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Imbibition with swelling: Capillary rise in thin deformable porous media

Mathias Kvick and D. Mark Martinez
Department of Chemical and Biological Engineering, University of British Columbia,

Vancouver, British Columbia, Canada V6T 1Z4

Duncan R. Hewitt
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Cambridge CB3 0WA, United Kingdom

Neil J. Balmforth
Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

(Received 7 March 2017; published 21 July 2017)

The imbibition of a liquid into a thin deformable porous substrate driven by capillary
suction is considered. The substrate is initially dry and has uniform porosity and thickness.
Two-phase flow theory is used to describe how the liquid flows through the pore space
behind the wetting front when out-of-plane deformation of the solid matrix is considered.
Neglecting gravity and evaporation, standard shallow-layer scalings are used to construct a
reduced model of the dynamics. The model predicts convergence to a self-similar behavior
in all regions except near the wetting front, where a boundary layer arises whose structure
narrows with the advance of the front. Over time, the rise height approaches the similarity
scaling of t1/2, as in the classical Washburn or BCLW law. The results are compared with
a series of laboratory experiments using cellulose paper sheets, which provide qualitative
agreement.
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I. INTRODUCTION

The imbibition of a liquid into a solid matrix has a rich history dating back to Bell and Cameron
[1], Lucas [2], and Washburn [3]. The problem involves the interplay between capillary pressure and
the viscous drag experienced as the fluid flows through the conduits of the solid medium. Classical
scaling analysis leads to the so-called Washburn law (herein referred to as BCLW), which predicts
that the penetration length ℓ advances diffusively in time,

ℓ2

t
= αk0Pc

µ
, (1)

where α is a dimensionless constant, k0 is a characteristic permeability, Pc is the capillary pressure
at the advancing dry line, and µ is the fluid viscosity. The utility of this relationship has been
demonstrated over the years on a wide range of media, including substrates with nanoscopic or
complex pore structures. For a porous matrix with a characteristic pore scale of rp, one expects that
Pc ∼ γ cos θ/rp, where γ is the surface tension of water and θ the contact angle between the water
and solid (see [4] and references therein).

In this paper we study imbibition into a deformable porous substrate. The motivation behind
this work stems from an industrial application, namely, the absorbency of paper products used
for household, medical, or diagnostic applications [5–10]. Of interest is the interaction between
the invading liquid and the (out-of-plane) deformation of the substrate. This problem becomes
particularly complex when the substrate is constructed with multiple plies or is initially textured
through mechanical embossing or added roughness elements.

A second motivation stems from understanding the wetting behavior of natural cellulose fibers.
One interesting feature of this material is that individual fibers swell during imbibition [11]. The
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chemistry of cellulose itself aids in this process: There are numerous (hydrophillic) hydroxl groups in
the macromolecule and swelling results as the fluid is able to penetrate into the amorphous regions of
the fiber wall [6]. In the classical treatment of liquid penetration into paper, the voids between fibers
are viewed as a network of interconnected capillaries and the liquid front advances under the action
of capillary forces in both the external pores and fractures in the fiber walls. In one extreme, with
very dense paper, Bristow [12] demonstrates that liquid penetration occurs primarily by transport
through the fiber walls. Nevertheless, the penetration length has still been found to follow a rough
power-law relationship ℓ ∼ tn, with 0.42 < n < 0.5 [1,2,13–15]. The suggestion of a slight deviation
from classical diffusive behavior with n = 0.5 becomes further exaggerated when small amounts
of superabsorbent materials, such as carboxymethyl cellulose, are mixed into the cellulose sheet, or
if the paper is heated, cooled, or exposed to a steam environment during imbibition [15–17]. It has
been postulated that this deviation results from swelling of the cellulose matrix and various ad hoc
adjustments have been made to the BCLW law to account for the structural changes [18–21].

In this paper we explore the effect of swelling, or out-of-plane deformation, in a thin solid
matrix on the dynamics of imbibition into the matrix. A qualitative example of this behavior is
shown in Fig. 1(a). Our study combines a theoretical model based on two-phase flow through a
deformable porous medium with experiments of imbibition in paper sheets. For the theoretical
model (Secs. II and III), we develop previous work on capillary imbibition [22–25] by adding
explicitly the out-of-plane dynamics of swelling, within the confines of a shallow-layer description.
We further include a rate-dependent rheology to describe the deformation of the porous matrix.
While such a rheology has been previously examined in pressure filtration studies of cellulose fiber
suspensions [26], its potential effect on the behavior during imbibition has not yet been explored.
We investigate the implications of both out-of-plane swelling and rate-dependent solid rheology, but
find that neither can account for subdiffusive imbibition.

For our experiments, discussed in Sec. IV, we investigate the imbibition of water into a variety
of different types of paper. We monitor the penetration length for a comparison with the BCLW law.
We also use optical coherence tomography to measure directly the variation in the thickness of the
paper samples during the swelling process. These experiments allow us to characterize in detail the
evolution of the swelling front and compare qualitatively with the theoretical results.

II. MODEL FORMULATION

We consider flow through a long, thin, two-dimensional, deformable solid porous medium as
sketched in Fig. 1(b). The porous layer is initially unsaturated and has uniform thickness 2H0 and
porosity φ0. At t = 0, the base of the layer is placed in contact with a reservoir of fluid at x = 0. The
subsequent wicking height, or rise height of the water, is denoted by x = ℓ(t). The pore-averaged
velocity of the fluid and solid phases are uuuf = (uf ,wf ) and uuus = (us,ws), respectively. During
imbibition, the porosity of the medium is given by φ(x,z,t) and, assuming that it remains symmetrical
about its midline z = 0, the sides of the porous medium swell out to z = ±H (x,t). The imbibition
is driven by capillary suction and the fluid is assumed to partially wet the medium with a contact
angle 0 < θ < π/2 such that the driving capillary pressure Pc > 0.

