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Thin, roughly horizontal low-permeability layers are a common form of large-scale
heterogeneity in geological porous formations. In this paper, the dynamics of a
buoyancy-driven plume in a two-dimensional layered porous medium is studied
theoretically, with the aid of high-resolution numerical simulations. The medium is
uniform apart from a thin, horizontal layer of a much lower permeability, located a
dimensionless distance L � 1 below the dense plume source. If the dimensionless
thickness 2εL and permeability Π of the low-permeability layer are small, the effect
of the layer is found to be well parameterized by its impedance Ω = 2εL/Π . Five
different regimes of flow are identified and characterized. For Ω� L1/3, the layer has
no effect on the plume, but as Ω is increased the plume widens and spreads over
the layer as a gravity current. For still larger Ω , the flow becomes destabilized by
convective instabilities both below and above the layer, until, for Ω � L, the spread
of the plume is dominated by convective mixing and buoyancy is transported across
the layer by diffusion alone. Analytical models for the spread of the plume over the
layer in the various different regimes are presented.

Key words: plumes/thermals, porous media

1. Introduction

Buoyancy-driven plumes play a fundamental role in many physical processes across
a wide range of scales and environments (Turner 1973). In a fluid-saturated porous
medium, buoyant plumes form a canonical and generic feature of convective flows
(e.g. Hewitt, Neufeld & Lister 2012; Slim et al. 2013) and their dynamics plays
an important role in geothermal hydrology (Kissling & Weir 2005), the leakage of
dense contaminant from landfill sites (MacFarlane et al. 1983) and the salinization
of soil driven by surface evaporation (Wooding et al. 1997; Bauer-Gottwein et al.
2007). Particular recent interest in the spread of convective plumes is linked to
understanding the long-term fate of geologically stored CO2 (Huppert & Neufeld
2014). CO2 injected into subsurface porous formations can dissolve into ambient
water within the host rock, increasing its density and driving downwelling convective

† Email address for correspondence: d.hewitt@ucl.ac.uk

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CL
, I

ns
tit

ut
e 

of
 E

du
ca

tio
n,

 o
n 

08
 Ja

n 
20

20
 a

t 1
4:

51
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

88
8

https://orcid.org/0000-0001-6190-5514
https://orcid.org/0000-0002-4154-1888
https://orcid.org/0000-0002-8978-2672
mailto:d.hewitt@ucl.ac.uk
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.888


883 A37-2 D. R. Hewitt and others

plumes; the dynamics, spread and interaction of these plumes affects the rate of
dissolution of CO2, and thus the long-term security of storage.

The theoretical study of buoyancy-driven plumes in a porous medium was pioneered
by Wooding (1963), who derived a similarity solution for an isolated two-dimensional
plume by exploiting its long and narrow geometry. Our aim in the present study is to
explore the effect on such a plume encountering a thin horizontal layer of a much
lower permeability than the surrounding medium. Thin layers of this kind provide
a generic form of large-scale heterogeneity in geological media, being a particularly
widespread feature of sedimentary formations (Phillips 2009).

A number of authors have considered the role of layers of differing permeability
in the context of laterally spreading immiscible gravity currents (Pritchard, Woods
& Hogg 2001; Pritchard & Hogg 2002; Zheng et al. 2013), while the impact of
leakage through discrete fractures or faults on such currents has also been widely
studied (Pritchard 2007; Neufeld et al. 2011; Farcas & Woods 2013; Pegler, Huppert
& Neufeld 2014). Neufeld & Huppert (2009) focussed explicitly on the role of a thin,
low-permeability horizontal layer on the dynamics of a spreading immiscible gravity
current, and derived a simple model for the spread and rise of a buoyant fluid across
a series of such layers. An alternative vision of layering, in which the layers are
impermeable but contain regular discrete fractures, was studied by Hesse & Woods
(2010) and Rayward-Smith & Woods (2011), who again described the spread of an
immiscible buoyant fluid as it rises through a series of layers, and characterized the
effective dispersion induced by the layered structure.

In contrast to these studies of immiscible or laterally spreading fluids, the effect of
thin low-permeability or fractured layers on a diffusing plume has not been previously
explored. Perhaps the most comparable studies to the present were carried out by
Roes, Bolster & Flynn (2014) and Sahu & Flynn (2017). The former provided a
detailed theoretical and experimental study of the dynamics of a descending plume
in a porous, confined ‘filling-box’ environment, in which the plume could partially
drain through the base of the domain as a rough model of a ‘leaking’ or fractured
porous medium. Sahu & Flynn (2017) extended this work to describe the effect of
two layers of different permeability in an enclosed domain. These authors showed that,
if the lower layer is less permeable, a dense, descending plume can spread laterally
as a gravity current over that layer, and drain gradually into it.

The impact of a thin, low-permeability layer on vigorous statistically steady
convection in porous media, rather than on an isolated plume, was considered by
Hewitt, Neufeld & Lister (2014). They demonstrated that the effect of a thin layer,
of thickness ratio ε� 1 (relative to the depth of the host medium) and permeability
ratio Π � 1 (relative to that of the host medium), can be parameterized by a
single parameter, the impedance Ω ∼ ε/Π of the layer. They showed that the layer
has an increasingly large effect on the convective dynamics and buoyancy flux as
Ω is increased, with the dominant lateral wavelength of the bulk flow increasing
significantly with Ω . They also found that a sufficiently large impedance leads to a
complete shutdown of advective transport across the layer, so that all the buoyancy
is carried across the layer by diffusion. Our main goal in this present work is to
investigate and understand the corresponding dynamics for a single plume in the
presence of such a layer.

After outlining the model in § 2, we proceed in §§ 3–4 to explore the effect of a
thin, horizontal, low-permeability layer on the steady or statistically steady spread of
a dense plume falling across the layer. In § 3 we present the results of numerical
simulations, and in § 4 we identify and explore the various regimes of spreading at the
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Plumes in a layered porous medium 883 A37-3
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z = ÓL

z = -ÓL

y = L

FIGURE 1. A schematic of the set-up in dimensionless variables. A dense source (black
circle) is located on the upper boundary of a semi-infinite two-dimensional porous medium
that contains a low-permeability horizontal layer of thickness 2εL� L and permeability
Π � 1, located a distance L below the boundary. The equivalent picture in dimensional
variables has stars on all the length scales and k∗ = k∗0k.

layer for different values of its impedance Ω . We summarize our findings and briefly
discuss some physical implications of these results in § 5. Throughout this work we
focus on the limit in which the distance to the low-permeability layer is large relative
to the distance over which diffusion and advection balance (that is, on the limit of
large effective plume Rayleigh number), which is generally the appropriate limit in
geophysical settings.

2. Physical model and governing equations
2.1. Dimensional equations

Consider an isolated source of negative buoyancy located at the impermeable rigid
upper boundary of a semi-infinite two-dimensional porous medium. The medium is
uniform except in a thin, horizontal, low-permeability layer located at some distance
below the upper boundary (figure 1). The medium is initially saturated with a fluid
of uniform density ρ = ρ0, and we assume that the density of fluid containing a
concentration c∗ of solute is described by a linear equation of state

ρ = ρ0(1+ αc∗), (2.1)

with α > 0. The buoyancy source, which is assumed to be vanishingly narrow, emits a
buoyancy flux B, which raises the concentration of solute in the medium and so raises
the density of the fluid. There is no volume flux from the source and so, under the
Boussinesq approximation, the total mass in the system is conserved.

