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Thixotropic gravity currents
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We present a model for thixotropic gravity currents flowing down an inclined plane
that combines lubrication theory for shallow flow with a rheological constitutive law
describing the degree of microscopic structure. The model is solved numerically for
a finite volume of fluid in both two and three dimensions. The results illustrate the
importance of the degree of initial ageing and the spatio-temporal variations of the
microstructure during flow. The fluid does not flow unless the plane is inclined beyond
a critical angle that depends on the ageing time. Above that critical angle and for
relatively long ageing times, the fluid dramatically avalanches downslope, with the
current becoming characterized by a structured horseshoe-shaped remnant of fluid at
the back and a raised nose at the advancing front. The flow is prone to a weak
interfacial instability that occurs along the border between structured and de-structured
fluid. Experiments with bentonite clay show broadly similar phenomenological
behaviour to that predicted by the model. Differences between the experiments and
the model are discussed.
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1. Introduction
Thixotropic fluids have a time-dependent microstructure that gradually builds up

when the fluid is at rest, leading to a slow increase in the effective viscosity, but
is reversibly broken down by flow, thereby lowering the fluid’s resistance (Mewis
& Wagner 2009). A wide range of fluids exhibit thixotropic behaviour, including
natural clay suspensions, industrial drilling fluids and cements, printing inks and paints,
oils and grease, and food products such as mayonnaise and ketchup (Barnes 1997;
Mewis & Wagner 2009). Two key features of thixotropic fluids have recently been
identified (Coussot et al. 2002a,b; Bonn et al. 2004; Moller et al. 2009). First,
they may experience a so-called ‘viscosity bifurcation’, describing the response of
the fluid under a fixed applied stress: if the stress is less than a certain critical
value, the fluid evolves to a structured (‘jammed’) or solid state of rest with a large
or diverging viscosity. Above that threshold, however, the microstructure abruptly
disintegrates, substantially lowering the viscosity and initiating extensive fluid flow.
Crucially, the value of the critical stress depends on how long the fluid was left to
age before the stress was applied. The second key feature is that once flow is initiated

† Email address for correspondence: drh39@cam.ac.uk

mailto:drh39@cam.ac.uk


Thixotropic gravity currents 57

and microstructure broken down, such a state can only persist if the shear rate is
maintained above another critical value; if the fluid flows in such a way that shear
rates decline below this second threshold, the microstructure swiftly recovers and jams,
abruptly increasing the viscosity and blocking flow.

Gravity currents form a particularly important class of flows in which such
thixotropic effects can play a significant role. Many geophysical muds and clays
appear to be thixotropic, and the relatively sudden and long runouts of mudslides and
‘quick-clay’ avalanches has been suggested to originate from this rheology (Khaldoun
et al. 2009). In industrial settings, currents of mine tailings and waste mineral
slurries have been observed to flow much further than predicted (Henriquez & Simms
2009; Simms et al. 2011), with potentially serious environmental consequences. On a
different scale, household foodstuffs such as ketchup are often tested in the ‘Bostwick
consistometer’ (a variant of the classical dambreak problem in which material is
suddenly released and slumps down a channel; Balmforth et al. 2006a), yet the
confounding role that thixotropy can play in such a device is usually ignored.

Important features of thixotropic gravity currents were documented in the
experiments of Coussot et al. (2002a). These authors observed that a suspension of
bentonite clay emplaced as a mound on an inclined plane did not flow provided
the slope was below a certain critical angle. Above that angle, however, the
mound collapsed dramatically, with a fraction of the clay flowing rapidly down the
incline, and a horseshoe-shaped remnant of immobile material being left behind. The
critical angle corresponds to the stress at which the viscosity bifurcation occurs, the
avalanching fluid having de-structured and separated from the structured horseshoe-
shaped remnant. For uniform layers on an inclined plane, Huynh, Roussel & Coussot
(2005) showed that the critical angle increased if the fluid was left to rest and ‘age’ for
longer. Similar ‘avalanche’ behaviour was recorded for dambreaks on inclined planes
by Coussot et al. (2005) and for clay suspensions by Khaldoun et al. (2009). The latter
authors also reported that the collapse was mediated by a thin de-structured basal layer,
upon which the overlying rigid bulk of the material was conveyed.

Although previous work has proposed constitutive laws describing the viscosity
bifurcations of thixotropic fluid (see § 2), there have been few attempts to couple
such rheological models with the detailed flow dynamics. In particular, aside from a
few computations reported by Coussot et al. (2005), there has been no attempt to
model in detail the spatio-temporal evolution of a thixotropic gravity current on an
inclined plane. Our aim in the current paper is to provide such a model; we present
a shallow-layer theory that describes the release of a finite volume of thixotropic fluid
on a slope. Such theories are well documented for Newtonian (Huppert 1982; Lister
1992) and viscoplastic (Liu & Mei 1989; Balmforth, Craster & Sassi 2002; Balmforth
et al. 2006b) fluids.

Our rheological model, which accounts for the two key thixotropic effects outlined
in the first paragraph above, is described in § 2. In § 3, we couple this rheology with
lubrication theory for shallow flow. We solve the equations of the model numerically
in section § 4, in both two and three dimensions, and discuss the main features
of the flow. In § 5, we present experimental results for the gravity current of an
aqueous suspension of bentonite clay. There is broad agreement between the theory
and experiments, but there are also some notable differences, which are discussed here.
Finally, in § 6 we summarize our main results. In exploring the theoretical model, we
encounter a novel type of interfacial instability; additional details of this feature of the
model are presented in the Appendix.
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2. Rheological model
2.1. Background

Thixotropic rheology has been described using simple constitutive models that exploit
a parameter, λ(t), which describes the degree of internal structure (Barnes 1997;
Mewis & Wagner 2009). The parameter lies in a range [0, λ0]: the fluid has no
effective microstructure if λ = 0, but is fully structured and solid-like when λ = λ0.
The structure parameter controls the viscosity µ(λ) in the generalized Newtonian-fluid
model,

τij = µ(λ) γ̇ij, (2.1)

which relates the deviatoric stress tensor τij to the tensor γ̇ij = ∂ui/∂xj + ∂uj/∂xi, which
measures the rate of strain. In spatially uniform settings, the structure parameter is
often taken to satisfy an evolution equation of the form

dλ
dt
= g(λ, γ̇ )= G(λ, τ ), (2.2)

where γ̇ =√γ̇ijγ̇ij/2 and τ =√τijτij/2 denote tensor invariants, and G(λ, τ ) follows
from g(λ, γ̇ ) on using (2.1). Various forms for µ(λ) and g(λ, γ̇ ) have been proposed
in the literature (Coussot et al. 2002a,b; Dullaert & Mewis 2006; Moller, Mewis &
Bonn 2006; Alexandrou, Constantinou & Georgiou 2009; Putz & Burghelea 2009). In
general, g(λ, γ̇ ) contains a positive term corresponding to restructuring or ‘healing’,
and a negative term proportional to γ̇ describing the de-structuring effects of flow. The
viscosity µ(λ) increases with structure, and becomes large or even diverges as the fluid
becomes fully structured.

To illustrate how the thixotropic model above can account for the two key
thixotropic effects outlined in the introduction, we use the quasi-steady version of
(2.2), G(λ, τ ) = 0. The overall idea is that, for low or vanishing stress, G(λ, τ ) is a
positive, decreasing function of λ that vanishes only for λ= λ0 (figure 1a). As is clear
from (2.2), G(λ0, τ ) = 0 corresponds to a fully structured equilibrium state, which is
stable as long as ∂G(λ0, τ )/∂λ < 0. As the stress is increased, the curve representing
G(λ, τ ) is pushed down somewhere over the range of λ, eventually touching the
G(λ, τ ) = 0 axis and creating two new equilibrium states, λ = λ±, at a critical stress,
τ = τC, which corresponds, via (2.2), to a critical strain rate γ̇C. The newly created
state with less structure, λ= λ− < λ+, is stable, whilst that with an intermediate degree
of structure, λ = λ+, is unstable. However, the fully structured state λ = λ0 persists
during the creation of λ± and remains stable. This implies that fluid which had been
prepared in the fully structured state before the stress was increased would remain in
that state; only if the fluid was initially de-structured would λ converge to λ−.