Under the assumption that the densities of the solid and fluid phases are constant, the continuity
equations for each phase are

∂φ

∂t
+ ∇ · (φuuuf ) = 0, (2)

∂(1 − φ)
∂t

+ ∇ · [(1 − φ)uuus] = 0. (3)

The relative fluid velocity uuuf − uuus is related to gradients in liquid pressure p through Darcy’s law

φ(uuuf − uuus) = −k(φ)
µ

∇p, (4)
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FIG. 1. Illustration of the imbibition problem. (a) Example snapshots over time, as marked, of imbibition
into a swelling cellulose sponge. For reference, the initial half-width of the sponge is 5 mm. (b) Sketch of the
geometry viewed from the side and the definition of the variables. The shaded area represents the wet portion
of the porous media.

where µ is the fluid viscosity and k(φ) is the permeability, which is taken to be a function of the
local porosity. With the neglect of gravity and inertia, force balance on the bulk medium indicates
that

∇ · σσσ − ∇p = 0, (5)

where σσσ is the excess network stress tensor for the fluid-solid mixture. The neglect of gravity in
the model remains reasonable for as long as the buoyancy force associated with the imbibed fluid
remains small relative to the driving capillary pressure.

To close the equations above we must specify σσσ . This is often accomplished by adopting a
constitutive law in which σσσ is dominated by its isotropic component, which is then given as a
prescribed function of the local solidity, i.e.,σσσ = σ I ≡ σe(φ)I, for some suitable constitutive function
σe(φ) (see, e.g., [23,24]). Indeed, even a more general stress tensor σσσ can reduce to this isotropic
form in certain asymptotic limits (e.g., a long, thin lubrication limit, as in [27]).

However, there is some speculation that describing cellulose rheology purely in terms of the local
solid fraction may not be adequate, owing to the swelling of cellulose fibers on the microscale,
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which is plausibly a rate-dependent process. We therefore adopt a rheology similar to that originally
suggested by Buscall and White [28], for which σσσ = σ I and

σ − σe(φ) = (1 − φ))(φ)∇ · uuus

= −(1 − φ))(φ)
(

∂φ

∂t
+ uuus · ∇φ

)
, (6)

where the bulk viscosity function )(φ) may depend on the permeability and elasticity of the fiber wall
and the fluid viscosity. This expression reduces to σ = σe(φ) in the limit ) ≪ 1 and provides a simple
model of rate-dependent relaxation towards that equilibrium stress, not unlike a Kelvin-Voigt model
for a viscoelastic solid. It has been recently adopted by Hewitt et al. [26] to describe the compression
of cellulose fiber suspensions during one-dimensional pressure filtration and was shown to give a
dramatic qualitative improvement to model predictions, relative to the simple instantaneous model
σ = σe(φ), in that case. Note that we have not included any mass transfer terms in the continuity
equations (2) and (3) as a result of swelling, in line with the two-phase idealization of the problem,
which does not distinguish between the water inside and outside the fibers. This formulation requires
revision if the fluid interior of the fibers is, on the time scale of imbibition, effectively isolated from
that outside those solid structures. A biporosity model would then be needed, along with mass
transfer terms in the two fluid continuity equations.

The boundary conditions are as follows. The sheet remains symmetric about the centerline, so
that

ws(x,0,t) = wf (x,0,t) = 0. (7)

On the side surface, z = H (x,t), kinematic conditions for fluid and solid phases imply

wf (x,H,t) = ∂H

∂t
+ uf (x,H,t)

∂H

∂x
, (8a)

ws(x,H,t) = ∂H

∂t
+ us(x,H,t)

∂H

∂x
, (8b)

while the total stress vanishes there,

σ (x,H,t) − p(x,H,t) = 0. (9)

These conditions imply that neither infiltration of air through this surface nor leakage of fluid across
the surface can occur; we note that leakage was not observed in any of our experiments.

At the surface of the fluid reservoir (x = 0), the fluid pressure is atmospheric (and taken to be
zero):

p(0,z,t) = 0. (10)

At the dry line x = ℓ(t), the fluid pressure must balance the capillary pressure −Pc and the thickness
of the sheet must match to its original value

p(ℓ,z,t) = −Pc, (11a)

φ(ℓ,z,t) = φ0. (11a)

A. Shallow-layer scalings

We now suppose that the thickness H0 of the porous layer is much less than the length scale
L0 characterizing variation along its length, so δ ≡ H0/L0 ≪ 1. We then introduce the rescalings
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(cf. [27])

(x∗,ℓ∗) = 1
L0

(x,ℓ), (p∗,σ ∗) = 1
Pc

(p,σ ),

(z∗,H ∗,t∗,h∗
s ) = 1

H0
(z,H,Uct,hs), u∗

f = δuf

Uc

,

(w∗
f ,u∗

s ,w
∗
s ) = 1

Uc

(wf ,us,ws),

(12)

where

Uc = δ2k0Pc

µH0
(13)

is a characteristic velocity based on the main balance in Darcy’s law and k0 is a characteristic
measure of the permeability. Here the different choice of scaling for uf and wf follows conventional
assumptions for a shallow film and is designed to accommodate all terms in the fluid continuity
equation. The same arguments, however, are difficult to carry over to the components of the solid
velocity, in view of the detailed solid mechanics that can prevent significant in-plane displacements.
Indeed, Kulachenko [29] argues that paper swells predominately in the out-of-plane direction during
wetting and there is negligible expansion in the in-plane direction, even when the sample is
unconstrained. Thus, we assume that the magnitude of the in-plane deformation is of the order
of the out-of-plane displacement or smaller.

