0

∫

Q
η

(
1

δ

∫ δ

0
v(x, t)dt

)

dx . (4.19)

In summary, for the family
{
vδ = 1

δ

∫ δ
0 v(·, t)dt

}
, we have vδ ⇀ v0 weakly in

L p(Q) and

lim
δ→0

∫

Q
η
(
vδ(x)

)
dx =

∫

Q
η(v0(x))dx . (4.20)

We claim this implies

vδ = 1

δ

∫ δ

0
v(·, t)dt → v0, in L p(Q). (4.21)

Indeed, by (4.17), the sequence {vδ} is uniformly bounded in L p(Q). The results
of Section (A.6) imply that there exists an associated Young measure κ x and a
concentration measure ε(dx) � 0 such that

η(vδ) ⇀

∫
η(λ)dκ x (λ)+ ε(dx). (4.22)

Now (4.14) implies that
∫
λdκ x (λ) = v0(x), so that by (4.20) and (4.22) we get

∫

Q

∫
η(λ)dκ x (λ) dx +

∫

Q
ε(dx) =

∫

Q
η(v0(x))dx =

∫

Q
η

(∫
λdκ x (λ)

)

dx .

Using Jensen’s inequality

η

(∫
λdκ x (λ)

)

�
∫
η(λ)dκ x (λ), (4.23)

we conclude that the concentration measure ε ≡ 0, and that necessarily (4.23)
holds as equality. The latter implies that κ x = δv0(x) and completes the proof of
(4.13). ��
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5. Application: One Dimensional Elastodynamics as the Continuum
Limit of a Lattice Model

Here we investigate a spatially discrete lattice approximation to one dimen-
sional elastodynamics. Apart from interest in the continuum limit, the purpose is
to show that the use of the relative entropy method provides an efficient way of
proving strong convergence theorems for approximation schemes: it is necessary
to verify only that the approximation scheme generates a dissipative measure-
valued solution. For simplicity, as above, we consider the periodic case so that
the spatial domain is Q = R/2πZ on which are located N atoms at the points
{xi (t)}N−1

i=0 , at time t , and continued periodically xN+i (t) = xi (t) + 2π ∀i , when
convenient. We assume the existence of an equilibrium configuration in which the
atoms form a one-dimensional array (lattice) in which the i th atom has reference
location Xi = 2π i

N = εi so they are each separated by a distance ε ≡ 2π
N from their

nearest neighbours on either side. We write I i
ε = {X : Xi � X < Xi+1} for the

intervals into which the domain is sub-divided by the reference locations Xi .
We will assume the dynamics are determined by a natural Lagrangian system

of the following form:

• each atom has identical mass ερ = 2π
N ρ (so that the total mass is 2πρ), and the

kinetic energy is T = 1
2ερ�i ẋi

2;

• the potential energy is given by V = ∑N−1
i=0 W (

xi+1−xi
ε

), where W is a strictly
convex C3 function such that W ′′(u) � c0 > 0 and W (u) � max(0, c1|u|p −
c2) for ci > 0, p � 2 and u ∈ R;

• lim|u|→+∞ W ′(u)
|u|p = 0

• finally, the Lagrangian

L = T − V =
N−1∑

i=0

ερ

2
ẋ2

i − εW (
xi+1 − xi

ε
).

Thus we have the following equation of motion

d

dt
(ερ ẋi ) = W ′

(
xi+1 − xi

ε

)

− W ′
(

xi − xi−1

ε

)

, (5.1)

solutions of which have energy which is independent of time t :

N−1∑

i=0

[ερ

2
ẋ2

i + εW

(
xi+1 − xi

ε

)]
= E0, (5.2)

where E0 is determined by the initial data. The system (5.1) has a first order in
time formulation obtained by setting:

vi = ẋi

ρ
dvi

dt
= 1

ε
W ′

(
xi+1 − xi

ε

)

− W ′
(

xi − xi−1

ε

)

.
(5.3)



Weak–Strong Uniqueness of Dissipative Measure-Valued Solutions

We are interested in studying the limit as N → ∞, or equivalently ε → 0, of
this system, and relating it to continuum elastodynamics. To this end we introduce,
by interpolation, the following functions:

yε(t, X) =
N−1∑

i=0

(
xi + 1

ε
(X − iε))(xi+1 − xi )