The low-permeability layer is located a distance L∗ below the source, and has a
thickness of 2εL∗, where ε� 1 is a constant. The medium has uniform permeability
k∗= k∗0 except in the low-permeability layer, where k∗=Πk∗0 and Π� 1 is a constant.
We assume that the porosity φ is uniform throughout the medium, as would be the
case if, for example, the reduction in permeability in the low-permeability layer were
due simply to a reduction in mean grain size (see also the discussion in the appendix
of Hewitt et al. (2014) about the qualitative effect of a change in porosity in a low-
permeability layer).
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883 A37-4 D. R. Hewitt and others

We introduce a coordinate system (x∗, y∗) with its origin at the negative buoyancy
source, and with the positive y∗ direction pointing downwards. For convenience, we
also introduce an alternative vertical coordinate z∗ = L∗ − y∗, centred on the low-
permeability layer (figure 1). The flow u∗ = (u∗, v∗) in the medium is incompressible
and obeys Darcy’s law, while the concentration evolves over time t∗ by advection and
diffusion, as described by

∇ · u∗ = 0, (2.2)

u∗ =−
k∗

µ
(∇p∗ − ρgey), (2.3)

φ
∂c∗

∂t∗
+ u∗

∂c∗

∂x∗
+ v∗

∂c∗

∂y∗
= φD∇2c∗, (2.4)

where ey is a unit vector in the downwards direction, p∗ is the pore pressure, g is
the gravitational acceleration and µ, φ and D are the viscosity, porosity and effective
diffusivity, respectively, all of which are assumed to be constant. For the purposes
of this work, we are interested in steady or statistically steady solutions of these
equations.

2.2. Non-dimensional equations
We define the following scales for the concentration, the buoyancy velocity and the
length and time scales over which advection and diffusion balance,

ĉ=
B
D
, û=

ρ0αgk∗0 ĉ
µ

, ẑ=
φD
U
, t̂=

φẑ
û
=
φ2D
û2
. (2.5a−d)

We further introduce dimensionless (unstarred) variables via

u=
u∗

û
, (x, y, z)=

(x∗, y∗, z∗)
ẑ

, c=
c∗

ĉ
, k=

k∗

k∗0
, (2.6a−d)

t=
t∗

t̂
, p=

k∗0
φDµ

(p∗ − ρ0gẑy), (2.7a,b)

and the dimensionless distance to the low-permeability layer,

L=
L∗

ẑ
. (2.8)

After introduction of a streamfunction ψ with (u, v) = (−∂ψ/∂y, ∂ψ/∂x), the
governing equations (2.2)–(2.4) reduce to

∇
2ψ = k

∂c
∂x
, (2.9)

∂c
∂t
−
∂ψ

∂y
∂c
∂x
+
∂ψ

∂x
∂c
∂y
=∇

2c, (2.10)

with

k=


1 y 6 L(1− ε)
Π L(1− ε) < y< L(1+ ε)
1 y > L(1+ ε).

(2.11)
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Plumes in a layered porous medium 883 A37-5

Since the pressure must remain continuous throughout the medium, the horizontal
velocity u=−k∂p/∂x will be discontinuous at the edges of the low-permeability layer
y = L(1 ± ε). The buoyancy source imparts a fixed dimensionless buoyancy flux of
unity, and so, in a steady state,∫

∞

−∞

(
c
∂ψ

∂x
−
∂c
∂y

)
dx= 1, (2.12)

at every depth y.
Note that these equations have been scaled in such a way that the dimensionless

parameters L, Π and ε only appear in the structure of the permeability field (2.11).
The distance L, which is the ratio of the dimensional distance L∗ of the layer below
the upper boundary to the advection–diffusion length scale ẑ (2.5c), can also be
thought of as an effective Rayleigh number L = L∗/ẑ = ρ0αgk∗0 ĉL∗/(φDµ) for the
problem. In geophysical applications, ẑ is typically of the order of millimetres while
L∗ might be tens of metres (see § 5), and so we will focus on the limit L� 1.

2.3. The impedance
For the problem of statistically steady convection in the presence of a thin,
low-permeability layer, Hewitt et al. (2014) showed that the flow across the layer is
driven by the local pressure difference across the layer rather than by buoyancy when
ε � 1 and Π � 1. We expect the same behaviour here. In this limit, the vertical
component of Darcy’s law (2.3) in the low-permeability layer is

v =Π

(
∂p
∂z
+ c
)
=
Π

2εL
{p|z=εL − p|z=−εL +O(εL)}. (2.13)

For small ε and Π , (2.13) can be written as a jump condition at z= 0 (y= L),

Ωv = [p]z=0, H⇒ Ω
∂v

∂x
=−[u]z=0, (2.14)

where the square brackets denote the jump in each quantity, and the effective
impedance

Ω =
2εL
Π

(2.15)

describes the ratio of the thickness of the layer to its permeability. Recall that v is
the downwards vertical velocity, whereas z is measured upwards from the layer.

The problem in the limit ε, Π � 1 is thus characterized by two independent
parameters, L and Ω . We work in this limit for the remainder of this paper. We
solved the governing equations (2.9)–(2.10), together with the jump condition (2.14),
numerically, as outlined in § A.1. We also carried out a series of computations to
confirm the validity of the reduction to the jump condition (2.14), as discussed in
§ A.2.

3. Phenomenology of numerical solutions
Figure 2 shows a series of steady or statistically steady snapshots from numerical

solutions in which the low-permeability layer is parameterized by (2.14) at y = L.
For sufficiently low impedance Ω , the layer has a negligible effect on the plume,

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CL
, I

ns
tit

ut
e 

of
 E

du
ca

tio
n,

 o
n 

08
 Ja

n 
20

20
 a

t 1
4:

51
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

88
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.888


883 A37-6 D. R. Hewitt and others

0

L

2L

0

L

-L/4 L/4

0

L

2L
-L/2 L/2

0

L

2L
-2L 0 2L

x x

x

x

y

y
2L

3L
-8L -4L 0 4L 8L

-2.0

-2.5

-3.0

lo
g 1

0(c
)

-3.5

(a) (b) (c)

(d)

FIGURE 2. Snapshots of the concentration field, showing log10(c) to accentuate the details
of the plumes, for an internal layer with L = 1.28 × 106 and impedance (a) Ω = 50,
(b) Ω = 1.02× 106, (c) Ω = 1.64× 107 and (d) Ω = 1.05× 109.

which simply passes through with no discernible change in its width (figure 2a). For
larger values of Ω , the flow across the layer slows down and the pressure difference
required to drive flow across the layer forces the plume to spread laterally above the
layer (figure 2b). After crossing the layer, the dense fluid below the layer flows back
inwards to collect in a single plume again, so that the steady-state flow profile is
roughly symmetric above and below the layer. As Ω is increased further, there are
no longer stable steady solutions: while the plume extends further above the low-
permeability layer as Ω increases, the inwards return flow below the layer becomes
unstable to a convective boundary-layer-type instability. This instability takes the form
of small ‘proto-plumes’ (cf. Hewitt et al. 2012) that are continually advected towards
the central plume (figure 2c) by the mean return flow. The laterally spreading steady
flow above the layer remains stable. For yet larger values of Ω , the flow extends
even further over the layer and convective instabilities also appear above the layer
(figure 2d). These instabilities also take the form of small proto-plumes, which are
advected outwards away from the central plume, in the opposite direction to those
below the layer. As described in § 4.5, convection above the layer is driven by the low
concentration imposed at the layer by the efficient downwards transport of buoyancy
by convection below the layer.

In order to characterize the effect of the low-permeability layer on the plume,
we define the plume width xp to be the mean lateral extent over which 95 %
of the buoyancy flux is transported across the layer. More precisely, to allow
for the possibility of unsteady flow, the instantaneous plume width x̃p(t) at the
low-permeability layer is defined implicitly by∫ x̃p

0

(
cv +

∂c
∂z

)∣∣∣∣
z=0

dx= 0.95
∫
∞

0

(
cv +

∂c
∂z

)∣∣∣∣
z=0

dx, (3.1)

and the mean plume width xp is the long-time average of x̃p(t).
Figure 3 shows data from a series of simulations for different layer depth L and

impedance Ω . For sufficiently low Ω , the velocities and width of the plume at the
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�
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/L
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3

√ m
L1/

3

(a) (b) (c)

FIGURE 3. Scaled data from simulations showing variations with the impedance Ω for
different L as marked in (b). (a) The root-mean-square horizontal velocity immediately
above the low-permeability layer; (b) the maximum vertical velocity vm across the
low-permeability layer; and (c) the plume width xp at the low-permeability layer (3.1).
Asymptotic model predictions are shown for a plume with Ω = 0 (§ 4.1; short dashed)
and for (a) the local perturbation to the plume (§ 4.2) and (b,c) the gravity-current regime
(§ 4.3) (long dashed).

layer are independent of Ω: the layer has a negligible effect on the plume, which
simply passes across it. As Ω is increased, the horizontal velocity at the layer
increases, the vertical velocity across the layer decreases, and the width of the plume
increases. For very large Ω , both the horizontal velocity at the layer and the width of
the plume appear to become independent of Ω . In the following section, we identify
and explore these different regimes of flow.