With the scalings in (12), the dimensionless continuity equations (2) and (3), Darcy’s law (4),
and force balance (5) are, to leading order in δ,

∂φ

∂t∗
= ∂

∂z∗ [(1 − φ)w∗
s ] = − ∂

∂x∗ (φu∗
f ) − ∂

∂z∗ (φw∗
f ), (14)

−φu∗
f = k∗(φ)

∂p∗

∂x∗ ,
∂p∗

∂z∗ = 0, (15)

and
∂

∂x∗ (σ ∗ − p∗) = ∂σ ∗

∂z∗ = 0, (16)

where k∗ = k(φ)/k0. The closure relation (6), with Eq. (3), becomes

σ ∗ = pe(φ) + ϵ)∗(φ)(1 − φ)
∂w∗

s

∂z∗ , (17)

with

ϵ = k0)0

µL2
0

, pe(φ) = σe(φ)
Pc

, )∗ = )(φ)
)0

, (18)

where )0 is the characteristic scale of the bulk viscosity function )(φ). The parameter ϵ measures
the relative importance of the rate-dependent stresses and provides a ratio of the characteristic time
scale for relaxation of the matrix to the time scale for pore-pressure diffusion. In the shallow limit,
the dimensionless boundary conditions remain unchanged from their dimensional counterparts in
(7)–(11), except for the kinematic condition on the solid (8b), which reduces to

w∗
s (x∗,H ∗,t∗) = ∂H ∗

∂t∗
, (19)

and the dry-line pressure condition (11a), which becomes

p∗(ℓ∗,z∗,t∗) = σ ∗(ℓ∗,z∗,t∗) = −1, (20)

in light of (16).
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Note that the in-plane length scale L0 is not selected in the relations above. In fact, without
the rate-dependent rheological term parametrized by ϵ, this length scale remains free, highlighting
how the leading-order system of equations possesses a scaling symmetry and therefore a similarity
solution (as detailed further below). The rate-dependent stress term breaks this symmetry and thereby
selects a characteristic in-plane length scale; equivalently, we may choose L0 to set the parameter ϵ to
unity. However, since this term constitutes a new addition to the model, it is expeditious to retain ϵ as
a parameter, which can be set to zero to recover a formulation similar to previous models [22–25]. We
therefore leave L0 free, demanding only that the shallow-layer scaling δ = H0/L0 ≪ 1 is satisfied.

B. Dimensionless model

We now drop the asterisk notation that indicates a dimensionless quantity and simplify the
leading-order system of equations to construct a reduced model. We first note that Eqs. (16) and (17)
are satisfied and consistent with the initial condition φ(x,z,0) = φ0 and boundary conditions if

p = p(x,t) = σ = σ (x,t), φ = φ(x,t), (21)

and

ws = z

H

∂H

∂t
. (22)

The continuity and kinematic surface conditions can then be combined into the thickness-averaged
mass conservation equations

∂

∂t
(φH ) + ∂

∂x
(φuf H ) = 0, (23)

∂

∂t
[(1 − φ)H ] = 0. (24)

Upon integration, and in view of the initial conditions, Eq. (24) furnishes

(1 − φ)H = 1 − φ0, (25)

which relates the porosity φ and thickness H in terms of the initial porosity φ0. Thence, from (15),
(23), and (17),

∂H

∂t
= ∂

∂x

[
k(φ)H

∂σ

∂x

]
, (26a)

σ = pe(φ) + ϵ)(φ)
(1 − φ)

H

∂H

∂t
, (26b)

subject to

H (x,0) = Hℓ(t) = 1 [or φ(x,0) = φℓ(t) = φ0], (27)

σ (0,t) = 0, σ (ℓ,t) = −1, (28)

where Hℓ(t) = H (ℓ,t) and φℓ = φ(ℓ,t) ≡ 1 − (1 − φ0)/Hℓ. We further note the kinematic dry-line
condition dℓ/dt = φuf (ℓ,t) or

dℓ

dt
= −k(φ)

∂σ

∂x

∣∣∣∣
x=ℓ

, (29)

with the initial condition ℓ(0) = 0.
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C. Solution method

Given the parameters φ0 and ϵ, together with the constitutive functions pe(φ), )(φ), and k(φ)
(discussed below), the evolution of H (x,t) is given by (26) on a domain [0 < x < ℓ], with ℓ(t) given
by (29). In order to solve this problem numerically, we first map the problem onto a fixed domain
by means of the transformation y = x/ℓ(t), exploiting the relation (29).

If ϵ > 0, we solve (26) as an elliptic problem for σ (y,t) at each time step, together with a
hyperbolic evolution equation for H (y,t) [or φ(y,t)] and a simple ordinary differential equation
(ODE) for ℓ(t). The boundary and initial conditions are given in (27) and (28). We use a standard
second-order finite-difference discretization in space and a fourth-order Runge-Kutta scheme to
evolve in time. In order to regularize the numerical scheme at very early times, we replace the initial
condition ℓ(0) = 0 by ℓ(0) = ℓ0, for some small positive ℓ0 (in practice, we typically take ℓ0 = 10−3,
but find its value has no appreciable effect on solutions at subsequent times).

