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Flow-induced compaction of a deformable porous medium
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Fluid flowing through a deformable porous medium imparts viscous drag on the solid matrix, causing it to
deform. This effect is investigated theoretically and experimentally in a one-dimensional configuration. The
experiments consist of the downwards flow of water through a saturated pack of small, soft, hydrogel spheres,
driven by a pressure head that can be increased or decreased. As the pressure head is increased, the effective
permeability of the medium decreases and, in contrast to flow through a rigid medium, the flux of water is
found to increase towards a finite upper bound such that it becomes insensitive to changes in the pressure
head. Measurements of the internal deformation, extracted by particle tracking, show that the medium compacts
differentially, with the porosity being lower at the base than at the upper free surface. A general theoretical model
is derived, and the predictions of the model give good agreement with experimental measurements from a series
of experiments in which the applied pressure head is sequentially increased. However, contrary to theory, all the
experimental results display a distinct and repeatable hysteresis: the flux through the material for a particular
applied pressure drop is appreciably lower when the pressure has been decreased to that value compared to when
it has been increased to the same value.
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I. INTRODUCTION

Deformation of a fluid-filled porous medium induces fluid
flow through the medium, as can readily be observed in
daily life by squeezing out a kitchen sponge or walking on
wet sand. Conversely, the flow of fluid through a medium
exerts viscous shear stresses on the solid matrix and induces
deformation. The study of coupled fluid flow and solid
deformation is the basis of the theory of poro-elasticity (see,
e.g., Refs. [1,2]), and continuing interest in the subject has,
in part, been spurred by industrial applications to enhanced
oil recovery, carbon dioxide sequestration and hydraulic
fracturing. Poro-elastic behavior also underlies a number
of open questions in geophysics, including the degree to
which earthquake-induced deformation can drive long-lasting
changes in crustal permeability (e.g., Refs. [3,4]) or provide
a trigger for liquefaction or eruptions [5]. Despite a long
history of study, simple table-top experimental methods for
studying poro-elastic effects are rare. In this paper, we present
an experimental study of one-dimensional compaction of a
deformable medium driven by the flow of fluid through the
medium, and compare the results with the predictions of a
general two-phase theoretical model.

One-dimensional compaction of a two-phase mixture has
been widely studied in a variety of settings beyond the
realm of classical poro-elasticity. In a geophysical context,
one-dimensional compaction problems have been investigated
to describe gravitational compaction of sedimentary basins
[6,7]. Industrial interest in the problem typically stems from
the desire to “dewater” or reduce the liquid fraction of a
suspension, with applications including disposal of waste
mining slurries [8], treatment of waste water and sludge [9],
compression of pulp fibers in the paper-making process [10],
and compression of digesta in the intestine [11]. Although

sedimentation under gravity is considered in some of these
contexts [12], compaction and dewatering are more typically
achieved by the application of a large external load to the
mixture. This mechanism, known as “pressure filtration,”
is also often exploited as a means for bulk rheometry of
multiphase suspensions [13,14].

While compaction due to the application of an external
load has been fairly widely studied, previous investigations of
flow-induced deformation are scarce. A simple and effective
demonstration of the difference between these two cases was
given by Parker et al. [15], who showed that the strain in a
wet sponge is uniform under the application of an external
mechanical load but varies with depth when fluid flows
vertically through the sponge. A similar observation was later
made by Lanir et al. [16]. The physical basis for this difference
is that an external load results in a uniform stress throughout the
medium, whereas the pressure gradients that drive fluid flow
inevitably induce gradients in the stress, such that the load
is distributed through the medium. On a practical level, one
implication of differential, flow-induced compaction is that
direct measurement of permeability as a function of porosity
is not straightforward in deformable media. More recent
experimental work in this area has considered flow-induced
compaction in different geometries. For example, MacMinn
et al. [17] presented an experimental study of pressure-driven
fluid injection into a monolayer of elastic particles, and
Nordstrom et al. [18] investigated compaction of similar
particles in a centrifuge.

Our goal in this study is to provide a more thorough
and quantitative exploration of the qualitative observations
of flow-induced compression made by Parker et al. [15].
To this end, we report on a set of experiments to measure
flow-induced, one-dimensional compression of a simple poro-
elastic medium, and compare our results with the predictions
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of a new theoretical model. Our experimental setup consists
of a saturated, deformable porous medium that is open to the
atmosphere at its base. For a fixed pressure head, fluid flows
down through the medium under gravity, causing the medium
to compress. We measure the flow rate and change in depth
of the medium. We take measurements for different pressure
heads, and highlight the dependence of the deformation and
flow on the stress history of the medium. In some experiments,
we also measure the internal deformation through the medium
by tracking a representative sample of individual particles.

Following various recent experiments [17–19], we used
small polyacrylamide hydrogel particles to form a convenient
deformable medium. As well as being straightforward to
prepare and relatively inexpensive, these hydrogels are soft
and elastic, which means that appreciable deformation can
be obtained at fluid pressures that are readily achieved in the
laboratory. The hydrogels are transparent, which allows for
particle tracking and direct measurement of deformation in the
medium, and they have a density that is very close to that of
water, which removes any effects of gravitational compaction.
Our theoretical model follows two-phase theory [20]; related
formulations for different flow configurations can be found in
many previous studies, e.g. Refs. [6,18,21–23]. Modeling of
large-deformation poro-elasticity is discussed in detail in very
recent work by MacMinn et al. [24].