If the stress is increased still further, the curve of G(λ, τ ) continues to be driven
downwards, and the unstable equilibrium moves to higher λ. Eventually, this state
collides with the fully structured solution at λ = λ0, rendering that equilibrium
unstable (∂G(λ0, τ )/∂λ becomes positive). This bifurcation occurs at stress τ = τA;
for higher stresses τ > τA, the only stable equilibrium in the range [0, λ0] is λ = λ−.
Therefore, all structure disintegrates and evolves towards the de-structured equilibrium,
even if the fluid were initially fully structured. The set of curves for increasing stress
in figure 1(a) illustrate a sequence of such situations.

The behaviour of the structure function in figure 1(a) implies a hysteretic relation
between stress τ and strain rate γ̇ if the stress on a sample of fluid is first ramped
up until flow occurs, and then decreased back down until the flow subsides. More
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FIGURE 1. (Colour online) (a) The structure function G(λ, τ ) for various values of the stress
τ . The curves are based on the model (2.4). The dashed and dot-dashed curves show the
critical cases τ = τC and τ = τA. Stars indicate the stable, less structured equilibrium states,
and circles indicate the unstable, intermediate structured states. (b) A sketch of the hysteretic
stress–strain-rate relation, with the arrows indicating the pathway expected for an experiment
in which stress is first increased past the critical value τA, and then decreased back below τC.
Non-zero strain rates below the critical value γ̇C cannot be attained. The dashed line shows
the unstable, intermediate structured equilibrium. The dotted lines show the stress–strain-rate
relations for λ0 = 1/2 (idealized yield-stress-like behaviour) and λ0 = 1 (τA →∞); these
values are specific to our model (2.4). The inset shows rheometric data for a bentonite
clay suspension (7.5 wt% ≈ 10 % by volume) in a cone-and-plate rheometer. The stress was
increased from 10 to 50 Pa in 20 steps, and then decreased again, waiting for 5 s at each stress
level. The fluid was pre-sheared for 2 min at 100 Pa, and left to rest for 5 min before starting
the test.

specifically, as sketched in figure 1(b), the fluid is initially static and fully structured
(λ = λ0 and γ̇ = 0), and remains so until that state loses its stability at τ = τA. The
fluid structure then disintegrates and evolves towards the less structured state λ = λ−
with finite shear rate. If the stress is then reduced, the flowing, less structured state
of the fluid is preserved until τ falls below τC, at which juncture that state disappears.
Thereafter, the flow can no longer destroy the microstructure at the same pace as
it heals, and the fluid evolves back towards the structured state, with the viscosity
abruptly increasing and the flow coming to a halt.

In other words, the viscosity bifurcation of Coussot et al. (2002b) occurs at τ = τA,
and the second transition at τ = τC corresponds to the shear rate falling below
the critical threshold γ̇C (see figure 1b). In terms of the thixotropic model, both
transitions correspond to bifurcations in the sense of standard dynamical systems
theory. Henceforth, we refer to both as ‘viscosity bifurcations’, even though the second
does not strictly conform to the terminology of Coussot et al. (2002b).

2.2. The rheological model
Our aim is to present a simple model of thixotropic gravity currents. For the task,
we incorporate the thixotropic rheology, and specifically the viscosity bifurcations, in
as simple a manner as possible. More precisely, we use the structure function shown
in figure 1(a) to relate the local stress to the microstructural state. That is, given the
stress, we solve G(λ, τ )= 0 to determine λ, and thence the viscosity, µ(λ).
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A convenient form for the structure function is furnished by the models

g(λ, γ̇ )= (λ0 − λ)
λ0T

− αλγ̇ and µ(λ)= µ0λ0

(1− λ) (λ0 − λ), (2.3a,b)

which imply

G(λ, τ )= (λ0 − λ)
λ0T

[1− Γ λ (1− λ) τ ]= 0, (2.4)

where T and α are positive empirical constants, µ0 is a constant reference viscosity
and Γ = αT/µ0. The first term on the right-hand side of (2.3a) can be interpreted as
the healing of the microstructure back towards the fully structured state λ = λ0, and
the second term as the flow-induced de-structuring. The relationship between (2.3) and
previous models is discussed in § 2.4 below.

Equation (2.4) can be solved analytically to give the three branches of the
stress–strain-rate relation:

λ= λ0, λ= λ±(τ )= 1
2

[
1±

(
1− 4

Γ τ

)1/2
]
. (2.5a,b)

The points of bifurcation can also be determined analytically:

τA = 1
Γ λ0(1− λ0)

, τC = 4
Γ
, γ̇C = 2λ0 − 1

Γ µ0λ0
. (2.6)

Over the range τC < τ < τA, the stress–strain-rate relation has three possible
solutions, raising the question of how to select the appropriate structural state given
the stress. We dismiss the choice λ = λ+, as this state corresponds to an unstable
equilibrium. The selection between the other two options, λ = λ− and λ = λ0, is
dictated by the stress history of the fluid: if the material has never been subjected to a
stress exceeding τA, then the fluid structure has never disintegrated, and λ= λ0. On the
other hand, if the structure did disintegrate at some moment in the past (with τ > τA),
then the fluid is in its less structured state, and λ= λ−.

Note that our use of G(λ, τ ) in this fashion corresponds to assuming that the
disintegration of the microstructure for τ > τA, or restructuring for τ 6 τC, is
instantaneous (as in a kind of rapid phase transition). The differential constitutive
law in (2.2) allows for a more general version of the scenario, and in particular for
delays in disintegration or restructuring. Hence, our model can be thought of as the
quasi-steady version of (2.2). However, retaining the time rate of change of λ in the
rheological model complicates the theory significantly. On the other hand, constitutive
laws are often little more than mathematical formulations of flow-curve cartoons based
on a combination of physical intuition and rheometric data. Hence, it is not clear
that (2.2) conveys much more physical realism that the statement G(λ, τ ) = 0. Indeed,
when supplemented with the rules for selecting amongst the multiple branches of the
stress–strain-rate relation, (2.4) can be viewed as a constitutive law in its own right.

2.3. Ageing
Rheological measurements (see e.g. Moller et al. 2009) suggest that the critical
threshold for flow to begin, τA, depends on the ageing time of the fluid Tage. This
time scale can be of the order of several minutes or even hours, and is typically
longer than the duration of a gravity current flowing down an incline in a laboratory
experiment. We therefore make the assumption that, although ageing controls the
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threshold for initiation of flow, it takes place too slowly to influence the dynamics of
the gravity current.

We incorporate the effect of ageing into our model via the parameter λ0. Specifically,
the higher critical stress τA = [Γ λ0(1− λ0)]−1 increases with λ0. Therefore, as shown
in figure 1(b), when λ0 → 1/2, the hysteresis loop of the stress–strain-rate relation
disappears, leaving a single-valued curve representing the stable equilibrium. This
state is fully structured for τ < τC = τA = 4/Γ , but de-structures and flows at higher
stresses. That is, structure formation and disintegration take place at a common critical
or yield value, the critical shear rate γ̇C is zero, and there are no discontinuities in the
viscosity. This behaviour is equivalent to that of an idealized yield-stress fluid (with a
nonlinear viscosity), and would correspond to the observed situation if the fluid were
not left to age at all. As λ0→ 1, on the other hand, the threshold τA diverges, which
indicates (somewhat unphysically) that the fluid never de-structures. This situation is
suggestive of an arbitrarily long period of ageing. Thus, taking different values for λ0

between these two limits allows for differing degree of initial ageing: the bigger the
value of λ0, the longer the ageing time Tage.

