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Convection in a porous medium at high Rayleigh number Ra exhibits a striking
quasisteady columnar structure with a well-defined and Ra-dependent horizontal scale.
The mechanism that controls this scale is not currently understood. Motivated by this
problem, the stability of a density-driven ‘heat-exchanger’ flow in a porous medium
is investigated. The dimensionless flow comprises interleaving columns of horizontal
wavenumber k and amplitude Â that are driven by a steady balance between vertical
advection of a background linear density stratification and horizontal diffusion between
the columns. Stability is governed by the parameter A = ÂRa/k. A Floquet analysis
of the linear-stability problem in an unbounded two-dimensional domain shows that
the flow is always unstable, and that the marginal-stability curve is independent of
A. The growth rate of the most unstable mode scales with A4/9 for A � 1, and
the corresponding perturbation takes the form of vertically propagating pulses on the
background columns. The physical mechanism behind the instability is investigated
by an asymptotic analysis of the linear-stability problem. Direct numerical simulations
show that nonlinear evolution of the instability ultimately results in a reduction of the
horizontal wavenumber of the background flow. The results of the stability analysis are
applied to the columnar flow in a porous Rayleigh–Bénard (Rayleigh–Darcy) cell at
high Ra, and a balance of the time scales for growth and propagation suggests that
the flow is unstable for horizontal wavenumbers k greater than k ∼ Ra5/14 as Ra→∞.
This stability criterion is consistent with hitherto unexplained numerical measurements
of k in a Rayleigh–Darcy cell.
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1. Introduction
Convection in porous media plays an important role in a range of environmental

and industrial processes (Nield & Bejan 2006), such as the extraction of geothermal
energy by underground heating (Cheng 1978), the flow of saline groundwater driven
by evaporation from the surface (Wooding et al. 1997), and the formation of freckles
in alloy castings (Fowler 1985). More recently, there has been particular interest in
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FIGURE 1. (Colour online) (a) A snapshot of the temperature field in a Rayleigh–Darcy
(porous Rayleigh–Bénard) cell at Ra = 2 × 104 (taken from Hewitt et al. 2012), which is
dominated by vertical columnar exchange flow across the domain; (b) the corresponding
temporally and horizontally averaged temperature 〈T〉(z), which shows the relatively weak
linear temperature gradient across the interior of the domain; and (c) the temperature field of
steady heat-exchanger flow with the same wavelength and background temperature gradient
as (a).

the effect of convective transport on the long-term storage of CO2 by geological
sequestration (Orr 2009), which has been widely proposed as a means of stabilizing
the rising concentration of atmospheric CO2 (Metz et al. 2005).

The structure of convection depends on the relative strength of advection and
diffusion, as described by the Rayleigh number Ra. Although the detailed form of
the flow depends on the geometry of the system, convective flow in a porous medium
at high Ra is typically dominated by long-lasting columnar plumes. Such plumes are a
generic feature of both transient and statistically steady convection at high Ra (Hewitt,
Neufeld & Lister 2013). An archetypal example of this columnar structure is provided
by the flow in a two-dimensional porous Rayleigh–Bénard cell (figure 1a). For the rest
of this paper, to avoid confusion with the pure fluid Rayleigh–Bénard cell, we will
refer to this porous cell as a Rayleigh–Darcy cell.

The Rayleigh–Darcy cell has lower and upper boundaries held at fixed hot and cold
temperatures, respectively, and thus attains a statistically steady state, which allows
for accurate characterization of the convective dynamics. For Ra < 4π2, there is no
convection (Lapwood 1948), while for 4π2 < Ra . 1300, the flow exhibits convective
rolls, which undergo a series of bifurcations that perturb the background flow as Ra
is increased (Graham & Steen 1994). For Ra & 1300, the rolls are completely broken
down by the growth of destabilizing plumes from the upper and lower boundaries, and
there is a dramatic transition in the dynamical structure. The flow becomes dominated
by persistent vertical columnar-exchange flow across the interior of the domain, driven
by chaotic mixing of small ‘proto-plumes’ at the upper and lower boundaries (Otero
et al. 2004; Hewitt, Neufeld & Lister 2012). Curiously, it appears that the columnar
flow not only persists, but becomes increasingly well organized as Ra increases. This
behaviour is quite unlike the disordered turbulent dynamics encountered in a pure fluid
Rayleigh–Bénard cell at high Ra (e.g. Ahlers, Grossmann & Lohse 2009). Hewitt et al.
(2012) found that, as Ra increases, the interior columnar flow becomes increasingly
well described by a steady ‘heat-exchanger’ solution, in which vertical advection of a
background temperature gradient exactly balances horizontal diffusion (figure 1). We
note that the interior background gradient is much weaker than a steady conduction
gradient, as most of the temperature contrast across the domain is taken up in the



Stability of columnar convection in a porous medium 207

diffusive boundary layers. Numerical measurements by Hewitt et al. (2012) over the
range 1300 < Ra 6 4 × 104 gave an approximate scaling for the wavenumber k of the
columnar flow of k ∼ Ra0.4, although they pointed out that there was some suggestion
of a slightly smaller exponent asymptotically. While k clearly increases with Ra,
the amplitude of the columnar flow tends towards a constant, consistent with an
asymptotic Nusselt-number scaling Nu∼ Ra.

Columnar structures are also very widely observed in two- and three-dimensional
convective flow driven by a source of buoyancy on one boundary only. Following
the onset of convection, flow below a dense source (or, equivalently, above a buoyant
source) is marked by vigorous mixing at the boundary which feeds into persistent
downwelling plumes, as observed in several experimental (Neufeld et al. 2010;
Backhaus, Turitsyn & Ecke 2011; Slim et al. 2013) and numerical (Pau et al. 2010;
Hidalgo et al. 2012; Fu, Cueto-Felgueroso & Juanes 2013) studies. If the boundaries
of the domain are impermeable then, over longer times, the convective flow weakens
as the density in the interior increases towards that of the upper boundary. This
‘shutdown’ regime was studied by Hewitt et al. (2013), who found that the columnar
flow across the interior of the domain persisted throughout, with a wavenumber
k that decreased slowly as the average interior density increased and the effective
Rayleigh number decreased. The relationship between k(t) and Ra(t) was in excellent
quantitative agreement with results from the Rayleigh–Darcy cell discussed above.

The physical mechanism that governs the wavenumber k(Ra) has so far remained
elusive. Hewitt et al. (2012) argued that k is not controlled directly by the small-scale
dynamics of proto-plumes near the boundary, since these have a lateral scale of Ra−1,
which is a much stronger dependence on Ra than the observed wavenumber exponent
of ∼0.4. It has been suggested by Wen et al. (2012, 2013) that the wavenumber
is determined by the size of a ‘minimal flow unit’, which is set by the largest
wavenumber k for which the buoyancy flux remains independent of k. Solutions for
steady convective flow in a narrow Rayleigh–Darcy cell (Corson 2011) give a scaling
of k ∼ Ra1/2 for the minimal flow unit, while recent numerical measurements of the
minimal flow unit for unsteady flow suggest a slightly weaker dependence on Ra (Wen
et al. 2013), in rough agreement with the observed wavenumber scaling of Ra ∼ k0.4.
This observation does not, however, provide a mechanism for the physical control of
wavenumber. The aim of this paper is to explore whether the wavenumber might be
determined by the stability of the columnar flow.

Columnar ‘heat-exchanger’ flows are not only observed in porous media; similar
flow is found in double-diffusive systems, in the form of ‘salt fingers’. These fingers
can occur when the density is a function of two components with different molecular
diffusivities, such as heat and salt, provided that the unstably distributed component
(salt) has a lower diffusivity than the stably distributed component (heat) (Huppert &
Turner 1981). Stability of the salt fingers has long been suggested as the controlling
mechanism for their dynamical structure (Stern 1969); it was explored in detail by
Holyer (1981, 1984), and remains an active area of study (Radko & Smith 2012).
The Floquet analysis employed by Holyer (1984) to solve the linear-stability problem
provides a starting point for our approach here.