The paper is laid out as follows. In Sec. II we present
our general, two-phase model to describe one-dimensional,
flow-driven compaction and discuss some of the features of
the model. In Sec. III we describe the experimental setup,
present the results, and compare them with the predictions
of the model. In Sec. IV we discuss the results of this
work.

II. THEORETICAL MODELING

In this section we present a general theoretical framework to
model flow-induced deformation in a one-dimensional system
and discuss the qualitative predictions of the model for a
specific choice of constitutive functions. This modeling sets
the scene for our laboratory experiments, which are presented
in Sec. III.

Consider a deformable porous medium of initial depth l0
(in the absence of flow) and density ρ in a rigid container. The
medium is initially unstrained, and is fully saturated with and
overlain by fluid, also of density ρ, up to a constant total depth
H above the base of the container [Fig. 1(a)]. The solid medium
is held in place at the base of the container by a permeable
mesh that can be opened to the atmosphere to allow fluid
to flow through freely. When the base is opened, fluid flows
down through the medium with a vertical Darcy flux Q(t) ≤ 0
per unit cross-sectional area. The fluid exerts a viscous stress
on the medium, causing it to compact to a depth l(t) ≤ l0
[Fig. 1(b)]. The constant depth H of the fluid layer above the
base of the medium is maintained by an external source of
fluid.

A. General model

We treat the individual solid and fluid phases as incom-
pressible. Conservation of mass in each phase, Darcy’s law,
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FIG. 1. The setup, with (a) an impermeable base and no flow,
and (b) a base that is permeable to the fluid, but not the solid, and a
downwards fluid flow with flux Q(t) per unit area.

and stress balance therefore give

∂φ

∂t
+ ∂

∂z

(
φwf

) = 0, (1a)

∂

∂t
(1 − φ) + ∂

∂z
[(1 − φ)ws] = 0, (1b)

φ
(
wf − ws

) = − k

μ

(
∂p

∂z
+ ρg

)
, (1c)

∂P

∂z
+ ρg = 0, (1d)

where wf and ws are the fluid and solid velocities in the
positive z direction, φ is the porosity or liquid volume fraction,
k(φ) is the permeability, which is assumed to remain isotropic,
μ is the fluid viscosity, g is the gravitational acceleration, P

is the total thermodynamic pressure, and p is the fluid (pore)
pressure. In other words, P is the total force per unit area on
the two-phase mixture, while p is the local pressure in the fluid
phase. We further define the matrix pressure σ ≡ P − p to be
the difference between the total and pore pressures, which is
the overpressure on the matrix (σ is equivalent to the osmotic
pressure for colloidal suspensions; e.g., Ref. [25]). Following
Terzaghi’s principle in soil mechanics, the matrix pressure
is assumed to satisfy a general elastic constitutive law σ =
σ (e), where e is the linear strain of the system. Given that the
deformation is constrained to be one-dimensional, the strain is
related to the porosity by

e = φ − �

1 − φ
, (2)

by conservation of mass, where � is the uniform porosity that
corresponds to zero strain on the matrix. The strain, and thus
the porosity, are also related to the vertical displacement ζ (z)
by

∂ζ

∂z
= 1 − 1

1 + e
⇒ ζ (z) =

∫ z

0

φ(z′) − �

1 − �
dz′. (3)

At the upper boundary of the medium, the total pressure and the
pore pressure are equal and given by the hydrostatic head of the
overlying fluid, such that P (z = l) = p(z = l) = ρg(H − l).
At the open lower boundary, the pore pressure is atmospheric,
which we scale to be zero. In terms of σ , these conditions
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reduce to

σ (z = 0) = ρgH, σ (z = l) = 0. (4a,b)

The boundary conditions for the solid velocity are

ws(z = 0) = 0, ws(z = l) = ∂l

∂t
, (5a,b)

and the total fluid flux (in the positive z direction) through the
medium per unit cross-sectional area at any height is uniform
and given by Q(t) = (φ wf )|

z=0 ≤ 0.

1. Nondimensionalization

The model outlined above can be solved by the specification
of constitutive laws for the matrix pressure σ and the
permeability k. In this work we restrict attention to functions
of the form σ (e(φ)) and k(φ), although we note that, in
general, these properties may depend on the pore geometry
as well as the porosity. Given these constitutive laws, which
determine characteristic dimensional scales for the elastic
modulus σ ∗ and permeability k∗ of the matrix, we define
dimensionless variables by scaling lengths with l0, pressures
with σ ∗, permeability with k∗, velocity with k∗σ ∗/l0μ, and
time with l2

0μ/k∗σ ∗. For example, the scales σ ∗ and k∗ for a
specific choice of σ and k are given in (15) below. We identify
the dimensionless group

H = ρgH

σ ∗ (6)

as a measure of the applied fluid pressure difference relative
to the elastic modulus of the matrix.

