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High-resolution numerical simulations of statistically steady convection in a three-
dimensional porous medium are presented for Rayleigh numbers Ra 6 2 × 104.
Measurements of the Nusselt number Nu in the range 1750 6 Ra 6 2× 104 are well
fitted by a relationship of the form Nu= α3Ra+ β3, for α3= 9.6× 10−3 and β3= 4.6.
This fit indicates that the classical linear scaling Nu∼ Ra is attained, and that Nu is
asymptotically approximately 40 % larger than in two dimensions. The dynamical flow
structure in the range 1750 6 Ra 6 2 × 104 is analysed, and the interior of the flow
is found to be increasingly well described as Ra→∞ by a heat-exchanger model,
which describes steady interleaving columnar flow with horizontal wavenumber k
and a linear background temperature field. Measurements of the interior wavenumber
are approximately fitted by k∼ Ra0.52±0.05, which is distinguishably stronger than the
two-dimensional scaling of k∼ Ra0.4.
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1. Introduction
Statistically steady Rayleigh–Bénard convection, driven by a heated lower boundary

and a cooled upper boundary, is a canonical fluid-dynamical system which provides
a context for the study of nonlinear convective flow and the associated dynamics of
pattern formation, instabilities and turbulence (Cross & Hohenberg 1993; Kadanoff
2001). The statistically steady system also allows for accurate measurement of
the buoyancy flux, as characterized by the dimensionless Nusselt number Nu, as
a function of the Rayleigh number (e.g. Ahlers, Grossmann & Lohse 2009). The
Rayleigh number Ra provides a measure of the relative strength of convection, and
can be defined as a ratio of the driving buoyancy forces and the dissipative effects
of viscosity and diffusion (see § 2).

In this paper, we present a numerical study of statistically steady three-dimensional
convection in a Rayleigh–Bénard cell containing a saturated porous medium, which
we term a ‘Rayleigh–Darcy’ cell. A Rayleigh–Darcy cell provides one of the simplest
systems for the study of convection, owing to the absence of inertia in Darcy’s law.

† Email address for correspondence: drh39@cam.ac.uk

mailto:drh39@cam.ac.uk


880 D. R. Hewitt, J. A. Neufeld and J. R. Lister

Convection in a porous medium also plays a central role in a range of physical and
industrial applications (Nield & Bejan 2006), with particular recent interest in the
field stemming from the importance of convection as a mechanism for the long-term
storage of geologically sequestered CO2 (e.g. Metz et al. 2005; Bickle 2009; Huppert
& Neufeld 2014).

Three-dimensional Rayleigh–Darcy convection remains largely unstudied except at
low values of Ra. Two-dimensional Rayleigh–Darcy convection, in contrast, has been
explored across a range of values of Ra (Nield & Bejan 2006) and the results of
this exploration are briefly reviewed here. For Ra< 4π2, there is no flow (Lapwood
1948). For 4π2 < Ra . 1300, the flow takes the form of large-scale convective rolls,
which, as Ra is increased, are perturbed by a series of boundary-layer ‘dripping’
instabilities (Graham & Steen 1994). For Ra & 1300, the quasisteady background
rolls are completely broken down by plume-shedding from the boundaries (Otero
et al. 2004; Hewitt, Neufeld & Lister 2012); this range is known as the ‘high-Ra’
regime. The flow in the high-Ra regime is characterized in the interior of the
cell by persistent vertical exchange flow of columnar megaplumes, which are fed
from the upper and lower boundaries by the vigorous mixing of short-wavelength
protoplumes. The interior flow is increasingly well described, as Ra → ∞, by a
simple ‘heat-exchanger’ solution, which comprises a steady balance of vertical
advection along a weak background temperature gradient and horizontal diffusion
between interleaving counterflowing columns (Hewitt et al. 2012). Measurements of
the average columnar wavenumber k are approximately fitted by k ∼ Ra0.4 over a
range 1300< Ra 6 4× 104. It was recently suggested that the stability of the interior
columnar flow provides a physical basis for this relationship, and that the asymptotic
scaling is k ∼ Ra5/14 as Ra→∞ (Hewitt, Neufeld & Lister 2013b). Measurements
of the flux Nu(Ra) over the range 1300< Ra 6 4× 104 are extremely well fitted by
a relationship of the form Nu = α2Ra + β2, where α2 = 6.9 × 10−3 and β2 = 2.75
(Hewitt, Neufeld & Lister 2013a). This fit indicates that a linear scaling Nu∼ Ra is
attained asymptotically, in agreement with the classical scaling argument (following
Howard 1964) that the dimensional flux is independent of the height of the cell.

