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Key Points:6

• We carry out numerical and theoretical analysis of an idealised model of tidally7

driven hydrothermal activity inside Enceladus.8
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lies at the bottom of Enceladus’ subsurface ocean.12
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Abstract13

Recent planetary data and geophysical modelling suggest that hydrothermal activity is14

ongoing under the ice crust of Enceladus, one of Saturn’s moons. According to these mod-15

els, hydrothermal flow in the porous, rocky core of the satellite is driven by tidal defor-16

mation that induces dissipation and volumetric internal heating. Despite the effort in17

the modelling of Enceladus’ interior, systematic understanding—and even basic scaling18

laws—of internally-heated porous convection and hydrothermal activity are still lack-19

ing. In this article, using an idealised model of an internally-heated porous medium, we20

explore numerically and theoretically the flows that develop close and far from the on-21

set of convection. In particular, we quantify heat-transport efficiency by convective flows22

as well as the typical extent and intensity of heat-flux anomalies created at the top of23

the porous layer. With our idealised model, we derive simple and general laws govern-24

ing the temperature and hydrothermal velocity that can be driven in the oceans of icy25

moons. In the future, these laws could help better constraining models of the interior26

of Enceladus and other icy satellites.27

Plain Language Summary28

Enceladus, one of Saturn’s icy moons, is known from planetary data to be the site29

of ongoing hydrothermal activity. According to recent modelling, this activity is driven30

by tidal distortion throughout its porous rocky core, which causes friction and induces31

volumetric heating. As subsurface water penetrates through the core, it warms, rises,32

and returns into the ocean through localised hotspots. We introduce an idealized model33

of this hydrothermal circulation in order to understand the formation of hot spots, their34

typical size and their activity. We find that the hydrothermal flow in the porous core35

of Enceladus is about a few centimetres per year and is thus much slower than circula-36

tions in the Earth’s ocean crust. As a result, the timescale for hotspot activity variations37

is as long as a few million years. Despite the slowness of the circulation, we predict that38

it drives oceanic plumes with velocity of the order of one centimetre per second.39

1 Introduction40

Enceladus, a 500 km-diameter icy satellite orbiting Saturn, has drawn a lot of at-41

tention since the first flybys operated by the Cassini probe in 2005. Pictures and in situ42

astrochemical measurement have revealed the presence of a water-vapour and ice plume43

ejected into outer space. It emerges along fractures in the ice crust at the south pole of44

Enceladus and is associated with a large heat-flux anomaly of 12.5 GW (Spencer et al.,45

2006, 2018). Subsequent analyses have revealed that the ejected material contains sil-46

icate particles of nanometric size whose chemistry indicates that the water contained in47

the plume has been previously hot, liquid, and in contact with silicate rocks (Hsu et al.,48

2015; Sekine et al., 2015). Enceladus’ plumes have since then been interpreted as evi-49

dence for hydrothermal activity occurring below the ice crust of Enceladus. This is a sur-50

prising implication because, unlike the Earth, Enceladus has radiated away all its ini-51

tial heat, and its small size makes internal heating by radiogenic elements insufficient52

to explain the abnormal heat flux (Nimmo & Pappalardo, 2016; Choblet et al., 2017).53

Building on the recent study of Lainey et al. (2017), Choblet et al. (2017) have re-54

cently proposed a self-consistent model to explain the hydrothermal activity based on55

internal heating by tides in Enceladus’ water-saturated porous core. This model relies56

on recent findings regarding the interior of Enceladus. Underneath its ice crust, this satel-57

lite comprise a global subsurface ocean, with thickness varying from 30 to 50 km (Thomas58

et al., 2016). Below lies a core made of rocky material that remains undifferentiated and59

uncompacted owing to to the weakness of Enceladus’ gravity field (Roberts, 2015; Choblet60

et al., 2017). The core is thus permeated with the water of the ocean; Choblet et al. (2017)61

estimate that the porosity ranges from 20 to 30% for a water-filled rocky core. Lastly,62
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intense internal heating (Lainey et al., 2017) due to tidally-induced deformation and fric-63

tion heats the water and creates a porous flow with hot and narrow upwelling zones, pos-64

sibly leading to hot spots of water flowing into the ocean (Choblet et al., 2017).65

Hydrothermal convection with internal heating is only a relatively recent feature66

of thermal evolution models (Travis et al., 2012; Travis & Schubert, 2015), and it is in67

general driven by radiogenic heating or serpentinisation rather than tidal deformation68

(Nimmo & Pappalardo, 2016). However, interior models of icy moons deal with very poorly69

constrained parameters, for instance the permeability of the core for which a range of70

orders of magnitudes is plausible (Travis & Schubert, 2015; Choblet et al., 2017). De-71

spite systematic studies covering a wide range of parameters (Choblet et al., 2017), gen-72

eral scaling laws predicting the size and intensity of heat-flux anomalies, the typical tem-73

perature or hydrothermal velocity and their dependence to physical parameters are still74

lacking. By investigating a basic model for internally-heated porous convection, we aim75

to derive these scaling laws, which could prove useful to better constrain the planetary76

data available for Enceladus or to build thermal-evolution models of icy moons more gen-77

erally (Travis et al., 2012; Travis & Schubert, 2015).78

In the present article, we thus explore systematically internally-heated porous con-79

vection close to and far from the onset of motion with numerical simulations and math-80

ematical analysis. We use an idealised two-dimensional Cartesian model of a water-saturated81

porous layer with internal heating in order to reduce the complexity of the system as much82

as possible while retaining the key physical ingredients, which are internal heating and83

an open-top boundary. This kind of approach has a long history of use in convection stud-84

ies. The canonical model to study heat transport by convection is the Rayleigh-Bénard85

set-up (a confined porous layer heated from below and cooled from the top) which has86

received a significant amount of study (Otero et al., 2004; Hewitt et al., 2012, 2014; He-87

witt & Lister, 2017). The more closely related case of Earth-like hydrothermal systems88

with a bottom heat flux and open top boundary has also been widely studied (see for89

instance Fontaine and Wilcock (2007); Coumou et al. (2008, 2009)). However, the re-90

sults of these investigations are unlikely to apply to tidally-driven hydrothermal circu-91

lation because of either unsuitable boundary condition or the nature of the heat source.92

Very few systematic experimental and numerical studies have been devoted to internally-93

heated porous convection. Those that have are focused mostly on the onset of motion94

and average heat transport (Buretta & Berman, 1976; Nield & Kuznetsov, 2013; Hardee95

& Nilson, 1977; Kulacki & Ramchandani, 1975). Hence, these studies do not allow the96

derivation of scalings governing, for instance, the typical extent of upwelling zones or the97

associated thermal anomalies and fluid velocities, in the case of tidally-driven hydrother-98

mal activity. That is our aim here.99

In common with numerous convection set-ups, we find that the intensity of heat-100

transporting motion is characterised by only one dimensionless number, the Rayleigh num-101

ber, noted Ra, which increases with volumetric heat production, permeability and core102

radius. Performing numerical simulations and asymptotic analysis, we find that the typ-103

ical size of thermal anomalies is proportional to Ra−1/2, owing to a balance between ad-104

vection, heat production and advection. As a consequence, the plumes driven in the ocean105

by thermal anomalies have a buoyancy scaling like Ra3/2. When quantified for ranges106

of parameters that are expected for Enceladus, we predict typical Darcy fluxes in the core107

of at most 10 cm per year, while hydrothermal velocities are expected to reach about 1108

cm.s−1.109

This paper is organised as follows. A first part is devoted to introducing our ide-110

alised model for an internally-heated, saturated porous layer and identifying the rele-111

vant dimensionless parameters. We then carry out a stability analysis to determine the112

conditions under which convection happens. Afterwards, we describe and analyse nu-113

merical simulations of internally-heated porous convection, focusing in particular on the114

structure of the flow and the associated thermal anomalies. Lastly, we apply the laws115
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Porous layer
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No (advective/conductive) flux

Figure 1. An idealised two-dimensional model to describe porous convection inside core in
interaction with the subsurface ocean in an icy moon of the type of Enceladus. The bottom of
the porous layer models the centre of the moon, there is no heat and mass flux at this height.
Mass exchange between the ocean and the porous core are allowed with a free vertical velocity at
the top.