In this paper, we examine the stability of two-dimensional columnar heat-exchanger
flow in a porous medium. The flow is driven by temperature differences between the
columns, but the analysis is equally applicable to compositional convection. In § 2, we
set out the governing equations for heat-exchanger flow in an unbounded medium, and
find that the flow is controlled by a single parameter, the rescaled amplitude A. In
§ 3, we use Floquet theory to perform a linear-stability analysis of this flow. We show
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that the dominant instability for A & 17.2 has double the horizontal wavelength of the
background columns and a relatively small vertical wavenumber, and we determine
the dependence on A of the vertical wavenumber and growth rate of this mode. In
§ 4, we present an asymptotic analysis of the most unstable perturbation for A� 1,
and discuss the physical mechanism of instability. In § 5, we explore the nonlinear
evolution of the instability for large A using direct numerical simulations.

In § 6, we discuss the relevance of all these results for the scaling of the
columnar wavenumber k in a Rayleigh–Darcy cell at high Ra. A balance of the
time scale for instability and the time scale for advection of perturbations across
the domain suggests that the columnar flow should be unstable for wavenumbers
k ∼ Ra5/14 as Ra→∞, while a correction to this asymptotic estimate gives a slightly
stronger dependence on Ra for Ra < O(105). These scalings give good agreement
with numerical measurements of the dominant wavenumber k from the interior of a
Rayleigh–Darcy cell.

We conclude with a summary of the main results and their implications in § 7.

2. Governing equations
2.1. Dimensionless equations

We consider flow in a homogeneous, isotropic and unbounded two-dimensional porous
medium, with horizontal and vertical coordinates x and z, respectively. The flow
u = (u,w) is incompressible and satisfies Darcy’s law. The density ρ of the fluid
is linearly related to the temperature T , which satisfies a transport equation. These
equations are given in dimensionless variables by

∇ ·u= 0, u=−(∇p+ ρ ẑ), (2.1a,b)

ρ = 1− T,
∂T

∂t
+ u ·∇T = 1

Ra
∇2T, (2.2a,b)

where p is the pressure. The Rayleigh number Ra, which can be thought of as the ratio
of diffusive and convective time scales over a distance H, is given by

Ra= ρ0β 1T gΠH

φDµ
, (2.3)

where Π is the permeability, φ is the porosity, g is the gravitational acceleration, ρ0

is a reference density, β is the coefficient of thermal expansion, D is the effective
thermal diffusivity and µ is the viscosity of the fluid, all of which are assumed to
be constant. We have assumed that there is negligible heat transfer to the solid phase
of the medium and, as such, these equations are equally applicable to compositional
convection. We have non-dimensionalized with respect to a temperature scale 1T ,
which determines the buoyancy–velocity scale U = ρ0β 1TgΠ/µ, and with respect
to a length scale H, which determines the convective time scale φH/U. In the case
of a Rayleigh–Darcy cell, these scales would correspond to the driving temperature
difference across the domain and the height of the domain, respectively. We note that,
with this choice of dimensionless variables, the Rayleigh number takes the role of an
inverse diffusivity in (2.2).

We satisfy (2.1a) by introducing a streamfunction ψ , where (u,w) =
(∂ψ/∂z,−∂ψ/∂x). We take the curl of (2.1b) to eliminate the pressure, and combine
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with the equation of state (2.2a) to obtain

∇2ψ =−∂T

∂x
. (2.4)

Equations (2.2b) and (2.4) govern the flow.
There is an exact solution of (2.2b) and (2.4) given by a steady ‘heat-exchanger’

flow (Hewitt et al. 2012), in which vertical advection of a background linear
temperature gradient by interleaving columns of exchange flow balances horizontal
diffusion between the columns; the horizontal velocity is zero and the vertical
velocity is directly proportional to the sinusoidal variation of temperature across the
columns. The heat-exchanger solution [ψ0,T0] is characterized by a wavenumber k and
amplitude Â, and is given by

T0 = Â cos kx− k2

Ra
z, ψ0 =− Â

k
sin kx, u0 = 0, w0 = Â cos kx, (2.5a,b,c,d)

where u0 = ∂ψ0/∂z and w0 = −∂ψ0/∂x are the corresponding horizontal and vertical
velocity of the flow. The average vertical advective heat flux for heat-exchanger flow
scales with Â2, and is independent of the wavenumber k.

2.2. Rescaled equations

The heat-exchanger flow (2.5) is governed by three parameters k, Â and Ra, which
describe the wavenumber, the amplitude and the relative strength of advection and
diffusion, respectively. We can scale out two of these apparent degrees of freedom by
setting

X = kx; Θ = Ra

k
T; Ψ = Raψ; τ = k2

Ra
t. (2.6)

The governing equations (2.4) and (2.2b) become

∇2Ψ =−∂Θ
∂X

,
∂Θ

∂τ
+ ∂Ψ
∂Z

∂Θ

∂X
− ∂Ψ
∂X

∂Θ

∂Z
=∇2Θ, (2.7a,b)

and the heat-exchanger solution (2.5) becomes

Θ0 = A cos X − Z, Ψ0 =−A sin X, U0 = 0, W0 = A cos X. (2.8a,b,c,d)

The rescaled strength of the flow

A= ÂRa

k
, (2.9)

is now the only free parameter. Equation (2.8) gives the background flow for the
stability analysis of the subsequent sections of this paper.

3. Linear-stability analysis
3.1. Theory

We consider small perturbations [Ψ̃ , Θ̃] to the background heat-exchanger flow of the
form

Ψ̃ = Re {F(X) exp (σ t + iαZ)} , Θ̃ = Re {G(X) exp (σ t + iαZ)} , (3.1a,b)
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where |F|, |G| � 1. By retaining only terms that are linear in F and G, the governing
equations (2.7) become

F′′ − α2F =−G′, (σ + iαA cos X)G+ F′ − iαA sin XF = G′′ − α2G. (3.2a,b)

Owing to the spatial dependence of the coefficients in (3.2b), we cannot assume a
simple-harmonic normal-mode form for F and G. Instead, we utilize the periodicity
of the equations: the coefficients are periodic in X with period 2π, and, therefore,
(3.2) forms a Floquet system. Floquet theory (see Jordan & Smith 1999, for example)
implies that the eigenmodes yj(X) of any homogeneous system of linear ordinary
differential equations that has periodic coefficients with period λ can be written in the
form yj(X) = pj(X) exp(iβjX), where pj is periodic with period λ, and βj is a (possibly
complex) constant. If the eigenmodes are also required to be spatially periodic, then
βj must be real. In (3.2), λ = 2π, and so the function pj(X) can be written as a sum
of complex exponentials of the form exp(inX) for integer n (Beaumont 1981). We
therefore look for spatially periodic eigenmodes of the form(

F
G

)
= Re

{
exp (iβX)

∞∑
n=−∞

(
Fn

Gn

)
exp (inX)

}
, (3.3)

where β is real. Owing to the invariance of (3.3) under integer shifts in β and under
reflection β→−β, we can pick 0 6 β 6 1/2 without loss of generality. We refer to β
as the horizontal wavenumber of the perturbation; strictly, β is the wavenumber of the
largest horizontal scale, and the infinite sum allows for perturbations on smaller scales.

The eigenvalue σ is given as a function of α and β by substituting the Fourier
sum (3.3) into (3.2) and rewriting sin X and cos X in terms of complex exponentials.
Equation (3.2) becomes

iγ 2
n Fn =−(β + n)Gn, (3.4a)

i(β + n)Fn − αA

2
(Fn−1 − Fn+1)=−

(
γ 2

n + σ
)

Gn − iαA

2
(Gn−1 + Gn+1) , (3.4b)

where γ 2
n = (β + n)2 + α2, and eliminating F between (3.4a) and (3.4b) gives[

(β + n)2

γ 2
n

− γ 2
n − σ

]
Gn = iαA

2

[(
1+ β + n+ 1

γ 2
n+1

)
Gn+1 +

(
1− β + n− 1

γ 2
n−1

)
Gn−1

]
.

(3.5)

Equation (3.5) can be written as an infinite matrix equation of the form

MG= σG, (3.6)

where the vector G= (. . .Gn−1,Gn,Gn+1, . . .), and M is an infinite (tridiagonal) matrix.
Solutions to (3.6) are found by looking for eigenvectors G of M with eigenvalues σ .
The real part of σ gives the growth rate of perturbations.