In the distinguished limit ϵ = 0, the formulation instead takes the form of a nonlinear diffusion
equation for H (y,t), which has a similarity solution as discussed in Sec. III A below. We determine
this solution using MATLAB’s built-in bvp4c routine.

D. Constitutive functions

To provide illustrative solutions of the model, we will use simple constitutive laws that describe the
basic qualitative behavior that we might expect for any deformable medium. For the rate-independent
part of the effective stress, we adopt the simple linear form

pe(φ) = φ − φr

φr − φc

(30)

(cf. [22] or classical linear poroelasticity theory), where φr and φc (with φc < φr ) are the porosities
of the fully relaxed state and for which the rate-independent effective stress equals the capillary
pressure, respectively. Note that both φr and φc are properties of the wet medium and both are larger
than the initial dry porosity φ0.

For simplicity, we set the bulk viscosity function )(φ) to be constant ) = 1, while for the
permeability we use a standard Kozeny-Carman relationship

k(φ) =
(

φ

φr

)3(1 − φr

1 − φ

)2

(31)

(see [30]). Here we have selected the characteristic value k0 such that k = 1 when φ = φr .

III. MODEL RESULTS

A. The limit ϵ → 0: Similarity solution

As was noted at the end of Sec. II B, in the limit ϵ → 0 the in-plane length scale L0 is left
free, which implies a scaling symmetry and a similarity solution. The conditions at the wetting
front x = ℓ(t) and water reservoir x = 0 must also be modified in this limit: If ϵ = 0, (28)
reduces to

pe(φb) = 0, pe(φℓ) = −1, (32)

where φb = φ(0,t) = 1 − (1 − φ0)/Hb. The first of these conditions indicates that the porosity
and width at the water reservoir jump immediately to their steady-state values φb = φr and Hb =
(1 − φ0)/(1 − φr ) in this limit. The second condition in (32) demands that pe(φℓ) = −1 such that
φℓ = φc and Hℓ ̸= 1. As a result, there is also an instantaneous jump in the porosity and width at the
wetting front x = ℓ and the second boundary condition in (27) must be abandoned.
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FIG. 2. Sample similarity solutions of the model with ϵ = 0. (a) Width H (y) for φr = 0.8, φ0 = 0.6, and
φc = 0.65 (black solid line), φc = 0.7 (blue dashed line), and φc = 0.75 (red dot-dashed line). (b) Width H (y)
for φr = 0.8, φc = 0.7, and φ0 = 0.55 (black solid line), φ0 = 0.6 (blue dashed line), and φ0 = 0.65 (red
dot-dashed line). (c) Parameter α that controls the rate of spreading [see (33)], for φr = 0.75 (black circles),
φr = 0.8 (blue stars), and φr = 0.85 (red squares). Note that α is independent of the initial condition φ0.

To find the similarity solution, we set

y = x

ℓ
, ℓ =

√
αt, φ = φ(η), H = H (η), (33)

where α is a constant that must be determined as part of the solution. Equations (26) reduce to

− αy

2(1 − φ0)
dH

dy
= d

dy

[
k(φ)p′

e(φ)
H

dH

dy

]
, (34)

subject to

α

2(1 − φ0)
= − k(φ)p′

e(φ)
H 2

dH

dy

∣∣∣∣
y=1

,

H (0) = 1 − φ0

1 − φr

, H (1) = 1 − φ0

1 − φc

, (35)

where p′
e(φ) ≡ dpe/dφ. Solutions of (34) for a variety of parameters are shown in Fig. 2. Since the

porosity instantly jumps at the upper and lower edges of the wet region, the initial porosity φ0 plays
no role in the solutions other than to set the available solid mass and therefore the scale of the swelling
[Fig. 2(b)]. In particular, the rate of advance of ℓ(t), as described by the parameter α, is independent
of φ0 [Fig. 2(c)]. This parameter also decreases as the relaxed porosity φr is increased, because the
medium can expand further, and increases as φc is increased, which corresponds to an increase in
the relative stiffness of the medium. Note that in the limit φc → φr , the porosity variation is weak
p′

e = (φr − φc)−1 ≫ 1 and k(φ) → 1. Hence Eqs. (34) and (35) imply that φ ∼ φr − (φr − φc)y,
as φc → φr , and α = 2 [see Fig. 2(c)].

B. Numerical solutions for ϵ > 0

Figure 3 shows some sample solutions for computations with ϵ > 0. Even though a self-similar
evolution is now no longer expected, the computations show that the width H (y,t) still evolves from
its initial value of H = 1 and approaches the ϵ = 0 similarity solution everywhere except near the
wetting front y = 1 [Fig. 3(a)]. Here the failure of the similarity solution to satisfy the boundary
condition leads to an increasingly narrow boundary layer over which the width profile deviates from
the similarity form and matches to H = 1.

As a consequence of this evolution, the wetting front ℓ(t) initially rises slower than the prediction
ℓ =

√
αt [Fig. 3(b)]. However, as the profiles evolve towards the similarity profile, ℓ converges to
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y = x/l(t)

H

(a)

t

l

(b)
H

ξ = (y − 1)/ζ

FIG. 3. Sample solutions for φr = 0.8, φc = 0.7, and ϵ > 0. (a) Snapshots of H (y,t) for ϵ = 1 and φ0 = 0.6,
at times t = 0.02 × 2n for integer n ! 0, together with the corresponding similarity solution for ϵ = 0 (black
dashed line). The inset shows the nose region rescaled as in (38) for four snapshots at late times (between t = 10
and t = 80), together with the asymptotic solution from (41) (red dashed). (b) Rise height ℓ(t) for ϵ = 1 (blue
lines) and ϵ = 10 (red lines) and φ0 = 0.6 (solid lines) and φ0 = 0.5 (dotted lines). The thick dashed line shows
the corresponding similarity solution (which does not depend on φ0). The marked times in (a) correspond to
the crosses in (b).