derived from our idealised model to Enceladus to quantify the temperature anomalies116

and the typical hydrothermal velocities that can be induced in its ocean.117

2 A simple model for the interior of icy moons118

2.1 The model and its governing equations119

We consider an idealised model of tidally-driven convection inside icy moons of the120

type of Enceladus to focus on the effect of two fundamental ingredients: internal heat-121

ing and an open top boundary. We thus make a series of simplifying approximations.122

First, rather than modelling the full fluid system, comprising the water-saturated core123

and the ocean, we consider only the core, and we parametrise the core–ocean interac-124

tion via boundary conditions that will be specified below. Second, we consider a two-125

dimensional Cartesian model instead of modelling a full sphere. Third, we treat the grav-126

itational field as constant in space, although it should increase away from the centre of127

the moon, and we consider either constant or horizontally varying internal heat gener-128

ation, although it, too, should vary with depth. We treat all other parameters, includ-129

ing the permeability, as constants. We will return in section 6 to consider and discuss130

the effect of some of these assumptions, as we apply our general findings and scalings131

to the case of Enceladus.132

We thus consider a two-dimensional porous core of (uniform) permeability k, which
is saturated with water of viscosity µ. It lies beneath an ocean that we assume to be well
mixed with a global temperature T0 (see figure 1). The volume (or Darcy) flux U = (U,W )
inside the porous core is modelled by Darcy’s law,

U =
k

µ
(−∇P + ρg) (1)

where P is the pressure, ρ is the density of water and g is the gravity field, pointing in
the z direction. Note the the volume flux U is related to the fluid velocity Uf by the
porosity φ of the matrix such that U = φUf . In addition to Darcy’s law, the flow is
assumed to be incompressible, so that the volume flux must also satisfy a continuity equa-
tion,

∂xU + ∂zW = 0 . (2)

Water motion inside the core is driven by buoyancy and temperature differences.
We model the effects of temperature on density assuming linear expansion of the fluid
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with temperature under the Boussinesq approximation, such that ρ = ρ0(1 − α(T −
T0)) where ρ0 is a reference density and α the thermal expansion coefficient. Darcy’s law
may thus be written as,

U =
k

µ
(−∇P ′ + ρ0gαΘez) (3)

where P ′ = P + ρ0gz and Θ ≡ T − T0. Since the flow is driven by thermal anomalies
Θ, we must introduce an equation modelling the transport of heat inside the porous medium.
This is achieved using thermal energy conservation, in which a source term accounting
for volume heat production is included (Nield & Bejan, 2013; Souček et al., 2014):

φ∂tΘ+U ·∇Θ = κ∇2Θ+ q (4)

with κ the volume-averaged heat diffusivity inside the porous medium (i.e. of both wa-
ter and the porous matrix together), φ a modified porosity and q is the internal heat source
term. Under the assumption of local thermal equilibrium between the fluid and the ma-
trix, the modified porosity φ and the volume-averaged diffusivity are combinations of
the porosity, φ, the heat capacity per unit of mass of the matrix and water, cm and c0,
and the density of the matrix and water, ρm and ρc, such that

φ =
(1− φ)ρmcm + φρ0c0

ρ0c0
and κ =

(1− φ)λm + φλ0
ρ0c0

, (5)

(Nield & Bejan, 2013; Souček et al., 2014), where the λm,0 are the heat conductivity of133

the matrix and water. The source term q is related to the volumetric heat production134

by tidal heating QV via q = QV /(ρ0c0). In this paper, we consider two idealised lim-135

its: either QV is constant or it is assumed to vary laterally (i.e. in x) to model tidal heat-136

ing inhomogeneities.137

2.2 Boundary conditions138

Throughout this work, we impose periodic boundary conditions in the horizontal
direction. The bottom of the porous layer roughly corresponds to the core centre, and
so we assume that there is no heat or mass flux crossing the bottom boundary, that is:

∂zΘ(z = 0) = 0 and W (z = 0) = 0 (6)

The top of the layer at z = h is in contact with the ocean and must allow mass exchange
between the core and the ocean. This is achieved by imposing a purely vertical veloc-
ity at the top, i.e. :

U(z = h) = 0 . (7)

The two layers are also thermally coupled, and we consider two possible boundary con-
ditions for θ on the upper boundary. One first natural choice is to impose the temper-
ature (on the upper boundary) to be the temperature of the ocean, i.e. ,

Θ(z = h) = 0 (8)

However, in this case, the advective heat flux driving hydrothermal activity WΘ(z =
h) across the interface would vanish, which seems at odds with the idea that the water
coming out the porous layer may drive a buoyant plume rising in the ocean. We could
alternatively use another boundary condition where the temperature of water is left un-
changed as it leaves the porous layer, while water enters with the imposed temperature
of the ocean, that is, {

∂zΘ(z = h) = 1 if W > 0
Θ(z = h) = 0 else. (9)

Such a boundary condition is a standard parametrisation of core–ocean interactions (Rabinowicz139

et al., 1998; Monnereau & Dubuffet, 2002; Cserepes & Lenkey, 2004; Choblet et al., 2017).140
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The thermal boundary conditions (8) and (9) may be regarded as two end-members141

of the fully coupled problem of the core–ocean interaction. In the case of slow ascent in142

the porous medium, diffusion from the ocean inside the core causes the temperature in-143

side the porous medium to drop in the top boundary vicinity. Conversely, if the upwelling144

is fast, diffusion is not able to affect the temperature inside the ascending plume. As a145

side note, intermediary situations where ∂zΘ(z = h) = −β with β > 0 could also be146

considered. Nevertheless, choosing between the two boundary conditions or parametri-147

sation of β would require a demanding study of the fully coupled system involving both148

the ocean and the porous core. We instead carry out two sets of simulations using ei-149

ther boundary conditions (8) and (9). We will find that the choice of boundary condi-150

tion does not significantly affect the flow in the interior of the core.151

2.3 Scaling the problem: dimensionless equations152

First, all considered lengths are normalised by the height of the porous layer h. We
must also define volume flux and temperature scales, respectively denoted as U∗ and Θ∗.
Darcy’s law (3) gives a simple relation between these two scales,

U∗ =
k

µ
ρ0αgΘ

∗ . (10)

Unlike in, say, Rayleigh-Bénard set-up, the temperature scale Θ∗ is not naturally im-
posed in the internally heated problem. We predict that in the non-linear regime, heat
production and advection will be the dominant balance in (4), leading to the following
relation between the velocity and temperature scales,

U∗Θ∗ = hq . (11)

Both scales then can be written as a function of physical parameters as follows:

U∗2 =
k

µ
ρ0αghq and Θ∗ =

√
µhq

kρ0αg
(12)

Given these scales, we find that the system is governed by only one dimensionless pa-
rameter, a Rayleigh number comparing the relative importance of advection and diffu-
sion,

Ra ≡ hU∗

κ
=

(
kαg

κν

qh2

κ
h

)1/2

. (13)

Note that other definitions have been considered for the Rayleigh number, depending153

in particular on the expected balance at play. For instance, Buretta and Berman (1976)154

choose volume flux and temperature scales based on an advection and diffusion balance,155

rather than a balance between advection and heat production consider in (11), leading156

to a Rayleigh number Rabb = Ra2.157

Introducing the dimensionless temperature θ = Θ/Θ∗, volume flux u = U/U∗,
the dimensionless governing equations for a porous layer with internal heating are:

∇ · u = 0
u = −∇p+ θez

∂tθ + u ·∇θ =
1

Ra
∇2θ + 1

(14)

where time is normalised by φh/U∗ and pressure is rescaled by µU∗/(hk). The flow be-
ing incompressible and two-dimensional, it is convenient to introduce a stream function
ψ such that u = ∇× (−ψey). The governing equations (14) become{

∇2ψ = − ∂xθ

∂tθ + ∂zψ∂xθ − ∂xψ∂zθ =
1

Ra
∇2θ + 1.