Most previous numerical studies of three-dimensional Rayleigh–Darcy convection
have focussed on steady convection for Ra . 300. As in two dimensions, there is
no flow for Ra< 4π2, while for 4π2 6 Ra . 4.5π2 the only unstable mode is purely
two-dimensional (Holst & Aziz 1972). The two-dimensional mode continues to give
the largest heat flux for Ra . 97 (Straus & Schubert 1979), while for 97 . Ra . 300
the flux is maximized by a steady three-dimensional planform (Schubert & Straus
1979). Multiple possible steady states exist across this range of Ra (Straus & Schubert
1981). Schubert & Straus (1979) found unsteady solutions for Ra& 300, and some of
the dynamics of the flow for 300 . Ra . 740 were investigated by Kimura, Schubert
& Straus (1989). We are not aware of any numerical studies of the statistically steady
system that explore the dynamics of the flow for Ra > 740. More recent numerical
studies have explored transient (rather than statistically steady) porous convection in
three dimensions, driven by a buoyancy source on one boundary only (Pau et al. 2010;
Fu, Cueto-Felgueroso & Juanes 2013). The latter authors explored the dynamics of
the flow for Ra 6 6400 and identified cellular structures of plumes near to the active
boundary, which coarsened and were entrained into larger, more persistent, plumes.
The spatial scale of the plume structures near the boundary scaled approximately
with Ra−1.

Laboratory experiments of statistically steady three-dimensional porous convection
have also provided measurements of both the heat flux and the dominant planform
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of the flow (Elder 1967; Lister 1990). The detailed experiments of Lister (1990) are
particularly interesting as they provide observations of the structure of the flow for
Ra=O(1000): the flow consisted of ‘a significant number of dendritic downwellings’
which fed into larger plumes, and measurements suggested that the lateral scale of the
large plumes decreased like (Ra+ c)−0.5, for some constant c.

In this paper, we investigate in detail the flow in a three-dimensional Rayleigh–
Darcy cell for Ra 6 2× 104, using high-resolution numerical simulations. In § 2, we
outline the governing equations and numerical scheme used in the paper. In § 3.1,
we briefly describe some features of the flow for 4π2 6Ra.1750. In § 3.2, we explore
in detail the dynamical structure of the flow and the buoyancy flux Nu(Ra) in the
‘high-Ra’ regime (Ra & 1750). In § 4, we summarize and discuss the main results of
this work.

2. Governing equations and numerical scheme
2.1. Dimensionless equations

We consider a three-dimensional cell of height H containing a fluid-saturated
homogeneous and isotropic porous medium. The cell is heated at the lower boundary
and cooled at the upper boundary, such that a temperature difference 1T , which gives
rise to a density difference 1ρ, is imposed across the cell. The flow u= (u, v,w) in
the medium is assumed to be incompressible, making the Boussinesq approximation,
and satisfies Darcy’s law. The equation of state ρ(T) is linear, and the temperature
field T evolves by advection and diffusion. In dimensionless variables, these equations
are given by

∇ · u= 0, u=− (∇p+ T ẑ
)
, (2.1a,b)

∂T
∂t
=−u · ∇T + 1

Ra
∇2T, (2.2)

where p is the pressure. The Rayleigh number Ra is given by

Ra= 1ρgKH
φκµ

, (2.3)

where g is the gravitational acceleration, K is the permeability, φ is the porosity, κ is
the thermal diffusivity and µ is the viscosity of the fluid, all of which are assumed
to be constant. Heat transfer to the solid phase of the medium is neglected. The
equations have been non-dimensionalized with respect to the buoyancy–velocity scale
U=1ρgK/µ and the convective time scale φH/U. With this choice of dimensionless
variables, the Rayleigh number acts as an inverse diffusivity in (2.2).

In dimensionless variables, the Rayleigh–Darcy cell has unit height with boundary
conditions on the upper and lower boundaries given by

w= 0, T = 1 on z= 0, w= T = 0 on z= 1. (2.4a,b)

The cell is periodic in the two horizontal directions, with period L (figure 1a).
The average dimensionless flux is given by the Nusselt number,

Nu= 〈nu(t)〉 =
〈

1
L2

∫ L

0

∫ L

0
− ∂T
∂z

∣∣∣∣
z=0

dx dy
〉
, (2.5)

where the angle brackets 〈 〉 denote a long-time average and nu(t) is the instantaneous
horizontally averaged Nusselt number.
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FIGURE 1. (a) A schematic diagram of the dimensionless Rayleigh–Darcy cell under
consideration. All four side boundaries are periodic. (b) One cuboid of the numerical grid
(see § 2.2), with the locations at which ψx and ψy are calculated. The components of the
velocity (u, v,w)=∇× (ψx, ψy, 0) are thus determined at the centre of each face of the
cuboid. The temperature is calculated at the centre of each cuboid. The advective flux is
calculated at the centre of each face of the cuboid using the velocity there and the average
of the neighbouring temperatures.