3.2. Solutions
3.2.1. The limit of large horizontal scales

The equations simplify dramatically if we only consider perturbations on the largest
horizontal scales, which is achieved by severely truncating the infinite sum in (3.3)
such that Gn = 0 for all n 6= 0. In this long-wavelength limit, the columnar flow is
completely decoupled from the perturbation, which is equivalent to setting A = 0 and
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losing the effect of flow on stability. Equation (3.5) reduces to the standard linear-
stability analysis of a linear background temperature field about rest (Nield & Bejan
2006), and the growth rate is given by the usual Rayleigh modes,

σ = β2

β2 + α2
− (β2 + α2

)
. (3.7)

The flow is unstable if β > β2 + α2. If there is no constraint on the size of the domain,
then the growth rate is maximized by α� β � 1, which gives a limiting growth rate
Re{σ } = 1. If the perturbation is constrained in a finite domain, then the instability
takes the form of one or more large convective rolls.

3.2.2. Numerical solutions that incorporate smaller scales
We incorporated the effects of smaller horizontal modes on the stability of the flow

by retaining more terms in the Fourier sum in (3.3) and solving (3.6) numerically. We
found eigenvalues σ by truncating the infinite sum in (3.6) to −N 6 n 6 N, for some
integer N(α, β,A), which was increased until the relative error in the eigenvalue with
the largest real part (growth rate) was less than 10−5. We denote the eigenvalue with
the largest real part σ̂ (α, β,A).

Figure 2 shows contour plots of the growth rate Re{σ̂ } against the vertical and
horizontal wavenumbers α and β, for different values of A. For all A, we find that the
growth rate is negative for α > 1/2, and this range is therefore not shown. We also
recall that we only need to consider values of β in the range 0 6 β 6 1/2 due to the
symmetries of the system.

Figure 2 reveals three interesting features. First, the marginal-stability curve
Re{σ̂ } = 0 appears to be independent of the amplitude A. This observation is
confirmed analytically in § 3.2.3. Second, for A . 17.2, the most unstable mode occurs
at α = β = 0 and has constant growth rate Re{σ̂ } = 1, which is the same as the case
A= 0 discussed above in § 3.2.1. Third, a new mode with β = 1/2 and α > 0 becomes
increasingly unstable as A is increased, and, for A & 17.2 (figure 2c,d), the new mode
has a growth rate that exceeds that of the zero-wavenumber mode. For all higher
values of A, this mode is the most unstable.

The most unstable mode is defined by the wavenumbers (αM(A), βM(A)) that
maximize the growth rate Re{σ̂ (α, β,A)} over α and β. We label the most unstable
mode as σM(A) = σ̂ (αM, βM,A), and the corresponding cut-off value for convergence
of the Fourier sum in (3.3) as NM(A)= N(αM, βM,A).

The maximum growth rate Re{σM} and the phase speed cM = −Im{σM}/αM are
shown in figure 3. The change in the most unstable mode at A≈ 17.2 can be observed
as the point where the maximum growth rate begins to increase and the phase speed
becomes non-zero. Both Re{σM} and |cM| show an asymptotic power-law dependence
on A, which is very well fitted by

Re{σM} = 0.231A4/9, cM =±A as A→∞. (3.8a,b)

The most unstable mode, therefore, propagates at the maximum speed of the
background flow, either up or down depending on the alignment of the perturbation
(see § 3.2.4 below). (In fact, we find that the magnitude of the phase speed for all
unstable modes with α > 0 is asymptotically given by A, while that of the stable
modes is zero.)

The wavenumbers of the most unstable mode are both zero for A . 17.2. At
A ≈ 17.2, the vertical wavenumber αM becomes non-zero, and gradually decreases
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FIGURE 2. Contours of the growth rate Re{σ̂ } (as marked) against the horizontal
wavenumber β and the vertical wavenumber α at amplitudes: (a) A = 0; (b) A = 23; (c)
A = 25; and (d) A = 212. The marginal-stability curve is independent of A (§ 3.2.3). The
maximum growth rate is initially Re{σ̂ } = 1, which is attained at α = β = 0. As A increases,
a mode with horizontal wavenumber β = 0.5 and α > 0 becomes increasingly unstable. For
A & 17.2 (c,d), this mode has a growth rate that is greater than 1.

as A increases further (figure 4a). Asymptotically, αM is very well fitted by

αM = 0.332A−1/9 as A→∞. (3.9)

The corresponding horizontal wavenumber βM is 1/2 for all A & 17.2, as suggested by
the results of figure 2, which means that the most unstable perturbation has twice the
wavelength of the background flow.

The cut-off value NM = N(αM, βM,A) increases like A2/9 for large A (figure 4b).
Since larger wavenumbers in the Fourier sum in (3.3) describe shorter horizontal
scales, the need to increase NM for convergence suggests that the smallest horizontal
scales of the most unstable perturbation decrease like

N−1
M ∼ A−2/9 as A→∞. (3.10)

In § 4, we confirm that the truncated Fourier sum remains an accurate representation of
the solution by comparison with an asymptotic expansion of the differential equations
(3.2).
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3.2.3. Marginal stability
The results of figure 2 suggest that the marginal-stability curve is independent of the

amplitude A. Here we verify this suggestion analytically.
Marginal stability occurs when Re{σ̂ } = 0. Numerical results for general A > 0

suggest that the eigenvector G corresponding to the marginally stable modes takes the
simple form G−1 =±G0, and Gn = 0 for n 6= 0,−1. Motivated by this observation, and
the corresponding form of Fn from (3.4a), we consider eigenvectors [F,G] of the form

F =± [sinβX + sin(1− β)X] , G=∓ [cosβX + cos(1− β)X] . (3.11a,b)

On substituting (3.11) into the advection–diffusion equation (3.2b), we obtain[
σ + (β2 + α2 − β)]G= iαA [sin XF − cos XG] , (3.12)
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which, by using double-angle formulae and (3.11), reduces to[
σ + (β2 + α2 − β)]=±iαA. (3.13)

The eigenfunctions (3.11) must also satisfy Poisson’s equation (3.2a); this gives the
requirement that

β = β2 + α2, (3.14)

which is precisely the marginal-stability relationship for A = 0 given in (3.7).
Combining (3.13) and (3.14) gives

σ =±iαA, (3.15)

which corresponds to a phase speed of |c| = A and a growth rate of zero.
The marginal-stability curve (3.14) is, therefore, independent of A, as are the

corresponding eigenfunctions [F,G] (3.11), provided that A > 0. Interestingly, the
eigenfunctions do differ from those for A = 0, which are pure Fourier modes with
wavenumber β; the presence of background flow with unit wavenumber introduces an
additional component to the marginally stable perturbation with wavenumber 1− β.

3.2.4. Structure of the most unstable perturbation
For A . 17.2, the most unstable mode has αM = βM = 0, growth rate Re{σM} = 1

and phase speed cM = 0. The instability takes the form of a roll-like perturbation of
the background temperature gradient, with a wavelength that is independent of the
background columnar flow. At A ≈ 17.2, a different mode becomes the most unstable,
which has half the horizontal wavenumber of the background flow βM = 1/2. The
vertical wavenumber and phase speed of this mode are also both non-zero.

Figure 5 shows the structure of the most unstable mode for A= 25 = 32 (figure 5a,c)
and A = 220 ≈ 106 (figure 5b,d). The perturbation takes the form of tall, thin, counter-
rotating rolls (figure 5a,b; right-hand plots). Each roll has width 2π, and is centred
on a downwelling of the background columnar flow. The whole perturbation has
horizontal period 4π. The temperature perturbation Θ̃ takes the form of claw-shaped
pulses centred on the upwellings of the background flow (figure 5a; left-hand plot),
which, for larger amplitudes (figure 5b; left-hand plot), split into two neighbouring
pulses of the same sign.

The vertical velocity W̃ and temperature Θ̃ of the dominant perturbation
(figure 5c,d) are symmetric about X = 2nπ for integer n, and are almost
indistinguishable from each other. As A increases, the profiles of Θ̃ and W̃ become
increasingly sinusoidal in the intervals (2nπ, 2(n + 1)π), but their gradients change
by an O(1) amount through increasingly narrow regions centred on X = 2nπ. The
horizontal velocity Ũ either diverges away from or converges into these regions.