2.4. Relation to previous models

The forms of the healing and de-structuring terms in (2.3) are similar to those
suggested by Barnes (1997), and many authors since. Our form for the viscosity,
however, differs from previous models, in which inverse powers or exponentials of
(λ0 − λ) are more popular. The choice λ0 = 1 turns our viscosity in (2.3) into such
a function. However, as is clear from the preceding discussion in § 2.3, this choice
shifts the viscosity bifurcation at τ = τA to infinite stress. Hence, to retain a finite,
age-dependent threshold for the onset of motion in the analytically convenient fashion
outlined in §§ 2.2–2.3, we have adopted (2.3).

Note that our quasi-static thixotropic model requires the choice of a viscosity that
yields a finite critical stress τA. Earlier models that employ the differential form in
(2.2) do not share such a requirement because they predict an exponentially slow
convergence of the structure function λ to unity; this allows one to incorporate the
slow initial ageing of the fluid within the same model as the dynamic structural
changes that arise during flow. Here, however, the wide separation of the two
characteristic time scales is difficult to incorporate into the shallow-layer framework of
§ 3 which underlies our theory. Instead, we parameterize the slow initial ageing using
λ0, and track only the relatively fast viscosity variations during the flow.

3. Shallow-flow model
3.1. Dimensional formulation

As sketched in figure 2, we consider flow over an inclined plane with velocity
u = (u, v,w) described by a Cartesian coordinate system (x, y, z), orientated such
that the x-axis points downslope and the y-axis points across the slope. The plane is
inclined at an angle θ . The fluid is shallow, with a characteristic depth H that is much
smaller than the characteristic length scale for variations over the plane, L, so that the
aspect ratio is ε = H/L� 1. The local fluid depth is z= h(x, y, t).

The flow is incompressible,

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0, (3.1)
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FIGURE 2. (Colour online) A sketch of the flow geometry, showing the coordinate system,
the characteristic length and depth, L and H, the local fluid depth h(x, y, t), and the curves of
the constant critical shear stresses, zA = z(τA) and zC = z(τC). The border between structured
and de-structured fluid, z= Z(x, y, t), is pieced together from z= zA, zC and a material section,
z= Y(x, y, t); de-structured fluid is shown shaded. (b) The profile in z of u through the slice of
the flow shown by the rectangle in (a).

and satisfies the momentum equations,

ρ

(
∂u
∂t
+ u ·∇u

)
= ρg̃−∇p+∇ · τ , (3.2)

where p is the pressure, and g̃ = (g sin θ, 0,−g cos θ), with constant gravitational
acceleration g. The deviatoric stresses are related to the rates of strain by (2.1), and the
viscosity is set according to (2.3) and (2.4). Just prior to the moment that the fluid is
released, the material is fully and uniformly structured, so that λ= λ0.

The boundary conditions are given by no slip at the base and the stress-free
condition at the upper boundary:

u= 0 at z= 0,
(
τij − pδij

)
nj = 0 at z= h(x, y, t), (3.3a,b)

where δij is the Kroneker delta and n is the normal to the surface z= h. The kinematic
condition at the upper boundary is

∂h

∂t
+ u

∂h

∂x
+ v ∂h

∂y
− w= 0 at z= h(x, y, t). (3.4)

3.2. Dimensionless leading-order formulation
To remove the dimensions from the equations and pave the way for the shallow-layer
theory, we introduce the rescalings

t = L

U
t∗, (x, y)= L(x∗, y∗), (z, h)= H(z∗, h∗), (3.5)

(u, v)= U(u∗, v∗), w= εUw∗, p= ρgHp∗ cos θ, τij = µ0U

H
τ ∗ij , (3.6)

µ= µ0µ
∗, G= TG∗, Γ = αTU

H
Γ ∗, (3.7)
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where the speed scale

U = H3ρg

Lµ0
cos θ. (3.8)

On discarding the star decoration, and to leading-order in ε, (3.2) reduces to the
lubrication equations

0= S− ∂p

∂x
+ ∂τxz

∂z
=−∂p

∂y
+ ∂τyz

∂z
=−1− ∂p

∂z
, (3.9)

where the slope parameter S = ε−1 tan θ is assumed to be O(1). The neglect of inertial
terms is valid provided that the Reynolds number Re = ρUL/µ0 is no larger than
O(ε−1). The dimensionless viscosity and structure function can be written as

µ= λ0

(λ0 − λ)(1− λ), G= (λ0 − λ)
λ0

[1− Γ τλ(1− λ)]= 0. (3.10a,b)

The dominant components of the rate-of-strain tensor are γ̇xz = ∂u/∂z + O(ε2) and
γ̇yz = ∂v/∂z+O(ε2). Therefore, to leading-order, the stress conditions in (3.3b) become

p= du/dz= dv/dz= 0 at z= h(x, y, t). (3.11)

The kinematic condition (3.4) is unchanged after scaling.
Equations (3.9) and (3.11) imply that the pressure is hydrostatic,

p= h− z, (3.12)

and the shear stresses are given by (τxz, τyz) = (h − z)(S − ∂h/∂x,−∂h/∂y), so

τ =
√
τ 2

xz + τ 2
yz = (h− z)T , with T =

√
(S− ∂h/∂x)2 + (∂h/∂y)2.

3.3. Anatomy of the flow
The rheological model in (3.10) implies that, at each position (x, y) on the inclined
plane, changes in fluid structure occur when the local stress invariant τ ≡ (h − z)T
becomes equal to one of the critical values, τC and τA. The stress contours τ = τC

and τ = τA therefore define two surfaces, z = zC ≡ h − τC/T and z = zA ≡ h − τA/T .
Above z = zC, the stress is less than τC, indicating that the fluid is structured with
λ= λ0 and γ̇ = 0. That is, the flow is plug-like with ∂u/∂z= ∂v/∂z= 0. On the other
hand, below z = zA, the stress is greater than τA, and the fluid is de-structured with
λ= λ−, indicating that there is vertical shear, γ̇ > 0 (see figure 2).

Between the two stress surfaces, zC < z< zA, the structural state of the fluid depends
on the stress history of each fluid element. Initially, the fluid is prepared in the fully
structured state with λ = λ0 everywhere. Therefore, when the fluid is released, the de-
structured fluid will be exactly bounded above by z = zA. During the ensuing flow, if
the stress increases locally this surface may migrate upwards into structured fluid and
de-structure that material. However, the runout of the fluid can also reduce the local
stress, demanding that the surface z = zA descend through the fluid, leaving behind
de-structured fluid. Those fluid elements move with the flow and only re-structure
when the local stress falls below τC along the level z= zC.