)
1I i

ε
(X)

ỹε(t, X) =
N−1∑

i=0

xi1I i
ε
(X),

(5.4)

for I εi = [iε, (i + 1)ε), as above. We will prove that these two functions have
the same limit as ε → 0, and are thus lattice versions of the same macroscopic
object. In fact they are lattice versions of the Eulerian description of an elastic
continuum, which proceeds via a function X �→ y(t, X) which gives the loca-
tion in space of that infinitesimal part of the body whose reference location is the
point X . It follows from the periodic continuation xN+i (t) = xi (t) + 2π ∀i that
yε(t, X + 2π) = yε(t, X)+ 2π and similarly for ỹε .

Lemma 5.1. Assume we have for each N ∈ {1, 2, . . . } a set of initial data
{(xi (0), ẋi (0))}N−1

i=0 such that the energy is uniformly bounded, so that (5.2) with
ε = 2π

N holds for some E0 < ∞ independent of N . Then for each such ε,

the functions yε and ∂yε

∂t are bounded continuous functions of t, X, and there
exists a constant C depending on the energy and on the coercivity constants,
C = C(E0, ρ, c1, c2) such that

(i) supt

(
‖ ∂yε

∂t ‖L2(Q) + ‖ ∂yε

∂X ‖L p(Q) + ‖ ∂ ỹε

∂t ‖L2(Q)

)
� C.

(ii) supt ‖ỹε − yε‖L p(Q) � Cε.

Proof. Notice that | X−iε
ε

1I i
ε
(X)| � 1 everywhere. Therefore,

‖∂yε

∂t
‖2

L2(Q) = ‖
N−1∑

i=0

(
ẋi + X − iε

ε
(ẋi+1 − ẋi

)
1I i

ε
‖2

L2(Q)

� 5
N−1∑

i=0

ε‖ẋi‖2
L2(Q) � C,

and similarly for ỹε . Next observe that ∂yε

∂X = ∑N−1
i=0

xi+1−xi
ε

1I i
ε

is bounded in L p

by (5.2) and our assumption on W , since c1ε| xi+1−xi
ε

|p � εW (
xi+1−xi

ε
)+ c2. This

completes the proof of (i) using the energy bound (5.2).
The second assertion also follows from (5.2) and (i) since

ỹε − yε =
N−1∑

i=0

(Xi − iε)

ε
(xi+1 − xi )1I i

ε
=

N−1∑

i=0

(Xi − iε)

ε
1I i

ε

∂yε

∂X
ε

which implies (ii) as | X−iε
ε

1I i
ε
(X)| � 1. ��
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For clarity, define the variables for the first order formulation,

uε(t, X) = ∂yε

∂X
(t, X)

vε(t, X) =
N−1∑

i=0

ẋi1I i
ε

=
N−1∑

i=0

vi (t)1I i
ε

= ˙̃yε .
(5.5)

Then the equations of motion (5.1) in first order formulation (5.3) become, respec-
tively,

ερ
∂vε

∂t
= W ′(uε(t, X))− W ′(uε(t, X − ε))

∂uε

∂t
= ∂vε

∂X
− ∂

∂X
( ˙̃yε − ẏε),

(5.6)

which in weak form can be written as:
∫ ∞

0

∫ π

−π
ρ
∂φ

∂t
vε − 1

ε

(
φ(t, X + ε)− φ(t, X)

)
W ′(uε(X)) dXdt

+
∫ π

−π
ρφ(X, 0)vε(X, 0) d X = 0

∫ ∞

0

∫ π

−π

(∂φ

∂t
uε − ∂φ

∂X
vε − ∂2φ

∂X∂t
(ỹε − yε)

)
dX dt

+
∫ π

−π
φ(X, 0)uε(X, 0) dX = 0,

(5.7)

for all φ ∈ C2
c (Q∞).

