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a b s t r a c t 

We report the results of computations for two–dimensional dambreaks of viscoplastic fluid, focusing on 

the phenomenology of the collapse, the mode of initial failure, and the final shape of the slump. The 

volume-of-fluid method is used to evolve the surface of the viscoplastic fluid, and its rheology is captured 

by either regularizing the viscosity or using an augmented-Lagrangian scheme. We outline a modification 

to the volume-of-fluid scheme that eliminates resolution problems associated with the no-slip condition 

applied on the underlying surface. We establish that the regularized and augmented-Lagrangian methods 

yield comparable results, except for the stress field at the initiation or termination of motion. The numer- 

ical results are compared with asymptotic theories valid for relatively shallow or vertically slender flow, 

with a series of previously reported experiments, and with predictions based on plasticity theory. 

© 2016 Elsevier B.V. All rights reserved. 

1

 

f  

n  

a  

t  

a  

n  

c  

s  

T  

c  

a  

i  

m  

t

 

m  

A  

a  

l  

t  

fl  

t  

a  

d  

o  

p  

p  

f

 

a  

s  

v  

s  

r  

t  

r  

L  

s  

i  

d  

a  

p  

n

 

c  

h

0

. Introduction 

The sudden gravitational collapse of a mass of viscoplastic fluid

eatures in a diverse range of problems from geophysics to engi-

eering. These flows can constitute natural or manmade hazards,

s in the disasters caused by mud surges and the collapse of mine

ailing deposits. In an industrial setting, the controlled release of

 reservoir in a simple dambreak experiment forms the basis of a

umber of practical rheometers, including the slump test for con-

rete [1,2] and the Bostwick consistometer of food science [3] . The

lump test features the release of a cylinder of yield-stress fluid.

he focus of the current article is more aligned with the Bostwick

onsistometer, in which materials such as ketchup are released in

 rectangular channel, and two–dimensional flow is a convenient

dealization. In view of the relatively slow nature of the flows in

any of these problems, we also consider the limit of small iner-

ia. 

Despite wide–ranging practical application, the theoretical

odelling of viscoplastic dambreaks remains relatively unexplored.

symptotic theories for shallow, slow flow have received previous

ttention and permit a degree of analytical insight into the prob-

em (see [4,5] and references therein). Numerical computations of

wo–dimensional dambreaks have also been conducted to model

ows that are not necessarily shallow [6] . However, these simula-
∗ Corresponding author. 
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ions do not provide a detailed survey of the flow dynamics over

 wide range of physical conditions and have focused mainly on

etermining some of the more qualitative aspects of the end state

f a slump, such as its final runout and maximum depth. Com-

lementing both asymptotics and numerical simulation are cruder

redictions of the final shape based on solid mechanics and initial

ailure criteria derived from plasticity theory [1,7,8] . 

The key feature of a viscoplastic fluid that sets the problem

part from a classical viscous dambreak is the yield stress. When

ufficient, this stress can hold the fluid up against gravity, pre-

enting any flow whatsoever. If collapse does occur, the yield

tress brings the fluid to a final rest and can maintain localized

igid regions, or “plugs”, during the slump. The evolving plugs and

heir bordering yield surfaces present the main difficulty in theo-

etical models, particularly in numerical approaches. Augmented-

agrangian schemes that deal with the complications of the yield

tress directly are often time-consuming to run, whereas regular-

zations of the constitutive law that avoid true yield surfaces intro-

uce their own issues [9] . For the dambreak problem, difficulties

re compounded by the need to evolve the fluid surface and im-

ose boundary conditions such as no-slip on the substrate under-

eath the fluid. 

In the current paper, we present numerical computations of vis-

oplastic dambreaks spanning a wide range of physical parameters.

ur aim is to describe more fully the phenomenology of the col-

apse and its plugs, the form of the motion at initiation, and the

etailed final shape. Our main interest is in the effect of the yield

tress, so we consider Bingham fluid, ignoring any rate-dependence

http://dx.doi.org/10.1016/j.jnnfm.2016.05.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2016.05.008&domain=pdf
mailto:njb@math.ubc.ca
http://dx.doi.org/10.1016/j.jnnfm.2016.05.008
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Fig. 1. A sketch of the geometry for the case of a rectangular initial block. 
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of the plastic viscosity. We mathematically formulate the dambreak

problem in Section 2 and outline the numerical strategies we use

for its solution. We use both an augmented-Lagrangian scheme

and regularization of the constitutive law to account for viscoplas-

ticity; to deal with the free surface, we use the volume-of-fluid

method. The latter method emplaces the viscoplastic fluid beneath

a less dense and viscous fluid, then tracks the interface between

the two using a concentration field. This effectively replaces the

single-phase dambreak problem with that of a two-phase miscible

fluid displacement (we ignore surface tension), but introduces a

significant complication when imposing a no–slip boundary condi-

tion: because the lighter fluid cannot be displaced from the lower

surface, the slumping heavier fluid over–rides a shallow finger of

lighter fluid which lubricates the overlying flow and thins contin-

ually, leading to difficulties with resolution. We expose this com-

plication for a viscous test case in Section 3 , and identify means to

avoid it. We then move on to a discussion of Bingham dambreaks

in Section 4 , before concluding in Section 5 . The appendices con-

tain additional technical details of the numerical schemes, asymp-

totic theories for shallow or slender flow, and some related plas-

ticity solutions. 

2. Formulation 

2.1. Dambreak arrangement and solution strategy 

To simulate the collapse of a Bingham fluid, we consider a

two–fluid arrangement, with the yield-stress fluid emplaced un-

derneath a lighter viscous fluid. We ignore any interfacial tension.

The volume-of-fluid method is used to deal with the boundary be-

tween the two fluids: a concentration field c ( x , y , t ) smooths out

and tracks the fluid-fluid interface; c = 1 represents the viscoplas-

tic fluid and the overlying Newtonian fluid has c = 0 . The concen-

tration field satisfies the advection equation for a passive scalar; no

explicit diffusion is included although some is unavoidable as a re-

sult of numerical imprecision. Fig. 1 shows a sketch of the geome-

try; the initial block of viscoplastic fluid has a characteristic height

H and basal width 2 L , but we assume that the flow remains sym-

metrical about the block’s midline and consider only half of the

spatial domain. 

To deal with the yield stress of the viscoplastic fluid, we use

both an augmented-Lagrangian scheme [10] and a regularization

of the Bingham model. The numerical algorithm is implemented

in C++ as an application of PELICANS 1 . We refer the reader to

[11,12] for a more detailed description of the numerical method

and its implementation. We use the regularized scheme as the
1 https://gforge.irsn.fr/gf/project/pelicans/ ; PELICANS is an object-oriented plat- 

form developed at the French Institute for Radiological Protection and Nuclear 

Safety and is distributed under the CeCILL license agreement ( http://www.cecill. 

info/ ). 

t  

c  

s  

r  

d

ain computational tool; the augmented–Lagragian algorithm is

lower and was used more sparingly, specifically when looking at

ow close to failure or during the final approach to rest. In most

ituations, the agreement between the two computations is satis-

ying (examples are given below in Fig. 4 ); only at the initiation

r cessation of motion is there a noticeable difference, primarily

n the stress field (discounting the solution for the plug, which is

n artifact of the iteration algorithm in the augmented–Lagrangian

cheme). 

.2. Model equations 

We quote conservation of mass, concentration and momentum

or a two-dimensional incompressible fluid in dimensionless form:

 · u = 0 , 
∂c 

∂t 
+ (u · ∇) c = 0 , (1)

Re 

[
∂u 

∂t 
+ (u · ∇) u 

]
= −∇p + ∇ · τ − ρ ˆ z , (2)

n these equations, lengths x = (x, z) are scaled by the characteris-

ic initial height of the Bingham fluid, H, velocities u = (u, w ) by

he speed scale U = ρ1 gH 

2 /μ1 , and time t by H/ U , where g is the

ravitational acceleration; the stresses τ and pressure p are scaled

y ρ1 gH. The Reynolds number is defined as Re = ρ1 UH/μ1 . Here,

he subscript 1 or 2 on the (plastic) viscosity μ and density ρ dis-

inguishes the two fluids, and linear interpolation with the con-

entration field c is used to reconstruct those quantities for the

ixture; i.e. after scaling with the denser fluid properties, 

= c + (1 − c) 
ρ2 

ρ1 

and μ = c + (1 − c) 
μ2 

μ1 

. (3)

In dimensionless form, the unregularized Bingham constitutive

aw is 
 

 

 

˙ γ jk = 0 , τ < cB, 

τ jk = 

(
μ + 

cB 

˙ γ

)
˙ γ jk , τ > cB, 

τ = 

√ 

1 

2 

∑ 

j,k 

τ 2 
jk 

(4)

here 

 = 

τY H 

μ1 U 

≡ τY 

ρ1 gH 

(5)

s a dimensionless parameter related to the yield stress τ Y , and the

eformation rates are given by 

˙ jk = 

∂u j 

∂x k 
+ 

∂u k 

∂x j 
, ˙ γ = 

√ 

1 

2 

∑ 

j,k 

˙ γ 2 
jk 
. (6)

he regularized version that we employ is 

jk = 

(
μ + 

cB 

˙ γ + ε

)
˙ γ jk , (7)

here ε is a small regularization parameter. We verified that the

ize of this parameter had no discernible effect on the results pre-

ented below; we therefore consider irrelevant the precise form of

he regularization (which is simple, but not necessarily optimal). 