(15)
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Lastly the vertical boundary conditions are

w(z = 0) = u(z = 1) = ∂zθ(z = 0) = 0, (16)

and either

BC 1: θ(z = 1) = 0 , or (17)

BC 2:
{

∂zθ(z = 1) = 1 if w > 0,
θ(z = 1) = 0 else, (18)

for the temperature. Note that the boundary conditions on the volume flux translate into158

∂zψ(z = 1) = ψ(z = 0) = 0. Lastly, the domain is periodic in the x direction.159

2.4 Numerical modelling160

We study this problem numerically with the code developed by (Hewitt et al., 2012).161

At each time step, Darcy’s law is used to determine the stream function using Fourier162

transform in the horizontal direction and second order finite differences in the vertical163

direction. The time evolution of the advection-diffusion equation is solved using an al-164

ternating direction implicit scheme (Press et al., 1992). The diffusion term is discretised165

using standard second-order accurate finite differences and the use of two staggered grids166

for the stream function ψ and the temperature field θ allows flux-conservative discreti-167

sation of the advection term. The finite difference in time is second-order accurate as168

well. Anticipating strong gradients near the boundaries, a vertical stretched grid is im-169

plemented to ensure the boundary layers are well resolved. The numerical discretisation170

of equations (15) is tested in section 3.171

3 The onset of convection172

In this section, we investigate both theoretically and numerically the critical value
of the Rayleigh number Ra above which a convective instability develops. The steady,
purely diffusive base (u = 0, θb) state on which the instability develops is

θb(z) =
Ra

2

(
1− z2

)
(19)

regardless of the upper thermal boundary condition. We look for perturbations to the
base state of the form (Drazin, 2002) :

ψ = ψ1(x)e
σt and θ = θb + θ1(x)e

σt (20)

such that |ψ1|, |θ1| ≪ θb. The exponential terms allow to account for the existence of
convective instability characterised by Re(σ) > 0. Using the ansatz (20), equations (15)
to leading order in ψ1, θ1 yield the following single, fourth-order differential equation on
the stream function:

∇4ψ1 = Raσ∇2ψ1 − zRa2∂xxψ1. (21)

The invariance under translation along the x-axis allows further simplification by assum-
ing that ψ1 is a plane wave in x, that is ψ1 = ψ̂1(z) exp(ikx). Equation (21) with the
plane wave assumption yields the following ordinary differential equation for the func-
tion ψ̂1:

ψ̂
′′′′

1 − (2k2 +Raσ)ψ̂
′′

1 + (k4 +Raσk2 − zRa2k2)ψ̂1 = 0 (22)

where σ is an unknown eigenvalue. We solve numerically the one-dimensional bound-173

ary value problem (22) using BC 1 in (17). (In fact, for this onset problem, BC 2 (18)174

gives an ill-posed system.) We find the lowest value of the Rayleigh number for which175

σ = 0 to be Ra = Rac ≃ 5.894 at k = kc ≃ 1.751. Such a value for the critical176

Rayleigh number is close to the value 5.72 found experimentally and theoretical by Buretta177
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Figure 2. (a) and (b): Vertical structure functions of the stream function ψ̂1 and θ̂1 of the
marginal mode obtained by solving the boundary value problem (22) (black line) and extracted
from a direct numerical simulation of the instability close to the threshold (Ra−Rac ≃ 3× 10−2).
(c) Temperature field (θ1) and streamlines (iso-contours of ψ1) of the unstable mode at the onset
of convection.

and Berman (1976) in a system with closed boundary conditions. The marginal mode178

and its vertical structure functions (ψ̂1 and θ̂1) are shown in figure 2. The mode com-179

prises a half-roll structure, with strong horizontal flow at the lower boundary and strong180

vertical flow at the upper boundary. The temperature deviation is maximised roughly181

half-way up the roll.182

We use this theoretical investigation of the onset of convection to benchmark the183

numerical code. Simulations were carried out at values of the Rayleigh number Ra very184

close to the onset (|Ra−Rac| ≤ 10−1 typically). The horizontal extent of the domain185

is chosen to match approximately twice the wave length of the marginal mode. Compu-186

tations were initiated with a small perturbation to the diffusive temperature profile (19).187

We observed an exponential growth or decay of the amplitude of the perturbation to the188

diffusive base state and found accurate reproduction of both the critical Rayleigh num-189

ber and the growth or decay rate of the most unstable mode for nearby values of Ra.190

Figure 2 shows the excellent agreement between the theoretical and the computed ver-191

tical structure functions θ̂1 and ψ̂1.192

4 Non-linear heat transport by convection193

In the following section, we investigate heat transport by convection for larger val-194

ues of Ra. We first describe qualitatively the organisation of the flow as Ra is increased.195

We then show quantitatively that non-linear heat transport is dominated by advection,196

which constrains the typical size of hot plumes and thermal anomalies. We use both ther-197

mal boundary conditions (17) and (18) to find that the difference between them is neg-198

ligible for large enough values of Ra.199

4.1 Numerical process200

Prior to delving into the results of the simulations, we explain how a typical nu-201

merical simulation is carried out. The simulations are initialised with random noise at202

a certain Rayleigh number Ra. After the initial growth of the instability, the flow reaches203

a statistically steady state. It is assessed by computing at each time step the mean of204

the maximum temperature since the start of the simulation: such a cumulative average205

converges towards a constant once the statistically steady state is reached. The simu-206

lation is terminated once the steady state has lasted for 300 time units. The Rayleigh207

number is then switched to a new value, and the simulations is initiated with the last208
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Boundary conditions Aspect ratio L Rayleigh number range Resolution (nx × nz)

BC 1, 2 4 6-20 128× 300
20-100 256× 300
100-770 512× 400
550-2000 1024× 500
3000-10000 2048× 500

BC 2 3 6-20 128× 300
20-100 256× 300
100-770 512× 400
550-2000 1024× 500
3000-10000 2048× 500

BC 2 8 6-20 256× 300
20-100 512× 300
100-770 1024× 400
550-3000 2048× 500

Table 1. Table of all the numerical simulations carried out indicating the nature of the bound-
ary condition, the aspect ratio of the domain, the range of Rayleigh numbers and the associated
horizontal (nx) and vertical (nz) resolutions. Note that the resolution is increased close to the
boundaries by the use of a stretched vertical grid.

state of the previous one plus a small noise disturbance. A summary of all the numer-209

ical simulations that have been carried out is given in table 1.210

4.2 Flow structures and organisation211

To introduce the non-linear behaviour of the instability driven by internal heat-212

ing, we first to illustrate typical flow patterns observed at different Rayleigh numbers.213

Figures 3 displays typical snapshots of the temperature field. At low Rayleigh number,214

i.e. for Rac ≤ Ra < 20, the convection reaches a steady state with few plumes, be it215

for boundary condition BC 1 or BC 2 (see figure 3a). Similar to the unstable mode at216

threshold, these plumes consist of half-rolls, although with steeper vertical gradients at217

the top boundary in the case of BC 1. For larger Rayleigh numbers (see 3b), the flow218

exhibits an unsteady chaotic behaviour where usually two modes with different number219

of plumes alternate, thus inducing chaotic merging and growth of plumes. This situa-220

tion ceases for Ra ≃ 600, at least for an aspect ratio L = 4: higher values of the Rayleigh221

number give rise to steady solutions with a large number of narrow plumes (see figure222

3c)223

The only noticeable difference between the two boundary conditions is the existence224

of a thin thermal boundary layer when the top temperature is imposed (BC 1). Its thick-225

ness, of order Ra−1, is set by a balance between vertical advection and diffusion. In ad-226

dition, the high degree of similarity between the simulations carried out with different227

boundary condition suggests that the mixed boundary condition (BC 2) is reliable. Note228

that this is not the case below the threshold of the instability where flows that are highly229

sensitive to initial condition are observed. We therefore choose to use both boundary con-230

ditions in the study detailed hereafter, as long as Ra > Rac. Lastly, note that in these231

snapshots θ = O(1), which confirms that the balance between advection and heat pro-232

duction drives the dynamics, a balance that was foreseen in section 2.3.233
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Figure 3. Snapshots of the temperature field θ at Ra = 29, 360 and 2000 for boundary con-
dition BC 1 (top) and BC 2 (bottom), taken once a statistically steady state is reached. The
flow exhibits chaotic behaviour for the two lowest values of the Rayleigh number, and is steady
at Ra = 2000. Apart from the thin top boundary layer, both boundary conditions (17) and (18)
overall produce the same flow. The difference in the plume number at Ra = 2000 between the
two boundary conditions is rather due to the simultaneous stability of different modes.