Thus, the interface, or yield surface, z= Z(x, y, t) which separates de-structured fluid
below from fully structured fluid above, must consist of three different segments (see
figure 2). First, there is a de-structuring front Z ≡ zA wherever the surface z = zA is
ascending into currently structured fluid. Second, there is a re-structuring front Z ≡ zC
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whenever the surface z = zC is descending into currently de-structured fluid. Third,
in between these fronts the yield surface corresponds to the border of material that
was initially de-structured by an increase in local stress, but was then left behind as
the stress decreased; this piece of the yield surface is necessarily a material curve,
Z ≡ Y(x, y, t), which satisfies the kinematic condition,

∂Y

∂t
+ u

∂Y

∂x
+ v ∂Y

∂y
− w= 0 on z= Y(x, y, t). (3.13)

3.4. Synopsis of the model
To summarize, the local fluid depth evolves according to (3.4), or, using the integral of
(3.1),

∂h

∂t
+ ∂

∂x

∫ Z

0
(h− z)

∂u

∂z
dz+ ∂

∂y

∫ Z

0
(h− z)

∂v

∂z
dz= 0 (3.14)

where z = Z(x, y, t) is the yield surface that divides fully structured fluid above from
de-structured fluid below. The fully structured fluid in Z < z < h flows in a plug-like
fashion with λ= λ0 and ∂u/∂z= ∂v/∂z= 0. The underlying de-structured material has
a spreading velocity that is dictated by integrating

µ
∂u

∂z
=
(

S− ∂h

∂x

)
(h− z)≡ τxz and µ

∂v

∂z
=−∂h

∂y
(h− z)≡ τyz, (3.15a,b)

where

µ(λ)= λ0

(1− λ) (λ0 − λ), λ= λ− = 1
2

[
1−

(
1− 4

Γ τ

)1/2
]
, (3.16a,b)

and

τ =
√
τ 2

xz + τ 2
yz =T (h− z) , T =

√(
S− ∂h

∂x

)2

+
(
∂h

∂y

)2

. (3.17a,b)

The yield surface z= Z(x, y, t) matches z= zA ≡ h− τA/T if that curve is moving into
structured fluid, or z= zC ≡ h− τC/T if this surface is moving into de-structured fluid.
Otherwise, the yield surface evolves as a material curve as in (3.13); equivalently,

∂Y

∂t
+ ∂

∂x

∫ Y

0
(Y − z)

∂u

∂z
dz+ ∂

∂y

∫ Y

0
(Y − z)

∂v

∂z
dz= 0. (3.18)

We solve (3.14)–(3.18) numerically, in both two and three dimensions, using second-
order centred finite differences in space, and a second-order midpoint method in time.
We place a thin pre-wetting fluid film (of thickness h= 10−3) on the substrate to avoid
any difficulties with a moving contact line. The flux terms in (3.14) and (3.18) can be
evaluated analytically to expedite the computations (the expressions for these integrals
are rather convoluted and not very informative, so we avoid quoting them). Calculating
the location of the yield surface z = Z(x, y, t) is complicated by the fact that we do
not know, per se, where the material part Z = Y joins the stress contours Z = zA and
Z = zC. Initially, the yield surface is equal to the stress contour Z = zA, as the fluid
is fully structured with λ = λ0 prior to its release. At subsequent times, we calculate
the yield surface by first solving (3.18) numerically to evolve every fluid element on
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FIGURE 3. (Colour online) Planar slumps on a horizontal plane (S = 0) for (a–c) λ0 = 0.8
and (d–f ) λ0 = 0.95, with Γ = 40 (τC = 0.1): (a) and (d) snapshots of the free surface z = h
at times t = 0, 1/2, 1, 2, 4, 8, 16, 32, and 64, together with the final rest state (dashed) from
(4.2); (b,c,e,f ) z = h (solid), z = zC (dashed), and z = zA (dotted) in x > 0 at times: (b,e)
t = 1/2; and (c,f ) t = 20. De-structured fluid is shown shaded. The position of the nose xN
and the back xB of the flowing current are marked in (b) and (c). In (c), the material part of the
yield surface z = Y is very short, and Z = zC over most of the fluid. In (f ), z = zA is positive
only very close to the moving front.

the current yield surface at the points of the computational grid. We then update the
critical stress contours zA and zC, and select Z = Y if zA 6 Y 6 zC, Z = zA if Y < zA,
and Z = zC if zC < Y .

The characteristic length scales of the flow L and H can be used to scale out two of
the free parameters of the problem. For all the results presented here, we fix the total
volume of fluid V = 2 and the initial height of the fluid h(t = 0)= 1. We are then left
with three free parameters: the slope S, the structure parameter λ0, and Γ , which sets
the critical stresses τC and τA.

4. Numerical results
4.1. Two-dimensional slumps on a horizontal plane

We begin by considering the planar slumping on a horizontal plane (S = 0) of
a rectangular block of fluid with initial profile, h(x, 0) = 1 for −1 6 x 6 1 and
h(x, 0)= 0 for |x|> 1. Figure 3 shows snapshots of numerical solutions for two values
of λ0, and Γ = 40. For the case with less initial structure (λ0 = 0.8; figure 3a–c), the
fluid slumps much like an idealized yield-stress fluid (e.g. Balmforth et al. 2006b),
and, except at early times, the yield surface z = Z lies mostly along the stress contour
z = zC. For greater initial structure (λ0 = 0.95; figure 3d–f ), the nose of the current
advances in a similar fashion to the lower value of λ0. However, the raised interior
of the flow collapses much more slowly because the fluid only de-structures over a
relatively thin basal region, owing to the fact that the stress over most of the fluid has
never exceeded τA.

We define xN(t) as the position of the right-hand nose of the current, and xB(t) as
the location of the rear of the moving section of fluid in x > 0 (i.e. the least positive
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FIGURE 4. (Colour online) Time series of xN(t) (solid) and xB(t) (dashed) for planar slumps
on a horizontal plane (S = 0). (a) Results for the values of Γ indicated, at fixed initial
structure λ0 = 0.8; the inset shows the final states given by (4.2) and (4.3). (b) Results for the
values of λ0 indicated, at fixed Γ = 40.

value of x for which h < 1; the ‘back’ of the current; see figure 3). In view of the
initial condition, xN(0) = xB(0) = 1, and all the fluid is in motion once xB decreases
to 0. Figure 4 plots time series of xN(t) and xB(t) for the two solutions shown earlier
in figure 3, along with other solutions for different values of Γ and ageing times. For
small Γ , τA and τC are large and the fluid does not slump very far, coming to rest
before xB reaches the origin. With higher Γ , more fluid de-structures and the slump
flows further. The degree of ageing (λ0) exerts little influence on the advance of the
nose of the current because the stress is always increased sufficiently to exceed τA by
steepening the slope there. However, xB(t) retreats increasingly slowly as λ0 increases,
in agreement with the results in figure 3.

In all cases, the slump finally comes to rest when all the material has fully re-
structured. This arises when the stress falls below τC everywhere, which, from (3.15)
with z= S= τyz = 0, demands that∣∣∣∣h∂h

∂x

∣∣∣∣6 τC = 4
Γ
. (4.1)

If Γ < 12, the yield stress τC is large enough that xB never reaches x = 0, and a
central section of fluid remains immobile with h= 1; elsewhere, the equality in (4.1) is
attained. Hence,

h(x)=
{

1 if |x|< X1,[
1− 8Γ −1 (|x| − X)

]1/2
if |x|> X1; X1 = 1− 1

12Γ. (4.2)
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If, instead, Γ > 12, then the fluid fully slumps; the equality in (4.1) applies throughout
and

h(x)=
[

8
Γ
(X2 − |x|)

]1/2

; X2 =
(

9Γ
32

)1/3

. (4.3)

The final states predicted by (4.2)–(4.3) are included in figures 3 and 4, and are
identical to those obtained for an idealized yield-stress fluid with yield stress τC (see
e.g. Balmforth et al. 2006a). Although the final slumped states do not depend on the
initial structure λ0, the numerical results in figure 4 emphasize how the approach to
the final state becomes increasingly long as λ0 increases towards 1.

The numerical solutions in figure 3 expose a crucial hidden detail of the theoretical
model. It is evident from the snapshots of h(x, t) that fluid spreads out from the
midline of the slumping current at x = 0. This spreading is mediated by the de-
structured lower layer of the fluid, which conveys along the overlying structured
fluid. Importantly, even though the structured fluid flow is plug-like in the vertical
(∂u/∂z= 0), this material still undergoes a much weaker horizontal extension. In other
words, the structured fluid is not rigid, despite the infinite viscosity suggested by
(3.10). This inconsistency is equivalent to the lubrication paradox of a yield-stress fluid
(Balmforth & Craster 1999) and is resolved as follows: the shallow-flow approximation
of § 3 amounts to the leading-order of an asymptotic expansion. Implicitly, it assumes
that the viscosity of the structured fluid is sufficiently large that it suppresses the
vertical shear. However, the viscosity is not taken to be so large that the extensional
stresses, τxx and τzz ≡ −τzz, become promoted into the leading-order balance of forces
in (3.9). In other words, our structured fluid does not have an infinite viscosity,
merely one that is large; in our asymptotic scheme, the underlying assumption is that
1� µ(λ0)� ε−1. Consequently, the enhanced viscosity of the structured fluid only
suppresses the vertical shear, not the horizontal extension. We return to this important
point later in § 5.2.2; for now, we note only that this detail is a feature of all the
numerical solutions presented in § 4.