As in Lemma 5.1, bounds which are uniform in ε come from energy conserva-
tion, which in first order variables takes the form

ρ

2
‖vε(t, · )‖2

L2 +
∫

W (uε(t, · ))dX = ρ

2
‖vε(0, · )‖2

L2 +
∫

W (uε(0, · )) dX

� E0 < ∞. (5.8)

Thus supt

(∫ |uε |p dX +∫ |vε |2 dX
)

� C . To take the limit of (5.7) we use the facts

that φ(t,X+ε)−φ(t,X)
ε

−→ ∂φ
∂X uniformly (since φ is a test function) and ỹε− yε −→

0 in L p by Lemma 5.1.
In the limit ε → 0 there is a Young measure ν which represents weak limits of

the sequence (uε, vε) ⇀ (u, v):

v =
∫
λ dν(M, λ) and u =

∫
M dν(M, λ),

and of functions g(uε, vε) which are L1 precompact, so that in particular

lim
ε→0

∫ ∞

0

∫ π

−π
φg(uε, vε) d Xdt =

∫ ∞

0

∫ π

−π
φ 〈ν, g〉 dXdt (5.9)

=
∫ ∞

0

∫ π

−π

∫
φ g(M, λ) dν(M, λ) dXdt,

(5.10)
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for all bounded φ which are 2π -periodic in X and vanish for large t . On the other
hand, for the energy density η(uε, vε) = ρ

2 (v
ε)2 + W (uε)we have only L1 bound-

edness, and the weak limit includes a concentration measure γ :

lim
ε→0

∫ ∞

0

∫ π

−π
φη(uε, vε) dXdt =

∫ ∞

0

∫ π

−π
φ 〈ν, η〉 dXdt +

∫ ∞

0

∫ π

−π
φ γ (dXdt)

for φ ∈ Cc(Q∞). Consider initial data with the property that (uε(X, 0), vε(X, 0))
→ (u(X, 0), v(X, 0)) in L p×L2, and

∫
η(uε(X, 0), vε(X, 0)) dX → ∫

η(u(X, 0),
v(X, 0)) dX . Due to the assumptions on W , the limit (u, v, ν) is a dissipative mea-
sure-valued solution in the sense that:

∫ ∞

0

∫ π

−π

(
ρv ∂tφ + 〈ν,W ′〉 ∂Xφ

)
dXdt +

∫ π

−π
ρφ(X, 0)v(X, 0) dX = 0

(5.11)
∫ ∞

0

∫ π

−π

(
u ∂tφ − v ∂Xφ

)
dX dt +

∫ π

−π
φ(X, 0)u(X, 0) dX = 0,

(5.12)

for all φ ∈ C1
c (Q∞), and

∫ ∞

0

∫ π

−π
θ̇(t)

(〈ν, η〉 d Xdt+γ (dX dt)
)+θ(0)

∫ π

−π
η(u(X, 0), v(X, 0)) dX �0,

(5.13)

for non-negative θ ∈ C1([0,∞)). (In fact, the dissipative condition (5.13) holds as
an equality.)

Now, using the relative entropy method and the convexity assumption on W
we can prove that, in fact, the convergence is strong and concentration free when
a classical solution (u, v) exists on QT :

Theorem 5.2. Assume that there is a pair of Lipschitz functions (u, v) ∈
W 1,∞(QT ) which satisfy the continuum limit equations:

∫ ∞

0

∫ π

−π
ρ
∂φ

∂t
v + ∂φ

∂X
W ′(u(X)) dX dt +

∫ π

−π
ρφ(X, 0)v(X, 0) dX = 0

∫ ∞

0

∫ π

−π

(∂φ

∂t
u − ∂φ

∂X
v
)

d Xdt +
∫ π

−π
φ(X, 0)u(X, 0) dX = 0,

(5.14)

for all φ ∈ C1
c (QT ). Assume that there is a sequence of initial configurations

of the lattice {(xi (0), ẋi (0))}N−1
i=0 with uniformly bounded energy, and such that

the corresponding interpolated functions (uε(X, 0), vε(X, 0)), ε = 2π
N , converge

strongly to (u(X, 0), v(X, 0)) in L p × L2 and
∫
η(uε(X, 0), vε(X, 0)) dX →∫

η(u(X, 0), v(X, 0)) dX. Then (uε, vε), as defined in (5.4) and (5.5) from the
solutions {(xi (t), ẋi (t))}N−1

i=0 of the microscopic model, converge strongly in L p ×
L2(QT ) to the continuum limit (u, v). Alternatively said, the Young measure ν is
a Dirac measure supported on (u, v) and there is no concentration, that is, the
concentration measure γ is null.
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Proof. We define the relative entropy as h(ν, u, v, u, v) = 〈ν, ηrel〉 = ∫
ηrel

(M, λ; u, v) dν(M, λ) with

ηrel(M, λ; u, v) = η(M, λ)− η(u, v)− v(λ− v)− W ′(u)(M − u)

= ρ

2
(λ− v)2 + W (M)− W (u)− W ′(u)(M − u).