√
αt . Evidently, over sufficiently long times, the boundary-layer structure that forms near the wetting

front has a negligible effect on the rise height. In fact, we demonstrate in the following section that
this behavior is a generic feature of the dynamics captured by the model, irrespective of the choice
of constitutive functions.

Figure 3(b) also shows that, as well as evolving towards the similarity solutions, the wetting front
also follows a scaling of t1/2 at early times, but with a smaller prefactor. In fact, an analysis of (26)
with t ≪ ϵ suggests a scaling of

H = 1 + t ϵ−1 Ĥ (x/
√

t), (36)

in which limit the equations again reduce to an ODE for Ĥ , to leading order in t/ϵ. Thus the model
predicts an early-time similarity solution, followed by evolution from one scaling of t1/2 towards
another, with the transition between the two regimes occurring after a time t = O(ϵ).

C. Approach to the self-similar form

To rationalize the approach to self-similar form observed in the previous section, we consider
the limit t ≫ O(ϵ) in the model (26). We work in a fixed domain by setting y = x/ℓ(t), such that
H = H (y,t), and define ζ (t) ≡ ϵℓ̇/ℓ. In the limit ζ ≪ 1, the solutions satisfy

σ ∼ pe + O(ζ ), (37a)

−yℓℓ̇
∂H

∂y
∼ ∂

∂y

(
kp′

eH
∂φ

∂y

)
+ O(ζ ), (37b)

where ℓ̇ ≡ dℓ/dt , provided gradients in H (or φ) are relatively gentle [i.e., of O(1) or less]. Based
on the numerical results in Fig. 3(a), we expect this to be a valid assumption in the outer region
away from the wetting front at y = 1. Within the boundary layer near y = 1, however, we rescale to
resolve the sharp variation of φ from φc to φ0, by setting

ξ = y − 1
ζ

, (38)
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in which case

− ∂H

∂ξ
∼ (σ − pe)H

(1 − φ))
, (39a)

∂

∂ξ

(
kH

∂σ

∂ξ

)
∼ 0, (39b)

to leading order in ζ , from (26), and assuming ϵζ̇/ζ is small. Both this and the original assumption
ζ ≪ 1 can be verified a posteriori provided t ≫ 1. In view of the boundary condition σ (ℓ,t) = −1
and the kinematic condition (29), (39bb) integrates to

σ ∼ −1 + ζσ1. (40)

Thus, (39b a) can be integrated to give an implicit equation for the porosity through the boundary
layer

ξ =
∫ φ

φ0

)(ϕ)dϕ

1 + pe(ϕ)
(41)

or, given (25), for the width H (ξ ). The next-order correction to the stress can also be calculated from
the O(ζ ) balance in (39b b),

kH
∂σ1

∂ξ
+ Hℓℓ̇ ∼ 0 (42)

or

σ1 = −ℓℓ̇

∫ ξ

0

dξ

k(φ)
= −ℓℓ̇

∫ φ

φ0

)(ϕ)dϕ

[1 + pe(ϕ)]k(ϕ)
, (43)

using (41).
Irrespective of the detailed boundary-layer solution, we now observe that the outer problem in

(37b) must obey the matching conditions σ ∼ pe(φ) → −1 (or φ → φc) and k(φ)p′
e(φ)φx → ℓ̇ as

x → ℓ, which are identical to the boundary conditions imposed on the ϵ = 0 similarity solution
if 2ℓℓ̇ ≡ α. Thus, given that (37b) reduces to (34) to leading order in ζ , the solution for the outer
region is just the similarity solution with ϵ = 0 and ℓ =

√
αt . The small parameter ζ is therefore

ζ ≡ ϵℓ̇/ℓ = ϵt−1/2 and the boundary-layer width shrinks like t−1 in similarity space or like t−1/2

in terms of the true spatial coordinate x [and ϵζ̇/ζ = O(t−1)]. The height across the nose region
predicted by (41) is shown in the inset of Fig. 3(a), together with a selection of snapshots that
collapse onto this profile.

We thus conclude that, even with a rate-dependent rheology, the model predicts that imbibition of
a thin deformable sheet evolves towards the classical self-similar form predicted by the BCLW law
(1). Note that the model must eventually break down, as the shallow layer approximation is violated
once the the width of the thinning boundary layer becomes comparable to the thickness of the sheet.

IV. LABORATORY EXPERIMENTS

In this section we present the results of our laboratory experiments and compare with some of the
predictions of the model. For this task we developed a number of different experimental protocols,
which are explained alongside the corresponding result.