4. Asymptotic regimes and theoretical solutions

4.1. Negligible perturbation to the plume: Wooding’s plume solution; Ω� L1/3

For sufficiently small values of Ω , the plume is unaffected at leading order by the
impedance of the layer (e.g. figure 2a). In this case, the plume falls and spreads
as though in a homogeneous medium and is described by a similarity solution,
which was obtained by Wooding (1963). This solution, which will be useful for our
subsequent analysis, is briefly described here.

Sufficiently far below the source, the plume is long and thin so x � y and
∂/∂x � ∂/∂y. In this limit, Darcy’s law (2.9) implies that the vertical velocity is
proportional to the concentration, v = ∂ψ/∂x ≈ c, while (2.10) reduces to a balance
between advection and horizontal diffusion. Expressing the velocities in terms of the
streamfunction we obtain

−ψyψxx +ψxψxy ≈ψxxx, (4.1)

where subscripts indicate partial derivatives. Equation (4.1) is solved together with
conservation of buoyancy flux (2.12), which reduces to

∫
∞

−∞
ψ2

x dx = 1 in this limit.
These equations permit a similarity solution with

ψ =

(
9
2

)1/3

y1/3f (η), η≡
x

481/3y2/3
, (4.2a,b)

and f ′′′ =−2( ff ′′ + f ′2),
∫
∞

−∞
f ′2 dη= 4/3 and f (0)= f ′′(0)= 0. The solution is

f = tanh η, (4.3)
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or
c(x, y)= v(x, y)= 6β2y−1/3 sech2 (βxy−2/3), (4.4)

where β = 48−1/3.
Thus, for a layer located at a depth y= L, the width of the plume xp at the layer

is xp ∼ L2/3, and the concentration and vertical velocity scale with c∼ v∼ L−1/3. The
plume carries a vertical volume flux vx∼ y1/3 that increases with depth y, and entrains
fluid from the ambient with a velocity u∼ y−2/3. Within the plume, the pressure scales
with p∼ ux∼O(1).

Given these scalings, the additional condition (2.14) introduced by the low-
permeability layer provides a perturbation of order Ω/L1/3 to the pressure near
the layer. Thus, provided Ω � L1/3, the layer has a negligible effect on the spread
of the plume (as in figure 2a), and the plume simply passes through the layer. This
prediction is corroborated by the collapse of the data in figure 3 for small Ω .

4.2. Local perturbation to plume: L1/3
�Ω� L2/3

If Ω � O(L1/3), the pressure jump induced by the low-permeability layer (2.14) is
larger than the pressure in the plume, and so the plume solution must break down
in the vicinity of y = L. In order to generate sufficient pressure to drive the plume
across the layer, we anticipate that the pressure, and thus the corresponding horizontal
velocity, must increase locally in a region near y = L of a size comparable to the
plume width. We therefore look for a local solution in this region that matches to the
similarity solution in § 4.1 sufficiently far above the layer. Motivated by the form of
the similarity solution in (4.3)–(4.4), we introduce scaled variables

P=
p

β−1ΩL−1/3
, U =

u
ΩL−1

, (X, Z)=
(x, z)
β−1L2/3

, (4.5a−c)

and scaled perturbations

(C, V)=
L
Ω
(c− 6β2L1/3 sech2 X, v − 6β2L1/3 sech2 X), (4.6)

where z = L − y and β = 48−1/3 as previously. The leading-order concentration and
vertical velocity 6β2 sech2 X in (4.6) are simply the unperturbed plume solution from
(4.4), but the pressure and horizontal velocity scales in (4.5) are larger than those in
the unperturbed plume. Given these scalings, and provided L1/3

�Ω�L2/3, we obtain

UX − VZ = 0, U =−PX, V =C+ PZ, (4.7a−c)

2U tanh X +CZ =O(L1/3/Ω,Ω/L2/3), (4.8)
[P]Z=0 = 6β3 sech2 X +O(Ω/L2/3), (4.9)

which imply that the pressure satisfies the elliptic equation

∇
2P=−2 tanh X

∂P
∂X
, (4.10)

to leading order. We expect that P → 0 as Z → ±∞ so that this local solution
matches to the plume above and below the layer. Given the vertical symmetry in
(4.10) under Z → −Z and the jump condition (4.9), we expect the pressure to be
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FIGURE 4. (a) A density map and contours of the predicted horizontal velocity U above
the low-permeability layer from the local-perturbation solution (4.10). (b) Density map and
contours of the scaled horizontal velocity L(u− up)/Ω from a full numerical solution with
L= 5.12× 106 and Ω = 2× 103 (for which parameters Ω/L1/3

≈ 12 and Ω/L2/3
≈ 0.07).

antisymmetric about Z = 0, and so the jump condition at Z = 0 (4.9) reduces to a
boundary condition P(X, 0)= 3β3 sech2 X for P in Z > 0. (Equations (4.7)–(4.9) are
invariant under (Z, P, U)→ −(Z, P, U), reflecting the fact that a positive pressure
perturbation just above the layer pushes the flow outward a little and a negative
perturbation below the layer pulls it back again.)

Equation (4.10) can be converted into a Helmholtz equation by a change of
variables and solved by a Fourier transform, as outlined in appendix B. The solution
takes the form of a local build-up of pressure above the layer, which drives a
corresponding horizontal velocity away from the centreline of the plume (figure 4a).
Both quantities decay as Z→∞ and the local solution matches to the plume above.
Despite the increased horizontal velocity above the low-permeability layer, the vertical
velocity across the layer and the width of the plume are both unchanged to leading
order by the pressure perturbation. Figure 4(b) shows a scaled density plot of the
steady horizontal velocity field from a numerical simulation with parameters lying in
this regime, which agrees well with the asymptotic prediction in figure 4(a).

These predictions are also confirmed by the data in figure 3(a), which shows
that the horizontal velocity at the layer increases as a function of Ω/L1/3, while the
vertical velocity and width (figure 3b,c) remain unchanged at that order. For Ω�L2/3,
the horizontal velocity near the layer becomes sufficiently large to drive significant
variations in the concentration and vertical velocity of the plume; in this regime the
assumption of a local perturbation breaks down and the width of the plume at the
layer increases significantly.

4.3. Gravity current: Ω� L2/3

For Ω� L2/3, the dense fluid cannot readily cross the low-permeability layer and is
diverted sideways away from the main plume to form a gravity current, which has a
larger lateral extent than its height (e.g. figure 2b). The extent of this current is such
that, in a steady state, there is a balance between the buoyancy flux from the plume,
the lateral flow in the current, and the vertical flux across the low-permeability layer.