We solve these equations over the domain 0 ≤ x ≤ � x = L x / H
nd 0 ≤ z ≤ � z = L z / H, and subject to no-slip conditions, u = w = 0

n the top and bottom surfaces (but see Section 3 ), and symme-

ry conditions on the left and right edges, u = 0 and w x = 0 . The

omputational domain is chosen sufficiently larger than the initial

hape of Bingham fluid that the precise locations of the upper and

ight-hand boundaries ( i.e. � x and � z ) exert little effect on the flow

ynamics. 

https://gforge.irsn.fr/gf/project/pelicans/
http://www.cecill.info/
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Fig. 2. Snapshots of the evolving interface for a Newtonian heavier fluid at the 

times t = 1 , 2 , 3 , 4 , 5 ; the inset shows a magnification of the finger of over–ridden 

lighter fluid. 
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Initially, both fluids are motionless, u (x, z, 0) = w (x, z, 0) = 0 .

e take the initial shape of the viscoplastic fluid to be either a

lock or triangle; the concentration field then begins with 

(x, z, 0) = 1 for 

{ 

0 ≤ x ≤ X 0 or X 0 

(
1 − 1 

2 

z 

)
, 

0 ≤ z ≤ 1 or 2 , 

nd c(x, z, 0) = 0 elsewhere, where X 0 = L / H is the initial aspect

atio. The different maximum depths ensure that the initial condi-

ions have the same area for equal basal width X 0 . 

The main dimensionless parameters that we vary are the yield–

tress parameter B (which we loosely refer to as a Bingham num-

er) and initial aspect ratio X 0 . Unless otherwise stated, we set the

ther parameters to be 

 x = 5 , � z = 1 . 25 , 
ρ2 

ρ1 

= 

μ2 

μ1 

= Re = 10 

−3 . 

y fixing the density and viscosity ratios to be small, we attempted

o minimize the effect of the overlying viscous fluid (but see the

iscussion of the finger of over–ridden fluid below). The relatively

ow Reynolds number reflects our interest in the limit of small

nertia, although the PELICANS implementation requires Re � = 0,

volving the fluid from the motionless state; we established that

dopting Re = 10 −3 minimizes the effect of inertia beyond the ini-

ial transient. Some additional technical details of the computa-

ions are summarized in Appendix A . In this appendix, we also

escribe a second scheme that we used to study how the initial

tate fails at t = 0 ; this scheme does not solve the initial–value

roblem, but calculates the instantaneous velocity field at t = 0 ,

ssuming that Re = 0 and the initial stresses are in balance (the

teady Stokes problem). 

. Newtonian benchmark 

The collapse of the initial block of the heavier viscous fluid

reates a slumping current that flows out above the bottom sur-

ace. However, because of the no-slip condition imposed there, the

pper–layer fluid cannot be displaced from a thin finger coating

he base that is over-ridden by the advancing gravity current. Prob-

ematically, the finger becomes excessively thin and difficult to re-

olve with the relatively small viscosity and density ratios that

e used to minimize the effect of the lighter fluid. We illustrate

he formation of the finger and its subsequent development in

ig. 2 . Appendix A features further discussion of the finger and its

volution. 
The challenges associated with resolving the finger are illus-

rated in Fig. 3 , which plots the evolution in time of the flow front,

 ( t ) (defined as the rightmost position where c(X, z, t) = 

1 
2 ), for

omputations with different grid spacing. The first panel in this fig-

re shows the results using a relatively simple MUSCL scheme for

racking the interface [13] , which was previously coded into PEL-

CANS [11,12] . This algorithm fails to track the interface well with

he grid resolutions used: as the finger develops, it remains erro-

eously thick and the enhanced lubrication by the lighter viscous

uid causes the heavier current to advance too quickly ( cf. A.3 ). 

An interface-tracking scheme based on the PLIC algorithm pro-

osed in [14] performs better; see Fig. 3 (b). The flow front now

dvances less quickly. However, the fine scale of the finger still

eads to a relatively slow convergence of the computations with

rid spacing �x = �z (corresponding to finite elements in the PEL-

CANS code with equal aspect ratio). Moreover, the resolution fail-

re is again manifest as an enhancement in the runout of the

urrent that results from a finger that does not thin sufficiently

uickly. In A.3 we argue that this is an intrinsic feature of the

olume-of-fluid algorithm when the interface is contained within

he lowest grid cell of the numerical scheme. 

The resolution problems with the finger are compounded in

omputations with Bingham fluid, for which the yield stress fur-

her decreases the effective viscosity ratio. Although some sort of

ocal mesh refinement and adaptation would be a natural way to

elp counter these problems, we elected to avoid them in a differ-

nt fashion which was more easily incorporated into PELICANS. In

articular, by monitoring c ( x , z , t ) at z = �z for each time step, we

etermined when the finger was expected to be contained within

he lowest grid cell. At this stage, to prevent the resolution fail-

re from artificially restricting the thinning of the finger in the

olume-of-fluid scheme (see A.3 ), we reset the concentration field

o c = 1 at z = 0 . The finger was thereby truncated and the effec-

ive contact line moved. Practically, we reset c ( x , 0, t ) when c ( x , �z ,

 ) exceeded 0.99 (the results were insensitive to the exact choice

or this value). As shown by Fig. 3 (c), this led to computations that

onverged much more quickly with grid spacing and fell close to

oth the most highly resolved computations with the original PLIC

cheme and the predictions of shallow–layer theory. Nevertheless,

he adjustment destroys the ability of the code to preserve the vol-

mes of the two fluids. For the computations we report here, less

han about one percent of the volume of the lighter fluid was lost

s a result of the adjustment. But, as the velocity profile was then

ully resolved near the boundary and no other unexpected prob-

ems were found, we considered this flaw to be acceptable. Hereon,

ll reported computations use this adjusted boundary condition. 

To provide a physical basis of the adjustment scheme, we would

eed to demonstrate that it corresponds to the addition of another

hysical effect, such as van der Waals interactions. We did not do

his here, but simply note that the adjustment acts like the nu-

erical devices implemented in contact line problems with sur-

ace tension to alleviate the stress singularity and allow the con-

act line to move [15] . Indeed, the scheme is much like limiting

he dynamic contact angle to be about 3 π /4 or less, by adjusting

he interface over the scale of the bottom grid cell but without in-

roducing explicitly any interfacial tension. 

An alternative strategy is to change the lower boundary con-

ition so that the lighter fluid freely slips over the lower surface

hilst the heavier fluid still satisfies no slip. This strategy, which

an be incorporated using a Navier–type slip law in which the slip

ength depends on c , leads to results that compare well with the

cheme including the concentration correction (see Fig. 3 (c)). How-

ver, for Bingham fluid, the diffuse nature of the interface-tracking

cheme and the PLIC algorithm eventually result in the recurrence

f resolution problems over longer times. By contrast, the adjust-

ent scheme successfully survives the long time diffusion process.