4.3 Advective heat transport234

The qualitative analysis of snapshots carried out in the preceding section indicates235

that advection dominates heat transport. We propose in the following a quantitative anal-236

ysis of the flow to support this assertion, in particular of the vertical temperature and237

heat flux profiles. This analysis will allow us to compare internally heated porous con-238

vection with the more classical Rayleigh-Bénard problem via the introduction of a gen-239

eralised Nusselt number.240

4.3.1 The mean temperature scale241

It has been noted in the preceding section that the typical values of the temper-242

ature field remain of O(1). To better quantify this observation, we introduce a dimen-243

sionless temperature scale ∆θ = θ(z = 1) − θ(z = 0), where the operation · denotes244

horizontal and temporal average in the statistically steady state. Typical profiles of the245

horizontally averaged temperature are shown in figure 4a. The average temperature is246

a decreasing function of height that converges towards an asymptotic profile at high Rayleigh247

number. We note again the strong similarity between the two boundary conditions, es-248

pecially at large Rayleigh numbers where they only differ by the presence of the top ther-249

mal boundary layer. The temperature scale ∆θ is also plotted in figure 4 as a function250

of the Rayleigh number for all simulations. We note it is well below the diffusive scal-251

ing ∆θ ∝ Ra even very close to the threshold of the instability. ∆θ = O(1) is a sig-252

nature of efficient transport and vertically mixing of the thermal energy by the convec-253

tive flows. In addition, we note a marked decrease of ∆θ at Ra ≃ 600, which corresponds254

to the transition from the chaotic to the steady regime. It indicates that the steady flow255

is even more efficient at transporting heat out of the system. Anomalous points may how-256

ever be noticed; they are due to the locking of the simulation on a particular mode (i.e. a257

flow with a certain number of plumes) that remains stable as the Rayleigh number is slightly258

increased. We found that starting from a different initial condition at the same Rayleigh259

number can give steady states with a different number or plumes, which suggests that260

the past history of the system has some influence on its current state.261
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Figure 4. (a) Averaged temperature profiles θ(z) for different Rayleigh numbers and both
boundary conditions and aspect ratio L = 4. At large Ra, the profiles given by BC 1 and BC
2 are strikingly similar apart from the upper boundary layer for BC 1. Note the emergence of a
thermal boundary layer at z = 0 where the heat that is produced locally is carried away through
diffusion only. Although it creates sharp variations, the bottom boundary condition θ

′
(0) = 0

remains satisfied even when rapid variations are observed at Ra = 3000. (b) Mean temperature
difference between the bottom and the top of the porous layer Θ∗ as a function of the Rayleigh
number Ra, for all simulations carried out with BC 1 (top) and BC 2 (bottom). The errorbars
correspond to the standard deviation over time of the average temperature difference. The diffu-
sive temperature difference ∆θ = Ra/2 is shown for comparison (dashed line). The vertical line
marks the critical Rayleigh number Rac.

Figure 5. (a) Vertical variations of the horizontally-averaged advective heat flux wθ(z), for
boundary condition BC 1 (left) and 2 (right) and aspect ratio L = 4. Again, we note the sim-
ilarity between the two boundary condition in the bulk of the porous medium. The asymptotic
law wθ = z (25) is given for reference. (b) Plot of the Nusselt number Nu as a function of the
Rayleigh number Ra for all simulations carried out with boundary conditions BC 1 & 2 (top and
bottom panels respectively). The errorbars correspond to the standard deviation in time of the
instantaneous Nusselt number N(t) (see equation (26)).
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4.3.2 The advective flux262

To further quantify heat transport in the strongly non-linear regime, we consider
here the vertical heat flux, defined as

J = wθ − 1

Ra

∂θ

∂z
, (23)

which comprises an advective and a diffusive contribution. Time-averaged thermal en-
ergy conservation (14) prescribes a balance between vertical heat transport and volumet-
ric heat production such that:

dJ

dz
= 1, that is J(z) = z. (24)

In the asymptotic regime of high Rayleigh number, we expect that the heat produced
is carried away by advection only, apart from the thermal boundary layer when it ex-
ists. In the bulk of the porous medium, we thus expect

wθ(z) = z . (25)

As can be noticed in figure 5, the advective heat flux is well described by the asymptotic263

law (25) even at Rayleigh numbers as low as Ra = 29. For BC 1, this agreement breaks264

down near the upper boundary where θ = 0: the advection flux in the bulk is converted265

into a conductive heat flux over a boundary layer of depth O(Ra−1) which follows from266

equation (23).267

4.3.3 Nusselt number268

It is interesting to assess how efficient the convecting system is at transporting heat
relative to purely diffusive transport. It is quantified by a Nusselt number N that pro-
vides a comparison between the total heat flux (including advective and diffusive con-
tributions) and the diffusive heat flux (see e.g. Goluskin (2016)),

N(t) ≡
⟨
wθ −Ra−1∂zθ

⟩
−Ra−1 ⟨∂zθ⟩

=
Ra

2∆θ
, (26)

⟨·⟩ denoting volume average, and where we have used that
⟨
wθ −Ra−1∂zθ

⟩
= ⟨z⟩ =269

1/2 and ⟨∂zθ⟩ = ∆θ from (23) and (24). Then, we define the mean Nusselt number Nu270

to be the long-time average of N(t). Note that we retrieve that the transport is purely271

diffusive at threshold, since, at Ra = Rac, ∆θ = Ra/2 so that Nu = 1. Because ∆θ =272

O(1), we predict that, in the high Rayleigh number regime, Nu ∝ Ra. For both bound-273

ary conditions BC 1 & 2, our simulations confirm this scaling down to Ra ∼ 20 (see274

figure 5b). There is a slight enhancement of the efficiency of heat transport as steady275

states emerge in the non-linear regime of the instability around Ra ∼ 500. The same276

scaling between Nu and Ra is also found in the classical Rayleigh-Bénard set-up in a277

porous medium (Otero et al., 2004; Hewitt et al., 2012, 2014).278

4.4 Plume scales279

In section 4.2, we observed that as the Rayleigh number Ra is increased, the typ-
ical width of the plumes and their typical spacing decreases. We obtain a quantitative
measure of the mean plume size ℓp and separation ∆xp as a function of the Rayleigh num-
ber from the heat flux at the upper boundary. As shown in figure 6a, plumes produce
a series of heat-flux peaks. At each time step, we record the mean plume width ℓ̂p and
plume separation distance ∆̂xp(t) over all plumes, and we define ℓp and ∆xp to be their
long-time averages. Typical variability is given by the standard deviation of ℓ̂p and ∆̂xp
over time. The result of this process is shown in figure 6(b,c): both the plume width and
separation exhibit the same scaling with the Rayleigh number, that is ℓp,∆xp ∝ Ra−1/2,
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Figure 6. (a) vertical advective heat flux at the top boundary for Ra = 200 with boundary
condition BC 2 and aspect ratio L = 4. The plot focuses on two plumes and shows graphically
the definition of the plume separation ∆̂xp and the plume width ℓ̂p. (b, c) mean plume size ℓp
and plume separation ∆xp, respectively, for all simulations with both boundary conditions BC 1
and BC 2. Both quantities scale with the Rayleigh number as Ra−1/2. The errorbars are deter-
mined by the standard deviation of the mean plume width and separation over a numerical run.
The red dashed line indicates the plume separation for the most unstable mode, which follows a
Ra−3/4 power law.

even close to the threshold. This power law can’t be explained by linear theory, even at
low Ra, as the mean separation between plumes does not coincide with the most unsta-
ble mode predicted by the linear stability analysis (see figure 6c). Instead, the typical
scale of the plume is controlled by a balance between vertical advection, horizontal dif-
fusion and heat production in (14), that is,

w∂zθ ∼ Ra−1∂xxθ ∼ 1. (27)

Given that temperature contrast remains O(1), this balance demands both that the ver-280

tical velocity of the plume is O(1) and that the typical lateral scale of the plume must281

be proportional to Ra−1/2.282

4.5 Asymptotic plume solution283

Building on the scalings governing the typical plume size found numerically and284

theoretically, we derive here fully non-linear solutions of the equations (14) in the asymp-285

totic limit Ra → ∞. As explained below, the derivation of these equations allows us286

to understand the balance at play in the plume formation.287

In the bulk of the porous medium, since the gradients are O(Ra1/2) in the x di-
rection and O(1) in the z direction, the incompressibility condition ∂xu+∂zw imposes
a scaling on the ratio between u and w, that is u/w = O(Ra−1/2). We thus introduce
the rescaled variables x̂ and û such that:

x = Ra1/2x̂ and u = Ra−1/2û . (28)