Working in dimensionless variables, the continuity equa-
tions (1a) and (1b) can be combined and integrated to give

φwf + (1 − φ)ws = Q, ⇒ φ
(
wf − ws

) = Q − ws, (7)

such that (1c) and (1d) reduce to

Q − ws = k
∂σ

∂z
= kσ ′ ∂φ

∂z
, (8)

where σ ′ = ∂σ/∂φ. Back-substitution into (1b) gives a non-
linear advection-diffusion equation

∂φ

∂t
+ Q

∂φ

∂z
= − ∂

∂z

[
(1 − φ)kσ ′ ∂φ

∂z

]
, (9)

with boundary conditions from (4),

φ(0,t) = φ0(H), φ[l(t),t] = �, (10a,b)

where φ0 is determined by the requirement that σ (φ0) = H.
The flux Q and depth l are determined from (5),

Q = k(φ0)σ ′(φ0)
∂φ

∂z

∣∣∣∣
z=0

, Q − ∂l

∂t
= k(�)σ ′(�)

∂φ

∂z

∣∣∣∣
z=l

.

(11a,b)

Note that, unlike for a medium compressed by an external
load, the porosity at the upper surface is fixed at its initial
value (10b) because the pore pressure and total pressure are
equal there.

2. Steady states

In a steady state, the viscous stresses exerted by the fluid are
balanced by compaction of the matrix, and the solid velocity
ws is zero. Steady solutions are given by (8), together with
dimensionless conservation of the solid phase,

∫ l

0
(1 − φ) dz = (1 − �), (12)

which can be converted into an integral over φ using (8).
Equations (12) and the integral of (8) then yield expressions
for the steady-state flux Qs and the depth ls of the medium:

Qs =
∫ �

φ0

(1 − φ)k(φ)σ ′(φ)

(1 − �)
dφ, (13a)

Qsls =
∫ �

φ0

k(φ)σ ′(φ) dφ. (13b)

A practical measure of the steady-state resistance of the
medium is provided by the “effective permeability” keff =
l[
∫ l

0 1/k dz]−1, which is the ratio of the flow to the average
pressure gradient such that

Qs = −keff
H
ls

. (14)

In the Appendix, we consider the possible behavior of the
steady-state flux Qs for arbitrary constitutive functions σ and k

in the asymptotic limit of very large applied pressureH → ∞.

B. Specific model

In this section we consider a simple specific choice of the
constitutive functions σ (e(φ)) and k(φ) that will be appropriate
for modeling the experimental setup, discussed in Sec. III.
The experimental medium is composed of small elastic
hydrogel particles. Under the assumption that the medium
cannot be compacted beyond a limiting finite strain em, which
corresponds to a minimum porosity φm from (2), and that
the compacted medium is impermeable in this limit, we take
simple constitutive laws for the dimensional matrix pressure
and permeability of the form

σ

σ ∗ = − e

1 − e/em

,
k

k∗ = (φ − φm)3

(1 − φ)2 , (15a,b)

where σ ∗ is the elastic modulus of the saturated particles.
Equation (15a) gives linear elastic behavior for small strains
but diverges as e → em. A similar relationship was used
by Nordstrom et al. [18], who also discuss other possible
rheological models for hydrogel particles. Equation (15b)
is a generalized Kozeny-Carman permeability function for
spherical packing, with k∗ = (r2/45)�3/(� − φm)3, where r

is the average radius of the unstressed particles. We note that,
in general, the behavior of k(φ) as φ → φm will depend on
the flow geometry around the highly deformed particles in
this limit and may be more complex than this simple assumed
form.

For simplicity, for the remainder of this paper we set φm =
0, which gives em = −� from (2). The stress is therefore given
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FIG. 2. Evolution to the steady state for a step change in the dimensionless fluid pressure difference H. (a–b) Step increase at t = 0 from
H = 0 to H = 0.1 (black solid), H = 1 (blue long dashed), or H = 10 (red short dashed): (a) the magnitude of the flux, and (b) the depth
of the medium. (c–d) The porosity at times between t = 0.01 and t = 5.12, separated by a factor of 2, together with the steady-state solution
from (23) (dashed), for (c) a step increase from H = 0 to H = 1, and (d) a step decrease from H = 1 to H = 0, starting from the steady-state
solution of (c). All solutions have � = 0.4.

in dimensionless form as a function of φ by

σ = �

1 − �

(
� − φ

φ

)
. (16)

1. Time-dependent theory

For the specific constitutive functions in (15) with φm = 0, (9)
is

∂φ

∂t
+ Q

∂φ

∂z
= �2

(1 − �)

∂

∂z

[
φ

(1 − φ)

∂φ

∂z

]
, (17)

with boundary conditions

φ(0) = �2

� + H(1 − �)
≡ φ0(H), φ(l) = �, (18a,b)

and initial condition φ(t = 0) = �. The functions Q(t) and
l(t) satisfy

Q = −�2φ0

(1 − �)(1 − φ0)2

∂φ

∂z

∣∣∣∣
0

, (19a)

∂l

∂t
= Q + �3

(1 − �)3

∂φ

∂z

∣∣∣∣
l

, (19b)

with initial condition l(t = 0) = 1.

2. Steady-state theory

In a steady state, the flux Qs , depth of the medium ls and effective permeability keff are given from (13) by

Qs = − �2

(1 − �)2

{
log

[
1 + H�

� + H(1 − �)

]
− H�(1 − �)

� + H(1 − �)

}
, (20)

ls = �2

Qs(1 − �)

{
log

[
1 + H�

� + H(1 − �)

]
− H�

(� + H)(1 − �)

}
, (21)

keff = −Qsls

H , (22)

while the porosity φ(z) is given implicitly from the integral of
(8) by

φ − �

(1 − φ)(1 − �)
+ log

(
1 − φ

1 − �

)
= (1 − �)Qsls

�2

(
1 − z

ls

)
.