Under the assumptions on W , above, there exists C > 0 such that

W ′(M)− W ′(u)− W ′′(u)(M − u)

W (M)− W (u)− W ′(u)(M − u)
� C

everywhere. (The number C depends upon the bounded region D in which u takes
its values). Given this inequality and the assumption that the initial data converge
to the initial data (u0, v0) of the bounded Lipschitz solution (u, v), we then deduce,
via a calculation analogous to that in (2.41)–(2.44), that

∫
h(ν, u, v, u, v) dX

∣
∣
t � C ′

∫ t

0

∫
h(ν, u, v, u, v) dX

∣
∣
τ

dτ

for 0 � t < T , and hence that h and γ are zero almost everywhere for positive times
for which the classical solution exists. This implies that ν(X,t) = δ(u(X,t),v(X,t)) as
stated previously, and hence that the convergence of (uε, vε) to (u, v) is strong and
concentration free as claimed. ��
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Appendix A. Appendix: An Energy Concentration Measure
for Measure-Valued Solutions

In this appendix we summarize what we need to know about the Young measure
description of oscillations and concentrations in weakly convergent sequences of
functions f ε(y) ∈ R

m defined on the set QT , writing y as the independent variable
(y = (t, x)).

We consider two settings in which the Fundamental Theorem of Young Mea-
sures, as found in Ball [2], applies: the L∞ setting of Section 2.1 and the L p setting
of Sections 2.2 and 3. In the L∞ setting the theorem attaches to a uniformly bounded
sequence of functions on QT a subsequence, still written f ε , and a parametrized
Young measure (meaning a weak* measurable QT -parametrized family of proba-
bility measures ν = (ν y)y∈QT

) such that for any continuous function F : R
m → R

F( f ε) ⇀ 〈ν, F〉 weak* in L∞(QT ). (A.1)
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In the L p setting, 1 < p < ∞, a similar conclusion holds for any sequence of
functions f ε which are bounded in L p: for continuous F such that F( f ε) is L1

weakly precompact, there holds

F( f ε) ⇀ 〈ν, F〉 weakly in L1(QT ). (A.2)

This representation will generally not hold if L1 weakly precompact is replaced
by L1 bounded because concentrations can develop. Various tools have been intro-
duced to describe this, such as biting convergence, the generalized concentration
Young measure, microlocal defect measure, H -measure, and varifold measure, see
references [1,3,12,14,15,21] and [13, Section 1.D]. Here we introduce by hand
a simple measure γ of concentration effects in the energy or other non-negative
functions F of critical growth, that is, functions such that F( f ε) is bounded, but
not necessarily weakly precompact, in L1 (for example, | f ε |p of an L p-bounded
sequence). This measure γ is a sharpening of the weak* defect measure σ of Lions
(described in Reference ([17, Chapter 9]). In fact, its existence follows as a partic-
ular case of a quite general result [1, Theorem 2.5]. However since we only need
a rather special case—to describe the weak limit of a single non-negative function
η—we give a simple direct proof from first principles.

We introduce this measure in two separate cases, first for illustrative purposes
in the L2 setting which applies in Section 2.2, and then in the more general setting
which is useful in the case of a polyconvex energy of Section 3.

