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Convection in a closed domain driven by a dense buoyancy source along the
upper boundary soon starts to wane owing to the increase of the average interior
density. In this paper, theoretical and numerical models are developed of the
subsequent long period of shutdown of convection in a two-dimensional porous
medium at high Rayleigh number Ra. The aims of this paper are twofold. Firstly,
the relationship between this slowly evolving ‘one-sided’ shutdown system and the
statistically steady ‘two-sided’ Rayleigh–Bénard (RB) cell is investigated. Numerical
measurements of the Nusselt number Nu from an RB cell (Hewitt et al., Phys. Rev.
Lett., vol. 108, 2012, 224503) are very well described by the simple parametrization
Nu = 2.75 + 0.0069Ra. This parametrization is used in theoretical box models of the
one-sided shutdown system and found to give excellent agreement with high-resolution
numerical simulations of this system. The dynamical structure of shutdown can also
be accurately predicted by measurements from an RB cell. Results are presented for
a general power-law equation of state. Secondly, these ideas are extended to model
more complex physical systems, which comprise two fluid layers with an equation of
state such that the solution that forms at the (moving) interface is more dense than
either layer. The two fluids are either immiscible or miscible. Theoretical box models
compare well with numerical simulations in the case of a flat interface between the
fluids. Experimental results from a Hele-Shaw cell and numerical simulations both
show that interfacial deformation can dramatically enhance the convective flux. The
applicability of these results to the convective dissolution of geologically sequestered
CO2 in a saline aquifer is discussed.
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1. Introduction
Convective transport in porous media plays a significant role in a wide range of

geophysical and industrial processes. The canonical system for the study of convection,
and its associated nonlinear dynamics, is the Rayleigh–Bénard (RB) cell. The RB cell
is a ‘two-sided’ convective system, in which there is convective transport away from
both the upper and lower boundaries. The system therefore attains a statistically steady
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state, which allows both for examination of the dynamical structures and emergent
patterns of the flow, and for accurate characterization of the convective flux.

Natural convective systems in porous media tend instead to be driven by a source
of buoyancy on one boundary alone. We refer to such systems as ‘one-sided’.
There are fundamental questions relating to the differences and similarities of the
dynamics between one-sided and two-sided convective systems, some of which we
address in this paper. For clarity, when we consider one-sided systems, we will
assume throughout that the convective flow is downwards, away from an active upper
boundary. All the other boundaries of the domain are assumed to be impermeable and
perfectly insulating. Furthermore, we consider one-sided systems in which convection
is driven solely by compositional density differences, such that the density ρ∗ of the
fluid is a function of the concentration of solute C∗ only. It should be noted, however,
that the governing equations outlined in § 3 are equally applicable to convection from
a buoyant source at the base of the domain, and to thermal convection, provided that
heat transfer in the solid phase of the medium can be neglected.

There has been a recent resurgent interest in the subject of one-sided convection
in a porous medium owing to its relevance to the long-term storage of geologically
sequestered carbon dioxide. With growing global demand for energy, it seems probable
that sequestration will need to play a major role as a part of attempts to curb the
rising anthropogenic emissions of CO2 (Metz et al. 2005). Geological sequestration is
achieved by injecting supercritical CO2 into deep, brine-saturated porous rock, which
is typically located at depths &800 m below the Earth’s surface and bounded above
by an impermeable caprock. Under these storage conditions, the supercritical CO2 is
significantly less dense (∼700 kg m−3) than the ambient brine (∼1000 kg m−3), and
will rise through the aquifer to pool beneath the caprock. Fractures in the caprock can
lead to undesired leakage of the buoyant CO2 plume (Pritchard 2007; Neufeld et al.
2011; Vella et al. 2011). One of the primary mechanisms for longer-term storage is
the dissolution of CO2 into the underlying ambient brine (Orr 2009), which forms a
dense solute that can lead to downward convection. Geochemical field observations in
natural CO2 reservoirs suggest that convective dissolution provides a very significant
and persistent mechanism for the transport of CO2 (Gilfillan et al. 2009).

This paper has two principal objectives, which are related to the ideas of the
previous paragraphs. Firstly, we examine the relationship between two-sided and one-
sided convection with a fixed upper boundary. Secondly, we extend these ideas to
examine different physically motivated one-sided systems, each of which comprises
two fluid layers with a moving interface, such as in the case of sequestered CO2 and
brine.

Previous work on the two-dimensional porous RB cell has focused on examining the
dimensionless heat (or solute) flux through the cell, as described by the Nusselt (or
Sherwood) number Nu, and the corresponding dynamical structures of the flow. Both
the Nusselt number and the dynamics of the flow are functions of the Rayleigh
number Ra, which is the ratio of the diffusive and convective time scales. For
Ra < Racrit = 4π2, the system is stable, and there is no flow (Nield & Bejan 2006).
For 4π2 < Ra . 1300, the flow is characterized by large-scale convective rolls, which
undergo a series of bifurcations that perturb, but do not completely break down, the
background flow (Kimura, Schubert & Strauss 1986; Graham & Steen 1994). However,
above Ra ≈ 1300, the rolls are broken down by vigorous plume shedding from the
boundary layers at the top and bottom of the domain. The dynamical structure in
this ‘high-Ra’ regime is dominated by vertical columnar ‘megaplumes’ that extend
across the interior of the domain, and are driven by entrainment and mixing of
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small ‘protoplumes’ near the upper and lower boundaries (Otero et al. 2004; Hewitt,
Neufeld & Lister 2012). Numerical measurements of the Nusselt number by Hewitt
et al. (2012) could be approximately fitted over the range 1300 . Ra 6 4 × 104 by a
power-law scaling Nu ∼ Ra0.95. However, detailed examination of the results strongly
suggests that asymptotically Nu scales linearly with Ra, and thus that the dimensional
convective flux is asymptotically independent of the depth of the domain, in agreement
with the ‘classical’ scaling argument for fluid convection (Howard 1964). In this paper
we show that a function of the form Nu = αRa + β, for constant α and β, provides
a significantly more accurate fit to the measurements of Hewitt et al. (2012) than a
sub-linear power law, as discussed in § 4.2.2.

In contrast to the two-sided statistically steady RB configuration, the dynamics and
the buoyancy flux in a one-sided convective system evolve over time. Many previous
studies of one-sided convective systems have focused on the conditions required for
the onset of convection, which presents significant theoretical challenges because the
diffusive base state is both time-dependent and nonlinear. Various theoretical studies
(Hassanzadeh, Pooladi-Darvish & Keith 2006; Riaz et al. 2006; Xu, Chen & Zhang
2006; Slim & Ramakrishnan 2010) have been complemented by direct numerical
investigations (Riaz et al. 2006; Hassanzadeh, Pooladi-Darvish & Keith 2007) and
laboratory experiments (Fernandez et al. 2002; Backhaus, Turitsyn & Ecke 2011; Slim
et al. 2013) that explore the onset of convection.

After onset, the convective flow is dominated by large dense plumes, which merge
and coarsen as they descend. These descending plumes are fed by the entrainment
of smaller plumes near the upper boundary, which are themselves generated
episodically by short-wavelength instabilities in the boundary layer. The system
evolves independently of the depth of the domain until the largest plumes reach the
lower boundary. There have been a number of numerical studies for Ra . O(103) that
examine the evolution of the dynamics and the merging of descending plumes before
they interact with the lower boundary (Hassanzadeh et al. 2007; Pau et al. 2010). Slim
et al. (2013) performed experiments in a Hele-Shaw cell for 100 < Ra < 1700, and
categorized the evolution of the system from the onset of convection in detail. Further
experimental studies by Neufeld et al. (2010) for 5×104 < Ra< 6×105 in a quasi-two-
dimensional porous medium, and by Backhaus et al. (2011) for 6× 103 < Ra< 9× 104

in a Hele-Shaw cell, provided measurements of the convective flux after the onset of
convection.

When the descending plumes reach the lower boundary, the domain begins to fill
up with dense fluid. Once this dense fluid reaches the upper boundary, the dynamics
of the system change and the convective flux begins to decrease. The qualitative
behaviour of the flux in this ‘shutdown’ regime has been observed in numerical
simulations by Hassanzadeh et al. (2007) for Ra < 1000, although they provided no
theoretical analysis of the system. Slim et al. (2013) presented experimental results
in this regime for 100 < Ra < 1700, and derived a phenomenological model that
describes the evolution of the flux based on an ad hoc parametrization of the typical
boundary-layer depth. We are not aware of any studies that explore the shutdown
regime, in which the convective flux steadily decreases, for Ra> 1700.

In this paper we focus on examining the evolution of the dynamics and the
convective flux during the shutdown regime for Ra > O(103). In the first half of
the paper, we show that the evolution of the flux in this one-sided problem can
be directly calculated using measurements of the convective flux from an RB cell.
We develop a simple theoretical ‘box’ model for this system that uses these
measurements to predict the time scales for shutdown, and compare the results to high-
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resolution numerical simulations. Furthermore, we find that the dynamical structure
of the flow in the shutdown regime exhibits a remarkable similarity to that in an
RB cell: the flow is dominated by vertical columnar ‘megaplumes’ that extend across
the height of the domain, and the lateral spacing of these plumes increases as the
average concentration increases and the system shuts down, in excellent quantitative
agreement with measurements from an RB cell. Motivated by previous experimental
systems (Neufeld et al. 2010; Backhaus et al. 2011) with a nonlinear density curve,
we also examine how the rate of shutdown depends on the form of the density ρ∗(C∗)
by considering a power-law equation of state.

In the second half of the paper, we develop these ideas to model convective systems
comprising two fluid layers, with an interface that is free to move. We examine the
dynamics and evolution of these systems using a combination of simple theoretical
box models, high-resolution numerical simulations and experiments. These tools allow
us to investigate and understand the similarities and differences between a variety of
physical systems, which are described in more detail in the following section. Finally,
we use our models to estimate the time scales for convective shutdown in a reservoir
with parameter values typical of those found in current CO2 sequestration sites.

2. Overview of physical systems
We explore three different model systems for one-sided convection in a porous

medium, each with different physical applications (figure 1). The systems are
distinguished primarily by different properties of the active interface at the top of
the convecting region: the first system is a ‘fixed-interface’ system, in the sense that
the interface is stationary and is located at a fixed upper boundary; the second and
third systems are ‘free-interface’ systems, in the sense that the active interface is free
to move and divides the convecting region below from a non-convecting region of fluid
above. The second and third systems are distinguished by whether the fluids on either
side of the interface are immiscible or miscible, as discussed below.