Within the long, thin, steady current, the pressure is hydrostatic, ∂p/∂z = −c,
and the lateral flow is given by Darcy’s law, u = −∂p/∂x. The flow across the
low-permeability layer is driven by the pressure difference (2.14) and so p ∼ Ωv.
Given that (u, v) = (∂ψ/∂z, ∂ψ/∂x), these balances suggest characteristic horizontal
and vertical length scales x ∼ Ω2/3(ψ/c)1/3 and z ∼ Ω1/3(ψ/c)2/3 for the current.
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883 A37-10 D. R. Hewitt and others

Provided the height of the current near the origin is much less than the depth L
of the layer, the scales for the streamfunction and concentration are determined by
the incoming plume solution at depth L, for which ψ ∼ L1/3 and c∼ L−1/3. We thus
introduce scaled variables

X =
x

β−1/3Ω2/3L2/9
, Z =

z
β−2/3Ω1/3L4/9

, (4.11a,b)

C=
c

6β2L−1/3
, Ψ =

ψ

6βL1/3
, P=

p
6β4/3Ω1/3L1/9

, (4.12a−c)

where β = 48−1/3 as in § 4.1. Given these scalings, it is straightforward to confirm
that both the aspect ratio of the current x/z∼ (Ω/L2/3)1/3 and the height ratio L/z∼
(Ω/L5/3)−1/3 are indeed large provided L2/3

�Ω� L5/3. (We will find below that this
upper bound is not achieved owing to the development of convection first below, and
then also above, the low-permeability layer.)

The ratio of vertical advection to vertical diffusion in the current, which provides
a local Péclet number, also scales with Pe ∼ (cv)/(c/z) ∼ (Ω/L5/3)−1/3. Diffusion
is therefore negligible in the gravity current as long as Ω � L5/3, and buoyancy is
transported only by advection along streamlines. Equivalently, the concentration can
be written as a function of the streamfunction in the current. Given that in the plume
C= sech2 η and Ψ = tanh η from (4.2) and (4.4), we deduce that

C= 1−Ψ 2, (4.13)

which should hold throughout the current. This relationship C(Ψ ) is verified for a
particular numerical solution in figure 5(a).

Within the current, hydrostatic pressure and Darcy’s law can be combined to give

∂2P
∂X∂Z

=−
∂C
∂X
=−

∂2Ψ

∂Z2
, (4.14)

or, given (4.13),
∂Ψ

∂X
=−

1
2Ψ

∂2Ψ

∂Z2
. (4.15)

Numerical solutions for moderate Ω show a roughly symmetric concentration
profile above and below the low-permeability layer (e.g. figure 2b). Motivated by
this observation, and by the vertical symmetry in (4.15) under Z→−Z, we look for
solutions for which the streamfunction is symmetric and the pressure antisymmetric
across the layer. Under this assumption [p]z=0 = 2p(x, 0) and (2.14) reduces to

∂Ψ

∂X

∣∣∣∣
Z=0

= 2
∫
∞

0
1−Ψ 2 dZ. (4.16)

Away from the current, the flow matches to a uniform far field with C= 0, and thus
Ψ → 1 as (X, Z)→∞. On the scale of the current, the plume appears as a source
on the line X= 0, with the limiting values of Ψ (0, Z) giving the flux from the plume
and with Ψ (0, 0)= 0. The profile Ψ (0, Z) is not prescribed, but is determined as part
of the solution by the ‘downstream’ drainage flow in the current.

We solve the nonlinear diffusion equation (4.15) numerically by integrating in from
X� 1, using the linearized equation in the limit X→∞ as an ‘initial’ condition. In
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FIGURE 5. (a–c) Comparison of the gravity-current model with simulations for L= 1.28×
106 and Ω = 4.1× 106 (Ω/L2/3

= 348). (a) A scatter plot of c(x, z) against ψ(x, z) for all
numerical grid cells in the range 0 6 z< L/2, together with the prediction (4.13) for the
gravity current (dashed line). Points are coloured by their z value. (b,c) Equally spaced
contours (red solid) of (b) the time-averaged streamfunction Ψ (X, Z) and (c) the time-
averaged concentration C(X, Z) together with the predictions of the gravity-current model
(black dashed). (d) The vertically integrated concentration in the current, for simulations
with a fixed ratio Ω/L = 3.2 and with L = 3.2 × 105 (blue), L = 1.28 × 106 (red) and
L= 5.12× 106 (green), together with the prediction of the gravity-current model (dashed).

this limit, we expect Ψ → 1, and so Φ ≡ 1 − Ψ � 1 satisfies the linear diffusion
problem

−
∂Φ

∂X
=

1
2
∂2Φ

∂Z2
, −

∂Φ

∂X

∣∣∣∣
Z=0

= 4
∫
∞

0
Φ dZ. (4.17a,b)

Solution of the linear problem gives

Ψ (X→∞)∼ 1− λe−2X−2Z, C(X→∞)∼ 2λe−2X−2Z, (4.18a,b)

where the constant λ, and the full nonlinear solution, are determined by matching to
(4.15) and integrating inwards numerically to Ψ (0, 0)= 0. This yields λ≈ 1.14.

Both the predicted scalings of the model and the quantitative predictions of the
plume width and vertical velocity across the layer give good agreement with full
numerical simulations, as shown in figure 3(b,c). In particular, we can extract the
width of the current xp at the layer from the full nonlinear solution of the model and
combine with the scalings in (4.11a) to find that

xp ≈ 1.37Ω2/3L2/9 (4.19)

(long-dashed line in figure 3c). Further comparison between the model and numerical
simulations is presented in figure 5. Figure 5(b,c) show streamlines and contours of
the concentration near the low-permeability layer for a particular numerical simulation,
each of which take the form of almost straight diagonal lines through the gravity
current. The model predictions, given by the full nonlinear solution of (4.15), provide
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reasonable agreement, particularly for the streamlines (figure 5b). Profiles of the
vertically integrated concentration through the current (figure 5d) show that the
numerical solutions increasingly approach the prediction of the model as the ratio
Ω/L2/3 is increased.

The main discrepancy between the model and simulations can be seen in the
concentration contours of figure 5(c): the concentration at the base of the plume is
higher than the model predicts. This difference occurs because the balance between
vertical advection and horizontal diffusion in the plume breaks down as the buoyancy
starts to spread laterally into the gravity current; horizontal diffusion weakens, and
so the concentration down the centreline decreases more slowly with depth than in
the ideal plume solution.

Diffusion also affects the current along its base, where the contours bend around
before crossing the low-permeability layer (figure 5c), smoothing out the sharp jump
in concentration gradient that is predicted by the model. The resultant boundary
layer just above the low-permeability layer has a depth δ given by a balance
between vertical diffusion and downwards advection, δ ∼ 1/v ∼Ω2/3L−1/9. A simple
boundary-layer analysis in the vicinity of the low-permeability layer indicates that
the contribution to the buoyancy flux across the layer from diffusion is a factor
of 1/Pe = (Ω/L5/3)1/3 smaller than the O(1) advective flux. However, we will find
below that convection both below the low-permeability layer and, for larger Ω , above
the layer, causes an increase in the diffusive flux across it. In particular, convection
above the layer provides a mechanism to mix up the gravity current and change the
structure of the flow above the layer. We will return to discuss the scalings associated
with the development of convection below and above the layer in § 4.5, after first
describing the flow above the low-permeability layer in the regime for which Ω is
sufficiently large that convection is well established and advection across the layer is
negligible.

4.4. Large-scale circulation: ‘ultimate’ regime with Ω� L
For sufficiently large values of the impedance Ω , we expect that the advective
transport across the low-permeability layer is negligible and so the flow above the
layer must recirculate with a negligible volume flux across the layer. Given this, we
also expect that the flow above the layer becomes independent of Ω . Data from
simulations (figure 3a,c) confirm this prediction as Ω →∞. Snapshots of the flow
in this limit (e.g. figure 2d) further suggest that the spread of the plume above the
low-permeability layer is strongly affected by convective instabilities, which penetrate
an appreciable distance up from the layer.

A time-averaged plot of the concentration and streamlines (figure 6a) reveals more
clearly the nature of the flow for very large Ω . The lateral flow fills the depth
0 < z < L, with roughly the lower half flowing away from the central downwelling
plume at x= 0 and the upper half being a return flow back towards the plume. The
concentration in the outflowing lower half varies only weakly with depth (figure 6b),
illustrating that it is well mixed by convection. In the return flow, by contrast, the
concentration contours align roughly with the streamlines (figure 6a), indicating that
there is very little mixing in this region.