(23)

If required, the displacement ζ (z) of the medium can be
calculated from the integral of (23) using (3).

In the limit of large applied fluid pressure H → ∞,

Qs → �2

(1 − �)2
[log (1 − �) + �], (24a)

ls → � log (1 − �)

log (1 − �) + �
− 1, keff → 0. (24b)

These results indicate that, given the constitutive relation-
ships (15), both the flux and the depth of the medium tend
towards finite values as the pressure difference diverges, in
striking contrast to flow through a rigid medium where the
flux increases linearly with the pressure difference.

3. Example results of the model

We solved (17) numerically using a second-order finite dif-
ference method and a semi-implicit time-stepping scheme. The
length of the domain was scaled to unity by the introduction
of a rescaled coordinate y = z/l(t). At each time step, Q(t)
and l(t) were determined from the boundary conditions (19).

Figure 2 shows how the flux, depth, and porosity evolve to
the steady state following a step increase in the applied pressure
H at t = 0. Initially, the porosity is uniform throughout the
medium. As soon as fluid begins to flow, the medium compacts
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FIG. 3. Steady-state results of the specific model, for � = 0.3 (black line), � = 0.4 (blue long dashed), and � = 0.5 (red short dashed):
(a) the magnitude of the flux Qs ; (b) the depth ls of the medium; and (c) the effective permeability keff of the medium. (d) The porosity φ(z/ls)
for � = 0.4 and different values of H between H = 0.01 and H = 10.24 separated by a factor of 2. (e) The asymptotic prediction for the
minimum depth from (24b) (black solid), and the corresponding theoretical minimum value ls = 1 − � for compression under an arbitrary
external load (blue dashed).

instantaneously at the base to φ0(H) given by (18a) [see
Fig. 2(c)]. The resultant boundary-layer structure in the profile
of φ(z) spreads as the porosity evolves towards a steady profile
through the medium. Both the flux and the depth of the medium
decrease over time and approach a steady value [Figs. 2(a) and
2(b)]. The time scale over which the medium adjusts does not
appear to depend strongly on H. The corresponding evolution
of φ following a subsequent step decrease inH [Fig. 2(d)] is not
a simple reversal of the behavior above. Instead, the porosity
at the base instantly adopts a new higher value, while the
differentially compacted medium above gradually decompacts
over time.

Steady-state solutions (Fig. 3) confirm that, in the limit
H → ∞, the flux and depth of the medium tend to finite values
[cf. (24)] while the effective permeability decreases like H−1

(cf. (22)). The porosity also approaches an asymptotic profile
with φ0 → 0 as H → ∞. Unlike the transient evolution, the
steady-state solutions are independent of whether H was
increased or decreased to its final value.

An interesting comparison can be made between the
maximum compaction of the medium for compression by an
external load and compression driven by fluid flow. Based on
conservation of solid, if the medium were compressed with
arbitrary external load, the depth of the medium would tend
towards ls → 1 − �, which is significantly lower than the
prediction for flow-induced compaction (24b) as shown in
Fig. 3(e). External loading can achieve much greater com-
paction than pressure-driven flow because under an external
load the entire medium compacts uniformly. In contrast, under
pressure-driven flow the porosity at the upper surface is fixed
at its initial value, because the matrix pressure vanishes and
the matrix remains unstrained there.

III. EXPERIMENTS

A. Setup and experimental process

In this section we discuss a set of experiments in which
we explored fluid-driven deformation of a simple, optically
accessible poro-elastic medium. The experimental setup,
shown in Fig. 4, consisted of a rectangular acrylic tank 25 cm
tall, 12 cm across, and 2 cm deep. The tank contained small,
roughly spherical, hydrogel particles, saturated with water. The
particles were a sodium poly-acrylamide hydrogel (obtained

mass balance

H

l(t)

adjustable
height

pumpoverflow

adadaddadddadadadadadddadddadadddddddadadadddadddddaadadaaadddaaaaaaadadaaddddddaddaaaaaaaaaddaddddaddadaadaadaadaaaaddaddddddaaaaaadaddddddaaaaadddadaddaaadadaaaaddddadaadaadaadadaaadaaaaaaadadaaaddaadadaaadddaaaaadaaaaaaaaadddddadaaaadaadadddddaaaaaaaddddaddddjjjujujujjjjjjjujujjujujjjjjjjujjujujujujujujujjujjjjjujujujujujjujjjjjuuuujuuujuujujjjujjuuuuujuuujuuujuuuuujuujjuuujujjuujjuuuuuuuuujujjuuujuuuuuujuuuuuujuujujjujjuuuuuuuujjjjjjjjjjjjjjjjjjjjjjjjjjjjjj stststststttsttttsttststttststssssssstssttststststssssssssstttttstsssssssstssttttsssssstttstssssststtsssstssssssssssstssssssssssstssssssssssssssssssstssttssstttsssssttssssstttstss
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adjustable
height
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FIG. 4. A schematic showing the experimental setup, as described
in the main text. The tee junction was connected to an adjustable
clamp that could be moved up or down to set the desired pressure
head H . Arrows show the direction of the flow when the exit valve at
the base of the tank was opened.
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main text from tests in which the stress was increased and then decreased as indicated by the arrows. The measurements for increasing stress
(circles) deviate appreciably from those for decreasing stress (crosses). The same test was repeated three times, shown as blue, red, and green,
consecutively. (c) The same data as in (b), converted into a function of φ using (2), with � = 0.41. The data for increasing stress are compared
to a simple fit of the form (15a) with an elastic modulus of σ ∗ = 1900 Pa (dashed).