68 Y. Liu et al. / Journal of Non-Newtonian Fluid Mechanics 238 (2016) 65–79 

Fig. 3. Flow front X ( t ) plotted against time for computations with Newtonian fluids using (a) the simple MUSCL scheme, (b) the PLIC improvement, and (c) the PLIC scheme 

with the lower boundary condition on c ( x , z , t ) adjusted according to the algorithm outlined in the main text. In each case, runs with different resolution are shown. For 

(c), the (red) dashed-dotted line labelled slip shows a solution computed with the PLIC scheme, but with no slip imposed on the heavier fluid and free slip imposed on the 

lighter fluid at z = 0 . The circles show the prediction of the leading–order, shallow–layer asymptotics in Appendix B . In (d), we plot the interface shape at t = 250 for the 

highest resolution solutions computed with the PLIC scheme with the three different lower boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) Front position X ( t ) and (b) central depth H(t) = h (0 , t) for Bingham 

dambreaks with a square initial block ( X 0 = 1 ) and the values of B indicated. The 

dashed lines show the Newtonian results. For the viscoplastic cases, the circles 

show the result using the augmented–Lagrangian scheme and the lines indicate the 

result with a regularized constitutive law. The dotted lines show the prediction of 

the leading-order shallow–layer asymptotics for B = 0 . 01 . 
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4. Bingham slumps 

For the collapse of a Bingham fluid, we first describe the gen-

eral phenomenology, then explore the details of failure, and fi-

nally categorize the slumped end–states. Along the way, we indi-

cate how the computations approach the asymptotic limits of rel-

atively shallow (low, squat) or slender (tall, thin) slumps. 

4.1. Slump and plug phenomenology 

When the heavier fluid is viscoplastic, collapse only occurs pro-

vided the yield stress does not exceed a critical value B c that

depends on initial geometry. For B < B c , the viscoplastic fluid

collapses, but the yield stress eventually brings the flow to an

almost complete halt (slumps with the regularized constitutive law

never truly come to rest, and iteration errors in the augmented–

Lagrangian scheme prevent the velocity field from vanishing iden-

tically). Fig. 4 plots the position of the flow front X ( t ) and

central depth H(t) = h (0 , t) for computations with varying B , be-

ginning from a square ( X 0 = 1 ) initial block. For this shape, the

critical value below which collapse occurs is B c ≈ 0.265, and un-

like the inexorable advance of the Newtonian current (shown by

a dashed line), X ( t ) and H ( t ) eventually converge to B −dependent

constants (the case with the smallest B = 0 . 01 requires a longer

computational time than is shown). 

Sample collapses from square blocks with B = 0 . 05 and 0.14 are

illustrated in more detail in Fig. 5 . The first example shows a slump

with relatively low yield stress, for which the fluid collapses into a

shallow current. The case with higher B collapses less far, with an

obvious imprint left by the initial shape. Note the stress concentra-

tion that arises for earlier times in the vicinity of the contact line

(a feature of all the slumps, irrespective of initial condition and

rheology). 

In general, for rectangular initial blocks with order one initial

aspect ratio, we find that the flow features two different plug re-

gions during the initial stages of collapse ( cf. [6] ). First, at the cen-

tre of the fluid the stresses never become sufficient to yield the

fluid, and a rigid core persists throughout the evolution. Second,
he top outer corner is not sufficiently stressed to move at the

nitiation of motion. This feature falls and rotates rigidly as fluid

ollapses underneath, but eventually liquifies and disappears for

mall B ; at higher yield stress, the rigid corner survives the fall and

ecorates the final deposit. As the fluid approaches its final shape
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Fig. 5. Snapshots of a collapsing square with (a) B = 0 . 05 at t = 0 , 2.5, 5, 10, 20, 40, 70, 150, 450, 950, 40 0 0, and (b) B = 0 . 14 at t = 0 , 10, 50, 10 0, 20 0, . . . , 10 0 0. The insets 

show density plots of the stress invariant τ at the times indicated, with the yield surfaces drawn as solid lines (and common shading maps for the final two snapshots in 

each case). 

Fig. 6. Snapshots of the evolving interface for a triangular initial condition with X 0 = 1 and (a) B = 0 . 05 and (b) B = 0 . 14 , at t = 0 , 2.5, 5, 10, 20, 40, 100, 150, 450, 950, 

40 0 0. The insets show density plots of the stress invariant τ at the times indicated, with the yield surfaces drawn as solid lines (the two later time density plots have a 

common shading scheme). 
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the width of the column. 
nd flow subsides, further plugs appear, particularly near the flow

ront; for the deeper final deposits, these plugs appear to thicken

nd merge to leave relatively thin yielded zones. 

When the initial shape is a triangle with X 0 = O (1) , only a few

f the phenomenological details change ( Fig. 6 ): the apex of the

riangle now falls rigidly as material spreads out underneath; this

innacle decorates the final deposit unless the yield stress is suf-

ciently small. Again, the slump features a rigid core and further

lugs form near the nose over late times. 

With a relatively wide initial condition, the pattern of evolu-

ion is slightly different: for the rectangle, the central rigid plug

xtends over the entire depth of the fluid layer and only the side

f the block collapses. The final deposit then features a flat top

t its centre, as illustrated in Fig. 7 (a). Such incomplete slumps are

redicted by shallow-layer theory to occur for 3 BX 0 > 1 [3] . This

stimate can be improved to 3 BX 0 > 1 − 3 πB/ 4 using the higher-

rder theory outlined in Appendix B (and specifically the final-

hape formula (9) ), which adequately reproduces numerical re-

ults for B < 0.15; at higher B , the computations indicate that BX 0 

ust exceed 0.25 ± 0.015 for the slump to preserve a rigid central

lock 

Incomplete slumps of a different kind arise for an initial tri-

ngle. In this case, collapses begin over the central regions where

he initial stresses are largest, and may not reach the edge, where
uid is initially unyielded, if the triangle is too wide. The (leading–

rder) shallow-layer model predicts that collapse occurs but does

ot reach the fluid edge at x = X 0 if 4 > BX 0 > 9/8. As illustrated

n Fig. 7 (b), such incomplete slumps are also observed numeri-

ally, though again for a slightly different range of initial widths

the plugged toe of the triangle is relatively small in the example

hown). 

Slender ( i.e. tall, thin) initial blocks, with X 0 � 1, also col-

apse somewhat differently, with fluid yielding only at the base

f the fluid and remaining rigid in an overlying solid cap; see

ig. 8 , which shows computations for rectangles (slender triangular

lumps are much the same). The lower section of the column sub-

equently spreads outwards with the rigid cap descending above it

n a manner reminiscent of the (axisymmetrical) slump test [1,2] .

nterestingly, the slender slump also generates undulations in the

hickness of the column. As illustrated by Fig. 8 (a), these undula-

ions (which do not occur in the Newtonian problem) appear to-

ards the end of the collapse and are linked to zigzag patterns in

he stress invariant and yield surfaces. The features follow charac-

eristic curves of the stress field (the “sliplines”) that intersect the

ide free surface, and which have slopes close to fortyfive degrees

see D.1 ); the wavelength of the pattern is therefore approximately
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Fig. 7. Snapshots of the evolving interface for an initial (a) rectangular with 

(X 0 , B ) = (3 , 0 . 11) , and (b) triangle with (X 0 , B ) = (8 , 0 . 14) , at the times t = 0 , 10, 

20, 30, 50, 100, 400, 700, 1000. The dotted line in (a) shows a modification of the 

prediction in (9) that incorporates the central plug (and which terminates at finite 

height). The insets show density plots of the stress invariant τ at the times indi- 

cated, with the yield surfaces drawn as solid lines. 
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4.2. Shallow flow 

As illustrated above, when B � 1 the fluid collapses into a

shallow current with | ∂ h / ∂ x | � 1 whatever the initial condition.

Asymptotic theory [4,5] then provides a complementary approach

to the problem. As illustrated in Fig. 4 , the sample collapse with
Fig. 8. Slumps of slender columns: the four images on the left show collapsing columns f

the interface, yield surfaces overlaid on a density plot of the stress invariant τ . The evolv

25, 36, 49, 100, 400, 1000. Panels (b)–(e) show columns at t = 50 for the values of B ind

with the predictions of slender asymptotics (lighter/red). The shading scheme for τ for a

this figure legend, the reader is referred to the web version of this article.) 
 = 0 . 01 is relatively shallow and the numerical solutions for the

unout and central depth match the predictions of the shallow–

ayer asymptotics. 

The asymptotics also predicts that flow becomes plug-like over

 region underneath the interface (see [16] and Appendix B ). This

pseudo-plug” is not truly rigid but is weakly yielded and rides

bove a more strongly sheared lower layer. Horizontal velocity

rofiles for a collapsing square block with B = 0 . 01 are shown in

ig. 9(a) and compared with the predictions of the shallow–layer

heory. Although the pseudo–plugs are less obvious in the numeri-

al profiles, the horizontal velocity does become relatively uniform

ver the predicted pseudo-plug. Fig. 9(b) illustrates how the su-

erficial weak deformation rates associated with the pseudo-plug

eature in a snapshot of log 10 ˙ γ , and how the transition to a more

bviously sheared layer underneath approximately follows asymp-

otic predictions. 