The perturbations shown in figure 5 have a phase speed cM = A to leading order, and
thus move upwards at the maximum speed of the background flow. If the perturbation
were shifted horizontally by π, the pulses would be centred on the downwellings of
the background flow and the phase speed would be cM = −A; the growth rate and
vertical wavenumber would be unchanged.

4. Asymptotic analysis of linear stability for A� 1
Motivated by the structure of the most unstable perturbation as just described, and

in order to understand the physical balances behind the instability, we examine the
linear stability of heat-exchanger flow in the asymptotic limit A� 1. In this limit,
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FIGURE 5. The structure of the most unstable perturbation (a,c) for A = 25 and (b,d) for
A = 220. (a,b) Contours of the perturbation temperature Θ̃ (left) (scaled to unit amplitude), at
intervals of 0.4, and streamlines (right) with arrows showing the direction of the flow, together
with schematic profiles of the background flow Θ0 = W0 (top). The perturbation is doubly
periodic, with horizontal period 4π and vertical period 2π/αM . (c,d) Horizontal profiles of
the perturbation quantities (scaled to unit amplitude): upper plots show the temperature Θ̃
(solid) and vertical velocity W̃ = −∂Ψ̃ /∂X (dashed) at Z = π/2αM; lower plots show the
horizontal velocity Ũ = ∂Ψ̃ /∂Z (solid) at Z = π/αM together with the background columnar
flow Θ0 (dotted) scaled by A. The vertical velocity and temperature perturbations are almost
indistinguishable. The perturbations shown here propagate upwards; the same perturbations
shifted horizontally by π would propagate downwards and have the same growth rate.

the dominant balance in the advection–diffusion equation (3.2b) is most obviously
between horizontal advection of the background temperature by the perturbation
∼αA sin XF and vertical advection of the perturbation flow by the background velocity
∼ αA cos XG. However, the perturbation plotted in figure 5(d) shows that advection
cannot dominate everywhere; the temperature gradient changes by an O(1) amount
through regions centred on X = 2nπ for integer n, which suggests the presence of
boundary layers in which horizontal diffusion enters the leading-order balance.

We first observe that the linearized governing equations (3.2) exhibit a number
of symmetries. Suppose that, for a given eigenvalue σ(A, α), we have solutions
[F(X),G(X)]. It is clear from the form of (3.2) that [−F(−X),G(−X)], [F(2π +
X),G(2π + X)], and [−F(2π − X),G(2π − X)] are all also solutions, as are any



216 D. R. Hewitt, J. A. Neufeld and J. R. Lister

linear combinations of these. Thus, we are free to construct solutions with any given
reflectional symmetry around X = 0 and X = ±π. Motivated by the symmetries of the
most unstable mode shown in figure 5, we consider a solution [F,G] in which G is
even under reflection about X = 0 and odd under reflection about X = ±π, and F is
odd under reflection about X = 0 and even under reflection about X = ±π. Such a
solution is periodic with period 4π.

As discussed above, we anticipate boundary-layer regions located near X = 2nπ, for
integer n, in which horizontal diffusion (G′′) enters the leading-order balance in (3.2b).
We therefore look for an asymptotic solution over the range 0 6 X 6 2π, which has
the symmetries of [F,G] discussed above, with an inner region near X = 0 where
diffusion is important, and an outer region away from X = 0 where the advection terms
dominate.

In order to motivate the asymptotic scalings, we also recall the measured scalings
from the full Floquet analysis of § 3 for the growth rate Re{σ } ∼ A4/9, the phase speed
cM =−Im{σ }/αM = A, and the vertical wavenumber αM ∼ A−1/9 (see (3.8) and (3.9)).

4.1. Asymptotic expansion
We consider the limit of large amplitude A and of small vertical wavenumber α, such
that αA� 1 and α� 1, and we try

σ =−iσ0αA+ σ ∗, (4.1)

where |σ ∗| � αA, and σ0 is an O(1) constant to be determined. The perturbation
equations (3.2) can be rewritten as

F′′ + G′ = α2F, iαA (cos X − σ0)G− iαA sin XF + σ ∗G+ F′ = G′′ − α2G. (4.2a,b)

The boundary conditions come from the symmetries of the solution as discussed above,
and are given by

F(0)= G′(0)= G(π)= F′(π)= 0. (4.3)

Based on the limits αA� 1, α� 1, the leading-order behaviour of (4.2) away from
X = 0 is given by

F′ + G= c0, (cos X − σ0)G− sin XF = 0, (4.4a,b)

where c0 is a constant of integration that comes from the first integral of (4.2a).
Equation (4.4) has solutions

F = (cos X − σ0)

(
1+ c0

∫
dX

cos X − σ0

)
, G= sin X

(
1+ c0

∫
dX

cos X − σ0

)
,

(4.5a,b)

where, without loss of generality, the arbitrary amplitude of the perturbations has
been scaled to unity. Based on the form of the numerical solutions in figure 5, we
assume that there are no leading-order discontinuities in F at X = 0 or in G at X = π.
The boundary conditions (4.3) thus imply that σ0 = 1 and that c0 = 0, such that the
leading-order outer solutions are given by

F = cos X − 1, G= sin X. (4.6a,b)

The leading-order phase speed c = −Im{σ }/α = σ0A is given by c = A, as we found
numerically in (3.8b)
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Since σ0 = 1, the coefficients cos X − σ0 and sin X of the O(αA) terms in (4.2b)
both vanish as X → 0, which suggests an inner boundary-layer region there, as
indicated by the numerical solutions. We look for a balance in (4.2b) between
the advection terms, horizontal diffusion G′′ and growth σ ∗G. This balance gives
αAX2G ∼ αAXF ∼ σ ∗G ∼ G/X2. From (4.6b), we also have that G ∼ X as X→ 0.
Based on these balances, we define the following inner variables:

ξ = (αA)1/4X; s= (αA)−1/2σ ∗; g(ξ)= (αA)1/4G(X); f (ξ)= (αA)1/2F(X).
(4.7a,b,c,d)

Rewritten in terms of the inner variables, the governing equations (4.2) become

f ′′ + g′ = α2(αA)−1/2f , g′′ −
(

s− iξ 2

2

)
g+ iξ f = (αA)−1/2

(
f ′ + α2g

)
. (4.8a,b)

At leading order,

f ′ + g= γ0, g′′ −
(

s− iξ 2

2

)
g+ iξ f = 0. (4.9a,b)

The constant of integration γ0 in (4.9a) is determined by matching with the outer
region: by integrating (4.2a) and substituting from (4.6a), we obtain to leading order

F′ + G= α2

∫ X

π

(cos X − 1) dX = α2 (sin X − X + π) , (4.10)

where the lower limit of the integral has been determined from the boundary
conditions (4.3c,d). The right-hand side of (4.10) is given by α2π to leading order
as X→ 0, which, together with the inner scalings (4.7c,d), determines the constant of
integration in (4.9a) as

γ0 = α2(αA)1/4π= (αA1/9
)9/4
π. (4.11)

The boundary conditions for (4.9) are given by the two symmetry conditions
(4.3a,b) f (0) = g′(0) = 0 and a matching condition that g→ ξ as ξ → ∞. In
appendix A, we consider the generic behaviour of the solutions of (4.9), and find
that the matching condition constitutes two constraints on the differential equation; we
therefore have four conditions on a third-order system, which is sufficient to determine
the unknown eigenvalue s. We solve (4.9) numerically, and determine s as a function
of the rescaled vertical wavenumber

α∗ ≡ αA1/9, (4.12)

(cf. (4.11)). The leading-order growth rate is then given by Re{σ ∗} = (αA)1/2 Re{s(α∗)}
from (4.7b), or alternatively

Re{σ ∗} = A4/9Re{S(α∗)} where S(α∗)= α∗1/2s(α∗). (4.13)

Numerical solutions for the leading-order scaled growth rate Re{S(α∗)} are
shown in figure 6(a). The eigenvalue with the maximum growth rate is given
by S = 0.2308 − 0.182i and occurs at α∗ = 0.332, such that Re{σ ∗} = 0.2308A4/9

at α = 0.332A−1/9. These values agree extremely well with the measurements
presented in Figures 3(a) and 4(a) for the maximum growth rate Re{σM} and the
corresponding vertical wavenumber αM, respectively. Since the imaginary part of S
is negative, the second-order correction to the phase speed is positive, and is given
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FIGURE 6. (Colour online) Asymptotic solutions (A� 1) and full numerical solutions of
the eigenvalue problem (3.6). (a) The leading-order scaled growth rate Re{S} = α∗1/2Re{s} =
A−4/9Re{σ ∗} against the scaled vertical wavenumber α∗ = αA1/9: the asymptotic solution
(line), and the full numerical solutions for A = 210 (crosses), A = 220 (squares) and A = 230

(dots). (b) The solution [f , g] = [(αA)1/2F, (αA)1/4G] (solid and dashed lines, respectively) of
(4.9), together with full solutions of (3.6) for A= 230 (solid and hollow circles, respectively).

by −Im{σ ∗}/α = 0.55A5/9. The dependence of Re{S} on the wavenumber α∗

(figure 6a) shows very good agreement between the asymptotic analysis and the full
solutions of the Floquet analysis for large A, as do the eigenfunctions [f , g] of (4.9),
which give the leading-order behaviour of [F,G] near X = 0 (figure 6b).