Motivated by these observations, we consider a model in which a long, thin gravity
current of depth h(x) flows away from the central plume and is vertically well mixed
with a time-averaged concentration c(x). The current loses buoyancy across the very
low permeability layer at its base by diffusion through a narrow boundary layer of
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FIGURE 6. (a) Time-averaged colour map of the concentration above the low-permeability
layer when the impedance Ω is large (L= 1.28× 106 and Ω = 1.05× 109, as in figure 2d),
overlain by contours of the time-averaged concentration (blue solid) and time-averaged
streamlines (white dashed). (b) Vertical profiles of the time-averaged concentration at x=
2L, x= 3L and x= 4L from the same computation. (c) An enlarged plot of the same data
at x= 3L, showing the structure of the concentration field near the low-permeability layer.

depth δ�h and concentration drop 1c (figure 6c). Below the layer, buoyancy diffuses
through another boundary layer and is transported rapidly away from the layer by
convection. With vigorous convection both above and below the layer, we expect that
1c ∼ c/2, and so the diffusive flux across the layer scales with 1c/δ ∼ c/δ. The
impedance Ω plays no role in this construction, since the advective transport across
the low-permeability layer is negligible if Ω is sufficiently large.

Following classical arguments for convection (e.g. Howard 1964), we assume that
the boundary layer just above the low-permeability layer is maintained at a marginally
stable depth: any growth of the boundary layer beyond this marginal depth is rapidly
transported away by high-wavenumber convective instabilities. Equivalently, the local
boundary-layer Rayleigh number ∼1c δ∼ cδ is maintained at a critical value cδ∼Rc.
The diffusive flux across the layer therefore scales with ∼1c/δ ∼ c/δ ∼ c2/Rc. For
notational convenience, we set the flux to be equal to c2/Rc by suitably absorbing any
O(1) constants of proportionality into our definition of Rc. Comparison with previous
studies of porous convection (e.g. Hewitt, Neufeld & Lister 2013; Slim 2014) suggests
that Rc =O(102).

In both the outflowing and returning currents in 0 < z < L, we expect that the
pressure is hydrostatic and the horizontal velocity is driven by Darcy’s law, u∼ψ/z∼
cz/x. A balance of the lateral buoyancy flux through the current with that diffusing
across the low-permeability layer indicates that ucz∼ xc2/Rc∼ 1. Given these scalings,
together with the observation that the flow fills the depth L, we introduce scaled
variables

(Z,H)=
(z, h)

L
, X =

x

R1/2
c L

, C=
〈c〉

R1/4
c L−1/2

, P=
〈p〉

R1/4
c L1/2

, (4.20a−d)

Ψ =
〈ψ〉

R−1/4
c L1/2

, U =
〈u〉

R−1/4
c L−1/2

, V =
〈v〉

R−3/4
c L−1/2

, (4.21a−c)
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883 A37-14 D. R. Hewitt and others

where the angle brackets 〈·〉 signify the long-time average. Note that the horizontal and
vertical scales of the flow both scale with the layer depth L, but differ by a factor of
the (moderately large) parameter R1/2

c , so the flow remains appreciably longer than it
is deep. Note also that the concentration scale R1/4

c L−1/2 is weaker than the scale L−1/3

in the plume, which is a consequence of convective mixing of low-concentration fluid
at the low-permeability layer into the flow above, as will be discussed again in § 4.5.

We define the height of the current Z =H(X) to be the contour that separates the
outflow below from the return flow above, so U(Z=H)= 0. In the out-flowing region
Z<H, the concentration C(X,Z)=C(X) is well mixed by convection, and hydrostatic
pressure and Darcy’s law combine to give

∂U
∂Z
=−

∂2P
∂X∂Z

=
∂C
∂X

(4.22)

or

U =−
∂C
∂X
(H − Z). (4.23)

Vertical integration of (4.23) yields an outward volume flux −H2CX/2.
Buoyancy in the current is advected laterally away from the central downwelling

plume and is lost both by diffusion across the low-permeability layer at the base of
the current and by advection across Z =H, where it is entrained into the return flow
in H < Z < L. This flux balance is represented in the vertically integrated advection–
diffusion equation (2.10),

∂

∂X

(
CH2

2
∂C
∂X

)
=C

2
+ V|Z=HC, (4.24)

where the vertical velocity at Z =H(X) is given by the vertically integrated equation
of volume conservation (2.2), V|Z=H = (H2CX/2)X . Equation (4.24) thus reduces to

H2

2

(
∂C
∂X

)2

=C
2
H⇒

∂C
∂X
=−
√

2
C
H
, (4.25)

with solution

C(X)=C0 exp
[
−
√

2
∫ X

0
H−1 dX

]
, (4.26)

where the constant C0 is determined by the constraint of unit total buoyancy flux
across the low-permeability layer,

∫
∞

−∞
C

2
dX= 2

∫
∞

0 C
2

dX= 1. We can also integrate
U =ΨZ (4.23) using (4.25) to obtain the corresponding streamfunction

Ψ (X, Z)=
HC(X)
√

2

[
2Z
H
−

(
Z
H

)2
]
. (4.27)

In particular, streamlines carry fluid across the boundary Z = H and enter into the
return flow in Z >H with

Ψ (X,H(X))=
H(X)C(X)
√

2
. (4.28)
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Plumes in a layered porous medium 883 A37-15

In the return flow (Z>H), we assume that diffusion is negligible and that convective
mixing does not penetrate from Z < H. Concentration is thus advected from the
boundary Z =H(X) along streamlines, and C(X, Z)=C(Ψ ), where C(Ψ ) is given by
(4.28). Once again, hydrostatic pressure and Darcy’s law combine to give

∂2Ψ

∂Z2
=
∂C
∂X
, (4.29)

in Z >H, with three boundary conditions

Ψ (Z = 1)= 0, ΨZ(Z =H)= 0, C(Z =H)=C, (4.30a−c)

which are sufficient both to solve (4.29) and to determine the unknown contour Z =
H(X). In fact, (4.29)–(4.30) have a separable solution with H independent of X, given
by

C(X, Z)=

√
2

H
Ψ (X, Z)=C(X) sin

[√
2 (1− Z)

H

]
, (4.31)

where

H =
2
√

2

2
√

2+π
≈ 0.47. (4.32)

The division between well-mixed lower fluid and returning fluid is thus independent
of the distance from the central plume, and lies marginally below half way between
the upper boundary and the low-permeability layer.

Given that H is a constant, we deduce that C2
0 =
√

2/H in (4.26), and thus that the
solution throughout the domain is

C=C(X)Ĉ(Z), Ψ =
H
√

2
C(X)Ψ̂ (Z), C(X)=

21/4

H1/2
exp

[
−

√
2X
H

]
, (4.33a−c)

where
Ĉ= Ψ̂ = sin[

√
2(1− Z)/H] in Z >H,

Ĉ= 1, Ψ̂ = 2Z/H − (Z/H)2 in Z <H,

}
(4.34)

and H is given by (4.32). We thus have a complete analytical solution for the ultimate
regime in which the flow is well mixed by convection in Z < H and there is only
diffusive transport across the low-permeability layer at Z = 0.