Nevertheless, the numerical computations show notable dis-

greements with the shallow–layer asymptotics. None of the true

lugs appear in the asymptotic solution, reflecting how they are

ssociated with non-shallow flow dynamics: at the midline, the

symptotics fails to incorporate properly the symmetry conditions,

nd at the flow front and the relic of the upper right corner, the

urface always remains too steep for a shallow approximation. The

epth profiles predicted by the asymptotics consequently do not

how any of the finer secondary features imprinted by the true

lugs, as illustrated by the profile for B = 0 . 05 also plotted in

ig. 9(c) . Only when B is smaller are such features largely elimi-

ated by the fluid flow and the final shape well predicted by the

symptotics. 

Despite these details, the broad features of the numerical solu-

ions are reproduced by the shallow–layer asymptotics, particularly

hen first-order-correction terms are included: for the final shape

nd if the initial block collapses completely, the leading-order
or B = 0 . 3 and X 0 = 0 . 025 at the times indicated in the top right corner. Shown are 

ing side profile for this collapse is shown in panel (a) at the times t = 0 , 4, 9, 16, 

icated, all with X 0 = 0 . 025 . Panel (f) compares the final side profiles (darker/blue) 

ll the colormaps is shown in (e). (For interpretation of the references to colour in 
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Fig. 9. Comparison of shallow-layer theory with numerical results for a collapsing 

square block ( X 0 = 1 ) with B = 0 . 01 : (a) Horizontal velocity profiles at x = 2 . 5 and 

the times indicated. (b) Logarithmic strain-rate invariant, A density map of log 10 ˙ γ

on the (x, z) −plane, at t = 600 . (c) Final shape. In (a) the crosses plot the numer- 

ical solution, and the points indicate the asymptotic profile (B.2) ; the star locates 

the bottom of the pseudo–plug. In (b), the solid (green) and dashed (blue) lines 

show the surface and fake yield surface ( z = Y = h + B/h x ) predicted by asymptotics. 

In (c), the final profile for B = 0 . 05 is included. The solid lines show computed fi- 

nal states, the dotted lines denote the leading-order result (8) and the dashed line 

shows the higher-order prediction (9) . The dashed–dotted line is the asymptotic 

prediction (13) from [17] . (For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.) 
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olution is 

 (x ) = 

√ 

2 B (X ∞ 

− x ) ; (8) 

ith the next-order corrections, we find 

 = 

√ 

2 B (X ∞ 

− x ) + 

π

2 

B (9) 

 Appendix B ). The final runout X ∞ 

, or slump length, is dictated

y matching the profile’s area with that of the initial condition.

his implies X ∞ 

= (9 X 2 
0 
/ 8 B ) 1 / 3 for (8) and furnishes an algebraic

roblem to solve in the case of (9) , with approximate solution

 ∞ 

≈ (9 X 2 
0 
/ 8 B ) 1 / 3 [1 − π(B 2 / 81 X 0 ) 

1 / 3 ] . As shown in Fig. 9(c) , the

rediction (9) agrees well with the shapes reached at the end of

he numerical computations, even though the profile ends in a ver-

ical cliff which violates the shallow–layer asymptotics. 
.3. Slender slumps 

For a slender column with X 0 � 1, we can again make use of

he small aspect ratio to construct an asymptotic solution. As sum-

arized in Appendix C , this limit corresponds to theory of slender

iscoplastic filaments [18] and indicates that the final state is given

y 

 = ξ (z) = 

X 0 

2 B 

exp 

(
− z 

2 B 

)
for 0 ≤ z ≤ Z, (10)

here 

 = −2 Bh (0 , 0) log (2 B ) (11)

s the height dividing yielded fluid from the overlying rigid plug.

he fluid adopts its original shape over Z < z < Z + 2 Bh (0 , 0) , hav-

ng fallen a vertical distance (1 − 2 B ) h (0 , 0) − Z. It follows that the

olumn will not slump if B > 

1 
2 , 

 ∞ 

= 

X 0 

2 B 

and H ∞ 

= 2 Bh (0 , 0)[1 − log (2 B )] . (12)

he latter is equivalent to the “dimensionless slump” reported pre-

iously [1,2] , although it was not declared as an asymptotic result

elying on the column being slender. The profile (10) is compared

ith the final profiles of numerical computations in Fig. 8 . Aside

rom the relatively short-wavelength undulations in column thick-

ess over the yielded base of the fluid (whose length scale violates

he slender approximation), the asymptotics are in broad agree-

ent with the numerical results. 

Note that overly slender configurations are likely susceptible to

 symmetry–breaking instability in which the column topples over

o one side [19] . This is ruled out here in view of our imposition

f symmetry conditions along the centreline x = 0 . 

.4. Failure 

.4.1. Critical yield stress 

The critical yield stress, B c , above which the fluid does not col-

apse is plotted against initial width, X 0 , in Fig. 10 (a) for rectan-

ular initial blocks. We calculate B c in two ways: first, the final

unout X ∞ 

recorded in the slumps computed with the PELICANS

oftware (defined as in Section 4.5 ) converges linearly to the ini-

ial width X 0 as B → B c . Second, in the inertia-less problem, the

nitial stresses dictate the initial velocity field, and the maximum

peed also falls linearly to zero as B → B c . Hence, we can deter-

ine B c without performing any time stepping using the scheme

or Re = 0 described in A.2 . 

As illustrated in Fig. 10 (a), B c ≈ 0.2646 independently of X 0 

hen X 0 > 1. For such initial widths, collapses are incomplete and

 solid core spans the full depth of the fluid, rendering the failure

riterion independent of X 0 . The initial width matters for X 0 < 1,

eading to an increase of B c . Eventually, B c → 

1 
2 for X 0 → 0, as ex-

ected from the slender column asymptotics in Section 4.3 . 

Just below the critical yield stress, velocities are small and

he Bingham problem reduces to an analogous one in plasticity

heory except over thin viscoplastic boundary layers. The incom-

lete slump is analogous to the classical geotechnical problem

f the stability of a vertical embankment (e.g. [23] ), provided no

eformation occurs in z < 0. Classical arguments dating back to

oulomb, describe the form of failure in terms of the appearance

f a slip surface dividing rigid blocks, allowing analytical estima-

ions of B c from balancing the plastic dissipation across the slip

urface with the potential energy release. In particular, assuming

hat the failure occurs by the rotation of the top right corner

bove a circular arc, one arrives at an estimate B c ≈ 0.261, after

aximizing over all possible positions of the centre of rotation ( cf.

24] and Fig. 11 (a)). However, this type of solution strictly provides

nly a lower bound on B c and may not be the actual mode of
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Fig. 10. Critical yield stress, B c , plotted against initial width X 0 for (a) rectangular 

and (b) triangular blocks, found by monitoring either the final runout X ∞ (stars) or 

the initial maximum speed for Re = 0 (solid line). In (a), also shown are the bounds 

B c = 0 . 2642 and 0.2651 obtained from plastic limit–point analysis [20–22] (dashed–

dotted), results from slip–line theory [7] (dashed line with points) and the simple 

lower bound B c = 

1 
2 
( 
√ 

X 2 
0 

+ 1 − X 0 ) [8] (dotted line). The analogues of the latter two 

for the triangular blocks (see Appendix D ) are shown in (b). The dotted lines with 

open circles show improvements of the simple lower bounds allowing for rotational 

failure (see D.2 ). 

Fig. 11. Trial velocity fields to compute lower bounds on B c for (a) the vertical em- 

bankment with a circular slip curve, and relatively slender (b) rectangular and (c) 

triangular initial blocks. In (b) and (c), the straight (dashed) and circular (solid) fail- 

ure surfaces for linear or rotational sliding motion are plotted; these surface can be 

parametrized by the local slopes at the bottom corner, s α , and midline, s β and s (for 

linear sliding s α = s β ). 
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ailure. Indeed, the bound has been optimized and improved

o 0.2642, and a complementary upper bound computed to be

.2651 [20–22] ; the optimization suggests that failure occurs over

 relatively wide region of plastic deformation [21] . The upper and

ower bounds are included in Fig. 10 (a), and are indistinguishable

n the scale of this picture, but bracket the value of B c ≈ 0.2646

ound for our Bingham slumps with X 0 > 1. 