The leading-order growth rate Re{S(α∗)} increases for small α∗ and decreases for
large α∗ (figure 6a). In appendix B, in order to understand this behaviour, we analyse
the leading-order equations for the inner region (4.9) in the asymptotic limits α∗� 1
and α∗� 1. The physical basis for the decay in the growth rate at small and large α∗

is discussed below.

4.2. Physical mechanism of instability for A� 1
It has proved difficult to unravel the precise details of the physical mechanism of
instability, largely owing to the fact that the growth rate depends on a subtle second-
order interaction between boundary-layer regions and the main flow. However, based
on the form of the asymptotic equations, we can make various observations about the
relevant physical components that control the propagation and growth of perturbations.

The leading-order evolution of the most unstable perturbation for A� 1 is neutral
propagation at speed c = ±A, which is the maximum speed of the background flow.
The neutral propagation is the result of a leading-order advective balance between
two processes: horizontal advection of the background temperature field Θ0 by the
perturbation velocity Ũ, and vertical advection of the perturbation temperature field
Θ̃ by the background velocity W0. We illustrate this balance by working in a frame
of reference moving with the perturbation, as sketched in figure 7. We consider
an upwards propagating perturbation (c = +A), but the discussion equally applies
to downwards propagating perturbations. Since the vertical wavenumber α∗ is small,
Darcy’s law implies that the perturbation temperature Θ̃ and vertical velocity W̃ are
proportional. By mass conservation, the horizontal velocity Ũ is strongest where the
vertical variation of W̃ is largest, which occurs where W̃ vanishes. The perturbation
flow therefore takes the form of tall thin circulating cells. Horizontal advection of Θ0

by Ũ leads to an induced temperature perturbation (shown dashed on the right-hand
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FIGURE 7. (Colour online) A schematic of the instability for A� 1, in a frame of reference
moving with the perturbation. The background vertical velocity W0 = A cos X − A in this
frame is shown at the top. The left-hand side shows streamlines of the perturbation flow;
the perturbation temperature Θ̃ is proportional to the vertical velocity W̃, and locations at
which pulses form on the background columns as a result of the instability are marked
with a ⊕. The right-hand side shows horizontal profiles (all scaled to unit amplitude) along
the lines of constant z as marked. Each plot shows the background temperature field Θ0
(dotted), together with one of the perturbation velocities (solid) as labelled on the right;
in each plot, the velocity not shown is zero. The plots at Z = π/αM and Z = 2π/αM also
show the induced temperature perturbations (dashed) that result from horizontal advection of
the background field Θ0 by Ũ. The neutral propagation of the perturbation is sustained by
downwards advection of the induced temperature perturbation by the background velocity W0.

side of figure 7) that is vertically out of phase with the original temperature
perturbation. Downwards vertical advection of the induced temperature perturbation by
the background flow W0 (in this propagating frame) balances the horizontal advection
in such a way that the original perturbation is sustained.

The leading-order advective balance gives a neutrally propagating mode. Growth
occurs because of horizontal diffusion in the thin boundary-layer regions centred on
the lines X = 2nπ, across which the temperature gradient changes significantly. The
importance of diffusion can be seen by an examination of (4.9b), which shows
that the two advective processes described above are balanced by diffusion (g′′)
and growth (sg) in these boundary-layer regions. Indeed, (4.9b) also shows that the
advective processes, which have imaginary coefficients, and diffusion, which has a real
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coefficient, are vertically out of phase, so that we might expect the rescaled eigenvalue
s to have both a non-zero imaginary part, which gives a correction to the phase speed,
and a non-zero real part, which gives growth.

The strength of diffusion, which must determine the growth rate, depends on the
rescaled vertical wavenumber α∗. We found in § 4.1 that the growth rate decreases
at both large and small α∗ (figure 6a). For α∗ � 1, the perturbation cells are very
long and, by continuity, the horizontal velocity is weak. The boundary-layer regions,
which have a width that is set by the strength of the horizontal advection, are therefore
wider (as in (4.7a)), so the diffusive flux is weaker, and the growth rate decreases.
Conversely, for α∗� 1, the horizontal velocity is strong. In this limit, the perturbation
in the boundary-layer regions takes a different form: the temperature is smoothed out
by strong horizontal advection, and the leading-order advective balance no longer gives
discontinuities in the temperature gradient (see appendix B). Owing to this smoothed
temperature profile, diffusion only enters the balance at higher-order, and so both the
diffusive flux and the growth rate decrease. We therefore find that there is a balance
between diffusion being too weak for α∗� 1 and horizontal velocity being too strong
for α∗ � 1, which gives rise to an optimal wavenumber α∗ = 0.332 at which the
growth rate is maximum.

Interestingly, the instability process discussed above is independent of the
background linear temperature gradient. Indeed, the analysis of § 4.1 shows that the
term describing advection of the background temperature gradient (F′) does not enter
the asymptotic equations. This contrasts with the control of the instability for small A
by the background temperature gradient.

Another interesting implication of the above discussion is that thermal diffusion
provides a destabilizing mechanism for the flow. In appendix C, we examine a related
system of columnar-exchange flow of two fluids of different densities in the absence
of diffusion, and we find that the flow is always neutrally stable. This observation
supports the idea that diffusion is required for the growth of perturbations. There is
some parallel between the role of thermal diffusion here and the role of viscosity in
the stability of plane Poiseuille flow (e.g. Drazin 2002), where the flow is linearly
unstable for sufficiently large Reynolds numbers, but is linearly stable in the inviscid
limit.

5. Evolution of the instability in the nonlinear regime
In order to explore the development of the instability beyond the linear regime,

we examined heat-exchanger flow using high-resolution direct numerical simulations.
We set the temperature Θ = Θ0 + Θ̃ to be the steady heat-exchanger solution
Θ0 = A cos X − Z, as in (2.8a), plus an initially small perturbation Θ̃(X,Z, τ ), and
then solved the nonlinear governing equations (2.7) for the evolution of Θ̃ numerically.
In order to clearly observe the nonlinear evolution of the instability, we used doubly
periodic boundary conditions for Θ̃ and for the corresponding streamfunction Ψ̃ (given
by (2.7a)). We used a vertical period of 2π/αM ≈ 18.9A1/9, which is the height of the
most unstable mode calculated in § 3. The initial value of Θ̃ was proportional to the
most unstable mode.

Snapshots of the temperature field Θ at different times for A = 28 = 256 and
horizontal period L = 8π are shown in figure 8(a–d), together with the corresponding
magnitude of the perturbation over time (figure 8e) and dominant wavenumber of
the flow (figure 8f ). The linear growth of the instability leads to the formation
of pulses (figure 8a) which move with the background flow. Once the pulses have
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FIGURE 8. (Colour online) Nonlinear dependence of the instability for A= 28 and horizontal
period L = 8π. Snapshots of the temperature field Θ(X,Z, τ ) at times: (a) τ = 4, the growth
of pulses on the background flow that result from linear instability; (b) τ = 7 and (c) τ = 11,
the secondary instability; and (d) τ = 14, the growing heat-exchanger flow with a quarter of
the original wavenumber (5.1). (e) The magnitude of the perturbation over time, as measured
by the L2 norm and scaled by the initial magnitude; dots correspond to the pictures in the
previous panels. The asymptotic growth of the most unstable mode (from (3.8a)) and the
growth of the unsteady exchange flow equation (5.1) are also shown, for comparison. (f ) The
dominant wavenumber k of the flow (measured by a Fourier transform of the temperature field
at Z = 0.5), for simulations with different horizontal periods L as marked; in each case, the
wavenumber decreases towards the fundamental mode 2π/L.

reached a certain size, the amplitude stops growing, and the flow becomes unstable
to a secondary instability, which breaks the symmetry of the solution and results in
less regular motion (figure 8b,c). The system gradually re-organizes into columnar
flow with a quarter of the wavenumber of the original flow (figure 8d), but the
same background temperature gradient, which remains imposed by the representation
Θ =Θ0 + Θ̃ .