The critical Rayleigh number Rc=O(102), which appears in the rescalings in (4.20)
and (4.21), is a free parameter in this model. Comparison of the diffusive flux across
the layer with c2 from numerical simulations yields a value of Rc ≈ 100, which we
use in our comparisons here. Time-averaged data showing both the vertical structure
of the flow (figure 7) and the horizontal structure of the flow for Z < H (figure 8)
for sufficiently large Ω show a good collapse with the predicted scalings and a very
reasonable quantitative agreement with the model predictions. The largest errors in the
model appear in the concentration profiles for Z>H (figure 7a), and comparison with
the corresponding streamfunction (figure 7b) suggests that there is a slight deviation
from the relationship C(Ψ ) (4.31) in Z >H. We attribute this deviation partly to the
boundary condition ∂c/∂z= 0 at the upper boundary in the simulations, and partly to
residual convective motion crossing Z =H and driving cross-streamline mixing.
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(a) (b) (c)

FIGURE 7. Time-averaged vertical profiles at x = 3L of (a) the concentration c, (b) the
streamfunction ψ and (c) the horizontal velocity u from simulations with L=[8,32,128]×
104 (blue, red, green) and Ω = [32, 128] × 100L in each case. Model predictions from
(4.33) with Rc = 100 are overlaid (dashed black).
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101

100

100

10-1

10-1

10-2

x/L x/L x/L

c 
L1/

2

u|
z =

 0
 L

1/
2

™c
/™

z| z
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(a) (b) (c)

FIGURE 8. Time-averaged horizontal profiles of (a) the vertically averaged concentration
c(x)= (1/h)

∫ h
0 c dz with h= HL given by (4.32), (b) the horizontal velocity u(x, 0) and

(c) the flux ∂c/∂z across the layer from simulations with L = [8, 32, 128] × 104 (blue,
red, green) and Ω = [8, 32, 128] × 100L in each case. Model predictions from (4.33) with
Rc = 100 are overlaid (dashed black).

The corrections to this model associated with a finite impedance Ω come from the
weak advective flux Fa across the low-permeability layer, given by Fa =−

∫
cv dx∼

cpx/Ω ∼ RcL/Ω . This flux is negligible for Ω� RcL, which we thus identify as the
range of the ultimate regime. The scaling Ω ∼ RcL for the onset of this regime is
corroborated by the collapse of the horizontal velocity at the layer and the plume
width in figure 9(a,b). The same data also show good quantitative agreement with the
model predictions for Ω� L. In particular, the width of the current at the layer is

xp ≈ 5.3L. (4.35)

We note, in ending the discussion of this regime, that the central plume does
not explicitly enter the model construction outlined here. The numerical simulations
suggest that the basic structure of the original plume continues to survive near x= 0,
with a width x ∼ L2/3 that is much less than the width of the main current and a
concentration scale c ∼ L−1/3 that is greater than that of the main flow. However,
unlike in the gravity-current regime, the plume scales do not control the dynamics in
the main circulating flow in this regime. Some remnant evidence of the central plume
can be discerned near x = 0 in the concentration and horizontal-velocity profiles in
figure 8(a,b).
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FIGURE 9. (a) The root-mean-square horizontal velocity immediately above the low-
permeability layer and (b) the plume width xp, showing the same raw data as in
figure 3(a,c), respectively, but scaled to show the collapse in the ultimate regime. Dashed
lines show the predictions of the model in the ultimate regime.

4.5. Transitional regime: R3/2
c L2/3

�Ω� RcL
If the flow near the layer remained steady, we would expect the gravity-current regime
discussed in § 4.3 to apply until diffusion becomes important at Ω ∼ L5/3. However,
the flow does not remain steady as Ω is increased, and, as discussed in § 4.4, for
Ω� RcL the flow is in the ‘ultimate’ regime in which vigorous convection mixes up
fluid above the low-permeability layer. Furthermore, the gravity-current regime cannot
simply match smoothly to the ultimate regime when Ω ∼ RcL, because the scalings
(in (4.11) and (4.20), respectively) do not match smoothly. For example, at Ω ∼
RcL the width of the current predicted by the gravity-current regime in (4.19) is too
narrow (xp ∼ R2/3

c L8/9) relative to that in the ultimate regime (xp ∼ R1/2
c L), while the

concentration scale is too large (c∼ L−1/3 relative to c∼ R1/4
c L−1/2).

A different flow regime must, therefore, fill the gap between the gravity-current
regime and the ultimate regime. Relative to the gravity-current regime, the key
difference in this transitional regime is the presence of convective instabilities above
the layer which mix up the fluid. Relative to the ultimate regime, the key difference
is that there is a significant loss of buoyancy by advection across the low-permeability
layer, rather than all of the fluid circulating above the layer without leaking across it.

In this section we briefly outline the scaling balances of the transitional regime,
beginning with a discussion of convection below the low-permeability layer. To help
frame the discussion, figure 10 shows plots of the horizontally integrated concentration
across the layer from a series of computations for different Ω . These range from
computations in the gravity-current regime with stable flow both above and below the
layer (figure 10a) to computations in the ultimate regime with well-mixed fluid above
the layer (figure 10e, f ). Between these two limits, the plots reflect the development of
instabilities first below, and then above, the layer, as will be discussed in the following
subsections.

4.5.1. Convection below the layer: Ω� L2/3

While the flow is always unstably stratified below the layer, if Ω is sufficiently
small then the fluid can flow laterally back into the central plume before the instability
has had enough time to develop into convection. A balance between the time scale for
lateral advection of the current ∼x/u and that for growth of an instability over the
depth of the current ∼z/c, together with the scalings in (4.11), suggests that the flow
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cdx/xp cdx/xp cdx/xp cdx/xp cdx/xp cdx/xp

FIGURE 10. Data from simulations with L = 1.28 × 106, showing the horizontally
integrated time-averaged concentration as a function of depth, for values of Ω increasing
from left to right by a factor of 4 between each panel, lying between (a) Ω/L2/3

= 86,
for which the flow above the layer is in the gravity-current regime, and ( f ) Ω/L= 820,
for which the flow above the layer is in the ultimate regime. The horizontal dashed line
shows the location of the low-permeability layer, and the flow above and below the layer
is steady and stable (S) or unsteady and convecting (C) in each case as marked. In
(b), convection affects the flow below the layer only in a relatively localized region near
x= 0, outside of which the flow remains steady (the simulation is the same as that shown
in figure 5).

103100 106 100 102 10410-2
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10-1

100

10-1
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Ø/L2/3 Ø/L

F d
 L

1/
3

F d
, F

a

Få Fd

¡Rc L/Ø
Fd ¡ (Ø/L5/3)1/3

(a) (b)

FIGURE 11. (a) The time-averaged diffusive flux Fd =
∫
∂c/∂z|z=0 dx across the

low-permeability layer with the scalings in the gravity-current regime, and (b) Fd and the
time-averaged advective flux Fa=−

∫
cv|z=0 dx= 1−Fd across the layer with the scalings

in the ultimate regime. The simulations have the same parameters as in figure 3. The
dashed line in (a) shows the scaling indicated, while that in (b) shows the prediction of
the model in the ultimate regime.

becomes unstable below the layer once Ω & L2/3. Curiously, this is the same scaling
of Ω as for the onset of the gravity-current regime.

Evidence for the onset of convection below the layer at this scaling can be seen in
the total diffusive flux Fd =

∫
∂c/∂z dx across the low-permeability layer (figure 11a).

As Ω is increased, profiles bend round towards the predicted diffusive flux in the
gravity-current regime Fd ∼ (Ω/L5/3)1/3 (discussed at the end of § 4.3). However, the
profiles undergo a sharp increase in slope at Ω/L2/3

≈ 200. Snapshots of the flow
reveal that this transition coincides with the onset of convection below the layer. The
transition can be understood because convection transports buoyancy efficiently away
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Plumes in a layered porous medium 883 A37-19

from the layer, causing the concentration at the layer to decrease. The concentration
gradient thus steepens, and the diffusive flux across the layer increases.

This behaviour is clearly shown in plots of the horizontally integrated concentration
across the layer (figure 10). Comparison of stable flow on both sides of the layer
(figure 10a) with unstable flow below the layer (figure 10c) demonstrates the
steepening of concentration gradients across the layer associated with the onset of
convection below it. Note that the influence of convection below the layer is confined
to the boundary-layer region just above the layer; as long as the flow remains stable
above the layer, the bulk of the gravity current remains unaffected and well described
by the model in § 4.3.