2.2. Numerical method
The constraint of incompressibility (2.1a) can be satisfied by the introduction of a
vector potential Ψ = (ψx, ψy, ψz) which obeys u=∇×Ψ . The potential is determined
by this relationship only up to the addition of ∇ξ , for any scalar ξ . To constrain this
gauge freedom, we consider the curl of (2.1b), which gives

∇× u=∇ (∇ ·Ψ )−∇2Ψ =
(
∂T
∂y
,−∂T

∂x
, 0
)
. (2.6)

Equation (2.6) reduces to a set of simple Poisson equations for the components ψx,y,z
of the vector potential if the gauge condition is chosen to be

∇ ·Ψ = 0, (2.7)

(cf. the Lorentz gauge condition in electrodynamics). Equation (2.6) then reduces to

∇2ψx =−∂T
∂y
, ∇2ψy = ∂T

∂x
, ∇2ψz = 0. (2.8a–c)

It is straightforward to show (see E & Liu (1997)) that the gauge condition (2.7) is
satisfied throughout the domain provided that it is satisfied on the boundaries. Since
the domain is periodic in both x and y, both the gauge condition (2.7) and the velocity
boundary conditions in (2.4) are satisfied by setting

ψx =ψy = ∂ψz

∂z
= 0, on z= 0, 1. (2.9a–c)

Equations (2.8c) and (2.9c) combine to give ψz = 0 everywhere. The velocity u is
determined by the Poisson equations (2.8a,b) for ψx and ψy, with boundary conditions
(2.9a,b).

We solved (2.2) and (2.8a,b) numerically, using a coordinate transformation ζ (z) to
fully resolve the thin diffusive boundary layers near the upper and lower boundaries of
the domain. The Poisson equations (2.8a,b) were solved using fast Fourier transforms
for the x and y derivatives, and second-order finite differences for the vertical
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derivatives. The transport equation (2.2) was solved using an unconditionally stable
three-dimensional alternating-direction implicit method, following Brian (1961). We
spatially discretized the diffusion terms using second-order finite differences, and
used a flux-conservative approach for the advection operator, which was aided by a
staggered numerical grid for ψx, ψy and T (see figure 1b). A midpoint method was
used for the time derivatives to give second-order temporal accuracy. The numerical
scheme was parallelized using a hybrid of open multi-processing (OpenMP) and
message-passing interface (MPI) specifications.

We verified our numerical scheme by reproducing published measurements of
Nu(Ra) for Ra < 300 (Schubert & Straus 1979). For simulations at larger values of
Ra, the horizontal resolution was chosen to fully resolve the smallest horizontal scales,
which appear to decrease roughly like Ra−1, and the vertical scale was chosen to
ensure that enough grid points lay inside the thin boundary layers near z= 0, 1. The
temporal resolution was chosen to satisfy the Courant condition. Typical values of the
horizontal and (transformed) vertical discretizations range from 1x = 1y = (128)−1

and 1ζ = (150)−1 at Ra = 1000, to 1x = 1y = (2048)−1 and 1ζ = (220)−1 at
Ra = 2 × 104. We tested simulations with double the horizontal resolution and with
both larger and smaller vertical resolutions at Ra = 2000 and recovered statistically
identical results. The temporal discretization was typically 1t= 31x.

Except for some simulations described in § 3.1, the initial condition was given by
a linear vertical temperature gradient, T(x, y, z) = 1 − z, with a spatially random
perturbation of magnitude 2.5× 10−3. We refer to this initial condition as IC1.

3. Numerical results
The primary focus of this paper is to explore three-dimensional flow in the ‘high-Ra’

regime, which will be taken here to be the range Ra & 1750. In order to provide a
context for these results, we begin in § 3.1 with a brief outline of the dynamics of
the flow in the ‘moderate-Ra’ regime Ra. 1750. In § 3.2, we investigate the high-Ra
regime in detail.

3.1. Overview of the flow dynamics for moderate values of Ra
Two sets of simulations for moderate Ra were undertaken with aspect ratio L= 2. The
first set comprised independent simulations in which the initial conditions were given
by a small random perturbation to a linear base state (IC1). The second set was a
sequence of simulations in which the final state of one simulation was used as the
initial condition for the next and Ra was increased by a factor of 6/5 (IC2). In each
case, the simulations were allowed to run until the flow had evolved to a steady or
statistically steady state.

Figure 2(a) shows measurements of Nu(Ra) from these simulations. It can be seen
that there is some variability, both between repeated simulations with IC1 at the same
value of Ra, and between the two sets of simulations at comparable values of Ra. This
variability is due to the flow having evolved to different spatial structures in different
simulations, rather than to insufficient averaging of the heat flux in a given simulation.