In the first part of the paper, we consider the ‘fixed-interface’ system, in which the
convective flux away from an interface does not significantly change its height. There
are a broad range of geophysical systems for which this is an excellent approximation,
including the convection of saline groundwater driven by evaporation at the upper
surface (Duffy & Al-Hassan 1988; Wooding, Tyler & White 1997a; Wooding et al.
1997b), and the extraction of geothermal energy driven by underground heat sources
(Cheng 1978; Goldstein et al. 2011). We consider a fluid that initially contains a
dissolved solute at some concentration C∗−. The upper boundary of the domain is
held at a fixed larger concentration C∗m. We consider a density curve that increases
monotonically from ρ∗(C∗−) to ρ∗m = ρ∗(C∗m). A typical density curve for such a
system is shown schematically in figure 1(a), together with vertical profiles of the
concentration and density. Diffusion of solute across the upper boundary forms a
dense solution that is unstable to downwards convection. Over time, the concentration
increases from C∗− towards C∗m, and convection gradually shuts down.

In the second part of the paper, we consider two different sorts of ‘free-interface’
system, in which the convective flux away from an interface causes the interface to
move. These are typically two-component systems, which initially comprise a light
fluid A overlying a dense fluid B. Dissolution of A into B creates fluid that is more
dense than pure B. The system is thus unstable to convection, and the active interface
between the two layers moves as A dissolves into B and convection transports the
dense solution down into the lower layer. The concentration C∗ describes that of
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 (a)

(b)

(c)

FIGURE 1. (Colour online) A schematic diagram showing typical equations of state ρ∗(C∗),
vertical concentration profiles C∗(z∗) and vertical density profiles ρ∗(z∗) for each of the three
physical systems outlined in § 2: (a) the ‘fixed-interface’ system, with a stationary upper
boundary z∗ = h∗ = H∗ held at concentration C∗m; (b) the ‘immiscible’ system, in which fluid
with concentration C∗+ overlies fluid with initial concentration C∗−, and the upper fluid is
partially soluble in the lower; and (c) the ‘miscible’ system, in which the two fluids are fully
soluble, and the interfacial height z∗ = h∗ is given by the isopycnal of maximum density. In
each case the maximum density ρ∗m is attained at concentration C∗m, the interfacial height is
given by z∗ = h∗ and the domain has constant depth H∗.

the solution of A in B, with pure A having concentration C∗+, and pure B having
concentration C∗− < C∗+. Mathematically, this is related to the classical Stefan problem
(see e.g. Hill 1987), and our approach to the modelling is similar to that used for
convection in a (non-porous) fluid layer below a melting interface (e.g. Huppert &
Sparks 1988a,b; Huppert 1989).
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FIGURE 2. A diagram showing the layout of this paper, as discussed in detail in § 2. The case
of immiscible fluids with a deformable interface is not studied in this paper, but is discussed
in § 6.3.

We consider two qualitatively different free-interface systems, which correspond to
immiscible and miscible fluids, respectively. In the ‘immiscible’ system, A is only
partially soluble in B, and, for simplicity, we assume that B is not at all soluble in
A. The density is largest (ρ∗ = ρ∗m) at the maximum concentration of A in B, denoted
by C∗m. The concentration C∗ cannot lie in the range C∗m < C∗ < C∗+, and, as such,
there is a discontinuity in the concentration and density fields at the interface, which
divides pure A above from a solution of A in B below. This behaviour can be seen in
figure 1(b), which shows a typical density curve for the immiscible system, together
with vertical profiles of the concentration and density.

In contrast, in the ‘miscible’ system A and B are fully soluble, and the equation
of state ρ∗(C∗) is continuous, with a maximum at some intermediate concentration
C∗m as shown schematically in figure 1(c). There is a qualitative distinction here from
the immiscible system, in that there is not a genuine interface between different fluids
when the fluids are miscible. Instead, we define the interface to be equal to the contour
of maximum density (ρ∗ = ρ∗m). This isopycnal separates stably stratified fluid above
from unstably stratified fluid below, and is therefore an interface in the sense that it
lies between regions of dynamically different fluid behaviour.

Both immiscible and miscible systems have important applications, most pertinently
to the subject of CO2 sequestration. Supercritical CO2 and brine are immiscible, with
CO2 being only 3–5 % soluble by weight in brine under typical storage conditions (van
der Meer 2005). In contrast, many experimental analogues of sequestration systems are
based on mixtures of glycol and water, and form miscible systems (e.g. Neufeld et al.
2010; Backhaus et al. 2011).

The structure of the paper is as follows (see figure 2). In § 3 we present the
governing equations, non-dimensionalization and numerical scheme used throughout
the paper. In the subsequent sections, we develop a series of mathematical models that
describe the different physical systems that we have introduced above.

Firstly, in § 4 we examine the ‘fixed-interface’ system. We develop a simple
theoretical box model of this system, which describes the shutdown of the solute
flux over time, and compare the results with high-resolution numerical simulations.
The box model uses measurements of the flux from an RB cell. We also show that the
dynamical structure of the flow in the one-sided system can be accurately predicted by
measurements from an RB cell.

In § 5 we examine both immiscible and miscible free-interface systems under the
assumption that the interface remains flat; the interface moves as fluid A dissolves into
fluid B, but it remains planar and there is no entrainment across it. This assumption
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allows us to use the results of the first part of the paper to derive theoretical box
models of each system, which are compared with direct numerical measurements. For
the immiscible system (§ 5.1), we make the additional modelling assumption that the
pore space is always fully saturated: there is no capillary retention of fluid in the pores
of the medium, and as such the interface remains ‘sharp’.

In § 6 we relax the assumption of a flat interface, and present experimental and
numerical results for the miscible system when the interface is free to deform. The
experimental system consists of water overlying propylene glycol in a Hele-Shaw cell.
Solutions of these fluids have a density curve that is qualitatively similar to that shown
in figure 1(c). We find that the effects of interfacial deformation and entrainment can
be considerable in the miscible system. In contrast, in § 6.3 we argue that interfacial
deformation is likely to be negligible in the immiscible system.

Finally, in § 7, we summarize the main results of this paper, and discuss the
implications for the different physical systems.

3. Governing equations
3.1. Dimensional equations

We consider the flow of a Boussinesq fluid in a two-dimensional homogeneous
isotropic porous medium, with horizontal and vertical coordinates x∗ and z∗,
respectively (dimensional variables are denoted with a ∗). We assume that the flow
u∗ = (u∗,w∗) obeys Darcy’s law and is incompressible,

u∗ =−Π
µ
(∇p∗ + ρ∗gẑ∗), (3.1)

∇ ·u∗ = 0, (3.2)

where Π is the permeability of the porous medium and µ is the fluid viscosity, both of
which are assumed to be constant, p∗ is the pressure field, g is the acceleration due to
gravity, and ẑ∗ is a unit vector in the positive z∗ direction. The density ρ∗ is a function
of the local concentration C∗. The concentration C∗ evolves in time t∗ by advection
and diffusion,

φ
∂C∗

∂t∗
=−u∗ ·∇C∗ + φD∇2C∗, (3.3)

where φ is the porosity of the porous medium and D is the diffusivity, both again
assumed to be constant, and for simplicity we have neglected the effects of dispersion.
These equations are equally applicable to thermal convection, provided heat transfer in
the solid phase of the medium can be neglected.

We consider the boundary and initial conditions for each of the different systems
described in § 2. The fixed-interface system has a stationary active upper boundary.
The domain has height h∗0 and width L∗. The upper boundary has an imposed constant
concentration C∗|z∗=h∗0 = C∗m, and no vertical velocity, w∗|z∗=h∗0 = 0. The lower and side
boundaries have zero mass and buoyancy fluxes,

w∗ = ∂C∗

∂z∗
= 0 at z∗ = 0, u∗ = ∂C∗

∂x∗
= 0 at x∗ = 0,L∗. (3.4a,b)

The medium is initially saturated with fluid at a concentration C∗− < C∗m. The initial
and boundary conditions for this system are shown schematically in figure 3(a), and
the equation of state is discussed below.
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(a) (b)

FIGURE 3. A schematic showing the initial conditions in both dimensional and
dimensionless variables: (a) the fixed-interface system with a stationary upper active
boundary; and (b) free-interface systems (either immiscible or miscible) with an interfacial
height that evolves in time.

Free-interface systems (both immiscible and miscible) have an active interface that
is located in the interior of the domain, and is free to move. The domain has a
constant depth H∗ and width L∗, with zero mass and buoyancy fluxes on every
boundary,

w∗ = ∂C∗

∂z∗
= 0 at z∗ = 0,H∗, u∗ = ∂C∗

∂x∗
= 0 at x∗ = 0,L∗. (3.5a,b)

The medium is initially saturated with fluid in two layers (figure 3b): a lower layer of
concentration C∗−, and an upper layer of concentration C∗+ > C∗−. The density of the
lower layer ρ∗− = ρ∗(C∗−) is greater than the density of the upper layer ρ∗+ = ρ∗(C∗+),
and, as such, the system is stable to large-scale overturning. The initial height of the
interface between the layers is given by z∗ = h∗0. For t∗ > 0, the interfacial height
is given by z∗ = h∗(x∗, t∗), which is defined to be the contour of maximum density
ρ∗ = ρ∗m. The details of how the location of the interface is determined over time in
each of the different model frameworks that we employ are discussed in §§ 5 and 6.

For both fixed-interface and free-interface systems, we consider general power-law
equations of state,

ρ∗ = ρ∗m[1− b (C∗m − C∗)n], (3.6)

where b> 0 is a constant coefficient and n is a positive integer. The maximum density,
given by the constant ρ∗m, is attained at concentration C∗m. For the fixed-interface
system, the concentration C∗ is always less than C∗m, and so ρ∗(C∗) 6 ρ∗m irrespective
of n. For immiscible free-interface systems, the concentration above the interface is
fixed at C∗ = C∗+, while below the interface the concentration is again always less than
C∗m. For miscible free-interface systems, however, (3.6) holds for C∗ > C∗m, and so we
require n to be an even (positive) integer in order to satisfy ρ∗+ < ρ

∗
−. Representative

equations of state for each system are shown in figure 1. In this paper we focus
primarily on either linear (n= 1) or quadratic (n= 2) equations of state.