4.5.2. Convection above the layer: Ω� R3/2
c L2/3

As a result of the decrease in the concentration at the layer due to convection below
it, the concentration difference 1c over the boundary layer at the base of the gravity
current must increase. Specifically, we expect it to increase from being negligibly
small relative to the concentration scale within the current itself to being comparable
to it (compare figure 10a,c), and so 1c∼ c∼L−1/3. This boundary layer at the base of
the current will itself become unstable to convection when the local Rayleigh number,
which scales with the density difference 1c and layer depth δ∼1/v, exceeds a critical
value Rc = O(102); that is, cδ ∼ Rc or Ω ∼ R3/2

c L2/3. This is again the same scaling
with L as the onset of the gravity-current regime, although now with a large prefactor
R3/2

c .
Thus, for Ω� R3/2

c L2/3 convection acts to mix up the concentration in the current
above the layer (as seen in the blunted concentration profiles above the layer in
figure 10d–f ), disrupting the balance C(Ψ ) in the gravity current. The convective flux
associated with this mixing is 1c/δ ∼ c2/Rc, as in the ultimate regime, which must
be at least comparable to the downwards advective flux vc in order to mix up the
current. If we assume that these fluxes are balanced throughout the current in the
transitional regime, then we gain an additional constraint linking the concentration
and velocity in the current, c∼ Rcv. This constraint, together with the usual balances
of hydrostatic pressure and Darcy’s law (as in both the gravity-current and ultimate
regimes), indicates that the width, height and concentration of the current in the
transitional regime are

xp ∼ΩR−1/2
c , z∼ΩR−1

c , c∼ Rcv ∼Ω
−1/2R3/4

c , (4.36a−c)

which evolve smoothly from the gravity-current scalings in (4.11) at Ω∼R3/2
c L2/3. The

diffusive flux and the advective flux across the low-permeability layer are comparable
in this regime, and both contribute to the transport of buoyancy across the layer. Note
that the scalings in (4.36) are independent of the depth L of the layer, because, unlike
in the gravity-current regime, the concentration scale in the current is not imposed by
the incident plume, but is rather determined by a balance between convective mixing
and vertical advection throughout the current.

However, once the height of the current in (4.36b) becomes comparable with the
depth of the layer, z∼ L, the flow feels the effect of the upper boundary and can no
longer grow unimpeded. In particular, the hydrostatic pressure head required to force
fluid across the very low-permeability layer cannot continue to grow beyond this
point, which means that the advective flux must decrease as Ω is increased further,
becoming negligible relative to the diffusive flux across the layer. This transition
occurs when Ω ∼ RcL, which marks the onset of the ultimate regime discussed

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CL
, I

ns
tit

ut
e 

of
 E

du
ca

tio
n,

 o
n 

08
 Ja

n 
20

20
 a

t 1
4:

51
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

88
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.888


883 A37-20 D. R. Hewitt and others

above, with x ∼ LR1/2
c and c ∼ L−1/2R1/4

c as predicted in (4.20). The advective flux
decreases like RcL/Ω in the ultimate regime, as discussed in § 4.4 above and verified
in figure 11(b).

It is difficult to obtain clear evidence for the scalings of the transitional regime in
numerical simulations. It is, for example, difficult to discern a clear range of Ω in
figure 11(b) over which the diffusive and advective fluxes are comparable. This is
primarily because the difference between R3/2

c L2/3 and RcL is relatively small at the
values of L that are attainable in our numerical simulations. In addition, the onset
of convection above the low-permeability layer is not marked by a clear transition
at a critical value of Ω: instead, we observe in simulations that, as Ω is increased,
instabilities first form above the layer only far from the downwelling central plume,
from where they are then advected even further from the central plume and thus play
only a minimal role in mixing the fluid above the layer. As Ω is increased further,
the flow becomes unstable closer and closer to the central plume, and thus convective
mixing has a progressively greater influence on the dynamics of the flow above the
layer. We expect this gradual transition to be reflected in a gradual change in the
scalings of the data, which is difficult to observe because the values of L and Ω are
not sufficiently large.

In summary, we predict that a transitional regime lies between the gravity-current
regime of § 4.3 and the ultimate regime of § 4.4. While all three regimes involve a
basic balance between hydrostatic pressure and Darcy’s law, and are constrained to
carry a unit buoyancy flux, the key physics in each regime is different. In the gravity
current, buoyancy is transported by advection across the layer, and the concentration
structure and scale c ∼ L−1/3 are set by the incident downwelling plume. In the
ultimate regime, buoyancy is transported by diffusion across the layer, and the
circulating flow is constrained by the depth of the layer from the upper boundary
z ∼ L. In the transitional regime, both advection and diffusion contribute to the
buoyancy flux across the layer, there remains a net downwards volume flux across
the layer, and neither the incident plume nor the depth of the layer play a dominant
role in the dynamics of the flow.

5. Conclusions

In this paper, we have studied the dynamics of steady or statistically steady
buoyancy-driven plumes in a two-dimensional porous medium that contains a thin,
low-permeability horizontal barrier or layer. If the dimensionless thickness 2εL and
the permeability Π of the thin layer are small relative to the distance L to the layer
and the ambient permeability, respectively, then they can be incorporated into a single
parameter Ω = 2εL/Π that measures the layer’s impedance.

We explored the effect of the depth L and the impedance Ω on the spread of the
plume over such a layer, and the results are summarized in table 1. For Ω � L1/3,
the layer has a negligible effect on the plume; for L1/3

�Ω� L2/3 the layer affects
the pressure, but not the width, of the plume; and for L2/3

�Ω�R3/2
c L2/3 the plume

spreads as a gravity current over the layer, where Rc = O(102) is a critical Rayleigh
number. In each of these cases, we constructed analytic solutions for the spread of
the plume above the low-permeability layer.

For Ω�R3/2
c L2/3, instabilities above the low-permeability layer disrupt the flow and

mix up lower concentrations from the layer into the over-riding gravity current. The
spreading current continues to widen and deepen with increasing Ω . For Ω � RcL
the flow fills the depth of the region above the layer, diffusion becomes the dominant
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Regime NP LP GC T U
Ω L1/3 L2/3 R3/2

c L2/3 RcL

xp ∼ L2/3 L2/3 Ω2/3L2/9 R−1/2
c Ω R1/2

c L
c∼ L−1/3 L−1/3 L−1/3 R3/4

c Ω−1/2 R1/4
c L−1/2

u∼ L−2/3 ΩL−1 Ω−1/3L−1/9 R1/4
c Ω−1/2 R−1/4

c L−1/2

z∼ — L2/3 Ω1/3L4/9 R−1
c Ω L

TABLE 1. A summary of dimensionless scalings for the different regimes of flow over a
low-permeability layer for L� 1: negligible perturbation to the plume (NP: § 4.1); local
perturbation to the plume (LP: § 4.2); gravity current (GC: § 4.3); transitional regime (T:
§ 4.5); and the ‘ultimate’ regime (U: § 4.4). Boundaries between the regimes are given by
the scalings shown for the impedance Ω . The table gives scalings for the width xp of
the plume at the low-permeability layer, together with the concentration c and horizontal
velocity u at the layer and the height scale z over which the flow above the layer is
affected.

buoyancy transport across the layer, and the flow becomes independent of Ω . We also
constructed an analytic solution for the time-averaged flow above the layer in this
‘ultimate’ regime.