For a slender column, Chamberlain et al. [8] provide an estimate

f the critical yield stress by assuming that two lines of failure oc-

ur: the lowest cuts off a triangular basal section, whereas the up-

er cleaves off a second triangle that slides away sideways, leaving

he remaining overlying trapezoid to fall vertically; see Fig. 11 (b).

ptimizing the slopes of the two cuts furnishes the lower bound,

 c = 

1 
2 ( 

√ 

1 + X 2 
0 

− X 0 ) , which is included in Fig. 10 . Chamberlain

t al. [7] also provide a numerical solution of the slipline field for

 failure with the form of an unconfined plastic deformation. This

stimate converges towards their lower bound as X 0 → 0, as indi-

ated in Fig. 10 (a). Our numerically determined values of B c match

hamberlain et al. slipline solutions for X 0 < 0.5. For wider ini-

ial blocks, the slipline solutions deviate from the numerical results

nd become inconsistent with the bounds for the vertical embank-

ent for X 0 > 0.8, highlighting how a different failure mechanism

ust operate. 

For triangles, no corresponding plasticity solutions exist in the

iterature. However, the slipline solution and simple lower bound

f Chamberlain et al. [7,8] can be generalized, as outlined in

ppendix D and illustrated in Fig. 11 (c). The slipline solution and

ound are compared with numerical data in Fig. 10 (b). Again, B c →
1 
2 for X 0 → 0. Now, however, the slope of the initial free surface

ontinues to decline as X 0 is increased, and so there is no conver-

ence to a limit that is independent of width. Instead, the shallow

ayer theory of Appendix B becomes relevant and predicts that B c 
 4/ X 0 for X 0 
 1 (a limit lying well beyond the numerical data

n Fig. 10 (b)). 

Note that the lower bounds of Chamberlain et al. can be im-

roved by allowing the triangle at the side to rotate out of posi-

ion rather than slide linearly; see D.2 . The failure surfaces then

ecome circular arcs, as illustrated in Fig. 11 (b,c). For the rectan-

le, the resulting improvement in the bound on B c amounts to a

ew percent and is barely noticeable in Fig. 10 (a). More significant

s the improvement of the bound for the triangle, which is brought

uch closer to the numerical and plasticity results; see Fig. 10 (b). 

.4.2. Flow at failure 

The failure modes of our rectangular viscoplastic solutions (for

 = Re = 0 ) are illustrated in Fig. 12 . The thinner initial columns

ield only over a triangular shaped region at the base which

losely matches that predicted by slipline theory [7] (see also D.1 ).

he failure mode changes abruptly when X 0 slightly exceeds about

.5. The failure zone then takes the form of a widening wedge ex-

ending from the lower left corner of the initial block up to the

entre of the top, with the entire side face remaining rigid. Evi-

ently, this mode of failure is preferred over the slipline solution at

hese values of X 0 , leading to the departure of the observed values

f B c from the curve of Chamberlain et al. in Fig. 10 (a). The failure

ode changes a second time for X 0 ≈ 1: wider initial blocks fail

hiefly over a relatively narrow layer connecting the lower left cor-

er to an off-centre location on the top surface, which lies close to

he circular failure surface of the simple lower bound in Fig. 11 (a).

For both the narrower and wider examples in Fig. 12 , the failing

eformations are dominated by sharp viscoplastic boundary lay-

rs that likely correspond to yield surfaces. Spatially extensive re-

ions (in comparison to the fluid depth or width) of plastic defor-

ation do, nevertheless, occur, and the failure modes never take

he form of a patchwork of sliding rigid blocks. Note that it is

ifficult to cleanly extract the yield surfaces as B → B c , which
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Fig. 12. Strain-rate invariant plotted logarithmically as a density on the (x, z) −plane for solutions with B = 0 . 99 B C and t = Re = 0 (A.2) , at the values of X 0 indicated by the 

x −axis. Also shown are a selection of streamlines. In (a)–(c), the darker (blue) lines indicate the border of the plastic region and expansion fan of the corresponding slipline 

solutions ( Appendix D ). In (e) and (f), the darker (blue) lines indicate the circular failure surface of the lower bound solution. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. A series of pictures similar to Fig. 12 , but for initial triangles (with solid blue lines showing the yield surfaces of the slipline solution in (a), and the circular arcs of 

the bound of D.2 for rotational failure in (b) and (c)). 
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omplicates the identification of the failure mode. In Fig. 12 , we

ave avoided showing these surfaces and instead displayed the

eformation rate and a selection of streamlines. Curiously, for X 0 

 0.5, it is difficult to envision how one might construct corre-

ponding slipline fields (there are no surfaces bounding the plastic
one with known stresses that can be used to begin the slipline

onstruction). 

For a triangular initial condition, failure for smaller widths

gain occurs through the appearance of a lower plastic zone that

ompares well with slipline theory; see Fig. 13 . This agreement
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Fig. 14. Profiles of the final deposit, starting from (a) a square block and (b) a triangle, with X 0 = 1 , for B = 0 . 01 , 0.02, 0.04, . . . , 0.22 and 0.24, together with the initial 

states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Final numerical solution for the slump of an initial square with B = 0 . 02 , 

showing density maps of (a) pressure, (b) τ xx and (c) τ xz , and (d) the slipline field 

diagnosed from the numerical solution (solid) and built explicitly by integrating the 

slipline equations starting from the curve (9) (dotted). In (d), the plugs are shaded 

black, and no attempt has been made to match up the two sets of sliplines. 
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is confirmed by the match of the observed critical yield stress,

B c ( X 0 ), with the slipline predictions in Fig. 10 (b). Unlike the rect-

angle, however, there is no abrupt change in failure mode as X 0 is

increased, at least until the surface slope of the triangle becomes

too shallow to apply the construction of Chamberlain et al. [7] (see

D.1 ). At the largest widths, the triangle fails at the centre but not

the edge, as already noted in Section 4.1 . 

4.5. The final shape and slump statistics 

To extract statistics of the final shape, we define a stopping cri-

terion according to when the stress invariant first becomes equal

or less than B at each point in the domain. The resulting “final

state” appears to be reached in a finite time (for both augmented–

Lagrangian and regularized computations), in disagreement with

asymptotic theory [25] , which predicts that flow halts only after

an infinite time (see also Appendix C ). A selection of final profiles

for varying Bingham number is displayed in Fig. 14 for both square

and triangular initial conditions. 

Plasticity theory is again relevant in the limit that the slump

approaches its final state. This fact was used previously [17] to con-

struct the final profiles with slipline theory, following earlier work

by Nye [26] . A key assumption of this construction is that the flow

is under horizontal compression. The assumption can also be used

to continue the shallow–layer asymptotics to higher order to pre-

dict the final profile, 

h = 

√ 

2 B (X ∞ 

− x ) + 

π2 

4 

B 

2 − π

2 

B, (13)

which agrees well with the slipline theory [17] . Unfortunately, nei-

ther the slipline profiles nor (13) compare well with laboratory

experiments. 

A sample final state from the numerical computations with a

diagnosis of the associated slipline field is displayed in Fig. 15 .
or the latter, we map out curves of constant p − z ± 2 Bθ, which

re the invariants that are conserved along the two families of

liplines, where θ = − 1 
2 tan 

−1 ( τxx / τxz ) [27] (see also D.1 ). As also

hown by Fig. 15 (d), the resulting curves compare well with an ex-

licit computation of sliplines launched from the surface position

redicted by (9) , where p = 0 and the sliplines make an angle π /4

ith the local surface tangent. 

The sliplines in Fig. 15 follow a different pattern to Nye’s con-

truction (see Figs. 5 and 6 in [17] ). The reason for this discrep-

ncy is that almost all of our slumps comes to rest in a state of

orizontal expansion, rather than compression (we have observed

egions under horizontal compression only in the slumps of rel-

tively wide triangles, as in Fig. 7 (b)). Correcting this feature of

he dynamics leads to the revised higher-order asymptotics sum-

arized in Appendix B , which culminates in the prediction for the
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Fig. 16. Scaled final (a) runout X ∞ / 
√ 

X 0 and (b) central depth H ∞ / 
√ 

X 0 as a func- 

tion of B/ 
√ 

X 0 for Bingham slumps from square initial conditions (solid lines with 

dots). Also plotted using the symbols indicated are experimental data from [17] and 

[28] for slumps of aqueous solutions of Carbopol, kaolin and “Joint Compound”. 

The leading order asymptotic prediction (8) is shown by the dotted line; the solid 

lines with circles or squares plot the predictions in (9) and (13) ; the dashed lines 

shows the results of slipline theory [17] . The slender–column asymptotic prediction 

in (12) with X 0 = 1 is shown by the dotted line and pentagrams. The dotted line 

and hexagrams show the fit proposed by Staron et al. [6] . 