A. Paper structure

We used water and a variety of different paper sheets as our experimental materials and
we begin by briefly discussing the three-dimensional structure of the sheets. We constructed a
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FIG. 4. Computed x-ray µ tomography of an NBSK sheet. In the top image, we show a reconstructed
image to highlight the surface and thickness variations H (x,y) in the sheet. The color bar represents the local
thickness. In the lower panel a binarized cross section of this sheet is shown. Specifications of the sheet are
recorded as series 1 in Table I.

three-dimensional image of a paper sample (1.0 × 1.0 mm2 in cross section) by performing x-ray
tomographic microscopy using a Zeiss MicroXCT-400. Using the methodology outlined by Sharma
et al. [31], 2500 x-ray radiographs were acquired, at different planes spanning 360◦, at a 30-s
exposure time, using a 40-kV x-ray source. A long exposure time was required to offset the poor
contrast at the fiber-air interfaces. From these radiographs, a three-dimensional volume consisting of
2000 × 2000 × 300 voxels was reconstructed with a resolution of 0.58 µm per voxel. An example
image is shown in Fig. 4. From this image we can see that fibers form a network of interconnected
capillaries that provide flow channels. It is also evident that the fiber axis is generally aligned with
the plane.

From these images we can extract a representative measure of the typical pore size rp (i.e.,
by measuring the size of the dark areas in the cross section in Fig. 4), from which we could
in principle estimate the capillary pressure Pc ∼ γ cos θ/rp and permeability k0 ∼ r2

p, given the
surface tension of water γ ≈ 0.07 N/m and 38◦ < θ < 78◦ [14]. However, this estimate gives
rp ∼ 10−5 m, Pc = O(104) Pa, and k0 = O(10−10) m2, which is four orders of magnitude higher
than the actual measured permeability of pulp (see Table I). We therefore infer that the pore scale
suggested in Fig. 4 cannot be the relevant pore length scale of the cellulose matrix. Unfortunately,
since the spatial resolution of the radiograph images is not sufficient to resolve the detailed structure
of the individual fibers, we can only speculate as to the reason for this large discrepancy; it may be
because the complex microstructure of paper leads to a poorly connected network of voids, resulting
in a multitude of bottlenecks for flow. Given this evident complexity of the pore scale and in order
to generate a rough prediction for the capillary pressure, we instead use the measured permeability
to give a crude estimate of the relevant effective pore scale: rp ∼

√
k0 ∼ 10−7 m. This leads us to

the estimate Pc ∼ γ /
√

k0 = O(107) Pa, which is much closer to the capillary pressure required to
explain the relatively large penetration lengths found in our imbibition tests.
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TABLE I. Experimental parameters. The values for the initial thickness are reported to one significant figure
due to the surface roughness of the sheet. The permeability values are those reported by Hewitt et al. [26]. The
variable mr is a measurement of the water content per unit mass of fiber in the fully swollen state. This term is
traditionally called the moisture ratio and is proportional to φr . The uncertainty in mr is estimated to be 9%.

Series Fiber source 2H0 (mm) k0(10−14) (m2) φ0 mr (g/g)

1 NBSK 0.1 7 0.6 0.55
2 eucalyptus 0.1 1 0.6 0.53
3 eucalyptus 0.2 1 0.6 0.53
4 aspen 0.1 3 0.6 0.50
5 aspen 0.2 3 0.6 0.50

We used three different types of cellulose fibers to construct different paper sheets: aspen,
eucalyptus, and northern bleached softwood kraft (NBSK) pulp. Aspen and eucalyptus are hardwoods
having an average fiber length of approximately 0.8 mm; NBSK is a mixture of spruce, fir, and pine
(unknown mixture ratio) with a fiber length of approximately 2 mm. In each case, we made the
paper sheets with a British Handsheet maker using TAPPI standard methodologies. A summary
of the materials used, as well as a selection of measured properties, is given in Table I. Note
that the dry porosity φ0 could be inferred from the mass and volume of a sample determined
using TAPPI standard methodologies. The characteristic value k0 = k(φr ) was estimated from direct
measurements of permeability for these pulp samples [26].

B. Imbibition tests

A typical imbibition experiment was conducted as follows. A reservoir was partially filled with
water and placed on a movable stage. A paper sample (10 cm long, H0 wide; see Table I) was
secured at its upper edge by a clamp and then positioned above the reservoir. The stage was then
raised slowly until the water touched the bottom of the paper and imbibition began. The duration
of each experiment was approximately 1000 s. Experiments were conducted at room temperature
(T = 21 ± 1 ◦C) and at a relative humidity of Hrel = 25 ± 3%. The progress of the infiltration front
was captured using a digital camera (BlackFly 1.3 MP), recording at 14 frames/s (fps) with a
spatial resolution of 0.1 mm/pixel. The images were binarized and the interface position determined
through an edge detection algorithm. The wicking height ℓ(t) was estimated as the mean height over
a horizontal width of 5 cm and then ensemble averaged over a number of replicate tests.

Our experimental results are summarized in Fig. 5(a), which shows the rise height ℓ(t) for
each experimental series. The error bars represent the standard deviation over 13 replicates and is
representative of all of the data collected, while the shaded area on the left indicates where the
data are less certain due to the initial disturbance as the paper is immersed in the reservoir. For
comparison, Fig. 5(b) shows a summary of corresponding data taken from the literature.