3.2. Dimensionless equations
For all the systems considered, we define a density scale 1ρ∗ = ρ∗mb (C∗m − C∗−)

n to be
the difference between the maximum density and the initial density of the lower layer,
and a convective velocity scale U∗ = Πg1ρ∗m/µ. We also define the dimensionless
interfacial height h, concentration C and density ρ to be

h= h∗

h∗0
, C = C∗ − C∗m

C∗m − C∗−
, ρ = 1+ ρ

∗ − ρ∗m
1ρ∗

. (3.7a,b,c)
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The dimensionless concentration below the interface is then negative, and C = 0 at
the interface where the density is maximum (ρ = 1). We scale lengths with the initial
interfacial height h∗0, velocities with U∗, pressures with µU∗h∗0/Π , and times with the
convective time scale T∗ = φh∗0/U

∗.
Rescaling in this way gives dimensionless governing equations

u=−[∇P− (−C)n ẑ], (3.8)
∇ ·u= 0, (3.9)

ρ = 1− (−C)n, (3.10)
∂C

∂t
=−u ·∇C + 1

Ra0
∇2C, (3.11)

with a reduced pressure P= p+ z/[β (C∗m − C∗−)
n], and an initial Rayleigh number

Ra0 = h∗0U∗

φD
= h∗0Πg1ρ∗

φDµ
. (3.12)

For the fixed-interface system, the dimensionless initial condition is C(x, z, t = 0) =
−1, and the upper boundary condition is C|z=1 = 0. For free-interface systems, the
dimensionless initial concentration profile is given by

C(x, z, t = 0)=
{
−1 for 0 6 z 6 1,
C+ for 1< z< H,

(3.13)

as shown schematically in figure 3.

3.3. Numerical method

The requirement of incompressibility (3.9) can be satisfied by introducing a
streamfunction ψ , with (u,w) = (ψz,−ψx). We can also eliminate the pressure field P
by taking the curl of (3.8), which gives

∇2ψ =− ∂
∂x
(−C)n . (3.14)

Equations (3.11) and (3.14) were solved numerically, using the method that is briefly
outlined here and discussed in more detail in appendix A. We anticipated a thin
diffusive boundary layer below the interface z = h(x, t) and, in order to ensure that
the dynamics near the interface are well resolved, we used a vertical coordinate
transformation ζ = f (z, h). For the free-interface systems, this transformation is
adaptive, and is recalculated once the interface has moved a sufficient distance to
require it. The horizontal and temporal resolution are uniform.

We solved the Poisson equation (3.14) using a spectral method in the horizontal
direction, and a compact fourth-order finite-difference operator for the vertical
derivatives. The diffusion and advection operators in the transport equation (3.11)
were discretized using standard second-order finite differences and flux-conservative
techniques, respectively, and the equation was solved using an alternating-direction
implicit method (Press et al. 1989). The boundary conditions were imposed in such
a way as to ensure that the numerical scheme retained second-order accuracy (see
appendix A for details).



560 D. R. Hewitt, J. A. Neufeld and J. R. Lister

4. Fixed-interface system
We begin by considering a fixed-interface system, in which the active interface is

located at the stationary upper boundary z = 1. In § 4.1, we present the results of
high-resolution numerical calculations. Motivated by these results, in § 4.2 we derive
a simple one-dimensional ‘box’ model of this system in the shutdown regime. We
develop the box model using measurements of Nu(Ra) from an RB cell. In § 4.3, we
compare this theoretical box model with the numerical results. Finally, in § 4.4, we
compare the dynamical structure of the flow with that of an RB cell.

In § 3.2, we non-dimensionalized the variables with respect to the advective time
scale T∗. The dimensionless diffusive solute flux through the upper boundary is
therefore given by Ra−1

0 ∂C/∂z|z=1 (from (3.11)). However, we are aiming to compare
the one-sided system with the RB cell, where the dimensionless flux is more
commonly defined with respect to the diffusive time scale (as in, for example, standard
definitions of the Nusselt number). It is thus helpful to consider a rescaled flux, which
we define to be the actual dimensionless flux scaled by the flux Ra−1

0 that would
be given by diffusion down a unit linear concentration gradient in the absence of
convection. The horizontally averaged rescaled flux F(t) is therefore given by

F(t)= 1
L

∫ L

0

∂C

∂z

∣∣∣∣
z=1

dx. (4.1)

Throughout this paper, we measure and model the rescaled flux F(t).

4.1. Numerical results
Numerical snapshots of the concentration field C(x, z, t) are shown in figure 4, together
with the horizontally averaged concentration profile C(z, t) = L−1

∫ L
0 C dx at different

times, for a linear equation of state (n = 1) and an initial Rayleigh number Ra0 = 104.
The corresponding average solute flux F(t) (figure 5) will be discussed in detail at the
end of this subsection.

Initially, a stable diffusive boundary layer grows below the upper boundary. After
a critical time tc ∼ Ra−1

0 (see e.g. Riaz et al. 2006), the boundary layer becomes
unstable to short-wavelength instabilities, leading to downward convection (figure 4a).
At this point, both the flux from the upper boundary and the convective dynamics
are independent of the location of the lower boundary. At some time t1, the first
generation of convecting plumes reaches the base of the domain (figure 4b), while at
some later time t2, the return flow from this interaction reaches the upper boundary
and the flux begins to decrease. For t > t2 the system enters a different, ‘shutdown’,
regime in which the solute flux F(t) decreases as the interior of the domain becomes
steadily more concentrated with solute. The times t1 and t2 are controlled both by
the diffusive onset time scale tc ∼ Ra−1

0 and by the O(1) convective time scale. Since
Ra0 � O(1), we expect the convective time to dominate: thus t1 can be assumed to
be independent of Ra0, and t2 ≈ 2t1. We find numerically that t1 ≈ 7.5 and t2 ≈ 15,
in broad agreement with the experimental results of Slim et al. (2013). For t > t2,
the horizontally averaged concentration C(z, t) is approximately independent of z away
from the boundary layer, and C increases steadily over time (figure 4c,d). These
observations underpin the theoretical modelling in § 4.2.

The dynamics in the shutdown regime, t > t2, are dominated by persistent
descending ‘megaplumes’ interleaved with a columnar return flow that rises towards
the upper boundary. Instabilities in the thin boundary layer at the upper boundary
drive the growth of small vigorous ‘protoplumes’, which carry dense fluid from
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FIGURE 4. (Colour online) Snapshots of the concentration field C in a fixed-interface system,
from numerical simulations, for n = 1, Ra0 = 104 and aspect ratio L = 2, together with plots
of the horizontally averaged concentration profile C(z, t)= L−1

∫ L
0 C dx: (a) time t = 4, before

the first generation of plumes has reached the base of the domain; (b) t = 8 ≈ t1, when the
descending plumes first reach the base; (c) t = 32, in the shutdown regime; and (d) t = 128.
The horizontally averaged concentration profile in panels (c) and (d) is approximately
uniform away from the upper boundary. The horizontal spacing of the downwelling plumes
increases over time. Note the different grey (colour) scales on the left.

the boundary layer into the larger descending megaplumes. As the interior becomes
more concentrated, the dynamics of the flow become less vigorous; the depth of the
boundary layer increases as the density contrast with the interior decreases; and the
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FIGURE 5. (Colour online) The horizontally averaged solute flux F(t) (4.1), for a linear
equation of state n = 1, aspect ratio L = 2 and Ra0 = 1 × 104 and 2 × 104 as marked:
(a) measurements from one numerical simulation, showing the variability of F; and
(b) measurements ensemble-averaged over eight numerical simulations (solid), together with
the theoretical predictions (4.15) (dotted) as discussed in § 4.2. The transition to the shutdown
regime at t = t2 is marked.

(differing) horizontal length scales associated with both protoplumes and megaplumes
increase. The dynamical structure of the flow appears qualitatively very similar to that
of the upper half of an RB cell in the high-Ra regime (Hewitt et al. 2012). This
similarity is discussed in § 4.2.1.

The horizontally averaged solute flux (4.1) exhibits rapid chaotic fluctuations about
a time-varying mean. Measurements of other variables from our numerical calculations
also show some chaotic variation about time-varying average values. We typically
ensemble-average our numerical results to reduce the fluctuations and to give clearer
measurements for comparison with the theoretical modelling. The variables used in
the theoretical sections of this paper refer to the mean values. The number of repeat
simulations used in an ensemble average is given in the caption of the relevant
figure.

Figure 5 shows numerical measurements of the horizontally averaged flux F(t). The
chaotic variation discussed above can be observed in measurements from a single
simulation (figure 5a). Ensemble-averaged measurements (figure 5b) show that the flux
initially fluctuates about an approximately constant value. Once the first generation of
plumes have reached the lower boundary, and the domain has filled up with denser
fluid, the flux decays slowly in the shutdown regime t > t2.

4.2. Theoretical box model
The numerical calculations showed that the horizontally averaged interior concentration
is approximately uniform for t > t2 (figure 4c,d), apart from in a thin boundary layer
near the upper boundary. This observation provides the motivation for the development
of a simple box model, using a well-mixed approximation. We assume that, outside
the thin boundary layer, the horizontally averaged concentration is independent of z, so
that

C =Θ(t)6 0. (4.2)

As Θ(t) increases towards zero, the strength of convection decreases. Based on the
definition of the Rayleigh number in (3.12), we define a time-dependent Rayleigh
number Ra(t) to be proportional to the current density difference between the upper
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boundary (C = 0) and the interior (C =Θ(t)6 0). Thus

Ra(t)= Ra0 |Θ(t)|n . (4.3)

We further define a time-dependent Nusselt number Nu(t), by scaling the flux F(t)
up to a unit concentration difference, which gives

Nu(t)= F(t)

|Θ(t)| . (4.4)

We expect Nu(t) to be given by some function of the current Rayleigh number, so that
Nu(t)=N [Ra(t)]. The functional form of N (Ra) is discussed in § 4.2.2.

We integrate the transport equation (3.11) over the whole domain, and use the
boundary conditions to obtain

d
dt

∫ 1

0

∫ L

0
C dx dz= 1

Ra0

∫ L

0

∂C

∂z

∣∣∣∣
z=1

dx. (4.5)

Using (4.1) and the definition of the horizontally averaged concentration C(z, t), (4.5)
can be rewritten as

d
dt

∫ 1

0
C dz= F

Ra0
. (4.6)

Since, under the well-mixed approximation (4.2), we are neglecting the area of the thin
boundary layer, (4.6) can be combined with (4.2) and (4.4) to give

dΘ
dt
= |Θ|

Ra0
N [Ra(t)]. (4.7)

Equation (4.7) gives a theoretical prediction for the evolution of the shutdown regime,
which we can solve for a given form of the Nusselt number N (Ra).

The model applies for t > t2, and so (4.7) can be solved together with an initial
condition for the interior concentration Θ(t2). In fact, solutions can be extrapolated
back to t < t2, and (4.7) can thus be solved with an initial condition Θ(t0) = −1,
where t0 < t2 is a virtual origin that allows for the differing dynamics of the system
before it enters the shutdown regime. We find numerically that t0 = 0 provides a very
good approximation.