However, the wavenumber and background gradient of a steady heat-exchanger
flow are linked by (2.5a); hence, if the wavenumber decreases and the gradient
is fixed, the flow can no longer be a steady solution of the governing equations.
Instead, we find that the amplitude of the flow grows exponentially (figure 8e). It is
straightforward to show that the governing equations permit unsteady columnar flow
with a fixed background temperature gradient for any wavenumber κ; this generalized
time-dependent columnar flow is given by

Θ = Ae(1−κ
2)τ cos κX − Z, W = Ae(1−κ

2)τ cos κX, (5.1a,b)

for any amplitude A. The steady solution κ = 1 (2.8) can be thought of as the
marginally stable solution: if κ > 1, horizontal diffusion dominates and the amplitude
decays; if κ < 1, advection dominates and the amplitude grows. In the results of
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figure 8, the system ultimately adopts a wavenumber κ = 1/4, and the magnitude of
the flow grows like e15τ/16 (figure 8e). We note that the continued exponential growth
at late times only arises because it can feed off the fixed background temperature
gradient that is imposed in an effectively infinite domain.

The main conclusion from this calculation is that the nonlinear evolution of the
instability leads to a reduction of the wavenumber of the flow. We have also carried
out simulations in domains with different horizontal periods L; in each case the flow
coarsened due to a secondary instability, leaving one upwelling and one downwelling
column in the domain (figure 8f ).

6. Implications for convection in a porous medium
In this section, we return to the linear-stability analysis of § 3 and consider the

implications of this analysis for columnar flow in a vertically confined domain.
Specifically, we investigate whether stability might provide the mechanism that
controls the horizontal scale of the columnar flow in the interior of a Rayleigh–Darcy
cell at high Ra.

6.1. The wavenumber of columnar flow in a Rayleigh–Darcy cell at high Ra
Flow in a Rayleigh–Darcy cell for Ra & 1300 is dominated in the interior by columnar
flow. This nearly steady interior flow is fed from the upper and lower boundaries
of the cell by vigorous mixing and merging of short-wavelength proto-plumes (see
figure 1a). Numerical measurements from a cell of height H = 1 over the range
1300 6 Ra 6 4× 104 (Hewitt et al. 2012) suggest that the columnar flow in the interior
of the cell is increasingly well described by the steady heat-exchanger solution in (2.5)
as Ra→∞. Measurements of the dominant wavenumber k over the same range were
approximated by k ≈ 0.47Ra0.4, although there are significant fluctuations in the data,
and there is some suggestion of a slightly weaker exponent at very large Ra.

It is important to note that there are some significant differences between the
columnar flow in a Rayleigh–Darcy cell at high Ra and the steady unconfined heat-
exchanger flow that has been the subject of this paper so far. Most notably, the cell
has a finite height and the flow in the interior is fed by time-dependent proto-plumes
at the upper and lower boundaries as discussed above, whereas the heat-exchanger
flow (2.5) has an infinite height, and any disturbances propagate indefinitely. It is,
nonetheless, interesting to try applying some of the results from the stability of
unconfined heat-exchanger flow to the flow in a vertically confined domain, and to
compare the resultant scalings of this simple analysis with numerical measurements of
the dominant wavenumber k.

In ideal heat-exchanger flow, the amplitude of the temperature and vertical velocity
are equal, as in (2.5). In a Rayleigh–Darcy cell, numerical measurements (Hewitt et al.
2012) show that the amplitude of the temperature T̂ and vertical velocity ŵ tend to
approximately the same constant value, T̂, ŵ→ 0.117, as Ra→∞. However, for finite
Ra, T̂ is somewhat larger than ŵ (figure 9). There is, therefore, an ambiguity about
which measurement to use. Since ŵ varies less than T̂ over the measured range of Ra,
we choose to set Â= ŵ for the following analysis (although, in fact, we find very little
difference if T̂ is used instead).

In a vertically confined domain, we hypothesize that a perturbation to the steady
columnar flow will destabilize the flow if the time scale for growth of the perturbation
is shorter than the time scale for the perturbation to advect from one boundary
to the other. We assume that the regions of proto-plumes at the upper and lower
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FIGURE 9. (Colour online) Measurements of the amplitude of the temperature T̂ (dots)
and vertical velocity ŵ (circles) of the columnar flow in the interior of a Rayleigh–Darcy
cell (adapted from figure 3 of Hewitt et al. (2012)). The amplitudes appear to tend to
approximately the same constant value, T̂, ŵ→ 0.117, as Ra→∞. (This result is directly
equivalent to the asymptotic ‘classical’ linear scaling of the Nusselt number with Ra, as
observed by Hewitt et al. (2012).) For comparison with the linear-stability analysis, we
choose Â= ŵ.

boundaries provide perturbations to the columnar flow on a range of scales. Since the
height of the Rayleigh–Darcy cell in rescaled co-ordinates (§ 2.2) is H = k, the time
scale for advection of the most unstable perturbation across the domain for A� 1
is H/cM = k/A (from (3.8b)), and the time scale for growth of the most unstable
perturbation is 1/Re{σM} = 1/(0.231A4/9) (from (3.8a)). A comparison of these time
scales, which is the hypothesized condition for instability, gives

k

A
& 1

0.231A4/9
for A� 1, (6.1)

which reduces to

k & 2.6
(
ŵRa

)5/14 & 1.2Ra5/14 for Ra� 1, (6.2)

on using A = ÂRa/k = ŵRa/k and the observation that ŵ→ 0.117 as Ra→∞. We
note that, since (6.2) is simply obtained by a comparison of time scales, we would not
expect the numerical prefactor in (6.2) to be accurate, beyond giving a rough estimate
of the order of magnitude.

For A . O(104), both the growth rate and the phase speed of the most unstable
mode are found numerically to be slightly larger than the asymptotic scalings (3.8)
(see the inset to figure 3). In addition, for Ra . O(104), the amplitude ŵ is slightly
larger than its asymptotic value (see figure 9). We found simple empirical fits
Re{σM} ≈ 0.231A4/9 + 0.34A−0.2 and cM ≈ A + 0.55A0.55 to the numerical data for
A & 17.2, and ŵ≈ 0.117+ 2900Ra−1.8 to the amplitude for Ra > 1300. By using these
fits in the balance of time scales k/cM ∼ 1/Re{σM}, as above, with A = ŵRa/k, we
obtain a correction for finite Ra and A to the asymptotic stability estimate (6.2). This
approximate correction k(Ra) is given implicitly by the equations

k = A+ 0.55A0.55

0.231A4/9 + 0.34A−0.2
; kA= Ra

(
0.117+ 2900Ra−1.8

)
. (6.3)

Figure 10(a) shows measurements of the time-averaged dominant wavenumber
k(Ra) from a Rayleigh–Darcy cell for 1300 < Ra 6 4 × 104, together with the
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FIGURE 10. (Colour online) Measurements of the wavenumber k from a Rayleigh–Darcy
cell of height H = 1 and aspect ratio either L = 1 or L = 2, taken from Hewitt et al. (2012):
(a) the wavenumber k(Ra) (dots) together with the asymptotic stability estimate (6.2) (dashed
line) and the approximate correction to the asymptotic scaling for finite Ra and A from (6.3)
(solid line); and (b) the scaled wavenumber k/Raλ for trial exponents λ= 5/14 (dots), λ= 0.4
(crosses) and λ = 0.5 (circles), together with the asymptotic stability estimate (6.2) (dashed
line) and the correction from (6.3) (solid line), both scaled by 0.7Ra5/14. The measured data
follows the trend of the correction (solid line) over this range of Ra.

asymptotic stability estimate (6.2) (dashed line), and the approximate correction to
the asymptotic scaling, given by the solution of (6.3) (solid line). The measured data
lies inside the stable region, and appears to give good agreement with the trend of the
stability estimates.