In order to examine the sensitivity of our results to the ever-present and distracting effects of
gravity and evaporation, we carried out some additional experimental tests. To gauge the importance
of gravity, we repeated the wicking experiments, but rather than hanging the paper vertically down
into the bath, we gently bent the sheet over the side of the tank and let it hang vertically downward.
The wicking front ℓ(t) from this experiment [magenta line in Fig. 5(a)] is almost indistinguishable
from the original experiment, except at early times where the side of the tank affects the spreading.
Dimensional analysis suggests that buoyancy effects become important when ρgℓ/Pc becomes
order one. For Pc = O(107) Pa, this requires heights of order 1 m, far greater than the size of
our experiment. To assess the impact of evaporation, we determined experimentally a drying rate
of J ≈ 10−3 g/m2s for the paper used. We expect evaporation to be negligible provided that the
ratio of evaporation rate per unit width (2ℓJ/ρ) to the volumetric flow rate per unit width created
by the advancing front (φ0H0ℓ̇) is small. With our data, we find that this ratio remains below 5%
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Ref. [16]
Ref. [16]
Ref. [15]
Ref. [15]
Ref. [14]
Ref. [14]

(octane)
(water)

FIG. 5. Summary of the measurements of the imbibition height ℓ(t): (a) results for the conditions given in
Table I and (b) literature results. (c) Our experimental data scaled using the dimensionless time scale in (12)
(note that the dimensionless height scale L0 was arbitrary in the model). (d) Experimental data replotted to
provide an estimate of the applicability of the BCWL (1). The thin dashed lines in (a)–(c) show a scaling of

√
t

for reference.

for t " 500 s. At larger times, there is some uncertainty in interpreting the measurements due to
evaporation; we have shaded this region in Fig. 5(a).

In an attempt to collapse the data, Fig. 5(c) shows the penetration length against the scaled
dimensionless time tk0Pc/µ, with Pc ∼ γ k

−1/2
0 [cf. (12)]. The NBSK and eucalyptus data collapse

onto each other with this scaling and display a scaling very close to, but slightly weaker than, t1/2.
The rise height for aspen, in contrast, does not display a clear power-law behavior: It lies below the
other data but increases to approach the same collapsed curve and scaling as the other materials over
time. According to the theoretical model, this different behavior can be explained by the relative
size of the bulk compressibility of each material, as characterized by the size of the dimensionless
parameter ϵ (see Fig. 3). The rise height for NBSK and eucalyptus appear to evolve with a simple
power-law scaling from the earliest times we are able to measure, suggesting a very small value of ϵ,
whereas aspen shows a much slower evolution towards a power-law scaling, consistent with a much
larger value of ϵ (i.e., larger bulk viscosity). A similar approach towards the similarity scaling from
below can be seen in some of the earlier experimental data presented in Fig. 5(b).

An alternative and more direct comparison of the data with the t1/2 scaling predicted by the BCLW
law (1) is given in Fig. 5(d), which shows a compensated plot of ℓ2µ/tσ

√
k0 against time. This
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FIG. 6. Quantification of out-of-plane swelling of paper during imbibition (all result using NBSK paper).
(a) Comparison of the reduction in the volume of water in the reservoir V0 with the volume V of a column
of water of height ℓ in paper at its initial porosity φ0 to demonstrate significant swelling during imbibition.
(b) Water content profile m determined gravimetrically at three different times.

quantity represents the the coefficient α in the similarity solution in Sec. III A. This plot confirms
that all the data for the different materials appear to be approaching a similar value over time. It also
suggests a weak subdiffusive behavior in the NBSK and eucalyptus data, which echoes some of the
measurements in Fig. 5(b) and is not captured by the theoretical model.

Note that for two of the materials shown in Fig. 5, we conducted experiments with two different
initial thicknesses of paper (but the same initial porosity). The data in this figure confirm that the
initial thickness has no systematic effect on the rise height, in agreement with the model predictions.1

Finally, we conducted two additional tests to gain insight into the imbibition process. The first
test was a basic comparison of volumes during imbibition: We compared the total volume of water
that had entered the sheet V0, determined by the decrease in the volume of the reservoir, with the
hypothetical volume of water in the sheet V = φ0ℓ(t) if there were no porosity change. Figure 6(a)
shows a significant discrepancy between these quantities, which indicates a change in the average
porosity.

The second test provided a destructive approach to estimate the relative change in water content
along the swollen sheet. Infiltration was allowed to occur over a set period of time, after which the
sample was withdrawn from the water and cut into horizontal strips (i.e., at different x locations). Each
wet strip was immediately weighed and the mass of water that had been absorbed was determined.
When normalized by the mass of fibers in the strip, this measurement serves as a surrogate for the
average porosity. Figure 6(b) shows results for three different infiltration times. Although this was
a relatively crude measurement and there is reasonable scatter in the data, there is no systematic
difference between the experiments at different times when plotted against y = x/ℓ, which provides
direct evidence that the flow profiles are self-similar over the bulk of the rise.

1We also conducted some tests in which the paper sheets were first pressed to imprint surface patterns in the
manner of an embossing process. This pressing resulted in a spatially varying φ0 and H0 but retained a constant
initial areal density. Imbibition tests with these sheets gave rise to rise heights ℓ(t) that were insignificantly
different from those of the uniform sheets, indicating that embossing had no observable effect on imbibition,
as expected from the theoretical model, where φ0 and H0 appear only in the combination H0(1 − φ0) [the
dimensional equivalent of Eq. (24)].
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FIG. 7. Paper thickness during imbibition, as measured by the OCT for (a)–(d) a series of images of the
surface of a commercial kitchen towel. The field of view is approximately 1 mm along the length of the paper.
At each time, the position of the binarized upper surface of the paper was acquired through OCT. An additional
white line has been drawn in the binarized image to represent the datum. The initial waviness of the surface
of the sheet is a crepe, commercially included to effect the mechanical and tactile properties of the paper.
(e) Corresponding spatiotemporal plots over the measurement area [x,t] = [0,10 mm] × [0,25 s] (NBSK,
series 1 in Table I).