4.2. Two-dimensional slumps on an inclined plane
4.2.1. Results

Motivated by our experiments in § 5, we initiate planar, inclined slumps (S > 0)
by taking the initial height profile to be given by the final rest state of a slumped
dome on a horizontal plane. That is, h(x, 0) is set by either (4.2) or (4.3), depending
on the value of Γ . In order to avoid discontinuities in the stress, the initial profile
is smoothed at points where the free surface has a discontinuous derivative (i.e. for
Γ > 12, the height is smoothed at x = 0). Figure 5(b–f ) shows numerical results for
three different ageing times, with Γ = 40 (τC = 4/Γ = 0.1) and S= 1. For comparison,
figure 5(a) shows a solution for a Bingham fluid (cf. Balmforth et al. 2006b) with
the same yield stress τC. The height profile of the Bingham current increases from
the back, where the fluid remains stationary, to a maximum just behind the front.
The thixotropic case with smaller ageing time (λ0 = 0.8; figure 5b,e) shows broadly
similar features. For longer ageing (λ0 = 0.9 and 0.95; figure 5c,d,f ), however, the
current leaves behind a striking raised remnant of structured fluid, and develops a
pronounced nose at the front, much as observed in the computations reported by
Coussot et al. (2005), albeit for a different rheological model. Both features result
because the stress on the fluid is greatest below the highest point of the initial profile;
the most significant de-structuring thus occurs at the centre of the current.
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FIGURE 5. (Colour online) Inclined planar slumps for S = 1 and Γ = 40 (τC = 0.1). Shown
are the height z = h (solid), and the stress contours z = zC (dashed) and z = zA (dotted);
de-structured fluid is shown shaded. (a–d) Profiles at t = 0 (left) and t = 300, for: (a) a
Bingham fluid with yield stress τC = 0.1; (b) thixotropic fluid with λ0 = 0.8; (c) λ0 = 0.9;
(d) λ0 = 0.95. Initially, z(τA) = Z, and at t = 300 in (c,d), z(τA) is mostly negative. (e,f )
Snapshots of the height z = h at t = 0, 10, 20, 40, 80, 160, 320 and 640, for (e) λ0 = 0.8, and
(f ) λ0 = 0.95; the final states, given by (4.7), are shown by the dashed line.

Time series of the position of the nose of the current xN(t) for a suite of
computations at fixed Γ = 40 are shown in figure 6. For small values of λ0, the
current travels faster than the corresponding Bingham fluid because the de-structured
thixotropic material has a smaller, rate-dependent viscosity. The currents of older fluid
(larger λ0) are slower, however, and are characterized by an increasingly long delay at
the beginning before the nose of the current starts to move; both effects arise because
less fluid in the current is de-structured and able to flow (see below). Moreover, if
λ0 is too large, the fluid never moves at all; this points to an age-dependent critical
slope that must be exceeded in order for the fluid to collapse (compare the solutions
for S = 0.8 and S = 1 in figures 6a and 6b). The critical slope is discussed further in
§ 4.2.2.
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FIGURE 6. (Colour online) Position of the nose xN(t) with Γ = 40, for different values of
the initial structure λ0 as indicated on the right-hand side of each panel: (a) two-dimensional
slump with S = 0.8; (b) two-dimensional slump with S = 1; (c) three-dimensional slump with
S = 1. The dashed lines show the results for a Bingham fluid with yield stress τC = 0.1. For
the largest value of λ0 in each subfigure, the slope is below the critical angle, and the current
remains stationary.
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FIGURE 7. (Colour online) Four snapshots of the current in figure 5(f ) (Γ = 40, S = 1,
λ0 = 0.95), at the times indicated. Shown are the height z = h (solid) and the two stress
contours z= zC (dashed), z= zA (dotted); de-structured fluid is shaded.

The initial delay in the advance of the nose arises because, at angles just above the
critical value, the fluid only de-structures in the centre of the current. The dynamics
are shown in more detail in figure 7, which displays the early-time evolution of the
current of figure 5(f ) with λ0 = 0.95. At t = 0, the stress contour z = zA is confined
to the core of the initial dome. Once the material is released, this contour propagates
down the incline (and slightly upslope) due to the steepening of the local free surface,
de-structuring fluid closer to the dome’s edge. Simultaneously, the stress falls over the
collapsing centre of the dome, and the stress contour z= zA descends through the fluid
leaving behind de-structured fluid and a material yield surface. The nose of the current
remains stationary until it is reached by the advancing contour z = zA, which, for this
example, occurs at t ≈ 7 (figure 7d).

Results for stronger critical stresses (Γ = 4; τC = 1) are shown in figure 8. The
initial condition now has a flat central section, as given by (4.2). Nevertheless, the
evolution of the current for different values of λ0 is similar to the previous results
with Γ = 40 (figure 5). One notable difference in figure 8 is the development of
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FIGURE 8. (Colour online) Inclined planar slumps for S = 5 and Γ = 4 (τC = 1), at times
t = 0 and t = 20, showing z = h (solid), the two stress contours z = zC (dashed), z = zA
(dotted), and de-structured fluid (shaded), for (a) λ0 = 0.8 and (b) λ0 = 0.94. The inset to
(b) shows a magnification of the waves on the material yield surface. (c) Snapshots of h for
λ0 = 0.94, at times t = 0, 1, 2, 4, 8, 16, 32, 64, 128, together with the final rest state given by
(4.7) (dashed).

spatial structure on the surfaces z = h and z = Y , which is most prominent for
larger λ0 (figure 8b). We have also observed similar structure in computations with
other parameter settings. The structure typically takes the form of short-wavelength
travelling waves on the material yield surface z = Y . The waves often appear when
sharp horizontal gradients arise in the stress and can pose a problem with spatial
resolution when the wavelength becomes too short. Both the height of the free surface
and the global features of the flow remain largely unaffected by these waves, which
move along the material yield surface and are damped at intersections with the critical
stress contours z = zC or z = zA. In the Appendix, we rationalize these waves in terms
of an interfacial instability.

4.2.2. The critical slope
If the stress on the fluid layer does not exceed τA anywhere, the fluid remains

fully structured and cannot flow. The situation corresponds to a critical slope Sc,
which can be calculated analytically. When the initial dome, whose profile satisfies
|h∂h/∂x| = τC = 4/Γ (4.1), is placed on a slope S, the stress along the base of the
current becomes

τ =
∣∣∣∣S− ∂h

∂x

∣∣∣∣ h= ∣∣∣∣Sh− τCsgn
(
∂h

∂x

)∣∣∣∣ . (4.4)
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The fluid will not de-structure if τ < τA = [Γ λ0(1− λ0)]−1. It follows, on using (4.2)
and (4.3), that the critical slope Sc is

Sc ≡ τA − τC

max(h)
= (1− 2λ0)

2

Φλ0 (1− λ0)
where Φ =

{(
12Γ 2

)1/3
, Γ > 12,

Γ, Γ 6 12.
(4.5)

When the fluid is not aged, Tage = 0 and λ0 = 1/2, which implies Sc = 0. The fluid
therefore flows at any non-zero angle, reflecting how the slumped dome used as the
initial condition is already held at its yield stress with τ = τA everywhere. The addition
of any degree of slope unavoidably raises τ on the downward face of the dome,
thereby initiating collapse (an imitation of the behaviour of a yield-stress fluid). As the
ageing time, and thus λ0, increases, there is an increased separation between the two
stresses τC and τA, and the critical slope Sc increases. As λ0→ 1, Sc→∞, in which
limit the shallow-layer framework of the model breaks down.