4.2.1. Relationship to the two-sided Rayleigh–Bénard cell
As noted earlier, the dynamical structure of one-sided flow in the shutdown regime

(figure 4c,d) appears qualitatively very similar to half of the convective profile
observed in a two-sided RB cell (Hewitt et al. 2012). We now show that the Nusselt
number NRB(Ra) measured in an RB cell is quantitatively applicable to shutdown in
the one-sided system.

We consider first, for simplicity, the case of a linear equation of state (n = 1).
Suppose that a statistically steady RB cell has boundary conditions of constant
concentration C = 0 on the upper boundary and C = −1 on the lower, and an
average concentration Ci

RB = −1/2 in the interior. As n = 1, the density difference
1ρRB between the upper boundary and the interior is given by 1ρRB =−Ci

RB = 1/2. In
contrast, while the one-sided system also has a boundary condition of C = 0 on the
upper boundary, it has a condition of no solute flux through the lower boundary, and
an average interior concentration Ci = Θ(t). The density difference between the upper
boundary and the interior is therefore given by 1ρ = |Θ(t)|.
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We compare the two systems by rescaling Ra(t) to take account of the different
boundary conditions and density differences between the upper boundary and the
interior. Firstly, because of the different lower boundary conditions, we suggest that
the one-sided system is related to the upper half of an RB cell of double the depth.
Secondly, in order that the density difference should agree in the two systems, we
require the total density difference across the RB cell to be scaled by a factor
1ρ/1ρRB = 2|Θ|. The factor 1ρ = |Θ| is already included in the definition (4.3)
of Ra(t), and we therefore define the effective Rayleigh number Rae for the equivalent
RB cell to be Rae = 4Ra(t).

For the general case with a nonlinear equation of state (n > 1), we can perform a
similar analysis. However, there are two differences. Firstly, the interior concentration
Ci

RB of the RB cell is a function of n, as discussed in appendix B. Secondly, the
dimensionless density difference is not simply equal to the concentration difference,
but is given by 1ρRB = |Ci

RB|n and 1ρ = |Θ|n. Therefore, the effective Rayleigh
number is given by

Rae = r(n)Ra(t), where r(n)= 2
1ρRB

, (4.8a,b)

because, again, the factor 1ρ = |Θ|n is already included in the definition (4.3) of
Ra(t). In appendix B we provide numerical estimates of Ci

RB(n), and show that it can
be well approximated by the empirical formula Ci

RB = − (n+ 1)−1/n for n 6 5. Thus,
1ρRB(n)= 1/(n+ 1), and the constant premultiplying factor r(n) reduces to

r(n)= 2(n+ 1). (4.9)

4.2.2. The functional form of the Nusselt number
In an RB cell, the time-averaged Nusselt number Nu is a function of the Rayleigh

number Ra only, and is given by the form NRB(Ra). Hewitt et al. (2012) showed
that NRB asymptotically scales linearly with Ra. Typically, the relationship NRB(Ra) is
described as a slightly sub-linear power law for Ra > 103 (Otero et al. 2004; Neufeld
et al. 2010; Backhaus et al. 2011). However, we find that the numerical measurements
of NRB(Ra) for 1300 < Ra < 4 × 104 from Hewitt et al. (2012) are more accurately
fitted by an equation of the form

NRB(Ra)= αRa+ β, (4.10)

where α ≈ 6.9 × 10−3 and β ≈ 2.75 are constants. Figure 6 shows a plot of NRB/Ra
against Ra, together with (4.10) and the power-law curve NRB ∼ Ra0.95 that best fits
the data. We find that the linear fit (4.10) deviates from the data by less than 0.6 %,
while the power-law fit deviates by more than 2 %, over the range shown.

4.2.3. Analytic solution of the box model
The effective Rayleigh number Rae = rRa0 |Θ|n, given by (4.3) and (4.8a), can be

combined with (4.10) to give an expression for the Nusselt number in the one-sided
system:

N [Ra(t)] =NRB[Rae], (4.11)
= αrRa0 |Θ(t)|n+β. (4.12)

We use (4.12) to integrate (4.7) analytically. As discussed above, we take an
initial condition Θ(t0) = −1, where t0 < t2 is a virtual time origin. The solution is
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FIGURE 6. (Colour online) Measurements of the Nusselt number NRB divided by the
Rayleigh number Ra in an RB cell from Hewitt et al. (2012). Equation (4.10) is also shown
(solid), together with the best-fit power law NRB ∼ Ra0.95 (dashed).

given by

Θ(t)=−γ 1/n [(1+ γ )eαγ nr(t−t0) − 1]−1/n
, (4.13)

where γ = β/(αrRa0).
If Ra0 is sufficiently large (Ra0 � 103) then γ � 1. In the limit γ → 0, which

corresponds to the simple asymptotic linear scaling N = αrRa in (4.12), equation
(4.13) reduces to

Θ(t)=− [1+ αnr(t − t0)]−1/n, (4.14)

and the solute flux F(t), given by (4.4), becomes

F(t)= αrRa0 |Θ|n+1 = αrRa0 [1+ αnr(t − t0)]−(n+1)/n . (4.15)

Thus, in the limit of large Ra0 (γ → 0), the evolution of the interior concentration
Θ(t) becomes independent of Ra0, and the flux F(t) is proportional to Ra0 (as we
might expect from the Nusselt number scaling), but otherwise evolves independently
of Ra0.

An important feature of these results is the length of time it takes for the convective
flux to shut down. The rate at which the flux F decreases is controlled by α, the
constant in the Nusselt number relationship (4.10). Since α � 1, the time scales for
the shutdown of convection are much greater than the O(1) convective time scale.

The dependence on the equation of state (3.10) of both the flux and the interior
concentration is different at early and late times (figure 7). Initially, the flux decreases
more rapidly at larger values of n. This behaviour can be seen from leading-order
expansions of (4.14) and (4.15) (with t0 = 0), which show that

Θ =−[1− αrt + O(α2t2)], F = αrRa0[1− (n+ 1)αrt + O(α2t2)]. (4.16a,b)

Therefore, using (4.9), to leading order, one has dΘ/dt ∼ 2α(n + 1) and dF/dt ∼
−4α2 (n+ 1)3, both of which increase in magnitude with n. However, at late times,
(4.14) and (4.15) are dominated by different scalings with time: the model predicts
that the interior concentration Θ(t) increases towards zero like t−1/n, and the flux F(t)
decays like t−(n+1)/n. Therefore, the increase of the interior concentration and the
resulting decrease of the flux are both ultimately slower at larger n.



566 D. R. Hewitt, J. A. Neufeld and J. R. Lister

102

101

100

F

100 200 300 400 5000 600
t

FIGURE 7. The solute flux F(t) given by (4.15) for Ra0 = 104, n = 1 (solid) and n = 2
(dashed), illustrating that the initial decrease of the flux is faster at larger n, while the long-
time decay is slower and the flux is predicted to scale with t−(n+1)/n.

t t

(a) (b)0

–0.2

–0.4

–0.6

–0.8

–1.0
0 100 200 300

100

102

101

0 100 200 300

F

FIGURE 8. (Colour online) Measurements from full numerical calculations (solid) together
with theoretical predictions, for Ra0 = 104 and aspect ratio L = 2: (a) the interior
concentration Θ(t), ensemble-averaged over four calculations, for n= 1 and n= 2 as marked,
together with the theoretical predictions from (4.13) (dotted); (b) the solute flux F(t) for
n= 2, ensemble-averaged over four calculations, together with the theoretical prediction from
(4.4) and (4.13) (dashed), and the theoretical prediction in the asymptotic limit γ → 0 from
(4.15) (dotted). Numerical measurements of F(t) for n= 1 are shown in figure 5.

These differences can be understood by the shape of the density curve ρ(C) =
1 − (−C)n in (3.10) for different values of n. At larger n, the gradient of the density
curve near C = −1 is larger, and therefore the density difference |Θ|n that drives
convection initially decreases more rapidly. However, the different scaling behaviour
of ρ(C) near to the stationary point C = 0 means that the long-time scaling of F(t)
and Θ(t) has a weaker exponent at larger n.

4.3. Comparison of the box model and numerical results
In this section we compare the analytic solutions with numerical measurements. We
find empirically that t0 = 0 gives good agreement with the numerical results, and
therefore we use this value throughout.

The interior average concentration Θ(t) is measured in the numerical simulations
by defining a time-dependent boundary-layer depth, below which the concentration is
averaged in both spatial directions. Figure 8(a) shows numerical measurements and
theoretical predictions of Θ(t), for both a linear (n = 1) and a quadratic (n = 2)
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FIGURE 9. (Colour online) Numerical measurements of the average wavenumber k of the
downwelling megaplumes, for a linear equation of state n = 1, an aspect ratio L = 2 and
Ra0 = 2 × 104, measured at z = 0.5 and plotted against the effective Rayleigh number
Rae = 4Ra0|Θ| (4.8a,b): (a) measurements from one simulation, showing the typical
variability of k; and (b) measurements ensemble-averaged over eight simulations (solid line),
together with direct measurements of k(Rae) in an RB cell (points), taken from Hewitt et al.
(2012).

equation of state. The theoretical predictions from the box model (4.13) give very
good agreement with the full numerical solutions.

Figure 8(b) shows numerical measurements of the solute flux F(t) for a quadratic
equation of state (n = 2). The theoretical solution derived from (4.13) and the simpler
asymptotic solution (4.15) are also shown. These solutions are almost indistinguishable
from each other except at late times. Both solutions give excellent agreement with the
numerical results.

These figures show that simple one-dimensional box models give a very good
description of the evolution of the system in the shutdown regime. We have
also shown that the results from an RB cell can be used both qualitatively
and quantitatively to describe the average behaviour of the flux in the shutdown
regime, and the corresponding evolution of the interior concentration Θ . Moreover,
these results suggest that the simple asymptotic linear scaling N = αrRa, with
α = 6.9 × 10−3 and r(n) given by (4.9), is a very good approximation provided
Ra0 > 103.

4.4. Dynamical structure of shutdown: the horizontal wavenumber
The correspondence between one-sided and two-sided convection is further
strengthened by a comparison of the dynamical structure of the flow. Figure 4 shows
that, in the shutdown regime, the flow is dominated by long descending megaplumes,
with an average horizontal wavenumber that decreases over time. Based on the
discussion above, we might expect the average horizontal wavenumber k(t), which
will depend on the time-dependent Rayleigh number Ra(t), to be in agreement with
the equivalent dependence k(Rae) from an RB cell.