With these rescaled variables, the incompressibility condition is

∂x̂û+ ∂zw = 0 (29)

Taking the curl of Darcy’s law in (14) yields

∂x̂w = ∂x̂θ +O(Ra−1) . (30)

Hence, to leading order in Ra, θ − w is a function of z only. Because w = 0, we in-
fer that θ(x̂, z) = w(x̂, z)+θ(z) . Thus, Darcy’s law compels the temperature and the
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vertical velocity to have the same horizontal variance. Lastly, the advection-diffusion equa-
tion in (14) with rescaled variables is

∂tθ + û∂x̂θ + w∂zθ = ∂x̂x̂θ + 1 . (31)

where all terms appear to be of the same order.288

Building on our numerical results, we seek steady solutions that are periodic in the
x direction. We introduce an ansatz for the flow that is the lowest order truncation of
a Fourier series, that is, we assume the velocity field to have the following form,{

û = û0(z) sin(k̂x̂)

w = w0(z) cos(k̂x̂) ,
(32)

which has no mean mass flux in either vertical or horizontal direction. According to the
rescaled Darcy’s law (30), the temperature becomes

θ = w + θ(z) = w0(z) cos(k̂x̂) + θ(z) . (33)

For the flow (32) to satisfy the incompressibility condition, the following relation is re-
quired:

w′
0 = −k̂û0 . (34)

To determine the functions w0 and θ, we use the advection-diffusion equation (31) which
becomes

w0w
′
0

1− cos(2k̂x̂)

2
+ w0w

′
0

1 + cos(2k̂x̂)

2
+ w0θ

′
cos(k̂x̂) = −k̂2w0 cos(k̂x̂) + 1 (35)

where the incompressibility condition (34) and Darcy’s law (30) have been used. This
equation contains mean and k̂ harmonic terms that must be balanced, respectively. The
mean terms simply yields a balance between vertical heat advection and heat produc-
tion, that is:

dw2
0

dz
= 2 i.e. w0 =

√
2z . (36)

The harmonic k̂ terms correspond to a balance between horizontal diffusion and the ver-
tical advection of the average thermal energy (or temperature) profile,

w0θ
′
= −k̂2w0 i.e. θ(z) = θ0 − k̂2z . (37)

As noted in the preceding section, such a balance is responsible for setting the O(Ra1/2)289

horizontal gradients.290

We have, therefore, constructed a fully non-linear solution that is exact in the asymp-
totic limit Ra→ ∞, and is given by

u = −Ra
−1/2

k̂
√
2z

sin(Ra1/2k̂x)

w =
√
2z cos(Ra1/2k̂x)

θ = θ0 − k̂2z +
√
2z cos(Ra1/2k̂x)

(38)

where k̂ and θ0 are O(1) but a priori unknown. Note that this solution only satisfies one291

boundary condition: the absence of mass flux at the bottom of the porous layer. The292

remaining boundary conditions, be it the absence of bottom heat flux, the purely ver-293

tical velocity at the top, or either of the thermal boundary condition BC 1 or BC 2, are294

all unmatched with the solution.295

Figure 7 provides a comparison between plumes extracted from the simulations at296

two different Rayleigh numbers with a synthetic plume corresponding to the solution (38).297
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Figure 7. Left: single plume isolated in the regime where the flow is steady and periodic in
x, with boundary condition BC 1. Right: synthetic field for a single plume obtained from the
solution (38). The rescaled wave number k̂ is chosen to match the Ra = 5000 case, and its value
is around 0.64. The integration constant θ0 is chosen around 1.8 to roughly match the bottom
temperature profiles observed in 4. Note that although the streamlines do not seem to be vertical
at the top boundary, a zoom shows that they ultimately bend to match verticality very close to
the top boundary.
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Figure 8. Horizontal profiles at different heights z of the scaled vertical (a) and horizon-
tal (b) velocity across a plume. The amplitudes are normalised accordingly to the non-linear so-
lution (38). The expected structure is shown in red and the only fitting parameter is the rescaled
wave number k̂ ≃ 0.64. The Rayleigh number is Ra = 5000 and the top boundary condition is
BC 2.

The overall qualitative behaviour of the two fields are the same, although the theoret-298

ical solution does not capture the shrinking of the plumes close the the top boundary,299

because it does not satisfy the boundary condition there.300

To draw a more quantitative comparison between the non-linear solution and the301

flow in one plume, we plot in figure 8 several horizontal cuts at different heights of the302

vertical and horizontal velocities. We find that in the bulk, the theoretical solution ad-303

equately describes the amplitude of the velocity variations. However, the model becomes304

inaccurate near the upper boundary where, as noted above, it does not satisfy the cor-305

rect boundary conditions. In fact, this issue seems to lead to other inaccuracies in the306

model: it predicts a linear decrease in the mean temperature θ, whereas the numerical307

simulations show a more complex dependence on z (figure 4).308
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Figure 9. Snapshot of the temperature field for the heterogeneous heating case (top) and the
time-averaged temperature and flow streamlines averaged (bottom).

4.6 Conclusion for non-linear heat transport309

Throughout this section, we have detailed the properties of heat transport by con-310

vection in strongly non-linear regimes. Based on several arguments, including temper-311

ature scale, heat flux and Nusselt number measurement, we have confirmed that heat312

transport is dominated by advection in the bulk of the porous medium. We have car-313

ried out simulations with two different top boundary conditions that are thought to be314

relevant to geophysical context: one where the top boundary temperature is imposed,315

and another where advective heat flux is conserved in upwellings and temperature is im-316

posed in downwellings. We have confirmed that the two boundary conditions produce317

the same bulk flows. Lastly, we have shown that the typical plume size follows a Ra−1/2318

power law, which is due to a balance between horizontal diffusion and vertical advec-319

tion of heat. It is interesting to note that internally-heated and Rayleigh-Bénard con-320

vection are different regarding the typical plume scale: in the asymptotic regimes of large321

Ra, Hewitt et al. (2012) found that ℓp scaled like Ra−0.4, which they later suggested was322

a result of the stability of the plumes (Hewitt & Lister, 2017).323

5 Accounting for the large scale modulation of tidal heating324

5.1 A simple model325

In this section, we briefly explore how the large-scale variations of tidal heating af-
fect heat transport in internally heated porous media. This is important for the case of
icy satellites such as Enceladus, for which heterogeneity of tidal heating have been shown
to induce focusing of the heat flux where heating is the most intense (Choblet et al., 2017).
We consider here a domain with aspect ratio L = 4 for which the volume production
of heat q takes the form

q(x) = 1−∆q cos

(
2π

L
x

)
(39)

which is such that the mean heat production is unchanged compared the homogeneous326

case and the maximum heat production is located at the centre of the domain. In the327

following, we only illustrate heat modulation with ∆q = 0.5 in the case of the bound-328

ary condition BC 2. ∆q = 0.5 is a good proxy for tidal heating which bears latitudi-329

nal and longitudinal variations by about a factor 2 between minima and maxima.330
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Figure 10. Horizontally averaged advective heat flux at the top boundary at Ra = 360 (left)
and Ra = 3000 (right), with comparison between homogeneous (top, H) and heterogeneous
(bottom, M).