4.2.3. Final rest state
As for the slump on a horizontal plate (§ 4.1), the final state for an inclined current

is again given by the height profile for which the stress on the base has fallen below
τC everywhere, implying that the fluid fully re-structures. Such states are identical to
those for a Bingham fluid with a yield stress τC = 4/Γ (see e.g. Balmforth et al.
2006b), and are given by ∣∣∣∣S− ∂h

∂x

∣∣∣∣ h 6 τC. (4.6)

At the back of the current, the fluid never slumps because the basal stress on the left
of (4.6) never exceeds τC. The slumped forward section, on the other hand, has a basal
stress that approaches τC; (4.6) then provides the implicit solution

log
(

1− S

τC
h

)
+ S

τC
h= S2

τC
(x− xF) , (4.7)

where xF is a constant of integration corresponding to the final position of the nose of
the current; this constant is determined by matching (4.7) with the unslumped initial
condition at the back of the current in such a way as to obtain the correct fluid
volume.

Final profiles from (4.7) are shown in figures 5(e,f ) and 8(c). The profiles are
almost flat, with a steep drop at the nose, and are independent of the ageing time Tage

(i.e. λ0), provided the inclination angle is greater than the critical slope Sc. The raised
structured remnant at the back of the current for higher λ0 must therefore eventually
disappear; the numerical results indicate that this late stage of the evolution is much
slower than the initial spreading of the current.

4.3. Three-dimensional slumps on an inclined plane

As for the planar slumps, our initial condition for three-dimensional currents on an
incline is given by the profile of a slumped dome on a horizontal surface. That profile
is axisymmetric and, for V = 2, is given by

h(x, y, t = 0)=
[

8
Γ

(
R−

√
x2 + y2

)]1/2

; R=
(

15
8π

)2/5(
Γ

2

)1/5

, (4.8)
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FIGURE 9. (Colour online) Three-dimensional slump on an incline with slope S = 1,
λ0 = 0.92 and Γ = 40. (a–d) z = h(x, y, t) as a surface above the (x, y)-plane at the times
indicated (left), together with the midsection (y = 0) profiles of h (solid), zC (dashed), and zA
(dotted) (right). De-structured fluid is shown shaded. (e) The edge of the current (stars) and
the border of unslumped structured fluid (dots) at t = 0 and 300. (f ) A comparison of the edge
of the current at t = 300 for λ0 = 0.9, 0.92, and 0.94 (Γ = 40, S= 1).

provided that Γ >
√

240/π ≈ 8.7, which corresponds to the parameter setting used
below. If Γ <

√
240/π, the fluid does not fully slump on a horizontal plane and the

initial condition has a flat top analogous to the two-dimensional profile in (4.2).
Figure 9(a–e) shows a numerical solution for Γ = 40, S = 1, and λ0 = 0.92. As

for the planar slumps, a remnant of structured fluid is left behind at the back of the
current. The remnant corresponds to the least stressed part of the initial dome, where
τ < τA, and is similar to the ‘horseshoe’ observed experimentally by Coussot et al.
(2002a). As shown in figure 9(f ), the extent of the structured horseshoe increases with
λ0, or equivalently with the ageing time.

The height profile and stress curves over the midsection (y = 0) of the three-
dimensional slump in figure 9(a–d) are qualitatively similar to those of planar currents
with large λ0 (cf. figure 5c–d). In particular, once again fluid yields only at the core
of the initial dome and it takes a finite length of time for the yield surface to advance
through the fluid to the nose of the current (see also figure 5e). The delayed progress
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(a) (b)

FIGURE 10. (Colour online) Snapshots of an experiment with 10 % by volume bentonite
solution, Tage = 240 min, and an angle of 20◦: (a) after t = 5 s; (b) after t = 50 s. The initial
diameter of the fluid is ∼13 cm

of the nose of three-dimensional currents with different degrees of initial structure λ0

is comparable with the results for planar slumps, as shown in figure 6(c).
As in two dimensions, there is an age-dependent critical angle below which the

initial profile does not collapse. Similarly the final rest state of the current can be
calculated by matching the unslumped part of the deposit (with a profile set by the
initial condition) to the solution of(

S+ ∂h

∂x

)2

+
(
∂h

∂y

)2

= τ
2
C

h2
, (4.9)

corresponding to equating the basal shear stress with τC (cf. Balmforth et al. 2002). As
in the planar case discussed in § 4.2.3, this final state has no raised remnant at its back.
The horseshoe must therefore be slowly eroded away over a much longer time scale
than the initial rate of spreading.

5. Experiments
5.1. The setup

We carried out a series of experiments on an inclined plane to compare with the
predictions of our model. The experimental setup consisted of a 1 m2 glass plate,
which was hinged at one end, and could be tilted and held at a desired angle using a
pulley system. As a model thixotropic fluid, we used a suspension of bentonite clay
in filtered water (10 % by volume, Quik-Gel sodium bentonite, Baroid drilling fluids).
We also carried out experiments with tomato ketchup (Heinz), which are discussed
very briefly in § 5.3. In preparation for each experiment, the bentonite solution was
vigorously stirred for twenty minutes to homogenize the fluid and destroy its internal
structure. A fixed volume (150 ml) of the material was then poured into a hollow
cylindrical (5 cm radius) mould set upon a horizontal Plexiglas sheet whose surface
had been roughened by sandpaper. Quickly raising the mould allowed the sample
to slump to rest, creating a dome equivalent to the initial conditions used for the
theoretical computations. The slumped dome was then left to age for a time Tage under
an airtight cover to limit evaporation. Finally, the roughened Plexiglas and its dome
were fixed onto the glass plate, which was then tilted to a desired angle. The surface
of the current along its midsection was recorded using a laser line projected onto the
fluid surface from directly above (figure 10). The roughening of the Plexiglas sheet
was essential to eliminate any macroscopic slip at the base of the current, which is
known to affect bentonite solutions (e.g. Coussot et al. 2002b).
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FIGURE 11. Experimental height profiles along the midsection of currents of joint compound
and bentonite. The joint compound, shown in (a), flows down a 34◦ slope. The bentonite,
shown in (b)–(d), is on a 20◦ slope and the ageing times Tage are indicated. The profiles are
plotted every 2 s, except those in (b), which are 0.5 s apart. Bold lines signify the initial and
final profiles.

5.2. Bentonite

5.2.1. Results
Measurements of the surface profiles of flowing currents of bentonite clay are shown

in figures 11 and 12. Figure 11 shows profiles of samples with different ageing times
Tage on inclines of 20◦; figure 12 shows profiles on slightly steeper inclines of 24◦.
As a comparison, we carried out some experiments with a ‘joint compound’ solution
(Sheetrock all-purpose joint compound), which, over the time scale of an experiment,
appeared similar to an ideal yield-stress fluid. Measurements of the height of the joint
compound are shown in figure 11(a).