We measured the average horizontal wavenumber k(t) by taking the Fourier
transform of the concentration profile at z = 0.5, and calculating the average value
of k from the Fourier spectrum. Figure 9 shows this measured k as a function of
Rae = rRa(t), together with numerical results from Hewitt et al. (2012) for k(Rae) in
an RB cell. The good agreement seen in this figure provides further evidence that the
one-sided system can be quantitatively compared to the upper half of an RB cell, and
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that the dynamical structures of the shutdown regime are well described by the results
from an RB cell.

5. Free-interface systems I: flat interface
In the first half of this paper we examined the shutdown of convection in a ‘fixed-

interface’ system, and demonstrated the close link between such a one-sided system
and the two-sided RB cell. In the second half of the paper, we develop these ideas to
model different ‘free-interface’ systems, in which the flux of solute across an interface
causes that interface to move. As described in § 2, such systems comprise two fluids
that can be either immiscible or miscible: in an immiscible system, the upper fluid
is only partially soluble in the lower, and (by assumption) the lower is not at all
soluble in the upper; while in a miscible system, the upper fluid is fully soluble in
the lower. For both immiscible and miscible systems, dissolution of the upper fluid
into the lower causes a change in the density of the solution, which drives convection.
Typical equations of state, average concentration profiles, and average density profiles
for immiscible and miscible systems can be seen in figure 1(b,c).

In this section, we consider both immiscible and miscible systems under the
assumption that the moving interface can be approximated as remaining flat. Therefore,
the interfacial height h is a function of time alone. In § 5.1, we examine the
immiscible system with a flat interface: we develop a simple one-dimensional box
model, and compare the theoretical predictions of this model with measurements
from full numerical simulations. In § 5.2, we examine the miscible system with a
flat interface: we similarly present a theoretical one-dimensional box model and full
numerical simulations. The reader is reminded that the ‘interface’ for the miscible
system is defined by the isopycnal of maximum density (see § 2). In § 5.3, we
summarize the main results of this section, and compare the two systems. In § 6,
we relax the assumption of a flat interface and examine the effects of interfacial
deformation for the miscible system.

The relevant variables and non-dimensionalization for free-interface systems were
introduced in § 3. We recall that the system is initially stratified in two layers
(figure 3b), with a lower layer 0 < z < 1 of concentration −1 and an upper layer
1 < z < H of concentration C+ > 0. The maximum density is attained at C = 0. The
density is given as a function of the concentration by (3.10). For t > 0, the interfacial
height is a function of time alone (due to the assumption of a flat interface), and is
given by z= h(t).

As in § 4, we consider the flux scaled by the diffusive flux in the absence of
convection. Under the assumption of a flat interface, the scaled horizontally averaged
flux F(t) across the interface is given by

F(t)= 1
L

∫ L

0

∂C

∂z

∣∣∣∣
z=h(t)

dx. (5.1)

The evolution of the interfacial height h(t) can be calculated from conservation of
solute over the entire domain, which gives∫ H

0

∫ L

0
C(x, z, t) dx dz= L[−1+ (H − 1)C+]. (5.2)

The right-hand side of (5.2) is the result of evaluating the integral at t = 0.
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5.1. Immiscible system
When the two fluids are immiscible (and, by assumption, the lower fluid is insoluble in
the upper), the concentration C+ above the interface z> h(t) remains constant, as does
the corresponding density ρ+ < 0. Hence global conservation of solute (5.2) reduces to∫ h(t)

0
C dz=−1+ [h(t)− 1]C+. (5.3)

5.1.1. Theoretical box model
Following the analysis of § 4.2, we use a well-mixed approximation for the

interior of the system in z < h(t): we assume that, below a thin boundary layer,
the horizontally averaged concentration C(z, t) is independent of z, and is given by

C =Θ(t)6 0. (5.4)

Starting from the definition of the initial Rayleigh number (3.12), we now define the
time-dependent Rayleigh number Ra(t) to be

Ra(t)= Ra0 |Θ(t)|n h(t), (5.5)

which accounts for the changes in concentration and depth of the convecting layer.
We further define a time-dependent Nusselt number Nu(t), by scaling the horizontally
averaged flux F up to a unit concentration difference and height, which gives

Nu(t)= h(t)F(t)

|Θ(t)| . (5.6)

The Nusselt number is given by the functional form Nu(t)=N [Ra(t)], as discussed in
§ 4.2.2, and the flux F(t) is given by (5.1).

As in § 4.2, we integrate the transport equation (3.11) over the lower layer z 6 h,
and use the boundary conditions together with (5.1) to obtain

d
dt

∫ h(t)

0
C dz= F

Ra0
. (5.7)

Under the well-mixed approximation (5.4), contributions to the area integral in (5.7)
from the thin boundary layer below the interface are neglected. Equations (5.4), (5.6)
and (5.7) can be combined to give

h
dΘ
dt
= |Θ|

hRa0
N [Ra(t)]. (5.8)

Equation (5.8) can be compared to (4.7), which is the equivalent governing equation
for the fixed-interface box model.

The well-mixed approximation (5.4) can also be combined with global conservation
of solute (5.3) to give

hΘ =−1+ (h− 1)C+, (5.9)

which can be rearranged to obtain the interfacial height

h(t)= C+ + 1
C+ + |Θ(t)| . (5.10)

One could solve (5.8) and (5.10) numerically using any functional form of the
Nusselt number N (Ra), including the numerical parametrization in (4.12). We have
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FIGURE 10. (Colour online) Theoretical results for the immiscible system with n = 1,
C+ = 1.2, t0 = 0 and Ra0 = 2 × 104: (a) the average concentration Θ(t) given implicitly by
(5.12) (solid), together with the prediction for a stationary interface given by (4.14) (dashed);
(b) the solute flux F(t) given by (5.13) (solid), together with the prediction for a stationary
interface given by (4.15) (dashed); and (c) the interfacial height h(t) given by (5.10) and
(5.12).

shown in § 4 that the asymptotic linear scaling N (Ra)= αrRa, where α = 6.9× 10−3

and r(n) is defined in (4.9), provides a very good approximation to (4.12) if Ra> 103,
and we therefore use this scaling here. Equations (5.8) and (5.10), together with this
linear scaling, give a simple ordinary differential equation for Θ:(

C+ + 1
C+ + |Θ|

)
dΘ
dt
= αr |Θ|n+1 . (5.11)

Equation (5.11) describes the evolution of Θ(t) in the shutdown regime, t > t2. In
a similar manner to the analysis of § 4.2, we extrapolate solutions back to t < t2, and
apply an initial condition Θ(t0)=−1, where t0 < t2 is a virtual origin. The solution to
(5.11) is then given implicitly by

n∑
k=1

[
Ck
+

kΘk
(1− |Θ|k)

]
+ ln

[
C+ + |Θ|
|Θ|(1+ C+)

]
=−αr (−C+)

n+1

1+ C+
(t − t0). (5.12)

The height of the interface h(t) is related to the interior concentration Θ(t) by (5.10).
Using (5.6), the flux F(t) is related to Θ(t) by

F = αrRa0 |Θ|n+1 . (5.13)

Figure 10 shows solutions calculated from (5.12) for Θ(t), F(t) and h(t). The
concentration Θ(t) < 0 increases monotonically towards Θ(t→∞) = 0, while the
corresponding interfacial height h(t) increases monotonically towards h(t→∞) =
h∞ = 1 + 1/C+, independent of n. In the limit of large C+, which physically
corresponds to the limit (C∗+ − C∗m)� (C∗m − C∗−), (5.12) reduces to the solution for
a stationary interface (4.14), and the height h of the interface remains approximately
constant for all time. For any value of C+, the evolution of the system is ultimately
given by the solution for a fixed interface (4.14) (up to an additional factor of 1/h∞
multiplying t − t0), since h→ h∞ at long times.

The predictions for a stationary interface from § 4.2 are also shown for Θ and F
in figure 10(a,b). Given the relatively large change in the interfacial height h over
time (figure 10c), it is surprising that the interior concentration Θ (figure 10a) does
not display a significant difference to the prediction for a stationary interface. This
observation is related to the differences in the solute flux (figure 10b) between the
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FIGURE 11. (Colour online) Numerical measurements for the immiscible system with a flat
interface for Ra0 = 2 × 104, domain width L = 2 and height H = 2, showing the horizontally
averaged concentration C(z, t) at times t = 4 (solid), t = 32 (dashed) and t = 256 (dotted),
and the interfacial height h(t): (a) linear equation of state n = 1; and (b) quadratic equation
of state n = 2. Dashed lines show the theoretical predictions for the interfacial height h(t)
from box models. The dots on the left-hand figures show the location of the interface, and
correspond to the dots on the right-hand figures. Each panel shows results for both C+ = 1.2
and C+ = 2, as marked.

predictions for a moving and a stationary interface: while the area of the domain
below the interface (∝ h) is greater in the former case than in the latter, the flux
F across the interface is also greater, and therefore the interior concentration Θ is
not significantly different. For larger values of C+ (not shown here), we find that the
solutions of (5.11) increasingly resemble those for a stationary interface.

The dependences of Θ and F on n are also qualitatively similar to those for a
stationary interface, which was discussed in § 4.2.3. The interior concentration and the
flux again have long-time behaviours Θ ∼ t−1/n and F ∼ t−(n+1)/n to leading order, and
the initial decay of the flux is again more rapid for larger n.

5.1.2. Numerical results
We solved the full governing equations for the flat-interface immiscible system

numerically as outlined in appendix A. These equations are (3.11) and (3.14) for the
convecting region z< h(t), subject to boundary conditions C = 0 and w= 0 imposed at
a flat interface h(t), which is determined from (5.3).

Figure 11 shows measurements of the horizontally averaged concentration C(z, t)
and the interfacial height h(t) for both linear (n = 1) and quadratic (n = 2) equations
of state. The upwards retreat of the interface is approximately linear at early times
(t < t2), while the downwelling plumes are descending through unmixed fluid. Once
the system enters the shutdown regime (t > t2), the behaviour of h(t) changes. The
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interface moves more slowly for larger values of C+, as there is more solute per
unit volume in the upper layer. The corresponding profiles of C(z, t) show that the
interior of the domain is well mixed for t > t2, in agreement with the behaviour below
a fixed interface (§ 4) and with the well-mixed assumption (5.4). The predictions of
the theoretical box model for the interfacial height h(t), which is based upon this
well-mixed assumption, are also shown in figure 11, and give very good agreement
with the numerical simulations.