The physical implications of these results are clearer if we work in dimensional
variables, considering a plume of buoyancy flux B falling across a thin horizontal layer
located at a depth L∗. Recall that the advection–diffusion length ẑ= φD2µ/(ρ0αgk∗0B)
was used as the length scale in this work, and so the dimensionless depth L=L∗/ẑ can
be thought of as a Rayleigh number for the plume. The thin layer has dimensionless
impedance Ω = 2εL∗/ẑΠ , written in terms of the layer width 2εL∗ and permeability
ratio Π . If Ω� (L∗/ẑ)2/3, the layer has a negligible impact on the spread of the plume,
and the half-width of the plume at the layer is x∗p≈ 4.1 L∗2/3ẑ1/3. If instead (L∗/ẑ)2/3�
Ω � R3/2

c (L∗/ẑ)2/3, the plume spreads as a gravity current over the layer, with x∗p ≈
1.4Ω2/3L∗2/9ẑ7/9. If Ω�RcL∗/ẑ, convection away from the layer and diffusion across
it control the spread of the plume, and its mean half-width x∗p≈ 5.3 L∗ scales with the
distance to the layer.

As an illustration of these results, we consider the effect on a plume of CO2-
saturated brine falling through a saline aquifer in the context of CO2 sequestration.
The driving buoyancy fluxes and convective velocities are typically slow in this
context: a relatively high-permeability aquifer (k∗0 = 3 × 10−12 m2), for example,
yields a typical convective velocity scale of U ≈ 10−6 m s−1 for this setting (using
parameter estimates taken from the Sleipner field in the North Sea (Hewitt et al.
2013)). Given a molecular diffusivity D = 10−9 m2 s−1 and ignoring the effects of
dispersion (discussed below), the advection–diffusion length scale is thus ẑ ≈ 1 mm.
Suppose a thin layer of width 2ε∗= 10 cm lies a distance L∗= 10 m below the source
of dense CO2-saturated brine, so that L = 104. If the thin layer has a permeability
five times less than that of the aquifer, it will have a negligible effect on the spread
of the plume and x∗p ≈ 2 m at the layer. If, instead, the thin layer has a permeability
500 times less than that of the aquifer, or even lower, it will have a dramatic effect
on the layer: all the buoyancy will be transported across the layer by diffusion and
the plume will spread to x∗p ≈ 50 m. Alternatively, if both layer and aquifer were ten
times larger, so that 2ε∗= 1 m and L∗= 100 m, the layer would only have to be half
the permeability of the aquifer to affect the spread of the plume, but 700 times less
permeable to prevent advective transport.
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The results of this work apply to a two-dimensional plume, and the extension
to axisymmetric flow provides a natural future direction of study. One might
also consider extending these models to include the effects of velocity-dependent
dispersion, which can play an important role in the spreading of plumes (Sahu &
Flynn 2015, 2016). Perhaps the most interesting extension to this work, however,
would be to explore how the presence of multiple low-permeability layers affects
the spread of a plume, particularly given that multiple stacked layers are common
in geological settings. In particular, one might ask whether lower layers provide
appreciable feedback on the dynamics of the plume at higher layers. An initial
exploration of this question suggests that a system of multiple layers can give rise
to a wealth of interesting dynamics, the investigation of which will be the subject of
future work.

Appendix A. Numerical details
A.1. Numerical modelling

We solved the equations (2.9)–(2.10), together with the jump condition for flow
across a thin low-permeability layer (2.14), numerically. To achieve this, we assumed
symmetry conditions in the line x = 0 and worked in a finite numerical domain
0 6 x 6 lx and 0 6 y 6 ly, for some lx and ly. At the side boundary x= lx, which was
chosen to lie far from the extent of the plume, the pressure and solute concentration
were uniform and so v ≡ ∂ψ/∂x= c= 0.

The buoyancy source was imposed numerically on the upper boundary (y = 0) by
a fixed non-zero vertical concentration gradient over a small region 06 x< xb, where
xb� L was chosen to be equal to a few horizontal grid lengths δx. The entire upper
boundary was also impermeable, so

∂c
∂y
=

{
−1/(2xb) 0 6 x< xb,
0 xb 6 x; v =ψ = 0 on y= 0. (A 1a,b)

Numerical solutions were checked to ensure that they were insensitive to the precise
value of xb. On the lower boundary of the domain we imposed

u≡−
∂ψ

∂y
= 0;

∂c
∂y
= 0 on y= ly, (A 2a,b)

so that concentration could advect out but not diffuse back in. The boundary ly was
chosen to lie far below the low-permeability layer (in all cases, at least a distance of
6L below the layer).

In order to generate steady or statistically steady plume solutions, we solved the
full time-dependent equations (2.9)–(2.10), starting either from rest with c(t= 0)= 0
throughout the domain, or from a statistically steady solution for the same value of
L but with a different impedance. The second initial condition led to more rapid
convergence to a new statistically steady state than the first.

The numerical method used a Fourier transform in the x direction, a standard
second-order finite-difference discretization in the y direction, and an alternating-direc-
tion-implicit time-stepping scheme. We employed a flux-conservative discretization,
with the streamfunction and concentration located on staggered grids, and a coordinate
transformation in the vertical direction to ensure that the dynamics near the upper
boundary and at any internal boundaries were fully resolved without prohibitive
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Ó

FIGURE 12. (a) The width xp(Π) of the plume as defined by (3.1) from simulations in
which the low-permeability layer is fully resolved, for L = 5 × 103 and different layer
thicknesses ε as marked. (b) The same data plotted as a function of the impedance Ω =
2εL/Π , together with solutions of the model with a jump condition at the layer (thick
red dots and dashes).

computational cost. For the lowest values of the distance to the layer L and the
impedance of the layer, we used approximately (256 300) grid points in the (x, y)
directions, while for the most extreme parameter settings, we used approximately
(40 962 000). In all cases, we ensured that boundary layers and narrow ‘proto-plumes’
were still well resolved in the vertical and horizontal directions, respectively.

A.2. Resolving the low-permeability layer
In § 2.3, we showed that the low-permeability layer can be parameterized by a jump
condition at y = L and an effective impedance Ω in the limit ε, Π � 1. Here we
verify this parameterization by presenting numerical results from simulations in which
the full low-permeability layer of finite depth 2εL and permeability Π was resolved.
Continuity of pressure at the edges of the layer indicates that the horizontal velocity
jumps according to

u|z=(εL)− =Πu|z=(εL)+, u|z=−(εL)+ =Πu|z=−(εL)− . (A 3a,b)

We imposed these jumps directly by replacing the relevant rows of the discretized
derivative matrix in the y direction with conditions that enforce the required jump in
the vertical gradient of the streamfunction.

Figure 12(a) shows values of the width of the plume immediately above the layer xp
from simulations with different values of Π and ε. As expected, the width increases as
the thickness ε of the layer is increased and as the permeability Π is decreased. The
data collapse when plotted as a function of Ω (figure 12b), and they agree well with
results from a simulation in which the layer is parameterized by the jump condition
(2.14).

Appendix B. Solution for the plume perturbation: L1/3
�Ω� L2/3

Equation (4.10) describes the plume perturbation near the layer. Under the
transformation Q(X, Z) = P(X, Z) cosh X/(3β3), (4.10) reduces to the Helmholtz
equation

∂2Q
∂X2
+
∂2Q
∂Z2
=Q; Q(X, 0)= sech X. (B 1a,b)

A Fourier transform in the X direction gives

Q̃(k, Z)= Q̃0(k)e−Z
√

1+k2
, (B 2)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CL
, I

ns
tit

ut
e 

of
 E

du
ca

tio
n,

 o
n 

08
 Ja

n 
20

20
 a

t 1
4:

51
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

88
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.888


883 A37-24 D. R. Hewitt and others

where

Q̃0 =

∫
∞

−∞

e−ikX

cosh X
dX =

π

cosh (πk/2)
. (B 3)

The leading-order pressure is thus

P(X, Z)=
3β3

2 cosh X

∫
∞

−∞

eiXk−Z
√

1+k2

cosh (πk/2)
dk=

3β3

cosh X

∫
∞

0

cos (Xk)e−Z
√

1+k2

cosh (πk/2)
dk, (B 4)

which we compute numerically. The corresponding horizontal velocity is U = −PX ,
and is shown in figure 4 together with contours of the pressure P. Both quantities
decay to zero as Z→∞, where the pressure and horizontal velocity of the plume are
much smaller.
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