Appendix A.1. The L2 Case

We now consider the case p = 2 in more detail: let f ε(y) converge weakly
in L2 to f (y), and assume that

∫ | f ε(y)|2dy � K < ∞. Then by the previous
discussion

∫

QT

F( f ε)(y)w(y)dy −→
∫

QT

〈ν y, F〉w(y)dy,

for any w ∈ L∞(QT ) and for any F satisfying lim|z|→+∞ |F(z)|
1+|z|2 = 0, (since this

implies that F( f ε) is sequentially weakly precompact in L1 by the criterion of de
la Vallee Poussin.) For the function F(z) = |z|2 itself, however, y �→ | f ε(y)|2dy
are weak* precompact in the space of non-negative Radon measures M+(QT ),
and the functions | f ε |2 need not be weakly precompact in L1, and as a result the
Young measure representation in general fails.

In this context we define a defect measure by applying the Banach–Alaoglu
theorem to the sequence | f ε − f |2 to obtain a subsequential weak* limit σ , which
is a non-negative Radon measure,

σ (ψ) =
∫∫

ψdσ = lim
ε→0

∫∫
ψ | f ε − f |2 dx dt, (A.3)

for all ψ ∈ C(QT ). Alternatively, noting the identity | f ε |2 = | f ε − f |2 + | f |2 +
2〈 f, f ε − f 〉, it follows from the definition of weak L2 convergence that an equiv-
alent definition is

σ = wk*- lim
ε→0

(| f ε |2 − | f |2) ∈ M+(QT ).
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Simple examples indicate that σ can be non-zero due to purely oscillatory effects,
and it is “too large” to describe concentration effects in a useful way. Therefore
we will use a modification of σ , called γ , which is smaller (that is γ (E) � σ (E))
and is designed to be useful to describe weak limits of non-negative functions of
critical growth. To introduce the measure γ , we first observe that if we apply
the Young measure theorem to f ε we obtain, for almost every y ∈ QT , a
Radon probability measure ν y , and the function

∫ |λ|2ν y(dλ) is well defined
in the extended non-negatives [0,∞] by the monotone convergence theorem.
Indeed, let qR(λ) = |λ|21|λ�R| + R21|λ|�R then qR(λ) ↗ q(λ) = |λ|2, and

so
∫ |λ|2ν y(dλ) = limR→∞

∫
qR(λ)ν y(dλ) is well defined for almost everywhere

y and is in L1(QT ), since by the Young measure representation theorem

∫∫
ψ(y)qR(λ)ν y(dλ) dy = lim

∫
ψ(y)qR( f ε(y))dy � K max

y∈Q
|ψ(y)|,

for all ψ ∈ C(QT ). Choosing ψ(y) ≡ 1 allows us to apply the monotone con-
vergence theorem again to deduce that 〈ν y(λ), |λ|2〉 = ∫ |λ|2ν y(dλ) ∈ L1(QT ),
since it is a monotone non-decreasing limit of non-negative functions of uniformly
bounded integral.

Now, to define the concentration measure γ , we just mimic the definition of σ ,
replacing | f (y)|2 by 〈ν y(λ), |λ|2〉, that is, we consider wk*- limε→0(| f ε(y)|2 −
〈ν y(λ), |λ|2〉). To show that this limit exists in M+(QT ), we use the Young measure
representation again: for any R > 0 and any non-negative function ψ ∈ C(QT ),

∫∫
ψ(y)qR(λ)ν y(dλ) dy = lim

ε→0

∫
ψ(y)qR( f ε(y)) dy � lim

ε→0

∫
ψ(y)| f ε(y)|2 dy,

and therefore

∫∫
ψ(y)|λ|2ν y(dλ) dy = sup

R>0

∫∫
ψ(y)qR(λ)ν y(dλ) dy

� lim
ε→0

∫
ψ(y)| f ε(y)|2 dy,

and hence

γ = wk*- lim
ε→0

(| f ε |2 − 〈ν y(λ), |λ|2〉
) ∈ M+(Q) (A.4)

is a well defined non-negative Radon measure. Since Hölder’s inequality implies
that | f (y)|2 = |〈ν y, λ〉|2 � 〈ν y, |λ|2〉, this definition implies that γ � σ as claimed
earlier. The concentration Young measure γ is useful because it allows a description
of the weak limit of the energy, in terms of the Young measure ν—the measure
defined in (A.4) is used in Section 2.2.
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Appendix A.2. The General Case

To describe concentration effects arising from more general energy function-
als, such as the polyconvex ones in Section 3, it is necessary to generalize the
preceding definition. We now show that the same argument can be applied to any
non-negative continuous function η which satisfies