5.2. Miscible system
When the two fluids are miscible, the relatively low concentration below the moving
interface can affect the concentration field above the interface by diffusion. Since, by
assumption, the interface z= h(t) remains flat, the concentration C is independent of x
for z > h. In this region, the governing transport equation (3.11) therefore reduces to
a one-dimensional partial differential equation describing vertical diffusion away from
the moving interface h(t). In the frame of reference moving with the interface, (3.11)
becomes

∂C

∂t
− dh

dt

∂C

∂z
= 1

Ra0

∂2C

∂z2
. (5.14)

5.2.1. Theoretical box model
The development of a theoretical box model for the miscible system follows similar

reasoning to that for the immiscible system in § 5.1.1. The horizontally averaged
interior concentration Θ(t) 6 0 (5.4), the time-dependent Rayleigh number Ra(t) (5.5)
and the time-dependent Nusselt number Nu(t) (5.6) are all as defined in § 5.1.1. The
evolution equation for the average interior concentration Θ(t) is again given by (5.8).

Unlike the immiscible system, the concentration above the interface does not remain
constant. Instead, it evolves by diffusion (5.14), and varies over some length scale
between C = 0 at the interface and C = C+ (as shown schematically in figure 1c). In
order to generate a simple box model that approximates the solution of (5.14), we
define a diffusive boundary-layer depth

δ(t)= 2
C+

∫ H

h
(C+ − C) dz, (5.15)

which is an integral measure of the length scale of the concentration profile in z > h.
We then approximate (5.14) by assuming that the evolution of δ can be described by a
simple ordinary differential equation of the form

dδ
dt
= a1

Ra0δ
− a2

dh

dt
, (5.16)

where a1 and a2 are numerical coefficients. Equation (5.16) is motivated by the
physical balances that control the boundary-layer depth δ: the first term on the right-
hand side of (5.16) describes the diffusive growth of a boundary layer with a flux
proportional to the diffusivity Ra−1

0 and the concentration gradient, while the second
term describes the advection of the interface.

The constants a1 and a2 in (5.16) are chosen so that the total solute δC+/2
contained in the boundary layer gives a good approximation to that in the full
solution of (5.14). We find a1 and a2 by comparing solutions of (5.16) with
analytic solutions of (5.14) in two limits. In the limit where dh/dt is negligible, the
pure-diffusion solution of (5.14) has the form C ∼ erf[(z − h)

√
Ra0/4t], and (5.16)
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FIGURE 12. (Colour online) Theoretical predictions for the immiscible (dashed) and
miscible (solid) systems, with n = 2, C+ = 2, t0 = 0 and Ra0 = 2 × 104: (a) the average
concentration Θ(t), for which the two predictions are almost indistinguishable; (b) the
solute flux F(t); and (c) the interfacial height h(t), which has qualitatively different late-time
behaviour in the two systems.

gives δ = √2a1t/Ra0. Similarly, in the steady limit in which advection balances
diffusion, the solution of (5.14) has the form C ∼ exp[−ḣRa0(z− h)], where ḣ= dh/dt,
while (5.16) gives δ = a1/a2ḣRa0. We use (5.15) to equate each of these solutions at
leading order, which gives a1 = 8/π and a2 = a1/2= 4/π.

Including the contribution from the diffusive upper boundary layer, global
conservation of solute (5.2) gives

h(C+ + |Θ|)= (1+ C+)− δC+2
. (5.17)

After rearranging (5.8), (5.16) and (5.17), we extract coupled evolution equations for
the concentration Θ , the height of the interface h and the diffusive boundary layer
depth δ:

dΘ
dt
= |Θ|N

h2Ra0
, (5.18)(

|Θ| + C+ − a2C+
2

)
dh

dt
=− a1C+

2δRa0
+ |Θ|N

hRa0
, (5.19)(

|Θ| + C+ − a2C+
2

)
dδ
dt
= a1(C+ + |Θ|)

δRa0
− a2|Θ|N

hRa0
. (5.20)

Equations (5.18)–(5.20) give a theoretical prediction for the evolution of shutdown in
a miscible flat-interface system. We integrate these equations numerically using the
functional form N (Ra) in (4.12).

The solutions for the interior concentration Θ and the flux F from this model
(figure 12a,b) are almost indistinguishable from those for the immiscible system.
However, the interfacial height h for the miscible system exhibits qualitatively different
behaviour at long times (figure 12c). The diffusion of solute above the interface slows
the upward motion of the interface, and eventually leads to a decrease in the isopycnal
that defines h. Equation (5.19), together with (5.6), give an equation for dh/dt, which
shows that the height of the interface will decrease when

F <
a1C+

2δ
, (5.21)

i.e. the height of the interface will decrease when the flux of solute into the lower
layer (F) is less than the diffusive flux into the upper layer (∼C+/δ).
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FIGURE 13. (Colour online) Numerical measurements for the miscible system with a flat
interface, for Ra0 = 2 × 104, domain width L = 2 and height H = 2, and a quadratic equation
of state n= 2: (a) the horizontally averaged concentration C(z, t) at times t = 4 (solid), t = 32
(dashed) and t = 256 (dotted); and (b) the interfacial height h(t). Dashed lines show the
theoretical predictions for the interfacial height h(t) from box models. The dots in panel (a)
show the location of the interface, and correspond to the dots in panel (b). Each panel shows
results for both C+ = 1.2 and C+ = 2, as marked.

In a finite system with no-flux boundaries, the final steady state must have a uniform
concentration C∞, which is determined by conservation of solute (5.2) to be

C∞ = −1+ (H − 1)C+
H

. (5.22)

If C∞ < 0, then the interface z= h(t) must reach the upper boundary z= H, and (5.21)
is never satisfied. Conversely, if C∞ > 0, the interface must eventually descend, and
approaches the base of the domain by diffusion. From (5.22), C∞ > 0 if H > 1+ 1/C+.
This condition is satisfied for all the results presented in this paper.

5.2.2. Numerical results
We solved the full governing equations for the miscible system numerically (see

appendix A). These equations are (3.11) and (3.14) for z < h(t), and (5.14) for
z > h(t), together with conservation of solute (5.2), and the flat-interface assumption
w= 0 at z= h(t).

Figure 13 shows measurements of the horizontally averaged concentration C(z, t)
and the interfacial height h(t), with a quadratic equation of state n = 2. As in the
case of the immiscible system (figure 11), the rate of upwards retreat of the interface
is approximately constant for t < t2, and then decreases once the system enters the
shutdown regime (t > t2). Unlike the immiscible system, however, the concentration
field above the interface evolves in time (figure 13a). This evolution becomes very
significant at long times, and results in an eventual decrease of the interfacial height
h(t) (figure 13b). The time at which the interface begins to descend decreases with
increasing C+, as predicted by (5.21). The predictions of the box model are also
shown in figure 13b, and accurately capture both the slowing of the interface and its
eventual descent.

5.3. Conclusions for immiscible and miscible systems with a flat interface
The results in figures 11 and 13 show that the theoretical box models give excellent
predictions for the shutdown of free-interface systems, under the assumption that the
interface remains flat. These figures also highlight the main difference between the
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immiscible and miscible systems: the long-time evolution of the interfacial height
h(t), which continually increases in the immiscible system, but eventually decreases
in the miscible system. Given this qualitative difference in the interfacial behaviour,
it is remarkable that the solute flux F(t) and the interior concentration Θ(t) are so
similar between the two systems (figure 12). The time scales for the shutdown of
convection in the two systems are therefore roughly equal, even though observations
of the interfacial height h(t) might suggest otherwise. In the limit of large C+, we
find that the predictions of the box models for these free-interface systems can be well
approximated by the solution in § 4.2 for a fixed interface.

These results apply when the assumption of a flat interface is appropriate. In the
next section, we examine miscible systems with a deformable interface, and show
that the removal of the flat-interface approximation can lead to very different rates of
shutdown.

6. Free-interface systems II: deformable interface
In this section we relax the flat-interface assumption. Therefore, the interface is free

to ‘deform’, and solute can be entrained across it.
In § 6.1 we present numerical results for the miscible system. In § 6.2, to test the

validity of the numerical results in a physical system, we compare with measurements
from an experimental miscible system in a Hele-Shaw cell. In § 6.3, we consider
the validity of the flat-interface approximation for miscible systems and discuss the
anticipated effects of a deformable interface on immiscible systems.

6.1. Numerical results for the miscible system
We solved the governing equations (3.11) and (3.14) over the whole domain, with
an initial condition given by (3.13) and a quadratic equation of state (n = 2) (see
appendix A for numerical details). As discussed in § 2, the interfacial height z= h(x, t)
is defined by the contour of maximum density ρ = ρm, which is a function of
horizontal position. We therefore define the average interfacial height z= h(t) to be the
height at which the horizontally averaged density is maximum (which corresponds to
the height at which C(z, t)= 0).

Snapshots of the concentration field (figure 14a) show that there can be significant
interfacial deformation in the miscible system. The extent of the deformation decreases
with increasing C+. The dominant wavelength of the deformed interface appears to
be set by the lateral spacing of the descending megaplumes. The average interfacial
height h(t) and the interior concentration Θ(t) are compared with predictions from
the miscible box model under a flat-interface approximation in figure 14(b,c). Both
variables increase significantly more rapidly than the box model predicts, which
suggests that the total solute flux F(t) is initially much greater than with a flat
interface. Measurements of F(t) from the numerical simulations (not shown here)
suggest that the initial flux is approximately three times as large than with a flat
interface when C+ = 1.2, and approximately twice as large when C+ = 2.

6.2. Experimental results for the miscible system
In order to explore the effects of a deformable interface further, and to corroborate the
numerical results of § 6.1, we conducted an experiment in a Hele-Shaw cell using two
miscible fluids: propylene glycol (PPG) and water. Backhaus et al. (2011) used these
fluids to examine the onset of convection and the evolution of the initial convective
plumes. Neufeld et al. (2010) used a similar system, composed of water with a
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FIGURE 14. (Colour online) Numerical results at Ra0 = 2 × 104, domain width L = 2 and
height H = 2, and a quadratic equation of state n = 2: (a) snapshots of the concentration
profile at t = 5, for C+ = 1.2 and C+ = 2, showing significant deformation of the interface;
(b) the average interfacial height h(t) (solid) for C+ = 1.2 and C+ = 2, together with
the height predicted by the miscible theoretical box model (dashed); and (c) the interior
concentration Θ(t) (solid) for C+ = 1.2, together with the prediction of the miscible
theoretical box model (dashed).

mixture of methanol and ethylene glycol, to examine the convective flow for tc < t < t2.
Here, in contrast, we examine the long-time evolution of the system in the shutdown
regime.