from JRM Chemical) that, when saturated, had a radius of
0.38 ± 0.16 mm [Fig. 5(a)] and a density and refractive index
that was very close to water. In order to measure deformation
of the medium, tracer hydrogel particles were added to the
mixture; we had previously treated these particles with a
solution of CuSO4 which made them green [26].

At the base of the tank there was a metal grill lined with
permeable fabric, through which particles could not pass but
through which water could flow, and an exit valve that could be
opened to the atmosphere. At the top of the tank, water could
enter through a flexible tube and across a sponge diffuser. The
flexible tube was 1.5 m long and connected to a tee junction;
one end of the junction was fed continuously by a peristaltic
pump and the other was open to the atmosphere and allowed to
overflow. The junction could be moved up and down vertically
next to the tank to set the desired pressure head H . Once
secured at this height, the exit valve on the tank was opened,
fluid flowed through the medium, and the coupled pump and
open tube ensured that the depth of the water remained fixed
at the height of the junction. The experimental setup allowed
for the tee junction to be lowered to heights below the top
of the particles while the particles remained fully saturated.
The pressure head could therefore be set at values H < l0, and
lowered as far as H = 0.

For each experiment, at each pressure head (accurate to
0.5 cm) the fluid flux per unit cross-sectional area through
the medium was measured using a standard digital mass
balance (accurate to 0.01 g), and the depth of the medium
was measured by interface tracking from photographs, taken
using a standard digital SLR camera. The deformation of the
medium was measured using image-analysis software [27] to
detect and track the displacement of tracer particles in the
matrix (accurate to the order of the diameter of the particles,
∼0.8 mm).

The experimental procedure involved taking measurements
at sequentially increasing values of H at 10 cm intervals
between 0 cm and 120 cm, followed by sequentially decreasing
values back down to H = 0 cm. This sweep of increasing
and decreasing applied pressure was repeated four times. At
each value of H the system was left for 30 seconds to attain

an apparently steady state before the measurements of flux,
depth, and displacement were taken. Although the main aim
of this study was to investigate the steady-state behavior, in
some experiments the flux was also measured over time as the
system evolved to the steady state.

B. Rheology

The main source of uncertainty for a quantitative compari-
son of the experiments and the theoretical model is the porosity
� of the unstressed medium. Hydrogel spheres are micro-
porous particles composed mainly of water, which makes
accurate measurement of porosity extremely difficult. Based
on a rough comparison with measurements from a sample of
loose, random-packed, similar-sized glass spheres, we used
a value of � = 0.41 for all the experimental comparisons
presented here.

The approximate rheology of the saturated deformable
medium was measured by simple unidirectional compression
tests. The same rectangular acrylic cell was fitted with an
impermeable base, filled with saturated hydrogel particles, and
overlain by a removable porous piston. Weights were added
to or removed from the piston to exert a known downwards
force on the medium. Since the density of fluid and solid
were approximately equal, there was very little differential
compaction of the medium under gravity in this setup, and the
porosity was assumed to be vertically uniform. Experiments
were conducted by sequentially increasing and then decreasing
the load on the piston and measuring its vertical displacement
�l away from the initial depth l0 at each load, thereby giving
the macroscopic strain e ≡ �l/l0 of the medium.

Measurements of σ (e) [Fig. 5(b)] from three sets of
experiments are converted into functions of the porosity using
(2) with � = 0.41, as shown in Fig. 5(c). In each set of
experiments, there is a clear hysteresis between increasing
and decreasing stress, which we will revisit in Sec. III C. The
results for increasing stress are relatively well fitted by the
simple model constitutive equation (15) with a modulus of
σ ∗ = 1900 Pa.
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FIG. 6. Experimental results with l0 = 11.4 cm for a series of experiments in which the height H was increased and then decreased four
times. (a) The flux per unit cross-sectional area Qs , (b) the depth ls , and (c) the effective permeability keff. The first sweep up and down in
shown in red with crosses. Arrows show the direction of increasing and decreasing H . After the first sweep, the measurements of the flux and
the effective permeability collapse onto reproducible hysteresis loops.

Note, however, that the stress increases more steeply
than the model predicts at the lowest porosities [Fig. 5(c)].
Equivalently, the limiting macroscopic strain em appears (by
extrapolation of the trend in [Fig. 5(b)] to be rather smaller in
magnitude than the model prediction of em = −� = −0.41.
These discrepancies may be a result of the simplifying assump-
tion of a zero minimum porosity φm in the model, and perhaps
suggest that φm > 0 for these hydrogel particles. Of course, the
true rheology of hydrogel particles under large stress is rather
complex. For example, it seems plausible that the particles
might deform so as to seal off connected passages through the
medium and become essentially impermeable, and thus incom-
pressible, at a nonzero porosity. On the other hand, swollen gels
can release a fraction of their internal fluid under pressure [28],
which would result in higher porosities than the measurements
indicate. Previous measurements [28] suggest a loss of volume
of less than 10% at the pressures achieved in these experiments.
Despite these various uncertainties, given the reasonable
agreement in Fig. 5(c), we retain the simple model rheology
with φm = 0 for all the comparisons in this section.