The measurements confirm that the behaviour of bentonite is strongly dependent
on the ageing time. Consider, for example, the results on a 20◦ slope (figure 11b–d).
For very small ageing times, the behaviour is similar to that of the joint compound
(figure 11a): the fluid evolves rapidly after the experiment starts and primarily slumps
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FIGURE 12. Experimental height profiles along the midsection of bentonite currents on a 24◦
slope, for the ageing times Tage indicated. Profiles are plotted every 2 s, except those in (a),
which are 0.5 s apart. Bold lines signify the initial and final profiles. In (b,c), the current flows
off the end of the plate.

forwards, piling material up towards the front (the slight residual bump near the front
of the fluid is not consistent with the theoretical results for a yield-stress fluid, and is
perhaps the result of surface tension effects or a different fluid rheology). However, as
the ageing time Tage increases, the samples behave quite differently: the current thins
most dramatically in the middle, a horseshoe-shaped remnant is left behind at the back
of the current, and a raised nose detaches at the front. These features are even more
striking on a slope of 24◦ (figure 12). Note that, even in the most extreme examples,
there was always a thin lubricating layer of de-structured fluid left coating the plane,
and the nose did not appear to be suffering macroscopic slip over the Plexiglas (which
did occur when that surface was not roughened; the slipping current left almost no
fluid trailing behind).

Figure 13(a,b) shows time series of the position of the nose of the current xN(t) for
two different angles and a variety of ageing times Tage. These plots illustrate how, for
small Tage, the current accelerates quickly at small times. However, as Tage increases,
there is an increasingly long delay before motion begins, and then, once underway,
accelerations are more gradual. Figure 13(a,b) also highlights how the current comes
to an abrupt halt after flowing down the plane.

Figure 13(c) shows the final position of the nose of the current, xF, as a function
of the inclination angle, for six different ageing times Tage. A first conclusion that can
be drawn from these results is that, if the inclination is below a critical angle that
depends on the ageing time, the fluid does not move at all. Second, for small values
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FIGURE 13. (Colour online) (a,b) The position of the nose xN(t) of bentonite currents with
the ageing times Tage indicated, on slopes of (a) 20◦ and (b) 24◦. (c) The final distance
travelled by the nose of the current xF as a function of the inclination angle, for the ageing
times Tage indicated. (d) The initial structure parameter λ0 of the rheological model, as a
function of the ageing time Tage, estimated from the data in (c), as discussed in the text.

of Tage, the final runout of the current xF increases steadily with inclination angle.
For larger values of Tage, however, the runout increases suddenly over an increasingly
narrow band of angles. The oldest sample, with Tage = 1080 min, exhibits extremely
abrupt ‘avalanching’: at 20◦ the fluid remains stationary on the slope, but at 24◦ the
fluid dramatically de-structures (after the delay illustrated in figure 13b) and flows off
the bottom of the plate.

5.2.2. Comparison of experiments and theory
The experimental results exhibit many of the qualitative features predicted by the

theoretical model. In particular, the effect of the ageing time is broadly similar. For
small Tage (λ0 near 1/2), both theory and experiments show that the current behaves
like a yield-stress fluid (cf. Coussot et al. 2005). Similarly, as Tage or λ0 increases, the
currents develop a pronounced horseshoe of structured fluid at the back, a thinned
interior, and a raised nose at the front. The experiments confirm the theoretical
prediction of a critical angle below which there is little or no flow, which increases
with Tage (figure 13c). Above the critical angle, the fluid flows over a significant
distance.

The slumps in the experiments are shallow relative to their lateral dimensions, in
accordance with the lubrication framework of the theoretical model. However, near the
fluid edge, the slope of the surface can become order one. Whilst this violates the
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lubrication assumption locally, it is not clear how much of a qualitative effect this has
on the evolution of the current elsewhere.

The experiments suggest rough estimates for some of the parameters of the theory:
the radius of the initial slump on a horizontal plate in the experiments can be matched
with the model prediction (4.8) to give an estimate of the critical yield stress of
τC ≈ 16 Pa (the density of the bentonite was 1.07 g cm−3). This is comfortingly
close to the stress at which the lower viscosity bifurcation is seen in the cone-and-
plate rheometry data in figure 1(b). (Our efforts to prepare an identical solution
were not completely successful; simple slump tests showed that the sample used in
the rheometry, which was performed in a different location, had a slightly thicker
consistency than the samples used for the gravity-current experiments.)

We can also determine the critical angle as a function of the ageing time from
the measurements shown in figure 13(c). By using the two-dimensional analysis of
§ 4.2.2, we can then estimate the absolute yield stress τA(Tage). We find that τA

increases from approximately 20 Pa at Tage = 5 min to ∼50 Pa at Tage = 1080 min. In
comparison, the higher viscosity bifurcation in the rheometry data of figure 1 occurs at
a stress just above 30 Pa, the material ageing for ∼6 min before yielding. Given that
τA = [Γ λ0(1− λ0)]−1 = τC/[4λ0(1− λ0)], the estimates for these critical stresses imply
the relation λ0(Tage) plotted in figure 13(d).

There are several notable differences between the experimental results and the
theoretical predictions. For example, the theoretical final state is a thin and almost
flat current, which is approached extremely slowly. In the experiments, however, the
flow stops abruptly and the horseshoe remnant and raised nose still decorate the
deposit. One possible explanation for this disagreement is that the theoretical final
state is entirely controlled by τC, whereas the re-structuring rheology of the bentonite
is more complicated. In particular, our model ignores any material ageing during the
late stages of the slump, which may be responsible for switching off the flow and
leaving intact the structured remnant (as in the computations of Coussot et al. 2005,
whose model allows for such an effect).

Another difference is that, in the theory, the total distance that the current flows is
a function of the slope S but is independent of λ0 and thus of ageing, provided the
slope is above the critical value. In the experiments, however, the total run-out distance
is a function of both the slope and ageing time Tage (figure 13c). On a 24◦ slope
(figure 13b), the older samples even travel further than the younger ones. It is possible
that the rapid acceleration of these samples introduces inertial effects which are not
included in the theoretical model.

In both experiments and theory there is a delay before the nose of the current
starts to flow when the angle is just above its critical value. This feature was noted
previously by Huynh et al. (2005). In the theory, the delay is the lag experienced
as the yielded sections of the fluid, which first appear at the centre of the initial
dome but are dammed up by downslope structured fluid, migrate to the front. In the
experiments, however, it is not so clear whether this is the underlying cause of the
delay. Indeed, the delay time can be long compared with the time scales of the flow
(see e.g. figure 13b); it is conceivable that time-dependent internal de-structuring is
important, whereas it is instantaneous in the theoretical model.

Lastly, the experiments demonstrate that the fluid can de-structure even more
dramatically than the model predicts, particularly if the ageing time is large.
Figure 12(c), for example, shows an extreme degree of thinning in the interior of
the current, which we have not been able to capture with our model. This difference
is perhaps due to the detailed rheology; the viscosity, for example, may depend more
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FIGURE 14. (Colour online) Experiments with Heinz tomato ketchup: (a) the position of the
nose of the current xN(t) on a 14◦ slope for the ageing times indicated; (b) a photograph from
above of a ketchup current (downslope is to the right), showing a structured horseshoe at the
back (left), and significant surface texture on the rest of the current. The initial diameter of the
ketchup was ∼13 cm.

sensitively on the strain rate. It could also be due to the neglect of extensional stresses
in the structured fluid layer. As remarked earlier in § 4.1, we do not account for such
extensional stresses, and the enhanced viscosity of the structured fluid only suppresses
vertical shear. However, if the upper layer is sufficiently viscous, the extensional
stresses can contribute to the force balance along with the shear stress (as in models of
free viscous films or sliding ice sheets and shelves (cf. Balmforth, Craster & Toniolo
2003)). The inclusion of extensional stresses may lead to an increased thinning of
the interior of the current and the fusion of the front and back into a rigid nose
and horseshoe much like in the experiments, offering an intriguing avenue for further
study.

5.3. Ketchup
We also carried out experiments using Heinz tomato ketchup. Ketchup is an interesting
and complex multicomponent fluid, and is difficult to use experimentally due to its
tendency to separate over time. In particular, ketchup readily expels vinegar, which
gathers around the base of the sample if it is left at rest for more than a few
minutes. Owing to this separation problem, we only very briefly discuss the results.
We observed thixotropic behaviour which, in some respects, resembled the behaviour
of bentonite. In particular, for ageing times Tage & 1 h there was a clear horseshoe
of structured ketchup left at the back of the ketchup current. As with bentonite
(figure 13b), the evolution of the current changed qualitatively with ageing time:
for long ageing times, the flow gradually accelerated from rest, in contrast to the
behaviour for small Tage (figure 14a).