In the simulations with IC1 (figure 2a, circles), the spatial structure of the flow was
as follows. For 45 . Ra . 100, the flow evolved to a steady planform of strictly two-
dimensional rolls (figure 2b; i). For 100 . Ra . 225, the flow instead evolved to a
steady planform of inclined rolls (figure 2b; ii), where ‘inclined’ means not aligned
with either axis. For 225.Ra. 400, the flow evolved to a steady diamond planform,
which consisted of two diagonally aligned square cells (figure 2b; iii). At Ra= 400,
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FIGURE 2. (Colour online) (a) Measurements of Nu(Ra) from the onset of convection
at Ra= Racrit = 4π2 to the ‘high-Ra’ regime. Measurements are shown from simulations
with initial conditions IC1 (black circles) and IC2 (blue dots), as described in the text. All
simulations with Ra 6 1750 have aspect ratio L= 2; those with Ra > 1750 are discussed
in § 3.2. The relationship Nu(Ra) from a two-dimensional cell (with L = 2 and IC2),
taken from Hewitt et al. (2012), is included for comparison (red line). (b,c) Snapshots of
the temperature field at depth z= 30/Ra, just above the lower boundary, for a selection
of values of Ra, corresponding to the small arrows in (a). The snapshots in (b) are
of simulations with IC1 (down arrows), and those in (c) are of simulations with IC2
(up arrows).

one simulation again evolved to a steady diamond planform, while another evolved to
an unsteady square planform.

For 400 . Ra . 1750, the flow was unsteady, and we found a variety of spatial
structures in this range. In most simulations (e.g. figure 2b; iv, vi), the flow evolved
to a regular background planform of convective cells on which were superposed
unsteady sheet-like ‘dripping’ disturbances arising in the boundary layers. In a few
simulations (e.g. figure 2b; v), the flow appeared more disordered and a regular
background planform was not evident. For Ra& 1750, we did not observe any regular
planform. In addition, as can be seen in figure 2(a), for Ra & 1750 we did not find
any significant variability in Nu between different simulations with IC1. Hence, we
refer to the range Ra & 1750 as the high-Ra regime.

We found some significant differences in the spatial structure of the flow between
the simulations with IC1 and simulations with IC2 at comparable values of Ra. In the
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simulations with IC2 (figure 2a, dots), the spatial structure was as follows. For 50 6
Ra 6 215, the planform of the flow was a steady two-dimensional roll (figure 2c; i).
At Ra = 258 the flow evolved to an unsteady state which oscillated periodically
between two rectangular cells (figure 2c; ii) and one diagonally aligned square cell.
For 310 6 Ra 6 924, the planform was a steady array of four square cells (figure 2c;
iii). For 11096 Ra6 2300, the flow took the form of unsteady perturbations to these
regular background cells, and the structure of the flow appeared to be increasingly
disordered as Ra was increased through this range (figure 2c; iv–vi).

Comparison of the two sets of simulations outlined above indicates that hysteresis
can affect both the flow structure and the value of Nu for Ra . 1750. The results
also suggest that the bifurcation structure and the dynamical behaviour of the system
are highly complex in this moderate-Ra regime, and would require a detailed further
study to disentangle. For example, for each of the different spatial structures of the
flow identified in the simulations with IC1, a branch of solutions could presumably
be followed for increasing or decreasing Ra as in the simulations with IC2. However,
since the aim of this paper is to explore the high-Ra regime, such a detailed
exploration is left for the future.

3.2. The high-Ra regime
As discussed above, for Ra > 1750 we found that there is no significant variation in
Nu between different simulations with IC1 at the same Ra, and the flow structure did
not exhibit any regular background planform. In this section, we investigate the flow
in the high-Ra regime in detail. All the simulations presented in the remainder of this
paper have initial conditions IC1.

3.2.1. Structure of the flow
Figure 3 shows snapshots of the temperature field in the high-Ra regime at different

depths z and different values of Ra, and figure 4 shows snapshots from the same
simulations at fixed x = L/2. The flow has many analogues with two-dimensional
Rayleigh–Darcy flow at high Ra; in particular, there are clear visual parallels between
the vertical slices in figure 4 and snapshots of the flow in two dimensions (Otero et al.
2004; Hewitt et al. 2012). The flow can be divided into three regions of differing
dynamics. The interior region appears to be dominated by roughly vertical and fairly
large-scale exchange flow in distinct columns of hot rising fluid and cold sinking
fluid, which we refer to as megaplumes. At the upper and lower boundaries of the
domain there are thermal boundary layers which are almost too small to distinguish
in figure 4. Between the boundary layers and the interior flow is a region dominated
by the growth and interaction of long, thin, sheet-like plume structures that arise from
time-dependent boundary-layer instabilities (figure 3). The sheet-like plumes are the
three-dimensional analogue of two-dimensional protoplumes (Hewitt et al. 2012), and
so we refer to this region as the protoplume region. The protoplume sheets erupt
from the boundary layers and are laterally entrained into the large-scale megaplume
flow. Visual inspection of figure 3 suggests that the spatial scale of the protoplumes
decreases roughly like Ra−1 (note the different spatial scales in the figure), while the
dominant length scale of the interior megaplumes has a much weaker dependence on
Ra (see § 3.2.4 below).

3.2.2. The Nusselt number Nu(Ra)
In a statistically steady state in the high-Ra regime, the time-dependent Nusselt

number, nu(t), exhibits chaotic fluctuations about the time-averaged value Nu.
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FIGURE 3. (Colour online) Snapshots of the temperature field at heights of z=30/Ra near
to the lower boundary (left), z= 0.5 in the interior of the flow (centre), and z= 1− 30/Ra
near to the upper boundary (right). (a) Ra= 4000 and L= 2; (b) Ra= 8000 and L= 1; and
(c) Ra= 1.6× 104 and L= 0.5. Note the different scales on the axes for each subfigure.