In order to examine this agreement more closely, we can rescale the wavenumber
and the stability estimates by different trial powers of Ra (figure 10b). As a
preliminary observation, we can see from this rescaling that the measured data exhibits
a distinctly weaker scaling than k ∼ Ra1/2, which was identified as the ‘minimal flow
unit’ for steady convection (Corson 2011). Instead, it appears that the data is fairly
well described by the scaling k ∼ Ra0.4 over this range of Ra, which is slightly stronger
than the asymptotic stability estimate k ∼ Ra5/14. However, it is also evident that
the estimate corrected for finite Ra and A (solid line) differs appreciably from the
asymptotic estimate (dashed line) over this range of Ra, and that the measured data
follows the trend of the correction. (The parameter A for the data shown lies in the
range 25 . A . 150.) In particular, the data appears to show a slight trend towards a
lower exponent at the highest values of Ra, in agreement with the prediction of the
stability estimate.

The measured data does, therefore, appear to be consistent with the theoretical
stability estimate. Given the very different boundary conditions between the
Rayleigh–Darcy cell and the unconfined heat-exchanger flow, this qualitative
agreement is notable. Figure 10(b) suggests that the Rayleigh number for the measured
data is still too low to observe the hypothesized asymptotic scaling k ∼ Ra5/14;
numerical measurements of k at higher values of Ra would be needed to confirm
this suggestion.
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6.2. The onset of the high-Ra regime in a Rayleigh–Darcy cell

Working on the hypothesis that stability controls the horizontal scale of the interior
flow in a Rayleigh–Darcy cell, it is natural to consider what happens as Ra decreases
or, equivalently, as the rescaled amplitude of the flow A decreases. In § 3.2, we
found that the nature of the dominant instability in an unbounded domain changes
completely when A . 17.2. A similar dramatic change is observed in the dynamics of
the Rayleigh–Darcy cell as Ra decreases below Ra ≈ 1300 (Graham & Steen 1994;
Otero et al. 2004), from columnar-exchange flow in the interior for Ra & 1300 to
large-scale convective rolls for Ra . 1300.

Measurements of k and Â = ŵ (Hewitt et al. 2012) at Ra = 1380, which is just
above the transition point, give a value of A ≈ 14.5 (alternatively, using Â = T̂ gives
A ≈ 15.6), which is remarkably close to the bifurcation value A ≈ 17.2 in the linear-
stability problem. In fact, since the most unstable mode of the unbounded flow for
A < 17.2 has zero wavenumber in both directions, which is not physically achievable
in a finite domain, we would expect the Rayleigh–Darcy cell to have a slightly lower
bifurcation value of A. The rough agreement demonstrated here provides an intriguing
direction for further investigation, and again suggests that stability criteria may play an
important role in the dynamical structure of the Rayleigh–Darcy cell.

7. Conclusions

We have examined the stability of columnar convection in a porous medium. The
flow is characterized by dimensionless horizontal wavenumber k, amplitude Â and
background temperature gradient −k2/Ra. The stability of the flow in an unbounded
domain is then a function of the parameter A= ÂRa/k alone.

We used a Floquet analysis to determine the eigenvalues σ of the linear-
stability problem (3.2) numerically. Somewhat surprisingly, the marginal-stability curve
Re{σ } = 0 is independent of A and thus given by the usual criterion β = β2 + α2

for stability of a linear temperature field, where β and α are the horizontal and
vertical wavenumbers, respectively. For small A, the most unstable mode is given
by α = β = 0, and has growth rate Re{σ } = 1; this mode is an instability of the
background linear temperature gradient and is independent of the columnar flow.
However, at A ≈ 17.2, a different mode becomes the most unstable. This mode
has double the horizontal period of the background flow (β = 1/2), takes the form
of vertically propagating pulses on the background columns and has a growth rate
that increases with A. Asymptotically, the vertical wavenumber of the most unstable
mode is given by α = 0.332A−1/9, the growth rate by Re{σ } = 0.2308A4/9 and the
vertical phase speed by |c| = A. The sign of c changes if the perturbation is shifted
horizontally by π (a quarter period).

For A� 1, advective processes dominate the flow across almost all of the domain:
horizontal advection of the background temperature by the perturbation flow balances
vertical advection of the perturbation temperature by the background flow. In the
absence of any diffusion, this advective balance would simply give a neutrally
stable propagating mode. However, the temperature gradient changes significantly
across thin boundary-layer regions that are centred on the maxima (for upwelling
perturbations) or minima (for downwelling perturbations) of the background flow.
Horizontal diffusion in these boundary-layer regions provides a mechanism for growth,
as discussed in § 4.2. Interestingly, the instability is independent of the background
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vertical temperature gradient in the limit A� 1, and is driven entirely by the columnar
flow.

Numerical simulations of the nonlinear evolution of the instability for A & 17.2
in a periodic domain show that perturbations initially grows in accordance with
linear theory, before the flow undergoes a secondary instability. After a period
of reorganization, the system evolves into a new columnar flow with a smaller
wavenumber than the original flow.

Persistent vertical columnar structures have also been observed in three-dimensional
porous convection (e.g. Pau et al. 2010; Fu et al. 2013), and it seems likely that
many of the ideas discussed in this paper could be extended to three dimensions.
However, while it is straightforward to write down three-dimensional heat-exchanger
base flows, the linear-stability analysis of such flows is much more complicated than
in two dimensions (primarily owing to the double expansion in the Floquet analysis).
Such analysis is left for future work, along with detailed investigation of the interior
horizontal planform of statistically steady three-dimensional porous convection.

This work was motivated by the hitherto unexplained mechanism that controls the
horizontal wavenumber of the columnar flow in the interior of a two-dimensional
Rayleigh–Darcy cell at high Ra. Numerical measurements of this flow suggest that
it is increasingly well described by the steady heat-exchanger solution as Ra→∞.
By a comparison of the time scales for growth and propagation of the most unstable

mode, we derived an asymptotic stability estimate k ∼ (ÂRa)5/14
for the wavenumber k

of vertically confined heat-exchanger flow. In a Rayleigh–Darcy cell, the amplitude
Â is given by the amplitude of the temperature T̂ or the vertical velocity ŵ,
which numerical measurements suggest are asymptotically equal and independent of
Ra. The estimated stability boundary thus reduces to k ∼ Ra5/14 as Ra→∞. For
Ra < O(105), the stability boundary has a slightly stronger dependence on Ra than
this asymptotic scaling. Although numerical measurements in a Rayleigh–Darcy cell at
higher Ra would be required to verify the asymptotic scaling k ∼ Ra5/14, the stability
boundary gives good agreement with the previously unexplained trend of numerical
measurements of k(Ra) over the range 1300< Ra 6 4× 104.

The results of this paper, therefore, support the hypothesis that the stability of the
interior columnar flow provides the mechanism that controls the wavenumber k in
Rayleigh–Darcy convection. The vigorous large-wavenumber dynamics of proto-plume
formation at the upper and lower boundaries force the system over a range of small
scales, and the columnar flow adopts the smallest scale for which it can remain
stable over the height of the domain, which is given by k ∼ Ra5/14 as Ra→∞. Any
smaller-scale of columnar flow would be unstable, and the resulting instability would
lead to a coarsening of the flow.

Appendix A. Generic behaviour of solutions of (4.9)
Equation (4.9) can be rewritten as a single differential equation for f by substituting

g= γ0 − f ′ into (4.9b) to obtain

f ′′′ +
(

iξ 2

2
− s

)
f ′ − iξ f = γ0

(
iξ 2

2
− s

)
. (A 1)

We seek solutions that satisfy f (0)= f ′′(0)= 0 and the matching condition f →−ξ 2/2
(equivalently g→ ξ ) as ξ →∞. In order to determine the unknown eigenvalue s,
we require four boundary conditions for the third-order system (A 1). It is not clear,
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per se, whether the matching condition constitutes one or two constraints; this depends
on the generic behaviour of the solutions as ξ →∞.