5.2 Large scale flow and pulsatility331

The large-scale modulation of internal heating leads to the emergence of several332

striking features. The first one is the attraction of plumes towards the centre where the333

heating is the most intense. Although plumes may exist in the whole interior of the do-334

main, they merge towards the centre, which results in a higher temperature region with335

larger heat flux anomaly, as illustrated in figure 9. Plume merging towards the centre336

is associated with a large-scale mean flow that is also shown in figure 9. Note that at high337

Rayleigh number (Ra = 3000 in the snapshot of figure 9), small-scale plumes persist338

in the time-averaged flow. Despite strong variability where heat production is maximal,339

some plumes remain locked in the areas where heat production is minimal, a feature that340

is reminiscent of the steady plumes of the homogeneous case.341

Advection of the plumes towards the largest internal heating region and the sub-342

sequent plume merging leads to pulsatility in the advective heat flux, as shown in fig-343

ure 10. At intermediate Rayleigh number (Ra = 360), the flux is intermittent for ho-344

mogeneous heating but it exhibits a quasi-periodic behaviour for a modulated heating.345

The typical period is of order one, i.e. it takes place over a convective time scale, and346

corresponds to the time needed for plume formation, advection towards the centre and347

merging. The effects of heterogeneous heating are even more striking at high Ra: the348

steady state observed in the homogeneous case is replaced by quick oscillations of the349

heat flux (see figure 10). They are due to the many plumes observed in the centre of the350

domain reaching the top boundary non synchronously (see figure 9).351

5.3 Similarities with the homogeneous-heating case352

Despite the existence of a mean flow and the pulsatile behaviour detailed in the353

preceding section, convection with heterogeneous internal heating bears many similar-354

ities with the homogeneous case. As already noticed earlier, small scale plumes are still355

present in the flow, and their typical width remains proportional to Ra−1/2 (see figure356

11) but with increased temporal and spatial variability. This means that the balance be-357

tween horizontal diffusion, heat production and vertical advection is still at play to de-358

termine the single plume dynamics.359

Moreover, even if lateral variations of the mean temperature are obvious in figure360

9, the horizontally averaged temperature follows a trend that is very close to the homo-361

geneous case, as shown in 11. This observation suggests that the spatial form of heat-362
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Figure 11. (a) Typical plume size in the heterogeneous heating case, and comparison with the
same law ℓp ∝ Ra−1/2 as in figure 6. The errorbars are determined in the same way as in figure
6. (b) Mean temperature profile for heterogeneous heating at several Rayleigh numbers; the red
line correspond to the temperature profile in the homogeneous case in the high Ra regime. (c)
Maximum value of the non-dimensional advective heat flux at the top of the porous layer deter-
mined from the simulations with BC 2. The error bar accounts for the standard deviation of the
maximum value over the course of a simulation. Both homogeneous (∆q = 0, labelled H) and
heterogeneous (∆q = 0.5, labelled M) are shown.

ing is not particularly important for the mean dynamics and scaling laws governing heat363

transport in an internally heated porous medium.364

5.4 Hydrothermal velocity driven in the ocean365

To conclude this theoretical analysis of internally heated porous convection, we de-
rive a scaling law for the hydrothermal velocity driven by the hot plumes in the porous
medium as they cross the upper boundary into the ocean above. To evaluate the typ-
ical velocity of the buoyant hot water coming out of the core at the bottom of the ocean
we must first determine the buoyancy flux associated with the porous plumes. The first
question that arises concerns the transposition of the plumes observed in the present model
to a three-dimensional geometry, as upwellings may take the form of isolated plumes or
ascending sheets. Although there is not a clear theoretical argument in favour of one or
the other, several studies point towards the formation of sheets. Monnereau and Dubuf-
fet (2002) has shown in viscous convection that the opening of the top boundary leads
to a transition from plumes to sheets. In porous flows, sheet-like convection is observed
in simulations of hydrothermal flows (Rabinowicz et al., 1998), and, in particular, in the
model of Choblet et al. (2017) for the core of Enceladus. Therefore, we assume in the
following that upwelling in the porous medium takes the form of sheets. As in the two-
dimensional case, their typical extent is Ra−1/2 because it remains set by the balance
between vertical advection, horizontal diffusion and heat production given in equation
(27). At the bottom of the ocean, the sheets produce a line source of buoyancy flux B
which drives hydrothermal velocities Uh of order B1/3. (Morton et al., 1956; Woods, 2010).
The dimensional buoyancy flux is given by (Woods, 2010)

B =

∫
upwelling

αg (ΘW )|z=h dx, (40)

where the one-dimensional integral is computed across an upwelling zone of typical ex-
tent ℓp ∝ Ra−1/2. As Θ and W are proportional to Ra, B scales like Ra3/2, or more
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Figure 12. (a) Snapshots of the temperature field taken in the statistically steady state of
simulations with Ra = 360. In the upper one, the dimensionless heat production rate is a de-
creasing function of height q = 2(1 − z) whereas in the lower one, the dimensionless gravity
is a linear function of height g = 2z. (b) Superposition of the average temperature profiles at
Ra = 360 for the homogeneous heating (H), height-dependent heating and height-dependent
gravity cases.

explicitly,

B ≃ κ2ν

kh
Ra3/2 (wθ)|z=h and Uh =

(
κ2ν

kh
(wθ)|z=h

)1/3

Ra1/2 (41)

where we have used the velocity and temperature scales defined in equation (12). Fo-366

cusing of the heat flux in narrow upwelling zones leads to enhanced values of (wθ)|z=h,367

as shown in figure 11c. In the case of heterogeneous heating, focusing increases the heat368

flux at the bottom of the ocean by about a factor of 10 over the range of Rayleigh num-369

bers considered here.370

6 Application of the idealised study to the case of Enceladus371

372

6.1 From a two-dimensional model to a planetary core.373

To carry out our idealised study of internally heated porous convection, we have374

discarded many ingredients that will be important for Enceladus, as stated prior to the375

introduction of the model (section 2.1). Before applying our results, we review these ap-376

proximations and evaluate how they may affect the conclusions drawn from the two-dimensional377

Cartesian model.378

Sphericity379

First, the definition of the velocity, temperature and time scales as well as the Rayleigh380

number defined in section 2.3 rely entirely on dimensional analysis and are thus insen-381

sitive to the geometry. The dimensionless equations (14) thus take the same expression382

in any geometry. The critical Rayleigh number above which convection takes place will,383

presumably, be modified by the geometry, although (Choblet et al., 2017) found con-384

vective flows down to Ra ≃ 8 in simulations in a spherical geometry, which puts an up-385

per bound on Rac that is similar to what we find in a Cartesian geometry.386
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We expect that the typical size of upwellings will retain a Ra−1/2 scaling in spher-387

ical geometry, because the balance in (27) that gives this scaling remains the same: lat-388

eral second derivatives must be of order Ra for orthoradial diffusion to be in balance with389

heat production and radial advection. As a consequence, our prediction for the typical390

buoyancy-flux and hydrothermal-velocity scales should still hold in a spherical geome-391

try.392

Nevertheless, there will inevitably be differences between the flow in a Cartesian393

and spherical geometry. For example, the ratio of surface area to volume is different, which394

affects the energy-conservation equation for the time-averaged radial heat flux ∇·(J(r)er) =395

1 (cf. equation 24). This constraint imposes J(r) = r/3, and the volume-averaged heat396

flux becomes ⟨J⟩ = 1/6, which is a factor 3 smaller than in a Cartesian geometry. As397

a consequence, we expect heat-flux anomalies to either have lower amplitudes or be sparser.398

This simple analysis suggests that the Cartesian geometry might give an upper bound399

on the buoyancy flux and the hydrothermal velocity induced in the ocean compared to400

the real spherical case.401

402

Depth-dependence of heat production and gravity403

The model developed here also neglects any vertical variations of gravity and vol-404

umetric heat production, and we briefly explore their possible importance here with the405

aid of a few additional simulations. Volumetric heat production on Enceladus decreases406

away from the center to become negligible close to the surface (Choblet et al., 2017), but407

the decreases remains sufficiently slow for the shell-average heat production to increase408

with radius. In the uniform heating case, we have found that the structure of the flow409

is governed by a local balance between advection, diffusion and volumetric heat produc-410

tion. We anticipate such a balance to remain at play when heat production varies with411

depth which makes the volumetric heating variations more relevant to the dynamics than412

those of the shell-average heating. Therefore, to test the effect of vertical variations of413

heat production, we have carried out simulations with a decreasing source term q(z) =414