∫
η( f ε) � K < ∞, but for

which the de la Vallee Poussin criterion does not apply and weak L1 precompact-
ness of η( f ε) cannot be assumed. Instead, we assume that η � 0 is a superlinear
function and supε>0

∫
η( f ε)dx < K , where f ε is assumed to be a sequence of

Lebesgue measurable functions which, according to the theorem of Ball ([2]),
has a subsequence, also called f ε , with associated Young measure ν y , which is a
weak* measurable family of Radon probability measures thanks to the superlin-
earity assumption on η. By the same theorem, the Young measure represents L1

weak limits of compositions of the f ε as in (A.2) when these are L1 precompact.
Observe that

y �→
∫
η(λ)ν y(dλ)

is well defined almost everywhere in y with values in the extended non-negatives
[0,∞] and is in L1 by the monotone convergence theorem:ηR(λ) = η(λ)1η(λ)�R+
R1η(λ)�R , then ηR(λ) ↗ η(λ), and so

∫
η(λ)ν y(dλ) = limR→∞

∫
ηR(λ)ν y(dλ)

is well defined for almost everywhere y and is in L1(QT ) since, by the Young
measure representation theorem

∫∫
ψ(y)ηR(λ)ν y(dλ)dy = lim

ε→0

∫
ψ(y)ηR( f ε(y))dy � K max

y∈QT

|ψ(y)|

for all ψ ∈ C(QT ). Choosing ψ(y) ≡ 1 allows us to apply the monotone conver-
gence theorem again to deduce that

〈ν y(λ), η(λ)〉 =
∫
η(λ))ν y(dλ) ∈ L1(QT ), (A.5)

since it is a non-decreasing limit of non-negative functions of uniformly bounded
integral. Explicitly, by the Young measure representation for ηR( f ε),
∫

〈ν y(λ), ηR(λ)〉 = lim
ε→0

∫
ηR( f ε) � sup

ε

∫
ηR( f ε) � sup

ε

∫
η( f ε) � K ,

by assumption on η and ( f ε), where the integrals are over QT and using that
0 < ηR ↗ η we deduce (A.5) by monotone convergence taking the limit in R.

It is not, however, the case that η( f ε) are L1 precompact, and so 〈ν y, η〉 does
not give its weak limit in general due to concentration. The concentration effect
can be measured by considering the concentration measure

γ = wk*- lim
ε→0

(η( f ε)− 〈ν y, η〉) (A.6)

which is a well defined non-negative Radon measure for a subsequence of the η( f ε)
(since they have bounded integral). To see that γ is indeed non-negative, we use
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the Young measure representation again to deduce that for any R > 0, and any
non-negative function ψ ∈ C(QT ),
∫∫

ψ(y)ηR(λ)ν y(dλ) dy = lim
ε→0

∫
ψ(y)ηR( f ε(y)) dy � lim

ε→0

∫
ψ(y)η( f ε(y)) dy,

and therefore
∫∫

ψ(y)η(λ)ν y(dλ) dy = sup
R>0

∫∫
ψ(y)ηR(λ)ν y(dλ) dy

� lim
ε→0

∫
ψ(y)η( f ε(y)) dy,

and hence

γ = wk*- lim
ε→0

(
η( f ε)− 〈ν y, η〉

) ∈ M+(QT )

is a well defined non-negative Radon measure.
If, in addition, η is convex, then γ � σ , where σ is the natural generalization of

the weak* defect measure, namely σ = wk*- limε→0(η( f ε)−η( f )) ∈ M+(QT ).

This is an immediate consequence of Jensen’s inequality which implies that
∫
η(λ) dν � η(

∫
λ dν) = η(lim f ε) = η( f ).

The reason that γ is useful is that it allows a description of the weak limit of
the energy in terms of the Young measure ν. In Section 3 this applies to a sequence
f ε = (vε,�ε) which is bounded in a direct sum of different Lebesgue spaces, and
which therefore has a weak limit point in the same space.

Remark A.1. Although we refer to γ as concentration measure, it is not always
supported on a small set: there exist sequences of functions in which the concen-
tration smears out to fill the whole domain, see Reference [3, Example 2].
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