The experimental system consists of two glass sheets, separated by a shim
of thickness l = 0.41 mm. The cell has width L∗ = 40 cm and height 80 cm.
The flow in the gap satisfies Darcy’s law (3.1), with an effective permeability
Π = l2/12= 1.4× 10−4 cm2 and porosity φ = 1. PPG, of density ρ∗− = 1.0367 g cm−3,
filled the lower layer of the cell up to a depth h∗0 = 32.5 cm. The PPG was overlain
by a layer of water, of density ρ∗+ = 0.9995 g cm−3, up to a total depth H∗ = 66 cm.
We define the concentration C∗ to be the proportion of water by weight, so that the
concentration of pure PPG is C∗− = 0 and that of water is C∗+ = 1. Measurements
of the density for different concentrations are shown in figure 15, together with a
cubic fitting equation ρ∗ = f ∗(C∗). The maximum density is obtained at C∗m ≈ 0.25,
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FIGURE 15. (Colour online) Relationship between density and concentration for the
PPG–water system. Concentration C∗ = 1 corresponds to pure water. Symbols denote
measurements made in a densitometer, of which the curve is a cubic fit ρ∗ = f ∗(C∗) =
ρ∗−(1+ 0.077C∗ − 0.173C∗2 + 0.062C∗3), with ρ∗− = 1.036 g cm−3.

and is given by ρ∗m = 1.0451 g cm−3. The diffusivity of PPG in water varies a little
with concentration, but is roughly constant between C∗− = 0 and C∗m = 0.25, with an
approximate value D= 2.5× 10−6 cm2 s−1 (Wang et al. 2010).

We measured the average interfacial height h∗(t) and the interior concentration Θ∗(t)
by the addition of blue dye to the water. The ambient temperature varied by less
than 2 ◦C for the duration of the experiment (about three weeks). The experiment
was set up by injecting both fluids into the cell from the top: the cell was first filled
with the layer of PPG, which was allowed to settle; the overlying layer of water was
then added over a period of some tens of seconds. Setting the experiment up in this
way led to some initial local mixing and interfacial deformation, the effects of which
decayed over ∼10 min; from then onwards the flow was dominated by downwelling
fingers spread uniformly across the cell, and the interface was horizontal, except for
the local deformation. This time over which the start-up transients decayed is much
less than the time taken for the plumes to reach the base of the cell (t∗1 ≈ 8–9 h).

We also performed numerical simulations to compare with the experimental results
(figure 16). In order to make a fair comparison, we estimate the effects of two
physical processes in the experimental system. Firstly, the viscosity of aqueous PPG
depends strongly on concentration. Pure PPG has viscosity µ ≈ 0.05 Pa s, while the
solution with the maximum density has viscosity µ ≈ 0.015 Pa s (Sun & Teja 2004).
Therefore, the average viscosity below the interface will decrease over time as the
average concentration increases. Secondly, experimental measurements of the velocity
of the downwelling plumes suggest that Taylor dispersion (Taylor 1953) will act to
increase the effective diffusivity by a factor of 2–3. An estimate of both of these
effects, together with the parameters presented above, gives an initial Rayleigh number
Ra0 ≈ 2× 104, and a convective time scale T∗ ≈ 2.2 h. The numerical simulations used
this initial value of Ra0, together with the equation of state ρ = f (C) (figure 15) and
an upper concentration C+ = 3.

In order to give a simple approximation of the change of viscosity over time, we
assume that the relevant viscosity scale is given by the average viscosity of all the
fluid below the interface, and that the viscosity varies linearly with 1/Θ∗(t). Since Ra0

is inversely proportional to the viscosity, the value of the Rayleigh number Ra0 in the
simulations was changed over time, such that it increased linearly with the average
concentration Θ(t). This simple approximation is not intended to reproduce the exact
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FIGURE 16. (Colour online) Comparison of experimental and numerical results: (a) an
image-processed snapshot of the lower half of the experimental set-up, at time t = 8 (t∗ ≈
18 h), which roughly marks the transition to the shutdown regime; (b) a snapshot from the
numerical calculations described in the text, with domain width L = 1 and height H = 2, at
time t = 8; (c) the dimensionless average height of the interface h(t), from the experiment
(solid) and from the numerical calculations (dashed); (d) the interior concentration Θ(t), from
the experiment (scattered points) and from numerical calculations (dashed line).

evolution of the experimental system, but rather to provide a reasonable qualitative
estimate of the effects of viscosity variation.

The dynamical structure of the flow and the profile of convection in the
experimental system are very similar to those in the numerical simulations
(figure 16a,b). The average interfacial height h(t) and the interior concentration
Θ(t) (figure 16c,d) similarly show excellent agreement between the experimental
and numerical measurements. The transition to the shutdown regime can be observed
at t2 ≈ 8 by the change in behaviour of the average interfacial height h (figure 16c):
before this time the upward retreat of the interface is approximately linear. At much
later times, both the experimental and numerical measurements show that the interface
slows down and eventually the height starts to decrease.

The initial linear upward retreat of the interface agrees qualitatively with the
numerical observations in § 5.2.2, and the eventual decrease of the interface agrees
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qualitatively with the predictions from the miscible box model in § 5.2.1. We note,
however, that the time t2 ≈ 8 is much earlier than the predictions and numerical
measurements of t2 in § 5, because of the enhanced solute flux through the deformable
interface here.

6.3. Discussion of systems with a deformable interface
The above results show that the effects of a deformable interface can be very
significant for the miscible system. The excellent agreement between the numerical
and experimental results with a deformable interface corroborates this observation.

We suggest that the removal of the flat-interface assumption leads to a significantly
larger solute flux for two main reasons. Firstly, interfacial deformation results in the
sloping of isopycnals below the interface, which leads to a baroclinic generation of
lateral flow along the sloping boundary layer, and so an enhancement of the diffusive
flux through the interface. (The simple increase in the length of the interface due
to deformation is too small to account for the significant increase in flux.) Secondly,
there is a contribution to the flux from material transport: positively buoyant fluid
from above the interface can be entrained down across the interface. As the fluid
loses solute by diffusion to its surroundings, its density increases because of the
non-monotonic equation of state, and it continues to descend. It is difficult to quantify
the relative importance of these two effects to the increase of the solute flux.

The interface deforms due to the competing effects of the stabilizing density
gradients above the interface and the density gradients between upwelling and
downwelling plumes that drive convection below the interface. If the stabilizing
density gradient is much greater than the driving density gradients, then we expect
both the interfacial deformation and any entrainment across the interface to be small.
This prediction is given credence by the numerical results of § 6.1, which show that
the interfacial deformation, and the corresponding enhancement of the solute flux, are
less at larger values of C+. These observations suggest that the approximation of a flat
interface is likely to be more appropriate for larger C+ in the miscible system.

We have not examined the immiscible system with a deformable interface in this
paper. In order to model this system numerically, we would need a different approach
from that used in the rest of the paper, as the free interface would need to be tracked
in both space and time, and the domain over which the equations were to be solved
would no longer have a flat upper boundary.

We can, however, consider the expected effects of a deformable interface in an
immiscible system. At the interface, there is a constant stable density jump 1 + |ρ+|,
which is always greater than the typical density differences (<1) between upwellings
and downwellings that drive convection. We therefore anticipate that the interface
will remain approximately planar, and that the approximation of a flat interface will
be appropriate for immiscible systems, particularly if |ρ+| is large. This observation
highlights an important difference between the immiscible and miscible systems.

7. Discussion and conclusions
One-sided porous convection at high Rayleigh number bears many of the dynamical

signatures of the statistically steady two-sided RB cell. We have used this observation
to develop theoretical box models that describe the shutdown of complex one-sided
convective systems, by coupling the evolution of the interior concentration with the
flux through the boundary layer. These theoretical models, together with our numerical
and experimental tools, have allowed for the examination of a variety of different
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physically motivated systems, in which the active interface is either fixed or is free to
move.

In the first part of this paper, we have shown that measurements of the Nusselt
number Nu(Ra) from the statistically steady two-sided RB cell can be used to
accurately predict the shutdown of the flux F(t) in one-sided convective systems.
We find that these measurements, taken from Hewitt et al. (2012), are extremely
well fitted by Nu = αRa + β, with α = 6.9 × 10−3 and β = 2.75. Provided Ra > 103,
this relationship can be approximated by setting β = 0. We have shown that this
relationship Nu(Ra) not only qualitatively describes the decay of the flux F(t) in
the one-sided shutdown system, but also can be used to give very good quantitative
agreement with the results of numerical calculations.

Furthermore, we have found that the dynamical structure of the flow in the
shutdown regime can be accurately described by the structures of an RB cell:
the shutdown regime is dominated by downwelling megaplumes with an average
horizontal wavenumber k(t), which decreases over time in quantitative agreement with
the measurements of the wavenumber k(Ra) from an RB cell. This observation may
help to shed light on the physical control of the dominant wavenumber in an RB cell,
which remains unclear (Hewitt et al. 2012; Wen et al. 2012).

In both fixed-interface and free-interface systems, we have characterized the effect
of different power-law equations of state, ρ = 1 − (−C)n, on the flux of solute, and
thus on the time scale for shutdown. We have found that, while the rate of shutdown
is initially more rapid for larger values of n, at late times the flux decreases more
slowly. For a fixed-interface system, which was considered in § 4, the initial linear rate
of decrease of the flux scales like (n+ 1)3, while at long times the flux decreases like
t−(n+1)/n. This behaviour is qualitatively similar for free-interface systems. We find that
the time scale for shutdown (∼α−1) is, in all cases, much greater than the convective
time scale (∼1). This observation is a result of the relative ‘inefficiency’ of the flux, as
described by the small coefficient α in the relationship (4.10) for the Nusselt number
in an RB cell.

In the second part of the paper, we used the techniques developed in the earlier
sections to consider two different free-interface systems, comprising immiscible or
miscible fluids. In § 5, we examined both of these systems under the assumption
that the interface, as defined in § 2, remained flat. Our models predict very similar
behaviour for the flux over time between the immiscible and miscible systems. In the
limit of large C+, the models can be very reasonably approximated by the solution for
a fixed interface. Physically, this limit corresponds to the case when the concentration
of maximum density C∗m is much closer to the concentration of the lower layer C∗−
than to that of the upper C∗+.

We have shown, however, that the evolution of the interfacial height h(t) in the two
systems is qualitatively different at long times: in the immiscible system, the height
increases for all time, while in the miscible system, it eventually decreases, provided
H is sufficiently large, even though the flux of solute across the interface into the
lower layer remains positive. This observation provides an important difference when
comparing the two systems, as discussed below.