Fig. 17. Scaled final (a) runout X ∞ / 
√ 

X 0 and (b) central depth H ∞ / 
√ 

X 0 as a func- 

tion of B/ 
√ 

X 0 for Bingham slumps from rectangular and triangular initial conditions 

with X 0 = 0 . 5 , 1 and 1.5. The solid lines show the predictions of the higher–order 

asymptotics from (9) for a complete slump. 
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nal profile in (9) . As is evident from Fig. 9(c) , the asymptotic pre-

ictions for horizontal expansion compare much more favourably

ith the numerical results than the slipline theory and asymptotics

or horizontal compression. 

The comparison is illustrated further in Fig. 16 , which shows

caled final runouts and depths, X ∞ 

/ 
√ 

X 0 and H ∞ 

/ 
√ 

X 0 , as func-

ions of B/ 
√ 

X 0 for the numerical computations, slipline theory and

he various versions of the shallow–layer asymptotics. Scaling the

unout and depth in this fashion corresponds to choosing the ini-

ial area as the length scale in the non-dimensionalization of the

roblem. The slipline theory and various versions of the shallow–

ayer asymptotics furnish curves of X ∞ 

/ 
√ 

X 0 and H ∞ 

/ 
√ 

X 0 against

/ 
√ 

X 0 that are independent of X 0 , implying an insensitivity to the

nitial condition. By contrast, the deeper final profiles of the nu-

erical solutions with higher B , and their scaled final runout and

epth, do depend on X 0 and the initial shape. This dependence is

ighlighted in Fig. 17 , which compares data for initial triangles and

ectangles. 

Fig. 16 also includes data from laboratory experiments with Car-

opol [17,28] and some other fluids, which were conducted by

ubash et al. though not reported in their paper. None of these

uids are well fitted by the Bingham model, with a Herschel–

ulkley fit being superior. However, the final state is controlled

y the yield stress and likely independent of the nonlinear vis-

osity of the material (at least provided inertia is not important),

ermitting a comparison between the experiments and our Bing-

am computations. Although the numerical results compare more

avourably with the experiments than the slipline theory, the com-

arison with the leading-order asymptotic prediction is just as

ood. Thus, the discrepancy between theory and experiment noted

y [17] is only partly due to the assumption that the slump came

o rest in a state of horizontal compression, but other factors must

lso be at work, such as stresses in the cross-stream direction and

on-ideal material behaviour. Note that the range of dimensionless

ield stresses spanned by the experimental data lie well into the

egime where there should be no significant dependence on the

nitial shape. This is comforting in view of the fact that the exper-

ments were conducted using different initial conditions, either by

aising a vertical gate or tilting an inclined tank back to the hori-

ontal (which correspond roughly to our rectangular or triangular

nitial conditions). 

Finally, Fig. 16 includes the predictions of the slender column

symptotics in (12) (see Appendix C ) for X 0 = 1 , and a formula pre-

ented by Staron et al. [6] based on their volume-of-fluid compu-

ations with GERRIS and a regularized constitutive law. Given that

he slumps from which the data in Fig. 16 are taken are not slen-
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der, it is not surprising that (12) compares poorly with the numer-

ical results. We suspect that the disagreement between our results

and the fit of Staron et al. [6] originates either from an inadequate

resolution of the over-ridden finger of less dense fluid or the sig-

nificance of inertial effects in their computations. Indeed, these au-

thors quote a final shape that depends explicitly on the plastic vis-

cosity of the heavier fluid, whereas this physical quantity is com-

pletely scaled out in our computations when Re → 0. 

5. Concluding remarks 

A yield stress introduces two key features in the collapse and

spreading of a viscoplastic fluid: failure occurs only provided the

yield stress can be exceeded, and, when flow is initiated, the yield

stress eventually brings motion to a halt. Here we have provided

numerical computations of the two-dimensional collapse of Bing-

ham fluid, exploring the phenomenology of the flow for differ-

ent initial shapes. We compared the results with asymptotic the-

ory valid for relatively shallow (low, squat) or slender (tall, thin)

slumps, and with solutions from plasticity theory applying near

the initiation and termination of flow. We verified that the com-

putations converge to the asymptotic solutions in the relevant lim-

its and identified where the plasticity solutions apply. We studied

both the initial form of failure, extracting criteria for a collapse to

occur, and the shape of the final deposit, comparing its runout and

depth with previous experiments and predictions. 

There are three key limitations of our study with regard to the

collapses of viscoplastic fluids in engineering or geophysical set-

tings. First, our two-dimensional geometry is restrictive and an ax-

isymmetric assumption prefereable for a range of applications such

as the slump test. Such a generalization raises the interesting ques-

tion of how incompressible viscoplastic flow avoids the inconsis-

tency of the von-Karman–Haar hypothesis [27] . Second, the issues

associated with the no-slip condition on the underlying surface are

not merely numerical: viscoplastic fluids can suffer apparent slip

[29] , demanding the inclusion of a slip law. Finally, inertia is im-

portant in many applications, an effect that allows slumps to flow

beyond the rest states we have computed. Other interesting gener-

alizations include the incorporation of different rheologies, such as

thixotropy, and surface tension at small spatial scales. 
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Appendix A. Further numerical notes 

A.1. Parameter settings and other details 

PELICANS exploits a Galerkin finite element method to solve a

weak form of the equations of motion using iteration. For the regu-

larized constitutive model, we set ε = 10 −8 in (7) . At each step, the

regularized viscosity is computed using the velocity field from the

previous step, and iteration is continued until the L 2 −norm of the

velocity change over the entire spatial domain falls below 10 −6 ,

where n is the number of finite elements. 

As detailed in [10] , the augmented-Lagrangian method intro-

duces additional variables to solve iteratively the weak formula-

tion of the equations of motion whilst avoiding the singular vis-

cosity arising at the yield surfaces and the stress indeterminacy of

the plugs. The iterative scheme includes a relaxation parameter r

which we select to be equal to B . Iteration is continued until the

larger of the L 2 –norms of the change in the velocity field or ˙ γ be-

came less than 10 −4 . 
Based on resolution studies, we found that grids with �x = 0 . 01

nd �z = 0 . 005 were sufficient for mesh convergence in problems

or which slumps were order one aspect ratio or shallow (once the

o-slip boundary condition on the base had been modified). For

lender columns, we found it sufficient to take �x = 5 × 10 −4 with

 x = 0 . 1 and distribute the vertical mesh non-uniformly such that

he grid intervals formed a geometric series starting with 5 × 10 −4 

t the bottom and ending at 0.005 at the top boundary z = � z =
 . 1 . 

.2. The failure computation for Re = t = 0 

For the initial failure mode, we used an alternative numerical

cheme that solved the equations at t = 0 with Re ≡ 0. The scheme

mployed an augmented–Lagrangian method to solve the Stokes

quations over the domain shown in Fig. 1 . In view of our interest

n yield stresses close to B c , where the velocity field is small and

he viscous stress of the outer fluid likely irrelevant, we simplified

he computation by taking a viscosity ratio of unity. 

At each step of the iteration procedure, the linear Stokes and

ontinuity equations were converted to a biharmonic equation

hich was solved using a Fourier sine transform in the x direction

nd second-order finite differences in z . For rectangular slumps,

he discontinuity in the yield stress between the two fluids was

mposed directly on the finite difference grid; for triangular shaped

lumps, convergence was much improved by smoothing the dis-

ontinuity over a few grid points. In both cases, the forcing term

n the biharmonic equation that arises from the discontinuity in

ensity between the two fluids was dealt with exactly in Fourier

pace. 

As in our other scheme, the size of the domain was chosen to

e sufficiently large so as to have a negligible effect on solutions

in most results, l z = 4 / 3 and l x = 4 X 0 / 3 ). We selected a vertical

rid and truncation of the horizontal Fourier series such that the

esolution was �z = 1 / 999 and �x = X 0 / 768 ; we established that

he solutions were independent of this choice. In the augmented–

agrangian scheme, we again chose the relaxation parameter r =
, and the solutions were considered to be converged when the

aximum change in the strain–rate invariant, ˙ γ , had fallen below

0 −10 . 