C. Out-of-plane deformation

To measure the swelling of the paper more directly, we used optical coherence tomography (OCT),
which provides a measurement of the position of the paper surface, at a high spatial (10 µm/pixel)
and temporal (500-fps) resolution [32]. In order to use this technique we required one side of the
paper to lie at a fixed position and so we adapted the experimental setup by securing one side of
the suspended paper against a plate. Figure 7 shows OCT data of the surface of the sheet during
imbibition. The field of view of the tomograph is restricted, with its spatial scan spanning only about
1 cm of the length of the paper. Individual images taken during each scan and covering a length
of about 1 mm are also shown. Evidently the wetting front, which we see sweeping up the paper
surface in the series of images [Figs. 7(a)–7(d)], is comparable to the length of the image (∼1 mm)
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Series 1. Fit: φ0 = 0.6, φr = 0.8, φc = 0.72
Series 2. Fit: φ0 = 0.6, φr = 0.8, φc = 0.72
Series 4. Fit: φ0 = 0.6, φr = 0.8, φc = 0.72

FIG. 8. (a) Spot measurements from the OCT over time at a point x = 10 mm above the fluid reservoir,
as a function of x/ℓ(t), for each of the different series in Table I. (b) Some of the same data overlaid by
corresponding predictions of the similarity solution (thin dashed line), with parameter choices as marked. The
inset shows the data for aspen together with a snapshot from the model with ϵ > 0, showing how the boundary
layer at the nose can also be captured (specifically, ϵ = 500 and dimensionless t = 80 here).

and thus distinctly longer than the paper thickness (2H0 ≈ 0.1 mm). Note also the appearance of
fibers rising out of the plane of the surface of the paper during imbibition.

The full scan provides space-time plots of sheet thickness [see the example in Fig. 7(e)], which
clearly show the front moving up the paper, as well as highlighting other spatial imperfections that
are preserved during the swelling process [horizontal stripes in Fig. 7(e)]. From these data we can
extract the thickness H (t) of the paper at any height. By plotting these data as a function of the
self-similar coordinate x/ℓ(t), we derive a measure of the thickness profiles up the sheet, as shown
in Fig. 8(a). This figure shows a sharp gradient in H near the wetting front (x/ℓ → 1), with a milder
swelling of the paper further behind. As with the measurements of rise height ℓ(t), the scaled data
collapse for paper with different initial thicknesses, in agreement with the predictions of the model.

Indeed, given the estimated values of φ0 and φr , the latter of which can be estimated from
measurements of mr (see Table I) and the density of the fiber, it is possible to draw a more direct
comparison with the theoretical model. Figure 8(b) shows fits of the similarity solution (ϵ = 0),
which produce broadly the same behavior observed in the OCT measurements. The similarity
solution breaks down near the nose, where the gradient in H of the experimental profiles steepens
but remains continuous. As noted earlier, the wetting front is at least an order of magnitude wider
than the width of the paper sheet and thus the breakdown of the similarity solution there cannot
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simply be associated with the limitations of the shallow-layer framework in the model formulation.
Instead, the model suggests that this sort of boundary-layer structure can result from a rate-dependent
viscous contribution to the network stress and the inset to Fig. 8(b) verifies that the profile near the
nose can be captured by the model when ϵ > 0. Indeed, the slope of the profile in the nose region
is notably less steep for aspen than for the other materials, which is consistent with the previous
observation of the advance of the wicking height that the bulk viscosity for aspen may be higher
(such that ϵ is larger). As a cautionary note, we stress that, since φc is a free fitting parameter in
these comparisons and since we are just using the simple constitutive functions of Sec. II D, the fits
presented here are intended to verify the qualitative predictions of the model rather than to provide
a direct quantitative comparison.

V. CONCLUSION

In this paper we have provided a combined theoretical and experimental study of imbibition in a
thin deformable porous media driven by capillary suction. Our theoretical model explicitly accounts
for the out-of-plane swelling of the solid matrix, which, aside from the change in texture due to
saturation, is the most visually obvious consequence of imbibition in paper [see Fig. 1(a)]. The model
describes two-phase flow in a deformable material in the shallow lubrication limit and incorporates
the effect of a strain-rate dependence in the rheological model, which has recently been adopted by
Hewitt et al. [26] for the dewatering of pulp suspensions.

In the simplest case with no rate-dependent rheology (ϵ = 0), the model predicts self-similar
wetting dynamics, in which the advance of the penetration distance is proportional to t1/2, as
in the classical so-called Washburn (BCLW) law. Interestingly, we found that strain-rate-dependent
rheology leads to an initial transient behavior that is not self-similar, but that ultimately the imbibition
approaches a self-similar form outside a thin boundary layer at the nose. The rise height initially
lags below the self-similar solution ℓ ∼ t1/2, but approaches it from below. In practice, the transient
approach to self-similar form may last for the duration of an experiment, as we observed in some
of our experimental results, which cautions against fitting the Washburn law to observational data at
early times.

Overall, our experiments, which used three different cellulose-based sheets, show a number
of features in common with model predictions. Perhaps the most significant discrepancy between
theory and experiment is the presence of a subdiffusive advance of the wetting front, which has been
observed in previous measurements and was very weakly evident in some of our experimental data.
Previous research groups have attributed this phenomenon to swelling only. Our work indicates that
neither out-of-plane deformation of the medium nor rate-dependent effects in the bulk rheology of
the material can give rise to a subdiffusive advance (cf. other nonlinear diffusive problems for which
the addition of extra physical ingredients does not prevent the emergence of self-similar behavior,
e.g., [33]). As a result, the origin of the subdiffusive behavior still remains an open question.
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