The amplitude of the fluctuations is notably smaller than that measured for
two-dimensional porous convection at the same values of Ra (figure 5), which is likely
a reflection of the additional spatial dimension over which the flux is averaged. The
time-averaged Nusselt number Nu= 〈nu〉 is estimated numerically by time-averaging
nu(t) until the uncertainty in the mean is less than 0.25 %. In a typical simulation,
this averaging takes place over a dimensionless time of between 300 and 500.

Measurements of Nu(Ra) for different aspect ratios L in the high-Ra regime are
shown in figure 6, together with the least-squares power-law and linear (i.e. first-order
polynomial) fits to the data. The best-fit power-law scaling is Nu∼Ra0.94, but we find
that the data is much more accurately described by the linear fit, which takes the form

Nu= α3Ra+ β3; α3 = 9.6× 10−3, β3 = 4.6. (3.1)

The good fit given by (3.1) strongly suggests that, as in two dimensions, the classical
linear scaling Nu∼ Ra is attained asymptotically.
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FIGURE 4. (Colour online) Snapshots of the temperature field (from the same simulations
as in figure 3) at x= L/2, for (a) Ra= 4000 and L= 2; (b) Ra= 8000 and L= 1; and
(c) Ra= 1.6× 104 and L= 0.5.
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FIGURE 5. The instantaneous horizontally averaged Nusselt number nu(t) for Ra=104 and
L = 1: (a) together with nu(t) from numerical simulations of two-dimensional Rayleigh–
Darcy convection at Ra= 104 (lower line); and (b) individual data points separated by five
time steps 1t, which illustrates the high temporal resolution of the calculations.
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FIGURE 6. (Colour online) The time-averaged Nusselt number scaled by Ra, in the high-
Ra regime, for aspect ratios L = 2 (green squares), L = 1 (black circles), L = 0.75 (red
stars) and L= 0.5 (blue dots). The best-fit power law Nu= 0.018Ra0.94 (dashed line) does
not capture the trend in the data as Ra is increased; instead, a very good fit is provided
by Nu= α3Ra+ β3 (solid line) for α3 = 9.6× 10−3 and β3 = 4.6.
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While (3.1) has an analogous form to the linear fit found for two-dimensional
porous convection (Hewitt et al. 2013a), perhaps the most important practical
observation from these measurements is that the flux Nu(Ra) is much larger than
in two dimensions. A comparison of the pre-factor α3 = 9.6 × 10−3 from (3.1) with
the pre-factor α2 = 6.9× 10−3 from the two-dimensional fit gives α3/α2 ≈ 1.4, which
indicates that the flux in the high-Ra regime is approximately 40 % larger in three
dimensions.

The slight variation in the measurements shown in figure 6 is likely a reflection
of some long time-scale variability in the structure of the flow in the interior of
the domain. It is possible that the structure is affected by mode restriction from the
horizontal periodicity of the domain, although the relatively good agreement between
measurements at different aspect ratios in figure 6 suggests that any effects of mode
restriction on Nu are small. We return to this point when we investigate the dominant
horizontal length scales of the flow in § 3.2.4 below.

3.2.3. Three-dimensional heat-exchanger solution
Movies of the flow through the interior of the domain reveal that the large-scale

exchange flow is almost quasi-steady: the upwelling and downwelling plumes are
‘persistent’, in that their locations do not vary appreciably over either the time scale
for eruption and entrainment of sheet-like protoplumes, or over the time scale for
vertical advection across the domain.

As in two dimensions (Hewitt et al. 2012), there are steady ‘heat-exchanger’
solutions to the governing equations (2.1) and (2.2) which can be used as a model
for the exchange flow in the interior of the domain. Heat-exchanger solutions comprise
a steady balance between vertical advection along a background temperature gradient
and horizontal diffusion between interleaving columns of a given planform. The
simplest such three-dimensional heat-exchanger model, with a square columnar
planform, is given by

T = A cos kx cos ky− 2k2

Ra
z, u= v = 0, w= A cos kx cos ky, (3.2a–c)

and consists of square columns with amplitude A and wavenumber k in both x and y
directions.

Measurements of the temporally and horizontally averaged temperature T (figure 7)
show that the background temperature is roughly linear throughout the interior region,
in agreement with the prediction of (3.2a). However, unlike in two dimensions,
where the gradient decreases with Ra (Hewitt et al. 2012), here we observe that the
magnitude of the weak negative gradient increases as Ra is increased. We return to
this observation in § 3.2.5.