.3. Thickness of the over-ridden finger 

For a relatively thin finger of depth ζ ( x , t ), flow is driven pri-

arily by the shear stress on the interface, 

ζ ≈ μR 

u ζ

ζ
, (A.1)

here u ζ is the horizontal velocity of the interface and μR ∼
2 / μ1 is the viscosity ratio. Conservation of mass implies 

∂ζ

∂t 
≈ −1 

2 

∂ 

∂x 

(
u ζ ζ

)
≈ − τζ

μR 

ζ
∂ζ

∂x 
, (A.2)

f τ ζ remains roughly independent of x . The shear stress τ ζ is of

rder one at the beginning of a collapse and we use μ2 /μ1 = 10 −3 .

ence u ζ /ζ = O (10 3 ) . Thus the finger effectively lubricates the

verlying viscoplastic current until its thickness becomes compa-

able to our grid spacing ( �z = 1 / 320 ). Moreover, the solution of

A.2) then indicates that the finger thins like t −1 . In other words,

he effective lower boundary condition on the viscoplastic current

nly reduces to no slip when the finger becomes difficult to re-

olve, and from then on, the resolution problem steadily worsens. 

The critical detail of the volume-of-fluid code regarding the fin-

er is that it treats each grid cell as a mixture with the rheology

n (3) and (4) (or (7) ). In the limit of low inertia, the stress state is

ictated largely by the geometry of the slump and dominated by

http://dx.doi.org/10.13039/100000001
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he shear stress at the base. Thus, over the bottom grid cell where

 = c 0 , 

∂u 

∂z 
= 

( τxz − Bc 0 ) 

c 0 + (1 − c 0 ) μR 

. (A.3) 

he average horizontal speed over this cell is then 

 M 

∼ �z 

2 c 0 
( τxz − Bc 0 ) , (A.4) 

f c 0 lies well away from its limits and μR � 1. On the other hand,

hen c 0 takes such a value, the interpretation is that the interface

an be contained within the lowest grid cell. In that situation, a

enuine sharp interface at 0 < z = ζ < �z, would imply 

∂u 

∂z 
= 

{
τxz − B ζ < z < �z, 

μ−1 
R 

τxz 0 < z < ζ . 
(A.5) 

t follows that the average horizontal speed should be 

 S ∼ τxz ζ

2 μR �z 
(2�z − ζ ) (A.6) 

or μR � 1. Evidently, u M 

/ u S = O (μR ) . In other words, when the

nterface enters the lowest grid cell, the treatment of the fluid as

 mixture grossly underestimates the speed with which the fin-

er will be advected horizontally; the finger is therefore not swept

way fast enough, remains too thick, and overly lubricates the vis-

oplastic gravity current. To cure this problematic feature, the fin-

er must be removed. 

ppendix B. Shallow flow 

In this and the next appendix we ignore the upper viscous

uid and consider a spreading viscoplastic current with a stress-

ree surface. We summarize analysis and results that are based on

xisting literature [4,18] , highlighting any relevant new develop-

ents; the reader is encouraged to consult the original references

or additional details of the basic theory. 

For relatively shallow flow (for which vertical gradients dom-

nate horizontal gradients), the pressure becomes largely hydro-

tatic and only the shear stress features in the main force balance

4,5] . Thus, 

p = h − z and τxz = −h x (h − z) , (B.1)

here z = h (x, t) is the position of the free surface. Here, and

hroughout this and the following appendices, we use subscripts

f x , z and t as shorthand for the corresponding partial derivatives

except in the case of the stress components). The velocity field is

ow given by 

 = −1 

2 

h x ×
{

(2 Y − z) z 0 ≤ z < Y, 

Y 2 Y ≤ z ≤ h, 
(B.2) 

here z = Y = h + B/h x (for h x < 0) is where the leading-order

hear stress falls below B . This latter level is not a true yield

urface because, although the overlying velocity field is plug-like,

he fluid remains in extension and weakly yielded [16] . Exploiting

he depth–integrated expression of mass conservation, the problem

hen reduces to solving the thin-layer equation [4] , 

 t = 

1 

6 

∂ 

∂x 

[
(3 h − Y ) Y 2 h x 

]
. (B.3) 

ote that modifications are needed where Y = h + B/h x < 0 , which

ignifies that the fluid is not sufficiently stressed to deform. This

rue yield criterion can be incorporated into the formulation sim-

ly by defining 

 (x, t) = Max 

(
h + 

B 

h x 
, 0 

)
. (B.4)
or our triangular initial condition, with h = 2(1 − x/X 0 ) , the yield

riterion indicates that the fluid will not collapse anywhere when

 > 4/ X 0 ; by contrast, the vertical edge of the rectangular block

nsures the fluid always collapses in the shallow limit. The final

tate is given by Y → 0, which leads to (8) . 

The shallow-layer theory is the leading order of an asymp-

otic expansion which, in the current dimensionless scalings, cor-

esponds to the limit B � 1. For the final shape one can go fur-

her with the analysis and compute higher-order corrections in the

ffort to extend the accuracy of the approximation. In particular,

ollowing the analysis in [17] but bearing in mind that the slump

omes to rest in a state of horizontal expansion, we find 

p ≈ h − z −
√ 

B 

2 − v 2 , v = −h x (h − z) , (B.5)

xx ≈
√ 

B 

2 − v 2 − v τ1 √ 

B 

2 − v 2 
, τxz ≈ v + τ1 , (B.6) 

here 

1 = − ∂ 

∂x 

[ 
1 

h x 

(
v 
√ 

B 

2 − v 2 + B 

2 sin 

−1 v 
B 

)] 
. (B.7) 

mposing the lower boundary condition, τxz = B at z = 0 , and inte-

rating in x then gives 

1 

2 

h 

2 − h 

√ 

B 

2 − h 

2 h 

2 
x −

B 

2 

h x 
sin 

−1 hh x 

B 

= C − Bx, (B.8)

here C is an integration constant. Evaluating the higher–order

orrections in (B.8) ( i.e. the second and third terms on the left-

and side) using the leading-order approximation hh x = −B leads

o (9) with C = BX ∞ 

− π2 B 2 / 8 . 

ppendix C. Slender columns 

When the column of viscoplastic fluid remains slender through-

ut its collapse, we may use the thin–filament asymptotics out-

ined by [18] . The key detail is that the horizontal gradients are

uch larger than the vertical ones and the vertical velocity greatly

xceeds the horizontal speed. Moreover, because the sides of the

olumn are stress free, shear stresses must remain much smaller

han the extensional stresses and the vertical velocity cannot de-

elop significant horizontal shear and remains largely plug-like.

hese consideration indicate that (see [18] ) 

 ≈ W (z, t) , u ≈ −xW z , (C.1)

nd 

p ≈ τxx = −τzz ≈ B − 2 W z , (C.2)

he latter of which follows from the leading-order horizontal force

alance (which is ( τxx − p) x ≈ 0 ) and constitutive law (given ˙ γ ≈
 | W z | ). The width–averaged mass conservation equation and verti-

al force balance then imply [18] 

t + (ξW ) z = 0 and ξ + 2(ξ p) z = 0 , (C.3)

here x = ξ (z, t) is the local half-width. 

The equations in (C.3) can be solved analytically by transform-

ng to Lagrangian coordinates ( a , t ), where a denotes initial vertical

osition ( i.e. the method of characteristics; cf. [30] ). For the rectan-

ular or triangular blocks, we have the initial condition ξ (a, 0) =
 0 or X 0 (1 − 1 

2 a ) , respectively. The transformation then indicates

hat 

(a, t) 
∂z 

∂a 
= 

{
X 0 

X 0 (1 − 1 
2 

a ) 
and ξt (a, t) = −ξW z . (C.4)

ence 

p = 

1 

X 0 (1 − a/a ∗) , (C.5)
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Fig. C.18. Slender asymptotic solutions for (a) B = 0 . 1 and (b) B = 0 . 3 , for X 0 = 

0 . 025 , at times t = 0 , 4, 9, 16, 36, 100 and 1000. Collapsing rectangles (triangles) 

are shown by solid (dotted) lines; the dots indicate the final profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. D.19. Slipline solutions for a rectangle with (a) X 0 = 0 . 2 and (b) X 0 = 0 . 5 , and 

a triangle with X 0 = 1 . The dashed and dotted lines indicate the lower bound and 

its improvement of D.2 . 
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given that p = 0 at the top of the column where a = a ∗ = 1 or 2. If

the fluid is yielded, the constitutive law implies 

p = B − 2 W z = B + 

2 ξt 

ξ
. (C.6)

After a little algebra and the use of the bottom boundary con-

dition z(a = 0 , t) = 0 , we find 

ξ (a, t) 

ξ (a, 0) 
= E + 

1 − E 

2 B 

(
1 − a 

a ∗

)
, E = e −t/ 2 B , (C.7)

and 

z = 

2 a ∗B 

1 − E 
log 

[ 
1 − E + 2 BE 

(1 − E)(1 − a/a ∗) + 2 BE 

] 
. (C.8)

The yield condition in this limit becomes p < −B, or a < a ∗(1 −
2 B ) , which translates to 

z < Z(t) = 

2 a ∗B 

(1 − e −Bt/ 2 ) 
log 

[
1 − (1 − 2 B ) e −Bt/ 2 

2 B 

]
. (C.9)

The column does not therefore yield anywhere when B > 

1 
2 . If

fluid does yield, the base spreads out to a distance ξ (0 , t) → X ∞ 

=
X 0 / (2 B ) , and the column falls to a height H ∞ 

= 2 a ∗B [1 − log (2 B )] .