C. Experimental results

Note that all the variables referred to in this section are
dimensional.

Steady-state measurements from a full set of four increasing
and decreasing sweeps of the applied pressure (Fig. 6) reveal
a number of notable features. First, measurements of Qs

and keff display a clear hysteresis between increasing and
decreasing stress. Both measures are significantly lower when
the stress is decreased compared to when it is increased.
Although hysteresis is less clear in the measurements of ls ,
close examination suggests it is still present, with the depth
being lower when H is decreased. Second, with the exception
of the first sweep of increasing and decreasing H , the hysteresis
loop appears to be reproducible. The slight difference in the
first sweep was observed in all sets of results, and is likely
indicative of some mechanical rearrangement of the particles
as the stress on the medium is first increased. In particular,
after the first sweep the depth of the medium ls reproducibly
returns to a value at H = 0 that is lower than its initial value.
Third, the flux and the depth of the medium both appear to
saturate towards a plateau as the stress is increased, while the
effective permeability continually decreases, much as in the
results of the theoretical model [Figs. 2(d) and 2(e)].

Measurements from three sets of experiments for different
initial depths l0 all exhibit the same features as just discussed,
and, after suitable nondimensionalization, agree relatively well
between themselves (Fig. 7). The slight difference in the
magnitude of the dimensionless flux as H → ∞ [Fig. 7(a)]
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FIG. 7. Experimental results for three sweeps of increasing and decreasing H , scaled by the dimensional scalings of §II, for l0 = 8.9 cm
(black dots), 11.4 cm (blue pluses), and 13.3 cm (red crosses). (a) The dimensionless flux Qsμl0/k∗σ ∗, (b) the dimensionless change in the
depth (ls − l0)/l0, and (c) the dimensionless effective permeability keff/k∗. Note that all results are taken after one initial sweep of increasing
and decreasing H , and l0 was chosen to be the height of the medium after this sweep, rather than the initial height, in an attempt to account
for any particle rearrangement (and thus changing of �) during the initial sweep. The other parameters were σ ∗ = 1900 Pa, � = 0.41,
ρ = 1000 kg m−3, a measured viscosity of μ = 9.336 × 10−4 Pa s, and k∗ = r2/45 = 3.2 × 10−9 m2.
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FIG. 8. Comparison of the experimental results from three sweeps as in Fig. 7, showing only the measurements for increasing H (black),
with the predictions of the theoretical model (blue dashed), for experiments with l0 = 8.9 cm. The other parameters are as in Fig. 7.

is perhaps due to a slightly different initial porosity � between
the different experiments.

Explicit comparison of the steady-state experimental results
and the predictions of the theoretical model shows good
agreement for the increasing branch of the hysteresis loop
(Fig. 8). Both theory and experiment show that the magnitude
of the flux Qs increases steeply from zero as H is increased,
and tends towards a finite plateau for large H . The effective
permeability decreases correspondingly, while the depth ls of
the medium also decreases towards an asymptotic value. The
theoretical prediction of ls appears to be slightly high, although
the general trend with H agrees with the experimental data.
The theory differs significantly from the measurements for the
decreasing branch of the hysteresis loop. This difference is not
surprising given the significant difference in the rheology of
the particles for increasing or decreasing stress (Fig. 5), which
is not included in the model.

In order to quantify the degree of internal deformation, we
measured the displacement of the medium as a function of
depth by tracking a number of dyed particles over the course
of multiple sets of experiments for increasing and decreasing

stress. The results are shown in Fig. 9. The displacements for
increasing stress roughly collapse when the measurements are
scaled by l0 [Fig. 9(a)]. As the height H of water is increased,
the displacement of the particles increases. For all values of H ,
the displacement field is nonlinear in the vertical coordinate,
which indicates that the medium compacts differentially, as
predicted by the model. This feature is more clearly observed in
Fig. 9(b), which shows smoothed profiles of the measurements
from increasing and decreasing sweeps of H . This figure also
shows that the deformation for large H becomes insensitive
to changes in H , as suggested by the limiting behavior of
l: the profiles for H = 80 cm and H = 120 cm are almost
indistinguishable.