We measure the amplitude using the root-mean-squared (r.m.s.) temperature
perturbations and velocities, Trms, wrms, vrms and urms. Analytic calculation of the
r.m.s. values from (3.2) shows that, in the heat-exchanger model, Trms = wrms = A/2
and urms= vrms= 0. Numerical measurements of the r.m.s. quantities at z= 0.5 indicate
an increasing agreement with the model predictions as Ra is increased (figure 8a).
The horizontal velocities decrease with Ra, and the vertical velocity and temperature
appear to tend to the same constant value, which yields an estimate of A= 2Trms≈ 0.2.
As a consistency check, this measurement can be used with the heat-exchanger theory
to estimate the flux Nu(Ra), as follows. As Ra→∞, vertical advection dominates the
flux through the interior of the domain, and the vertical advective flux given by (3.2)
is Nu=A2Ra/4. Using the measured estimate of A gives a prediction of Nu≈ 0.01Ra,
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FIGURE 7. (Colour online) The temporally and horizontally averaged temperature profile
T , for Ra = 4000 (red solid), Ra = 8000 (green dashed) and Ra = 1.6 × 104 (blue dot-
dashed). The profiles are approximately linear through the interior of the domain, and the
gradient increases with Ra. In contrast, for two-dimensional Rayleigh–Darcy convection
the gradient decreases with Ra (Hewitt et al. 2012). The thin dotted line shows T = 0.5.
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FIGURE 8. (Colour online) Measurements of the time-averaged r.m.s. temperature
perturbations Trms and velocities wrms and urms (a) at z= 0.5, against Ra (the dashed line
indicates the start of the high-Ra regime at Ra≈ 1750); and (b) for Ra= 4000 and L= 2
(solid), Ra= 8000 and L= 1 (dashed), and Ra= 1.6× 104 and L= 0.5 (dotted), against z.
Measurements of vrms are indistinguishable from urms, and so are not shown.

which is reassuringly close to the asymptotic prediction from the directly measured
relationship (3.1) of Nu= 9.6× 10−3Ra.

Figure 8(b) shows the vertical variation of the r.m.s. measurements at different
values of Ra. The figure indicates that the r.m.s. quantities are increasingly uniform
throughout the interior of the domain as Ra is increased, in agreement with
the heat-exchanger model. In contrast, near the upper and lower boundaries the
r.m.s. quantities vary appreciably. These measurements reflect the fact that the
heat-exchanger model breaks down near the boundaries where the flow is dominated
by the strongly time-dependent growth and entrainment of sheet-like protoplumes.

These measurements all indicate that a heat-exchanger model provides an
increasingly good description as Ra→∞ of the flow throughout the interior region
of a three-dimensional Rayleigh–Darcy cell. As in two dimensions, the interior flow
becomes increasingly ordered as Ra → ∞ into columns of steady exchange flow,
although the planform of this flow is not yet clear. Some indication of the lateral
structure is provided by measurements of the dominant horizontal wavenumber k,
which are presented in the next section.
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FIGURE 9. (Colour online) (a–c) Snapshots of power spectra P(kx, ky) at z = 0.5 (left)
and z= 30/Ra in the protoplume region (right): (a) Ra= 4000 and L= 2; (b) Ra= 8000
and L= 1; and (c) Ra= 1.6× 104 and L= 0.5. The colour scale is logarithmic. (d,e) The
radial power P̃ = ∫ Pkrdθ , where θ = tan−1(ky/kx), against the radial wavenumber kr =
(k2

x + k2
y)

1/2 scaled by Ra: (d) at z= 0.5; and (e) at z= 30/Ra. Note the different scales on
the horizontal axis in (d) and (e): the clear peak in the power is at the same wavenumber
in each figure, which is the dominant horizontal wavenumber of the megaplume flow.

3.2.4. The average horizontal wavenumber k(Ra)
In order to extract a measure of the average horizontal wavenumber k(Ra) from

the numerical calculations, we measured the power in each mode by taking a two-
dimensional Fourier transform of the temperature field. Figure 9(a–c) shows snapshots
of the resultant power spectra as a function of the horizontal wavenumbers kx and ky,
both at z= 0.5 (in the interior region) and at z= 30/Ra (taken as a rough estimate of
a depth in the protoplume region). The spectra reveal that the power P(kx, ky) depends
predominantly on the magnitude of the wavevector, or the ‘radial wavenumber’ kr =
(k2

x + k2
y)

1/2, rather than on the angle θ = tan−1(ky/kx), which indicates that the flow is
isotropic.

Measurements of the radial power P̃(kr) =
∫

Pkrdθ at z = 0.5 (figure 9d) show a
clear peak in the spectra, which indicates that the flow in the interior of the cell
has a well-defined dominant horizontal length scale. This length scale corresponds to
the megaplume spacing. For larger radial wavenumbers, there is a rapid exponential
decay in the radial power. Measurements of P̃ at z= 30/Ra (figure 9e) again show a
peak at the same wavenumber as in the interior, which is the signal from the roots
of the megaplumes. For larger radial wavenumbers, however, there is a plateau in the
radial power and then a much slower exponential decay than in the interior. These
features are due to the high-wavenumber sheet-like plumes that dominate the flow in
the protoplume region.