However, the ketchup current differed in both appearance and behaviour. It proved
difficult to observe dramatic avalanche behaviour with ketchup. The current also had
no pronounced nose, nor did it thin over its interior. Interestingly, the current always
continued to flow throughout the duration of the experiments, rather than coming
to an abrupt halt like the bentonite. These observations highlight the complexity of
thixotropic behaviour: the ketchup current shows clear ageing effects, even though
it does not exhibit all the same phenomena as the bentonite. The photograph of a
ketchup experiment in figure 14(b) shows the structured horseshoe remnant, and the
gravity current extending down the slope. This picture also illustrates the complex



Thixotropic gravity currents 79

wavy structure of the surface of the current, which is perhaps the result of an
interfacial instability like that which occurs in the theoretical model.

6. Conclusions
In this paper, we have presented a model for thixotropic gravity currents and

compared its predictions with experiments using a solution of bentonite. There is
broad qualitative agreement between theory and experiment, but there are also some
interesting differences.

In our model, the degree of microstructure in the fluid is dictated by the local stress
τ through a relation that allows for viscosity bifurcations at two critical yield stresses
τA and τC. Solid-like structured fluid can only de-structure and flow once the stress
upon it exceeds the first critical stress τA. Conversely, de-structured fluid abruptly re-
structures back to the solid-like state if the stress falls below the second critical stress
τC (or, equivalently, if the shear rate falls below the critical value γ̇C). By allowing
τA to depend on the length of time the fluid has been left standing, we accommodate
a dependence on the initial ageing time Tage. Our thixotropic law describes scenarios
in which the evolution of the structure at the critical stresses is rapid and all other
material ageing is slow, in comparison to the time scales of the flow.

For a mound of fluid placed on an inclined plane, if the local stress is nowhere
above τA, the fluid cannot yield. Hence there is a critical angle below which the
fluid will not flow, which increases with ageing time. Above the critical angle,
fluid de-structures and begins to move. The de-structured fluid remains yielded and
continues to flow until the local stress falls below τC < τA. Consequently, the current
flows significantly once the critical angle is exceeded. With longer ageing times, the
critical stresses τA and τC become more separated, increasing the critical angle and the
degree of thinning once this threshold is exceeded. The flow also becomes increasingly
characterized by a raised nose at the fluid front and a remnant of structured fluid at
the back, which, in three dimensions, takes the shape of a horseshoe. Experiments with
bentonite clay show qualitative similarities with all these features of the dynamics.

The theory and experiments differ most notably in their final states: in the theory
the flow slowly evolves to an almost flat profile, with the raised nose remnant at the
back slowly eroding away over a very long time scale. In the experiments, however,
the bentonite came to an abrupt halt with a persistent raised nose and horseshoe.
The experimental flows also thin more dramatically than those of the model. These
discrepancies could be due to the neglect of extensional stresses of the structured fluid
in the model, or a more complicated time-dependent thixotropic rheology.
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Appendix. Interfacial instability
Superposed, inclined shallow layers of Newtonian (Chen 1993) or power-law

(Balmforth et al. 2003) fluid with differing viscosities can be unstable to an interfacial
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instability, even in the absence of inertia. An analogous instability arises in our
model for a thixotropic gravity current when the yield surface is a material curve
separating structured fluid above from de-structured fluid below. In this Appendix, we
explore the instability for the simpler problem of a uniform shallow sheet in two
dimensions, assuming that the yield surface remains separated from z = zA and z = zC.
The governing equations (3.14)–(3.18) are then

∂h

∂t
+ ∂

∂x
F(h, hx,Y)= 0,

∂Y

∂t
+ ∂

∂x
G(h, hx,Y)= 0, (A 1a,b)

where

F(h, hx,Y)=
∫ h

0
u dz= (S− hx)

∫ Y

0
(h− z)2 (1− λ) (1− λ/λ0) dz, (A 2)

G(h, hx,Y)=
∫ Y

0
u dz= (S− hx)

∫ Y

0
(h− z) (Y − z) (1− λ) (1− λ/λ0) dz, (A 3)

and the subscript on hx refers to a partial derivative. The fluxes F and G can be
evaluated analytically using

λ= λ− = 1
2

[
1−

(
1− 4

Γ (h− z) (S− hx)

)1/2
]
, (A 4)

which comes from (2.5b).
Equations (A 1) have the uniform equilibrium solution h = h0 and Y = Y0. Normal-

mode perturbations to this base state of the form eσ t+ikx, with wavenumber k and
growth rate σ , satisfy a dispersion relationship

σ 2 + σ (Ak2 + iBk
)+ iCk3 + Dk2 = 0, (A 5)

where

A= ∂F

∂hx
, B= ∂F

∂h
+ ∂G

∂Y
, C =− ∂G

∂hx

∂F

∂Y
, D= ∂G

∂h

∂F

∂Y
− ∂G

∂Y

∂F

∂h
, (A 6a,b,c,d)

all evaluated at h = h0, Y = Y0, and hx = 0. It follows from (A 5) that Re{σ } = 0 only
if k = 0; that is, the uniform flow is either unstable or stable for all wavenumbers. For
k� 1, we find the two solutions,

Re{σ1} = −Ak2 + O(1), Re{σ2} = C2 − ABC − A2D

A3
+ O(k−1). (A 7a,b)

On examining the partial derivatives of F and G in more detail, one can establish
that the first solution is stable (A > 0) whereas the second can be unstable (if
C2 − ABC − A2D > 0). With a little more effort, one can show that the growth rate
of the unstable solution increases monotonically from zero at k = 0 up to the constant
maximum given by (A 7b), and has finite phase speed c = −Im{σ }/k. With parameter
settings guided by the full slump problem considered in the main text, it turns out that
the growth rate of instability is typically relatively small in magnitude, rather less than
the corresponding phase speed. Hence, the perturbations propagate much faster than
they grow. Typical solutions of (A 5) are shown in figure 15(a).

The system (A 1) can also be solved numerically with periodic boundary conditions
to explore the nonlinear dynamics of the interfacial instability, starting from a small
perturbation to the uniform base flow. Figure 15(b,c) shows the results of such
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FIGURE 15. (Colour online) Interfacial instability of a uniform sheet for Γ = 40, λ0 = 0.9,
h0 = 1 and Y0 = 0.5. (a) shows the unstable (solid) and stable (dashed) roots of the dispersion
relationship (A 5). (b–c) show numerical solutions for h and Y , respectively, from an initial-
value problem beginning with the uniform flow plus a small perturbation with wavenumber
8π and the spatial form of the unstable normal mode. The solutions are plotted at each time
unit and vertically offset, in a frame moving at a speed V close to the modal phase speed.
Note the different vertical scales in (b,c). The inset of (a) shows the r.m.s. values of h− h0 and
Y − Y0 against time, along with the trend of the unstable mode.

an initial-value computation, starting with a perturbation with wavenumber k = 8π,
corresponding to four waves. The instability develops as predicted by linear theory
and is more prominent on the yield surface than on the free surface. In the nonlinear
regime, the instability leads to the formation of shocks on the material yield surface,
with the same wavenumber as the original perturbation. These shocks generate high-
wavenumber oscillations on the scale of the grid, which is probably an artefact
of the numerical scheme used to solve the equations. The short-wave character of
the instability also compromises the shallow-layer assumption inherent in lubrication
theory; it is likely that extensional stresses would introduce a short-wavelength cut-off,
removing the generation of overly fine wavelengths.
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