2(1−z) in the advection-diffusion equation that retains the same spatial average as in415

the uniform case. A typical snapshot is shown in figure 12 along with the mean verti-416

cal temperature profile, θ. They both show very little difference from the uniform-heating417

case (see figure 3), suggesting that vertical variation in heat-production does not play418

an important dynamical role, at least in Cartesian geometry.419

The picture is slightly changed when we consider uniform heating but with a depth-420

dependent gravitational field. In a uniform-density planetary core, we expect g to increase421

linearly with radius, and so we carried out a few example simulations in which the di-422

mensionless gravity is g = z (i.e. gravity is normalised by its surface value). The ef-423

fect of this on the equations is to add a factor of z in front of the temperature in the di-424

mensionless version of Darcy’s law (see equation (14)). A snapshot of the temperature425

field (figure 12) reveals that plumes are narrower and less numerous than in the homo-426

geneous case. As a consequence, the maximum advective flux carried by the plumes is427

roughly double that of the homogeneous case. The average temperature profile is also428

strikingly different: weaker gravity at depth makes advection inefficient as a means of429

evacuating heat, resulting in larger temperature at the bottom of the domain. However,430

because plumes are thinner, lateral diffusion is enhanced and the plume temperature de-431

creases as they rise. As a consequence, the hot-spot temperature at the upper surface432

remains similar to the modulated case, i.e. max(θ(z = 1)) ∼ 4.433

Note that the variations with z of gravity and heat production do not affect the434

scaling Ra−1/2 governing the size of the plumes (and hence the hydrothermal velocity).435

Since the dimensionless gravity and volumetric heating remain at most order 1, the bal-436

ance between horizontal diffusion, heat production and vertical advection still holds in437
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Core radius (h) 186 km
Water density (ρ0) 1.0× 103 kg.m−3

Matrix density (ρm) 2.8× 103 kg.m−3

Water heat capacity (c0) 4.1× 103 J.K−1.kg−1

Matrix heat capacity (cm) 1.0× 103 J.K−1.kg−1

Water conductivity (λ0) 0.6× 103 W.K−1.m−1

Matrix conductivity (λm) 2.8× 103 W.K−1.m−1

Water thermal expansion (α) 1.2× 10−3 K−1

Kinematic viscosity (ν) 1× 10−6 m2.s−2

Thermal diffusivity (κ) 6× 10−7 m2.s−2

Porosity (φ) 0.20
Gravity (g) 0.1 m.s−2

Table 2. A summary of the bulk physical parameters used to transpose our idealised study to
the case of Enceladus’ core, adapted from (Choblet et al., 2017) (see in particular the Supplemen-
tary Material of that paper). Note that the modified porosity is φ = 0.76.

the same way as in the uniform case. In fact, the asymptotic expansion of section 4.5438

can be reworked with z-dependent gravity and volumetric heating down to equation (31)439

without affecting the hierarchy between each term. Therefore, the scaling laws we have440

derived in the preceding sections are robust to these additional physical ingredients.441

We also briefly considered the effect of depth-dependence in the modulation am-442

plitude ∆q for the results presented in section 5, since the modulation should increase443

with depth, being almost negligible near the core (Choblet et al., 2017). We carried out444

simulations with ∆q = z, which retains the same average modulation as previously. Re-445

sults showed little change from those discussed in section 5: a mean flow drags small-446

scale plumes towards the areas with larger volumetric heating which causes the flow to447

be unsteady. The strong pulsatility with bursts of heat flux observed at Ra = 360 in448

figure 10 are weaker, however, with the time series of wθ(z = 1) being more similar to449

the homogeneous case.450

6.2 Quantification of convection in Enceladus’ core451

The preceding discussion suggests that the simplified two-dimensional Cartesian452

model of internally heated porous convection produces scaling laws, at least in terms of453

orders of magnitude, provide a reasonable description of the flow and the hydrothermal454

activity inside icy moons. Here we apply our results to Enceladus.455

Physical properties of Enceladus’ core456

To characterise convection inside Enceladus’ core, and to compare our results to457

existing literature, we use the same physical parameters as in (Choblet et al., 2017). A458

set of fixed physical constants that are relevant to characterise heat transport are given459

in table 2. We reproduce the process used in (Choblet et al., 2017) and do not precisely460

specify the permeability k and internal heat production QV values on which the uncer-461

tainty is the largest. Instead, we consider that k may range from 10−15 m2 to 10−12 m2462

and that the tidal heating is between 10 GW and 40 GW. (The lower bound is directly463

inferred from the heat flux measurement at the South Pole of Enceladus (Spencer et al.,464

2006, 2018).) Therefore, we draw maps of the behaviour of the system keeping the pa-465

rameters of table 2 constant and varying both k and QV .466
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Figure 13. (a) the Rayleigh number as a function of the permeability and the tidal heat-
ing. The red line marks the onset of convection for the homogeneous heating case. (b) Typical
maximum dimensional temperature 4Θ∗ (in Kelvin) (see (42)) inside the porous core of Ence-
ladus. (c) Typical hydrothermal velocity obtained from the buoyancy flux at the bottom of the
ocean as a function of permeability and tidal heating. On each panel, the 274 K isotherm gives
the liquid-vapour transition at the hydrostatic pressure of core–ocean boundary, which repre-
sents a rough upper bound on the temperature for the model to remain valid with respect to
phase change. The 100 K isotherm gives an estimate of the maximum temperature derived from
geochemical measurements (Sekine et al., 2015; Hsu et al., 2015).

The Rayleigh number inside Enceladus467

As explained in section 2.3, the overall behaviour of the system depends only on468

one dimensionless parameter, the Rayleigh number, defined in (13), which which is a power469

law of both k and QV . The map of the possible values of the Rayleigh number inside470

the core of Enceladus is given in figure 13. In the range of values of k considered in (Choblet471

et al., 2017), the system is always unstable to convection, although Ra does not reach472

very high values and remains below 1000.473

474

Maximum temperature475

We have shown in section 4.3 that heat transport is mostly advective, even at val-
ues of the Rayleigh number that are close to the onset of the instability. In such a regime,
the dimensionless temperature takes O(1) values, with a maximum of about 4 in the case
of horizontally modulated heat production (see for instance the snapshots of figure 9)
in reached at the core of the plumes. Hence, 4Θ∗ is a good proxy for the maximum tem-
perature difference between the ocean and the core of Enceladus, with Θ∗ the temper-
ature scale defined in section 2.3,

Θ∗ =
κν

kαgh
Ra . (42)

The maximum temperature difference 4Θ∗ is shown in figure 13 and, depending on the476

parameters, it ranges from 40 K to 3000 K.477

The computation of the maximum temperature difference allows us to determine478

the limit of validity of our model which does not include phase change of water from liq-479

uid into vapor. On the one hand, according to the snapshots of figures 3 and 9, the core480

temperature of plumes is almost constant with height. On the other hand, the boiling481

point of water is an increasing function of pressure and depth. As a consequence, the max-482
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imum temperature temperature allowed in our model is given by the boiling point of wa-483

ter at the core–ocean boundary. Assuming that the core lies below 60 km of liquid and484

solid water with density 1×103 kg.m−3 and constant gravity, a crude estimate for the485

pressure is 6 Mpa at the core–ocean boundary. The corresponding boiling point for pure486

water is 547 K (Haynes, 2012). If we assume the ocean to be well-mixed and made of487

pure water, its averaged temperature should be similar to the fusion temperature of ice,488

that is, 273 K (Haynes, 2012). Hence, we show in figure 13 the isotherm 274 K which489

gives a crude upper bound on the validity of the single-phase model that is used here and490

in the literature dealing with internal models of icy moons, although other additional491

ingredients (composition, variable gravity) may shift this upper bound in a way that re-492

mains to be determined.493

Note that Hsu et al. (2015) have shown via the ice plume composition that the wa-494

ter flowing inside Enceladus has been in contact with rocks at a temperature of about495

90◦ C. We show in figure 13 the location of where the maximum temperature difference496

reaches 100 K which roughly corresponds to this important constraint on the maximum497

temperature. Our idealised model suggests a constraint on the permeability of Ence-498

ladus’ core of 10−13 to 10−12 m2, for the range of tidal heating considered.499

500

Hydrothermal velocity in Enceladus’ ocean501

Using the law (41) governing the buoyancy flux B driven by porous convection in502

the ocean, we compute the typical hydrothermal velocity B1/3 in Enceladus’ ocean. With503

dimensionless heat flux wθ ∼ 10 in the core of the thermal anomalies, the typical hy-504

drothermal velocity is found to be about 1 cm/s, no matter what the permeability or the505

tidal heating are (see figure 13c). This value is in agreement with the typical velocity506

found by (Choblet et al., 2017) with different scaling arguments relying on the power anomaly507

advected to the ocean floor. As a consequence, for a subsurface ocean whose thickness508

is of the order 10−30 km (Thomas et al., 2016), the expected turn-over timescale is of509

the order of a month, at most.510

511

Typical velocity and temporal variability512

The typical velocity scale U∗ of the flow in the core is given by a diffusive veloc-
ity κ/h augmented by a factor Ra, that is:

U∗ =
κ

h
Ra . (43)

The diffusive velocity scale amounts to 0.1 mm.yr−1, and because Ra does not exceed513

103, the Darcy flux remains below 10 cm.yr−1. The hydrothermal activity at the bot-514

tom of Enceladus’ ocean is therefore very different from the what is commonly observed515

at the bottom of the Earth’s oceans, where typical Darcy fluxes are rather of the order516

of a few meters per year (103 times larger). This difference is largely due to the much517

weaker gravitational acceleration in Enceladus.518

Consequently, the convective time scale τ is:

τ = φ
h

U∗ = φ
h2

κ
Ra−1 ≃ 0.8Gy ×Ra−1 , (44)

The typical variability timescale, for instance for the flux at the top boundary (see fig-519

ure 10) is thus at least 1 million years. It is a very slowly evolving system compared to520

the turnover timescale of the subsurface ocean, or to the timescale of human observa-521

tions. In our simulations, we have observed bursts in the convective activity that give522

rise to a 40-50% increase in the average heat flux at the surface of the core that may last523
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for a few million years. These bursts correspond to more active plumes that would cause524

enhanced hydrothermal activity inducing preferential erosion of the ice shell above. One525

may thus speculate that, in the past, intense plumes similar to the one at the south pole526

of Enceladus could have been active at other locations. Such a hypothesis might explain527

the existence of older tectonised terrains at the surface of Enceladus (Crow-Willard &528

Pappalardo, 2015). Lastly, localised bursts could also be at the start of the runaway mech-529

anism proposed by (Choblet et al., 2017) to explain the asymmetry between the north530

and south poles of Enceladus: a thinner ice crust locally enhances tidal heating, which531

in turns enhances ice erosion.532

7 Conclusion and discussion533

Throughout this article, we have explored heat transport in a fluid-saturated, in-534

ternally heated porous medium with an idealised Cartesian model. Our set-up is based535

on an idealisation of the model of Choblet et al. (2017) describing the tidally-driven hy-536

drothermal activity in the interior of Enceladus. The behaviour of the system is governed537

by a single dimensionless number, the Rayleigh number Ra, which is an increasing func-538

tion of both the permeability and the internal heat production. With the combination539

of numerical simulations and mathematical analysis, we have derived general laws gov-540

erning hydrothermal activity driven by volumetric heating.541

We have shown that heat transport in the porous medium is governed by advec-542

tion. In this regime, the temperature difference between the porous matrix and the pure543

fluid ocean scales like Ra. This scaling enables use to constrain the plausible range of544

values for the permeability of Enceladus’ core. According to Hsu et al. (2015), the tem-545

perature scale should be at most 100 K. For values of tidal heating that are consistent546

with the heat flux measurement at the surface of Enceladus, our scaling indicates that547

the permeability should be around 10−13 − 10−12 m2.548

In our simulations, we have reproduced the observation drawn from the simulations549

of Choblet et al. (2017) that the upwelling zones tend to narrow as the Rayleigh num-550

ber is increased, and that they concentrate where internal heating is the most intense.551

Our simulations show that the typical plume size follows a Ra−1/2 power law, which is552

imposed by a balance between vertical advection and horizontal diffusion of heat. This553

law governing the size of heat flux anomalies at the bottom of the ocean of Enceladus554

compels the typical buoyancy flux injected into the ocean to be proportional to Ra3/2.555

Over the range of tidal heating and permeability that are consistent with observational556

data, we have found that the typical hydrothermal velocity in the ocean of Enceladus557

is about 1 cm/s. Despite the idealisation of our model, such an estimate is consistent with558

the one derived by Choblet et al. (2017) from an estimate of a typical heat flux anomaly.559

The model used here has also helped us to highlight the underpinning of heat transport560

in an internally heated porous layers. In particular, we have shown that the heat-transport561

efficiency, which has been characterised via a generalised Nusselt number, has the same562

scaling as the classical Rayleigh-Bénard convection in porous media (Otero et al., 2004;563

Hewitt et al., 2012, 2014).564

Despite the highly idealised nature of our approach, we have argued that the scal-565

ing laws found for the typical size of thermal anomalies, the time-variability and the hy-566

drothermal activity are also expected in spherical geometry, and are robust to the in-567

clusion of additional ingredients such as vertical variations of heat production and grav-568

ity. These scaling laws could thus be applied to the other small icy moons of the Solar569

System, in particular those of Saturn’s E ring, whose internal structure is similar to Ence-570

ladus’ (Nimmo & Pappalardo, 2016). Although Enceladus is the only one showing signs571

of present internal activity, these other bodies could have been active in the past. Our572

study thus paves the way for more systematic understanding of the thermal evolution573

of these bodies. It could also apply to larger icy moons such as Europa where the ocean574

is in contact with a rocky mantle that is internally heated by radiogenic decay.575
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Of course, the simple scaling arguments contained here are not a substitute for a576

detailed investigation of the idealised problem in a spherical geometry, which would be577

a useful future extension to this work. Such a study would give a clearer picture of the578

flow structures in a spherical geometry, as well providing more quantitative predictions579

of hot-spot widths, time-variability and strength. Beyond these geometrical considera-580

tions, there are also other effects that have not been discussed here or in the existing lit-581

erature that could lead to significant changes in convective heat transport. One ma-582

jor simplification of all models of porous planetary interiors is the assumption of homo-583

geneous and isotropic permeability k. Since the core of small icy satellites such as Ence-584

ladus’ is an aggregate of heterogeneous material, their permeability is unlikely to be uni-585

form. It is not even clear whether coarse-grained modelling based on the assumption of586

strong confinement, that is, Darcy’s law, is entirely relevant for the core of icy satellites,587

although, as we’ve seen, Darcy’s law with small permeability is consistent with observed588

data. However, we do not believe any significant progress can be achieved in these di-589

rections without further constraining the core’s small-scale structure.590

In addition, the model we consider completely discards flows that are directly driven591

by the periodic tidal distortion. Although the tidal deformation field is purely incom-592

pressible in continuous media, mean flows analogous to Stokes drift may result from the593

periodic motion of the porous matrix. Whether deformation-driven flows are compara-594

ble to buoyancy-driven flows remains to be quantified.595

Lastly, there is a need to clarify the behaviour of the system at the top of the porous596

core and the coupling between the porous layer and the above ocean. We have stated597

in the second section that the two possible thermal boundary conditions used here (im-598

posed temperature or free temperature in the upwellings) are the two end-members of599

the behaviour of the fluid at the interface. The imposed temperature condition could rep-600

resent a very slow porous layer lying underneath a very well mixed ocean. This situa-601

tion could be relevant to the case of Enceladus and other icy moons as the Darcy flux602

(∼ 1 cm.yr−1) is very small compared to the hydrothermal velocity (∼ 1 cm.s−1). In603

this configuration, the water coming out of the core is at the same temperature as the604

ocean and is neutrally buoyant; there is then no hydrothermal activity in the sense of605

what we know at the bottom of the Earth’s ocean. Nevertheless, it is associated to a dif-606

fusive heat flux anomaly on the subsurface ocean’s floor which is likely to drive convec-607

tion and mixing in the ocean. The observed chemical signature of contact with silicate608

rocks at high temperature (Hsu et al., 2015) could very well happen below the thin ther-609

mal boundary layer at the top of the core. Moreover, current thermal evolution mod-610

els of icy moons rely on parametrisation of hydrothermally-driven convection in the sub-611

surface ocean that are based on the classical Rayleigh-Bénard problem (Travis et al., 2012;612

Travis & Schubert, 2015). It is, however, not clear at all whether such parametrisation613

actually applies to the present system where ocean convection is driven by strong and614

localised heterogeneities of either the advective of the diffusive heat flux at the bottom615

boundary In short, it remains difficult to produce a definitive statement about the ther-616

mal structure of the subsurface ocean without a careful study of the coupled system with617

two very different typical evolution timescales for each medium.618
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