The decay in the radial power also displays a different dependence on Ra in the
protoplume region and in the interior of the cell. In the protoplume region (figure 9e),
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FIGURE 10. (Colour online) Measurements of the average horizontal wavenumber k as
defined by (3.3). (a) The average interior wavenumber k = k|z=0.5 from simulations with
L= 2 (green squares), L= 1 (black circles), L= 0.75 (red stars) and L= 0.5 (blue dots).
The solid line is the best-fit power law k≈ 0.17Ra0.52. For comparison, the dashed line is
the approximate fit k≈ 0.48Ra0.4 for two-dimensional Rayleigh–Darcy convection (Hewitt
et al. 2012). The inset shows the measurements scaled by Raλ for two different trial
exponents λ. (b) The average horizontal wavenumber kpp = k|z=30/Ra in the protoplume
regions. The inset graph of kpp/Nu against Nu points to a linear scaling kpp ∼Nu.

the measurements collapse as a function of kr/Ra, while in the interior (figure 9d)
the dependence on Ra is much weaker. The different scaling with Ra of the decay in
the power can also be observed in the snapshots of P(kx, ky) in figure 9(a–c), where
the typical radii of the spectra increase more rapidly with Ra in the protoplume region
(right-hand column) than in the interior region (left-hand column).

We measured the average dominant wavenumber k at a given height z by taking the
expected value of kr over two dimensions, and averaging over time, to give

k=
〈∫ krP̃(kr) dkr∫

P̃(kr) dkr

〉
=
〈∫∫ √

k2
x + k2

y P(kx, ky) dkx dky∫∫
P(kx, ky) dkx dky

〉
. (3.3)

We estimate the average horizontal wavenumber k of the interior columnar flow by k=
k|z=0.5. Measurements of k(Ra) are shown in figure 10(a). A least-squares power-law
fit to the data gives a scaling of

k≈ 0.17 Ra0.52, (3.4)

with 95 % confidence intervals for the exponent giving a range of 0.52 ± 0.05.
Equation (3.4) can be compared with the fit k≈ 0.48Ra0.4 to the average wavenumber
from two-dimensional Rayleigh–Darcy convection (Hewitt et al. 2012): while the
magnitude of the wavenumbers is similar over the range of Ra for which we have
measurements, the three-dimensional wavenumber displays a distinctly stronger scaling
with Ra (figure 10a).

We estimate the average horizontal wavenumber kpp in the protoplume regions by
kpp = k|z=30/Ra. Measurements of kpp(Ra) are shown in figure 10(b). The inset reveals
a linear scaling kpp ∼ Nu, which, from (3.1), implies that kpp ∼ Ra as Ra→∞. This
result suggests that the horizontal length scale of the sheet-like protoplumes scales
with the boundary-layer depth ∼ 1/Nu. It also confirms that the average horizontal
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length scale of the flow has a much stronger scaling with Ra near to the upper and
lower boundaries than in the interior, in agreement both with the different decay
of the spectra in figure 9 and with visual comparison of the snapshots in figure 3.
In addition, the result agrees with previous suggestions for the Ra−1 scaling of
protoplume structures in transient three-dimensional convection with only one active
boundary (Fu et al. 2013).

Owing to the high numerical cost of the calculations, we needed to reduce the
aspect ratio L as Ra was increased. It might, therefore, be possible that mode
restriction due to the relatively small aspect ratios could have affected the structure
of the flow, and thus the measurements of k in figure 10(a). To investigate the effect
of mode restriction, we undertook multiple calculations at different aspect ratios
across a range of Ra. The good agreement between the corresponding measurements
of k (figure 10a) suggests that any effects of mode restriction are small. As an
additional check, we undertook two simulations in cells with rectangular, rather than
square, horizontal cross-section, and found no statistically significant difference in
the measurements of k; these simulations were at Ra = 2500 with horizontal aspect
ratio 2× 1, and Ra = 5000 with horizontal aspect ratio 1 × 0.5. Owing to the high
computational cost of simulations at the largest values of Ra, we have been unable to
check the results for Ra> 1.2× 104 at different aspect ratios; however, the data agrees
with the trend of the measurements at lower Ra, which again suggests that mode
restriction does not play a major role. We note that there is some variability in the
data between the different simulations, which does not appear to have a systematic
dependence on aspect ratio, and which we attribute to very long time-scale variations
in the dominant wavenumber. Similar variability is observed in two-dimensional
convection (Hewitt et al. 2012).

3.2.5. The vertical temperature gradient
In figure 7, we observed that the magnitude of the linear background temperature

gradient increased with Ra, particularly between Ra = 4000 and Ra = 8000.
Figure 11(a) shows direct measurements of the background temperature gradient
∂T/∂z. The measurements can be approximately divided into two regions of different
behaviour: for Ra . 5000 the magnitude of the gradient increases with Ra, while for
Ra & 5000 the gradient is roughly independent of Ra.