Predictions of the model, also shown in Fig. 9(a), give qual-
itatively similar profiles to the measured displacement fields.
The theory gives a fairly accurate quantitative prediction of the
measured displacement for large H , but appears to overpredict
the extent of deformation for small H , which is interesting
given the good agreement between the measurements in Fig. 8.
The theoretical curves reach the upper surface with an infinite
slope, which corresponds to a vanishing strain, and thus a

ζ/l0

(a) (b)

ζ/l0

H = 10 cm

H = 80 cm

+ ∗# + ∗

Z/l0 Z/l0

FIG. 9. Measurements from particle tracking of the dimensionless displacement ζ/ l0. For a particle at depth z, the displacement is defined
by the vertical distance traveled relative to its initial position Z, such that ζ = z − Z. Measurements are shown as a function of the dimensionless
initial (Lagrangian) position Z/l0, for different initial depths l0 = 8.9 cm (black), 11.4 cm (blue), and 13.3 cm (red). Each experiment comprised
three sweeps of increasing and decreasing H , and the displacement in each case was measured relative to the position of the particles at the start
of that sweep. All measurements were taken after one initial sweep of increasing and decreasing stress, to allow for any initial rearrangement
of particles. (a) Measurements for increasing H at H = 10 cm (dots) and H = 80 cm (stars), together with predictions of the theoretical model
(green lines) given by (3) and (23) using the parameters as in Fig. 7. (b) Smoothed profiles of the experimental measurements for l0 = 11.4 cm,
for increasing stress (blue solid) and decreasing stress (red dashed) at H = 10 cm (indicated by a star), H = 20 cm (indicated by a cross),
H = 80 cm (indicated by #), and H = 120, which was the highest stress reached (black dotted).
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FIG. 10. Smoothed measurements of the flux over time for a set of experiments with l0 = 13.3 cm, following a step change in the height
at t = 0: (a) from H = 10 cm up to H = 40 cm, and (b) from H = 130 cm down to H = 40 cm. The red dashed lines show the predicted flux
using the time-dependent model, with the parameters as in Fig. 7. The insets show the comparisons at early times in more detail. It is evident
that the experiment evolves over a much longer time scale than the theory predicts.

uniform porosity �, there. The resolution of the measurements
near the upper surface is not sufficient to determine whether
they agree with this behavior, although the slopes of the
profiles in Fig. 9(b) appear to be increasing towards vertical in
agreement with theory.

Given the hysteretic behavior shown in Fig. 6, it is not
surprising that the measurements for increasing and decreasing
stress give different displacement profiles [Fig. 9(b)]. The
magnitude of the displacement remains larger through the
medium for decreasing stress than for increasing stress, which
indicates that the average porosity is lower. This observation
is consistent with the previous observations of a lower flux
and depth for decreasing stress. Interestingly, the displacement
becomes very similar between increasing and decreasing stress
for higher values of H [e.g., the comparison at H = 80 cm in
Fig. 9(b)], even though previous measurements indicate that
the flux might differ appreciably [Fig, 6(a)]. In other words,
small variations in the vertical structure of the medium can
have a relatively large effect on the macroscopic properties
when the pressure head is large, or, alternatively, when the
porosity is small at the base of the medium.

Finally, we comment briefly on some experiments in which
the evolution of the flux was measured over time following
a change in H . Figure 10 shows measurements of the flux
Q over time as the pressure head was first increased and
then decreased, together with the predictions of the model.
The comparison shows that the flux evolves over a much
longer time scale than the model predicts. The poro-elastic
time scale of the model is based on the assumptions of a bulk
elastic rheology for the matrix and a constant composition
and mass of each phase during compression. However, given
that each hydrogel particle is predominantly made up of fluid,
there may also be a pore-scale viscous contribution to the
stress (i.e., a strain-rate dependence), which could introduce
an additional, visco-elastic, time scale. For example, in the
experiments fluid may be seeping out of the swollen hydrogels
as they deform under compression, which is a viscous process
that is not included in the model. Previous experiments of
injection-driven deformation using similar hydrogel particles

have also suggested the presence of a viscous-compaction time
scale [17]. More generally, visco-elastic behavior has been
widely observed in suspensions of hard colloidal particles or
emulsions (e.g., Refs. [29–31]), but under conditions of shear
rather than compression.

Note that, as well as highlighting a difference in times cales,
the comparison in Fig. 10 also indicates clearly the hysteresis
in the measurements of Q, which is absent from the model.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have presented experimental and the-
oretical models to describe flow-induced one-dimensional
compaction of a deformable medium. The experimental setup
consisted of a porous matrix comprising small deformable
hydrogel spheres in a rectangular cell, through which water
was driven by an applied pressure difference that could be
varied. The flux of fluid, bulk deformation, and internal
deformation were all measured as functions of pressure
difference. While the experimental setup utilised gravity to
drive flow, the results apply to any pressure-driven flow
because the fluid and solid densities were matched.

In a classical rigid medium, the fluid flux increases linearly
with the applied pressure. Perhaps the most striking result of
this work is that if the medium is deformable, this may not
be the case. Instead, the flux can increase towards a finite
maximum as the pressure is increased, as we observed experi-
mentally. The depth of the medium correspondingly decreases
towards a finite asymptotic value, and, as a consequence, the
“effective permeability” of the medium, defined in terms of
the bulk pressure drop and fluid flux, decreases towards zero.
Thus, quite counterintuitively, the flux through a deformable
medium can become insensitive to the applied fluid pressure
difference for large pressures: the flow is self-regulated by
the medium, as increased pressure gradients balance increased
resistance from the permeability.