The yield condition and runout are the same for both the rectan-

gle and triangle because, in the slender limit, all that matters is

the weight of the overlying fluid. Sample solutions are shown in

Fig. C.18 . 

The main failing of the slender asymptotics is that the no-slip

boundary condition is not imposed: the fluid slides freely over

the base, leading to the collapsed column being widest at z = 0 ,

whereas the fluid actually rolls over the base in a tank–treading

motion ( cf. Fig. 8 ). This failing must be remedied by adding a

boundary layer at the bottom (with different asymptotic scalings).

In any event, we attribute the lack of agreement between the slen-

der asymptotics and the numerical results in Fig. 8 to this feature. 

Appendix D. Plasticity solutions 

In this appendix, we summarize slipline and bound computa-

tions based closely on existing work in plasticity theory [7,8] , em-

phasizing some minor generalizations for triangular initial shapes

and circular failure curves. The reader is referred to [7,8] for fur-

ther details of the basic developments. 
.1. Slipline fields 

The slipline solutions of Chamberlain et al. [7] begin from the

ide free surface where the stress field is specified and are con-

tructed as follows: setting 

 ≡ p 

B 

+ 

z 

B 

& ( τxx , τxz ) = B (− sin 2 θ, cos 2 θ ) , (D.1)

he side boundary conditions imply 

 = 1 + ̌z & θ = 

3 π

4 

+ φ (D.2)

n x̌ = −S ̌z , where ( ̌x , ̌z ) = B −1 (x, z) , and (S, φ) = (0 , 0) for

he rectangle and (X 0 / 2 , tan 

−1 1 
2 X 0 ) for the triangle. On the

−characteristics, 

 + 2 θ = constant, 
d z 

d x 
= tan θ ; (D.3)

or the β−characteristics, 

 − 2 θ = constant, 
d z 

d x 
= − cot θ . (D.4)

eginning from the section of the side, 0 ≤ ž ≤ ž P , with ž P a pa-

ameter, the characteristics can be continued into the fluid interior

sing a standard finite difference scheme to solve the characteris-

ics equations in ( D.3 –D.4 ) [7,27] . Below the resulting web, an ex-

ansion fan is then added that spreads out from the base point

(x, z) = (X 0 , 0) with θP ≤ θ ≤ 3 π/ 4 + φ, where θP is a second pa-

ameter ( cf. Fig. D.19 ). The combined slipline field is then contin-

ed to x = 0 , or x̌ = −X 0 /B . At this point, the two characteristics

hat bound the complete slipline field must cross and terminate

ith θ = 3 π/ 4 , in view of the symmetry conditions there. This se-

ects the two parameters ž P and θP . Finally, along the uppermost

−characteristic, the total vertical force must match the weight of

he overlying plug, which translates to imposing the condition, 

 0 − 1 

2 

SB 

2 ž 2 P = B 

2 

∫ ž P 

0 

cos 2 θ d ̌z + B 

2 

∫ 0 

X 0 /B 

(P − sin 2 θ ) d ̌x , (D.5)

nd determines the relation B = B crit (X 0 ) (as plotted in Fig. 10 ). Ex-

mples of the slipline field are shown in Fig. D.19 . Note that the sli-

lines of the two families begin to cross over one another near the

op of the expansion fan if X 0 is increased past some threshold [7] .

t that stage a curve of stress discontinuity must be introduced to

ender the slipline field single-valued. We avoid incorporating this
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etail here and only provide slipline solutions without a discon-

inuity, which limits the triangle data in Fig. 10 (b) to X 0 < 1. At

till higher X 0 > 2, the construction fails for the triangle altogether

ecause the α−characteristic from the base of the free surface pro-

eeds into z < 0. 

.2. Simple failure modes 

For the circular failure surface of a relatively wide initial rectan-

le, we refer the reader to existing literature ( e.g. [24] ). Here, we

ummarize the computation for slender rectangles and triangles. 

We first consider the case where failure occurs on straight lines,

s in [8] . As illustrated in Fig. 11 (b–c), we introduce two lines of

ailure, with slopes tan γ and tan ζ , that divide the initial block up

nto a lower stationary triangle, an intermediate triangle that slides

ut sideways, and the residual overlying material that falls verti-

ally. When the downward speed of the top is W , the continuity

f the normal velocity across each failure line demands that the

ntermediate triangle slides out parallel to the lower failure line

ith velocity U( cos γ , − sin γ ) , where U = W sec ζ / ( tan γ + tan ζ ) .

et A I and A II denote the areas of the intermediate triangle and top

lock and L I and L II be the lengths of the lower and upper failure

ines, both respectively. Equating the plastic dissipation across the

ailure lines with the release of potential energy then furnishes (in

ur dimensionless notation) 

 

(
UL I + 

W L II sec ζ

tan γ + tan ζ

)
= A I U sin γ + A II W. (D.6)

eometric considerations allow us to express all the variables in

erms of X 0 and the two angles γ and ζ . Eq. (D.6) can therefore be

ormally written in the suggestive form, B = B (γ , ζ ; X 0 ) . We then

ptimize the function B ( γ , ζ ; X 0 ) over all possible choices of the

wo angles ( γ , ζ ) to arrive at the bound B c ( X 0 ). It turns out that

 c = 

1 
2 tan γ = 

1 
2 tan ζ = 

1 
2 ( 

√ 

1 + X 2 
0 

− X 0 ) for the rectangular block

8] . In the case of the triangle, tan ζ = 

√ 

2(1 + tan 

2 γ ) − tan γ ,

eaving a straightforward algebraic problem to solve for the opti-

al γ and B c , with solutions shown in Figs. 11 (c) and 10 (b). The

ailure lines of these bounds are compared to the sample slipline

elds in Fig. D.19 , illustrating the manner in which the bound at-

empts to capture the actual plastic deformation. 

The streamlines of the numerically computed failure modes

uggest that the preceding bounds might be improved if the trian-

le at the side were allowed to rotate out of position rather than

lide linearly. In this situation, the failure surfaces become circu-

ar arcs rather than straight lines which complicates the form of

he power balance corresponding to (D.6) and the geometrical con-

traints. Three optimization parameters are required to define the

ircular arcs; we use the local slopes at the bottom corner, s α , and

idline, s β and s , as illustrated in Fig. 11 (b,c). The optimization

roblem can then be continued through with the help of the com-

uter. We use the built-in function FMINSEARCH of Matlab to per-

orm the optimization of B ( s α , s β , s ; X 0 ) and improve the bounds

n B c ( X 0 ). The circular failure arcs corresponding to the three sli-

line solutions of Fig. D.19 are again included in that picture. 

Note that the bounds for the triangle predict that s α falls to

ero for X 0 > 2.8 with a straight failure surface and X 0 > 1.2 for

otational failure. For wider initial states, this parameter must then

e removed from the optimization, which makes the bounding

rocedure less effective. A more general and effective construction,

hat retains s α as a parameter, is to allow the lower circular failure

rc to intersect the base for x < X 0 , but not pass through that sur-

ace, and then continue beyond. That is, we allow the arc to pro-

eed through a minimum at z = 0 and then intersect the side sur-

ace at a finite height ( cf. Fig. 13 (b,c)). This extension permits com-

utations of improved bounds for arbitrarily wide triangles and
s plotted in Fig. 10 (b). Fig. 13 (b,c) illustrates how the resulting

rcs compare well with the computed failure modes for moderate

idth. Even for the widest triangle with X 0 = 8 , the bound ( B c >

.1635) is close to the computed value of B c ≈ 0.1642. For X 0 
 1,

he bound converges to B c > 3/ X 0 . By contrast, the shallow–layer

symptotics predict failure for B c ∼ 4/ X 0 (see Appendix B ), indicat-

ng that there is further room for improvement in this limit. 
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