The heat-exchanger framework (3.2) indicates that the background temperature
gradient is related to the horizontal wavenumber k by

∂T
∂z
=−2k2

Ra
. (3.5)

Therefore, based on (3.5), the roughly constant temperature gradient for Ra & 5000
is consistent with the measured scaling k ∼ Ra0.52±0.05 for the wavenumber. Indeed,
a direct comparison of the measurements of k and measurements of the gradient
using (3.5) gives very good agreement for Ra & 5000 (figure 11b). This agreement
provides further evidence that the interior flow is increasingly well described by the
heat-exchanger model.

The precise trend in the measurements of the background temperature gradient as
Ra→∞ is not clear from the data in figure 11(a). However, we would not expect a
positive asymptotic scaling, since the gradient should not diverge as Ra→∞. Given
the good agreement between the measurements and the heat-exchanger model, this
expectation corresponds, via (3.5), to a constraint that the asymptotic exponent for
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FIGURE 11. (Colour online) (a) Measurements of the background temperature gradient
−∂T/∂z, as defined by the slope of a linear fit to the measurements of T for 0.45 6
z 6 0.55. (b) Comparison of direct measurements of the interior wavenumber k from
figure 10(a) (dots) and the prediction k = [(−∂T/∂z)Ra/2]1/2 from the measurements in
(a) and heat-exchanger theory (3.5) (circles).

the scaling of the wavenumber k is no greater than 0.5. It should be noted that 0.5
lies well within the 95 %-confidence interval for the exponent in (3.4), and so an
asymptotic scaling of k ∼ Ra0.5 is consistent with the measurements presented here.
Measurements at higher values of Ra would be required to confirm this scaling.

4. Conclusions and discussion
We have presented the first measurements of statistically steady three-dimensional

convection in a porous medium at high Ra. Measurements of the flux over the
range 1750 6 Ra 6 2 × 104 are very well fitted by an expression of the form
Nu=α3Ra+ β3, with α3= 9.6× 10−3 and β3= 4.6. This fit, which has the same form
as the corresponding fit for two-dimensional high-Ra porous convection (Hewitt et al.
2013a), indicates that the flux attains the classical linear scaling asymptotically. The
flux is roughly 40 % larger than in two dimensions, and this difference has evident
importance for physical applications.

The structure of the flow for Ra & 1750 is dominated in the interior by persistent
columnar exchange flow. Instabilities in the thin thermal boundary layers near the
upper and lower boundaries give rise to eruptions of long, thin, sheet-like protoplume
structures, which are entrained laterally into the interior exchange flow. Measurements
of the wavenumber in the protoplume region show that the lateral length scale of the
thin sheet-like plumes scales with Nu−1, and thus with Ra−1 as Ra→∞.

Measurements of the interior flow indicate that it is increasingly well described
by a steady three-dimensional heat-exchanger flow as Ra is increased. This flow
consists of a steady balance of vertical advection in interleaving columns along a
background linear temperature gradient and horizontal diffusion between the columns.
While we considered a specific heat-exchanger model with a square planform, it is
difficult to discern a regular horizontal planform of the exchange flow from snapshots
of the interior flow (figure 3). Measurements of the interior flow reveal a distinct
average horizontal wavenumber k, which is fitted over the range 17506 Ra6 2× 104

by k ∼ Ra0.52±0.05. This scaling is much weaker than the scaling in the protoplume
regions, but is also distinctly stronger than the corresponding scaling of k ∼ Ra0.4 in
two dimensions. The fairly good agreement between simulations at different aspect
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ratios suggests that mode restriction does not have a significant effect on this scaling.
In addition, measurements of the background temperature gradient for Ra & 5000 are
consistent with the measurements of k, based on heat-exchanger theory.

As discussed in § 3.2.5, based on the good agreement between measurements of the
interior flow and the predictions of heat-exchanger theory, we expect the asymptotic
exponent for the scaling k(Ra) to be bounded above by 0.5. Otherwise, horizontal
diffusion (∼k2/Ra) would become stronger than vertical advection asymptotically,
and the convective heat transfer would vanish as Ra→∞. A plausible prediction
based on the measurements in this paper is therefore that the asymptotic scaling is
k∼ Ra0.5, although calculations at higher values of Ra would be required to confirm
this. Certainly, the scaling appears to be stronger than the two-dimensional scaling
of k ∼ Ra0.4, and the question remains as to why this difference exists. One theory
that has been suggested for the physical control of the wavenumber k(Ra) is that
k is determined by the smallest length scale, or ‘minimal flow unit’, for which
the flux remains independent of aspect ratio (Wen et al. 2013). Interestingly, this
theory predicts a scaling of k∼ Ra0.5 for steady two-dimensional convection (Corson
2011). Hewitt et al. (2013b) suggested that the reason the measured scaling in two
dimensions is weaker than this is because it is constrained by the stability of the
interior columnar flow. It seems likely, therefore, that a stability analysis of the
three-dimensional heat-exchanger flow could shed light on the reason for the different
scalings for k in two and three dimensions. Such an analysis is planned for future
work.
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