A WKB approximation to (A 1) in the limit ξ →∞ gives leading-order solutions of
the form

f ∼ c ξ 2 − γ0ξ + d± ξ b exp
[
±(1− i)

4
ξ 2

]
+ O(1) as ξ →∞, (A 2)

where b would be determined at the next order, and c and d± are constants. The
matching condition f → −ξ 2/2 requires both that c = −1/2 and that d+ = 0. It
therefore constitutes two constraints, and we have sufficient conditions to determine
the eigenvalue s in (4.9).

Appendix B. Variation of the growth rate Re{S} for α∗� 1 and α∗� 1

In § 4.1, we determined the leading-order growth rate Re{σ ∗} = A4/9Re{S} as a
function of the rescaled vertical wavenumber α∗, and found that Re{S(α∗)} increased
for small α∗ and decreased for large α∗ (figure 6a). In this appendix, in order to
understand this behaviour, we examine the limits α∗� 1 and α∗� 1. For clarity, we
rewrite (4.9) and (4.13) here as

f ′ + g= α∗9/4π, g′′ −
(

s− iξ 2

2

)
g+ iξ f = 0, S= α∗1/2s. (B 1a,b,c)

The boundary conditions are f (0)= g′(0)= 0 and g→ ξ as ξ →∞.
In the limit α∗ � 1, (B 1a) becomes f ′ = −g to leading order, while (B 1b)

remains unchanged; the solution to these equations gives an eigenvalue s = (1 − i)/2
that is independent of α∗ to leading order. (The corresponding expression for the
eigenfunction f can be found analytically in integral form, but the expression is not
elucidating.) Hence,

Re{S} = 1
2α
∗1/2 for α∗� 1. (B 2)

In the limit α∗ � 1, the balance in (B 1a) requires that the eigenfunctions
[f , g] are O(α∗9/4) to leading order. We write g = α∗9/4g0 + g1 + O(α∗−9/4) and
f = α∗9/4f0 + f1 + O(α∗−9/4), and expand s = s0 + α∗−9/4s1 + O(α∗−9/2). The matching
condition as ξ →∞ only applies at second order and is given by g1→ ξ ; the first-
order condition is instead given by g0→ 2π (or, equivalently, f0→−πξ ), which comes
from the form of the solution as ξ →∞ given by (A 2b) in appendix A.

The solution of (B 1a,b) at leading order is simply given by [f0, g0] = [−πξ, 2π] and
s0 = 0; neither diffusion (g′′) or growth (sg) enter the leading-order balance, which is
instead simply between the advective terms. At second order, (B 1a,b) become

f ′1 =−g1, g′′1 +
iξ 2

2
g1 − 2πs1 + iξ f1 = 0, (B 3a,b)

which can be solved numerically, together with boundary conditions f1(0) = g′1(0) = 0
and g1→ ξ as ξ →∞, to give an eigenvalue s1 = 0.1164− 0.048i. Thus,

Re{S} = 0.1164α∗−7/4 for α∗� 1. (B 4)

Figure 11 shows that the leading-order asymptotic predictions of Re{S(α∗)} for
small and large wavenumber from (B 2) and (B 4) give very good agreement with the
full solution of figure 6(a). The physical basis for the decay in the growth rate at small
and large α∗ is discussed in § 4.2.



228 D. R. Hewitt, J. A. Neufeld and J. R. Lister

 100

100

10–1

10–1

10–2

10–210–310–4

FIGURE 11. (Colour online) The leading-order growth rate Re{S} (solid) as a function of the
scaled vertical wavenumber α∗, together with the predictions from the asymptotic analysis for
α∗� 1 (B 2) and α∗� 1 (B 4) (dashed).

Appendix C. Stability of piecewise uniform exchange flow in the absence of
diffusion

In the main text of this paper, we examined the stability of density-driven heat-
exchanger flow, in which vertical advection balanced horizontal diffusion between the
interleaving columns. Motivated by the interesting observation in § 4.2 that diffusion
acts as a destabilizing mechanism for the columnar flow, in this appendix we examine
the related system of exchange flow of two distinct fluids of different densities in the
limit of negligible diffusion. The fluids again flow in interleaving columns, as shown
in figure 12.

The governing equations for the flow are incompressibility and Darcy’s law (2.1).
The system is horizontally periodic, and each period contains an upwelling column
of unit width and uniform velocity w and a downwelling column of width λ−1 and
velocity −λw by continuity (figure 12). The interface between the jth and (j + 1)th
columns is labelled by Xj. The density is piecewise uniform, and so the governing
equations combine to give

∇2p= 0, (C 1)

in each column.
We look for a pressure perturbation p̃j in the jth column and a corresponding

interfacial perturbation X̃j of the form

p̃j = πj(x) exp (σ t + iαz) , X̃j = ξj exp (σ t + iαz) . (C 2)

The horizontal variation πj of the perturbed pressure is found by solving (C 1),
which gives

πj(x)= Aj cosh
[
α
(
x− Xj

)]+ Bj sinh
[
α
(
x− Xj

)]
. (C 3)

The constants Aj, Bj and ξj are determined by continuity of pressure and a kinematic
condition for each column at Xj + X̃j, which are linearized to give

πj(Xj)= πj−1(Xj), (C 4a)(
∂

∂t
+ wj

∂

∂z

)
X̃j = −∂ p̃j

∂z

∣∣∣∣
x=Xj

,

(
∂

∂t
+ wj−1

∂

∂z

)
X̃j = −∂ p̃j−1

∂z

∣∣∣∣
x=Xj

. (C 4b)
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1 1

FIGURE 12. A schematic showing the interleaving flow of two distinct fluids of different
densities, in columns with width ratio λ.

By substituting (C 2) into (C 4) and eliminating ξj, we obtain

Aj+1 = Aj coshαdj + Bj sinhαdj, (C 5a)

Bj+1 = σ + iαwj+1

σ + iαwj

(
Aj sinhαdj + Bj coshαdj

)
, (C 5b)

where [dj,wj] are the width and velocity of the jth column, given by [1,w] for even j
and [λ−1,−λw] for odd j.

We consider perturbations that are periodic over 2N columns, for some integer N.
Therefore, we equate the perturbations to the interface at X2N with those at X0. The
application of (C 5) 2N times gives a dispersion relation for σ of the form

det
(
MN − I

)= 0, (C 6)

where I is the identity matrix. The matrix M is given by

M =
(

Cλ Sλ
Γ Sλ ΓCλ

)(
C1 S1

Γ −1S1 Γ −1C1

)
; Γ = σ + iαw

σ − iαλw
, (C 7a,b)

where C1 = coshα, S1 = sinhα, Cλ = cosh(α/λ) and Sλ = sinh(α/λ).
Equation (C 6) has solutions if and only if MN has eigenvalue 1, or equivalently M

has an eigenvalue that is an Nth root of unity. Moreover, it is easily shown that the
determinant of M is 1, and so the product of the eigenvalues of M is 1. Thus, equation
(C 6) has solutions if and only if the eigenvalues of M are a conjugate pair of Nth
roots of unity. We label these eigenvalues µ± = a ± ib, for some real a and b with
|a|6 1, |b|6 1. Then (C 6) is equivalent to

det (M − µ±I)= 0, (C 8)

which can be reduced to(
1+ Γ 2

)
S1Sλ + 2 (C1Cλ − a) Γ = 0, (C 9)

Equation (C 9) is a quadratic for Γ , which has discriminant

1= 4
[
(C1 − Cλ)

2 + 2(1− a)CλC1 + a2 − 1
]
. (C 10)

Since C1Cλ > 1 and |a| 6 1, equation (C 10) implies that 1 > (a− 1)2 > 0, and so
solutions Γ of (C 9) must be real. This constraint, together with (C 7b), requires
that σ is pure imaginary, which holds for any width ratio λ, velocity w, periodicity
N or wavenumber α. Therefore, in the absence of diffusion, the columnar exchange
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flow of two distinct fluids of different densities is neutrally stable to all wavelengths;
perturbations are advected by the flow without growth or decay. This result is similar
to the observation in § 4.2 that the leading-order advection balance for heat-exchanger
flow gives neutral propagation and growth is only possible because of diffusion.
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