For all of this behavior, we found good quantitative agree-
ment between our experiments and our theoretical model when
the applied pressure difference was sequentially increased. In
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particular, the dimensional analysis underlying the scalings of
the model indicates that the steady-state flux per unit area,
depth of the medium, and effective permeability are

Qs = −k∗σ ∗

μl0
f1; ls = l0f2/f1; keff = k∗σ ∗

ρgH
f2,

(25a,b,c)

respectively, for some dimensionless functions f1(�,H ≡
ρgH/σ ∗) and f2(�,H). For the simple elastic rheology
considered in this paper, these functions are given by (20)
and (21), respectively. More generally, the factors that control
whether or not these functions, and thus the flux, tend to a
finite value, as in this paper, or increase without bound, as in a
rigid medium, are dictated by the appropriate constitutive laws
for the material, as discussed in the Appendix.

From a practical point of view, one might be interested
in maximizing the fluid flux through the medium. If the flux
tends to a finite value as the pressure drop is increased, it
can become extremely inefficient to increase the pressure drop
beyond a certain value. For example, based on the results of
the theoretical model (Fig. 3), the steady-state flux is within
5% of its asymptotic value once the pressure drop ρgH is
approximately double the elastic modulus σ ∗ of the medium
(i.e., H ≈ 2); thus an increase in the applied pressure beyond
this value causes only a very small change in the flux.

A key difference between compression driven by an
external load or by fluid flow is that, in the latter case, the
requisite gradient in the fluid pressure induces a gradient in the
matrix stress, which corresponds to a gradient in the porosity.
By direct measurement of the displacement field through the
solid medium, we confirmed this behavior experimentally.
As a consequence of differential compaction, an applied
fluid pressure drop will result in appreciably less overall
compaction than the same pressure applied as an external load,
as demonstrated in Fig. 3(e).

There are two significant discrepancies between the exper-
imental observations and the theoretical model. The first is
the presence of hysteresis in the experimental measurements:
the steady state of the system has a strong dependence on
the previous stress state, or previous degree of compaction.
Repeatable hysteresis was observed in all the measurements,
including in the detailed deformation of the medium. The
extent to which such hysteresis is a particular feature of this
experimental material is not clear. It does, however, seem
plausible that any collection of deformable particles could
rearrange under stress into a new configuration from which
they could not simply revert on the relaxation of that stress (cf.
“jamming” in hard granular media: see, e.g., Ref. [32]). Indeed,
this effect might be heightened if fluid were also released from
the particles under stress, reducing the particle volume and
allowing for further rearrangement.

The second discrepancy is that the theory significantly
underpredicts the time scale of evolution to a new steady state
following a step change in the applied pressure, as discussed at
the end of Sec. III C. The transient evolution of the system was
not the main focus of this work, and warrants further study.
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APPENDIX : IMPLICATIONS OF THE THEORETICAL
MODEL IN THE LIMIT OF LARGE APPLIED FLUID

PRESSURE H → ∞: IS THE FLUX BOUNDED?

In the experiments and the specific model considered in
this paper, the magnitude of the steady-state flux Qs tends
towards a finite value as H → ∞. It is not obvious, a
priori, whether such behavior is a generic feature of the
model framework irrespective of the choice of solid rheology
σ (e(φ)) or permeability k(φ). Indeed, one could envision three
plausible scenarios in general: the strength of the flow could
continually increase as the pressure drop increases (as in a
rigid medium); the flow could tend towards a finite value (as
in the experiments); or the strength of the flow could decrease
as the overpressure compresses the medium and reduces the
permeability.

The steady-state solutions of the general theoretical frame-
work outlined in Sec. II A can be analyzed to determine the
generic behavior Qs as H → ∞ for any function σ (φ) and
any non-negative k(φ). From (13a),

∂Qs

∂H = − (1 − φ0)k(φ0)σ ′(φ0)

(1 − �)

∂φ0

∂H , (A1)

where the porosity φ0 at the base is determined by the
boundary condition σ (φ0) = H, or, after differentiation,
σ ′(φ0)∂φ0/∂H = 1. Thus, (A1) reduces to

(1 − �)
∂Qs

∂H = −(1 − φ0)k(φ0) (A2)

(recall that Qs is negative), which indicates that ∂Qs/∂H is
always negative. The flow therefore cannot weaken as H is
increased, and the third hypothesis described above is not
possible within this model framework.

In general, we would expect the stress to diverge and
the permeability to vanish as the porosity approaches some
minimum value φm (in the specific model of this paper,
φm = 0). Suppose, in the limit φ → φm, k ∼ (φ − φm)α and
σ ∼ (φ − φm)−β , for some positive constants α and β. Then
φ0 − φm ∼ H−1/β and (A2) gives

∂Qs

∂H ∼ −H−α/β as H → ∞. (A3)

If α > β, then Qs ∼ constant as H → ∞ and the flux tends
to a finite value as the pressure head is increased. If instead
α = β or α < β, then Qs ∼ logH or Qs ∼ O(H(β−α)/β ),
respectively, and the flux continues to increase as the pressure
head is increased. In the specific model outlined in Sec. II B,
α = 3 and β = 1 such that α > β, and so the flux tends to a
constant for large H.

Physically these two scenarios describe a different balance
as the stress on the medium diverges. In the former case, the
increased fluid pressure balances the increased resistance to
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flow from the permeability such that the flux is constant as the
pressure increases. In the latter case, the matrix is sufficiently
strain hardening that it is able to absorb the increase in the

fluid pressure without restrictively blocking the pathways to
fluid flow, and the flux increases without bound, as in a rigid
medium.
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