In § 6, we relaxed the assumption of a flat interface. We presented numerical
simulations of the miscible system, which show that the interfacial height eventually
decreases, in qualitative agreement with the predictions of our theoretical box model.
However, the solute flux is much larger than the box model predicts. This observation
was corroborated by experimental results from a Hele-Shaw cell, which show excellent
agreement with full numerical simulations. We suggest that the enhancement of the
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flux in the miscible system is due to entrainment across the interface and sloping
isopycnals below the interface, as discussed in § 6.3. These effects are the result of a
balance between the stabilizing density gradients above the interface and the driving
density gradients between the interleaving plumes below the interface.

In immiscible systems, however, these density gradients are not comparable, as there
is a stabilizing discontinuity in the density (1 + |ρ+|) across the interface, which will
dominate, particularly if |ρ+| is large. Therefore, we anticipate that the interface will
remain approximately planar and entrainment across it will be negligible, in agreement
with the assumptions of a flat interface.

The relative applicability of the flat-interface approximation, and the long-time
behaviour of the interfacial height h(t), each provide an important difference
between the immiscible and miscible systems, and suggest that care should be
taken when modelling immiscible systems with a miscible analogue, or vice versa.
For example, Neufeld et al. (2010) and Backhaus et al. (2011) each use miscible
experimental systems to model the convective dissolution of CO2 in a deep saline
aquifer, which is an immiscible system. In the miscible experimental systems, we
anticipate that the effects of interfacial deformation and entrainment would lead
to a significant enhancement (≈ 200–300 %) of the solute flux. In contrast, in the
CO2 sequestration system, the stabilizing density difference between supercritical CO2

and brine (∼300 kg m−3) is very much larger than the density contrasts that drive
convection (∼10–20 kg m−3), and therefore we anticipate that interfacial deformation
and entrainment would be negligible.

Under the assumption that capillary retention in the pore space can be ignored,
and thus that the interface is ‘sharp’, the convective dissolution of CO2 can be well
described by our immiscible box model with a moving flat interface and a linear
equation of state n = 1, presented in § 5.1. In addition, since CO2 is only very weakly
soluble in brine (3–5 % by weight), the value of C+ for this system would be very
large (∼20–30), and the flux would be well approximated by the solution for a fixed
interface (4.15). In dimensional form, the total horizontally averaged solute flux for the
fixed-interface system with n= 1 is given by

F∗(t)= 4αh∗0T∗(C∗m − C∗−)

(T∗ + 4αt)2
, (7.1)

where T∗ is the convective time scale, given by T∗ = φh∗0Πg1ρ∗m/µ and α =
6.9× 10−3.

As an illustrative example, we use (7.1) to examine the time scales for shutdown
in a high-permeability aquifer. We take representative parameter values from a high-
permeability aquifer, such as the Utsira Sand reservoir at Sleipner, in the North
Sea (Ennis-King & Paterson 2005; Bickle et al. 2007): Π = 5 × 10−12 m2, φ = 0.3,
g= 10 m s−2, 1ρ∗ = 15 kg m−3, µ= 5×10−4 Pa s and D= 10−9 m2 s−1. We consider
a closed aquifer of depth h∗0 = 100 m. The initial Rayleigh number is Ra0 ≈ 6 × 105,
and the convective time scale is T∗ ≈ 0.6 years. In such a closed aquifer, the transition
to the shutdown regime would occur after roughly t∗2 ≈ 10 years. After 20 years, the
solute flux would have halved. After 75 years, it would be one-tenth of its initial
value, and the interface would have retreated by nearly 3 m (3 % of the original
depth). These time scales correspond to the most permeable aquifers: some potential
storage sites have permeabilities that are 2–3 orders of magnitude smaller than that
considered here, in which case the transition to the shutdown regime would take
thousands of years. These illustrative results apply to laterally confined aquifers, and,
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while the physical processes that we have examined are still relevant, the time scales
and dynamics of shutdown in laterally unconfined aquifers may differ substantially.

The models presented in this paper describe the shutdown of convection in a
range of systems with different physical applications. Our theoretical, numerical
and experimental results characterize the evolution of shutdown and the decay of
the convective flux over time. The theoretical one-dimensional box models that we
have derived provide analytically tractable tools that accurately capture the governing
physics of the different complex convective systems. These simple models describe the
relevant time scales of shutdown, and, for free-interface systems, the motion of the
active interface. In the case of CO2 sequestration, the models allow prediction of the
rate of dissolution over time, and this dissolution has important implications for the
stabilization of geologically stored CO2.
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Appendix A. Numerical method
In this appendix we discuss the numerical scheme that we employed in the different

sections of this paper. We begin by highlighting the differences in the numerical
approach between each section, before describing the numerical method in more detail
below.

In §§ 4 and 6, the governing equations (3.11) and (3.14) were solved throughout
the domains 0 6 z 6 1 and 0 6 z 6 H, respectively. In § 5, however, (3.11) and (3.14)
were solved below the interface 0 6 z 6 h(t) only, in order to impose a flat interface
at z = h(t). Above the interface, the concentration either remains constant (immiscible
system) or satisfies a one-dimensional advection–diffusion equation (5.14) (miscible
system).

In order to accurately resolve the dynamics near to the interface z = h, we used
a vertical coordinate transformation ζ(z, h). In §§ 4 and 5, the transformation from
ζ ∈ [0, h] to z ∈ [0, h] was similar to that used in Hewitt et al. (2012), and was given
by

z= h

2

[
1+ tanh[η(ζ − h/2)]

tanh[ηh/2]
]
, (A 1)

where η(Ra0) is a stretching parameter that was chosen to ensure that sufficient
points lay in the boundary layer below the interface. In § 6, the governing equations
were solved over the whole domain, and the interface was located in the interior. A
more complex transformation is required to accurately resolve the boundary layers on
either side of the interface, without dramatically increasing the computational cost. We
employed a transformation of the form

z= H

A1 + A2

{
A1

tanh(a1ηζ )

tanh(Ha1η)
+ A2

[
1+ tanh(a2η[ζ − H])

tanh(Ha2η)

]}
, (A 2)

where η(Ra0) is again a constant stretching parameter, and A1, A2, a1 and a2 are
specified functions of the average interfacial height h(t), which were chosen to
increase the resolution in a region centred on z = h, and wider than the range of
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any interfacial deformations. To reduce the computational cost, the transformation
ζ [z, h(t)] was not recalculated at every time step, but only when the interface z = h
had moved a sufficient distance to require it. After each calculation of a new vertical
discretization ζ(z, h), the variables were mapped from the previous discretization to the
new grid using quadratic interpolation.

The governing equations (3.11) and (3.14) were transformed analytically to (x, ζ )
coordinates and then solved on a uniform rectangular grid using horizontal and
(transformed) vertical resolution 1x and 1ζ , respectively. The Poisson equation
(3.14) was solved for the streamfunction ψ using a fast Fourier transform for the
x derivatives and a standard fourth-order finite-difference operator for the ζ derivative.
Equation (3.11) was discretized using an alternating-direction implicit (ADI) method
(Press et al. 1989), centred on the half time step to give second-order accuracy in
time. The diffusion terms were spatially discretized using standard second-order finite-
difference operators. The advection operator was discretized using a flux-conservative
representation, which requires that the concentration and streamfunction be calculated
at the centre and the vertices of grid cells, respectively. We used a second-order
midpoint method to calculate the streamfunction at the half time step, which is a
requirement of the ADI scheme. The boundary conditions for the concentration field
were controlled by including an additional point in the centre of each grid cell around
the outside of the domain: no-flux boundary conditions were thus imposed directly,
while constant-concentration boundary conditions were imposed using a second-order
extrapolation of the neighbouring points.

In § 5 (free-interface systems with a flat interface), the location of the interface h(t)
was found by global conservation of solute (5.2) at each time step. For the miscible
system with a flat interface (§ 5.2), the one-dimensional transport equation (5.14) was
solved at each time step using standard second-order finite-difference operators on a
uniform grid above the interface.

The smallest horizontal scales are found in thin boundary-layer instabilities
(protoplumes). In the shutdown regime, these horizontal length scales increase during
the simulation as the density difference with the interior, and thus the effective
Rayleigh number, decreases. The horizontal resolution was therefore chosen to ensure
that these structures were well resolved at early times. Typical values of the horizontal
and (transformed) vertical discretization at Ra0 = 2 × 104 are 1x = (2048)−1 and
1ζ = (250)−1. The time step 1t was chosen to be smaller than the Courant time scale
1x/max|u|: at Ra0 = 2× 104, the time step was 1t = (1400)−1.

Appendix B. Discussion of the average interior concentration in a Rayleigh–
Bénard cell

We consider a two-dimensional RB cell in a porous medium, containing a fluid
that satisfies a dimensionless power-law equation of state ρ = 1 − (−C)n, as in (3.10).
The cell has periodic (or no-flux) boundary conditions on the sidewalls, and fixed
concentrations on the upper and lower boundaries,

C(x, z= 1)= 0, (B 1)
C(x, z= 0)=−1. (B 2)

We consider the system in statistically steady state.
Hewitt et al. (2012) presented numerical results for the case of a linear equation

of state (n = 1). They showed that, close to the upper and lower boundaries of the
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FIGURE 17. (Colour online) Numerical measurements from an RB cell, with Ra = 104:
(a) the average concentration C(z) for different values of n as marked; (b) estimated range of
the interior concentration Ci

RB(n) in the linear interior region, taken from the measurements in
panel (a), together with an approximate analytic fit Ci

RB =− (n+ 1)−1/n (dashed).

domain, the horizontally averaged concentration profile C(z) varies rapidly. However,
in the interior of the domain, C(z) has a small linear gradient that decreases as the
Rayleigh number Ra increases. In the limit Ra→∞, the average concentration in the
interior tends to a constant value, Ci

RB =−1/2.
We have carried out numerical calculations of (3.11) and (3.14) in an RB cell for

1 6 n 6 5, at Rayleigh number Ra = 104. Measurements of the interior concentration
C(z) from these calculations are shown in figure 17(a). Based on the results for n = 1
discussed above, we make the assumption for n > 1 that the gradient of C(z) in the
interior of the domain also decreases as Ra increases, and that, as Ra→∞, the
average concentration in the interior tends to a constant value Ci

RB(n). By extrapolating
the linear interior gradient of C(z) for each value of n from our measurements in
figure 17(a), we generate estimates for the range of possible values of Ci

RB(n), as
shown in figure 17(b). We find that an approximate analytic fit lying within this
range is given by Ci

RB = − (n+ 1)−1/n, which is also shown in figure 17(b). This
curve provides a reasonable approximation for n < 5, which includes the physically
important cases, n = 1 and n = 2. We use this approximate form for Ci

RB throughout
the paper.
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