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Abstract

Convection in a fluid-saturated porous medium is of widespread im-

portance in a variety of geophysical and industrial settings. A range of

porous convective systems are investigated at high Rayleigh number

Ra, using numerical, theoretical, and experimental techniques.

After an introductory chapter in which the relevance of this work to

the long-term storage of CO2 is discussed, well resolved direct nu-

merical simulations of two-dimensional Rayleigh–Bénard convection

in a porous medium (‘Rayleigh–Darcy convection’) are presented for

Rayleigh numbers Ra 6 4×104. Measurements of the convective flux,

as described by the Nusselt number Nu, for 1300 6 Ra 6 4 × 104

are extremely well fitted by Nu = αRa + β, for α = 6.9 × 10−3 and

β = 2.75, which indicates that, contrary to some previous indications,

the linear classical scaling Nu ∼ Ra is attained asymptotically. The

flow dynamics are analysed, and the interior of the vigorously con-

vecting system is shown to be increasingly well-described as Ra→∞
by a simple columnar ‘heat-exchanger’ model with a single horizontal

wavenumber k and a linear background temperature field. Numerical

measurements are approximately fitted by k ∼ Ra0.4.

In chapter 3, the stability of this heat-exchanger flow is examined,

with the aim of uncovering the mechanism that controls the horizontal

lengthscale of the columnar flow. The dimensionless heat-exchanger

flow comprises interleaving columns of horizontal wavenumber k that

are driven by a steady balance between vertical advection of a back-

ground linear density stratification and horizontal diffusion between

the columns. The flow is always unstable in an unbounded domain:

the growth rate and structure of the most unstable mode are found



using a Floquet stability analysis; the physical mechanism of instabil-

ity is investigated by a matched asymptotic expansion of the linear-

stability problem; and the non-linear evolution is examined using di-

rect numerical simulations. The results of the stability analysis are

applied to the columnar flow in a two-dimensional Rayleigh–Darcy

cell at high Ra: a balance of time scales for growth and propaga-

tion suggests that the flow is unstable for horizontal wavenumbers k

greater than k ∼ Ra5/14 as Ra → ∞. This stability criterion is con-

sistent with the hitherto unexplained numerical measurements of k

presented in chapter 2.

Geological porous formations are commonly interspersed with thin,

roughly horizontal, low-permeability layers. In chapter 4, statisti-

cally steady high-Ra porous convection in the presence of a thin,

low-permeability, horizontal layer is investigated. The flow depends

only on the ratio of the height and relative permeability of the interior

layer, given by the impedance Ω. Two particularly notable features

are observed as Ω is increased: the dominant horizontal lengthscale

of the flow increases dramatically; and Nu can increase, before de-

creasing markedly for larger values of Ω. The dependence of the flow

on Ra is explored, and simple ‘toy’ models are developed to describe

some of the observed behaviour.

Convection in a closed porous domain, driven by a dense buoyancy

source along the upper boundary only, soon starts to wane due to

the increase of the average interior density. In chapter 5, theoret-

ical and numerical models are developed of subsequent long period

of shutdown of convection at high Ra. The relationship between

this slowly evolving ‘one-sided’ shutdown system and the statistically

steady ‘two-sided’ Rayleigh–Darcy cell is investigated. Measurements

of Nu(Ra) from chapter 2 are used in theoretical box models of the

one-sided shutdown system and found to give excellent agreement with

high-resolution numerical simulations of this system. The dynamical

structure of shutdown can also be accurately predicted by measure-



ments from a Rayleigh-Darcy cell. Results are presented for a general

power-law equation of state.

In chapter 6, these ideas are extended to model the shutdown of con-

vection in different physical one-sided systems, which comprise two

fluid layers with an equation of state such that the solution which

forms at the (moving) interface is more dense than either layer. The

two fluids are either immiscible or miscible. Theoretical box models

compare well with numerical simulations in the case of a flat inter-

face between the fluids. Experimental results from a Hele–Shaw cell

and numerical simulations both show that interfacial deformation can

dramatically enhance the convective flux for miscible fluids.

In chapter 7, high-resolution direct numerical simulations of three-

dimensional statistically steady porous convection are presented for

Ra 6 2× 104, and measurements of Nu are very well described over

the range 1500 . Ra 6 2× 104 by the relationship Nu = α3Ra+ β3,

for α3 = 9.6 × 10−3 and β3 = 4.28. This fit strongly suggests that,

as in two dimensions, the classical linear scaling is attained as Ra→
∞. The magnitude of the flux is roughly 40% higher than in two-

dimensions. The dynamical structure of the flow is analysed, and

the interior flow is again found to be increasingly well described by

a heat-exchanger model. Numerical measurements of the dominant

wavenumber k are approximately fitted by k ∼ Ra0.54, which is a

notably larger exponent than in two dimensions.

This work is summarized in chapter ??, and the applicability of the

results to the convective dissolution of geologically sequestered CO2

in a saline aquifer is discussed.
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Chapter 1

Introduction

Convection plays a central role in an enormous range of environmental processes.

It is responsible for much of the Earth’s weather: on a large scale, convection

drives atmospheric and oceanic circulation; on a smaller scale, the formation of

clouds and storms. Flow in the Earth’s mantle, which fuels the geodynamo and

the motion of tectonic plates, is driven by convection. The freezing of the polar

oceans, the motion of volcanic plumes, and the rate at which a kettle boils or a

radiator heats a room are all controlled by convection. In addition, from a math-

ematical viewpoint, convection is a complex nonlinear process that provides an

archetypal fluid-dynamical setting for the study of chaotic and turbulent dynam-

ics, bifurcations, and emergent patterns (Cross & Hohenberg, 1993; Kadanoff,

2001).

Convection can be broadly defined as the motion of fluid due to gravity acting

on an unstable density profile. The density of a fluid is determined by the dis-

tribution of internal energy, which is typically set by differences in temperature

or in the concentration of a solute. If dense fluid lies above less dense fluid, such

that the fluid is unstably stratified, then, under the action of gravitational forces,

the dense fluid sinks and the less dense fluid rises; potential energy is converted

into kinetic energy, and convection ensues.

In this dissertation, we explore in detail a range of physically motivated prob-

lems involving convection in a fluid-saturated porous medium. Convection in

porous media has widespread importance in a plethora of geophysical and indus-

trial processes (Nield & Bejan, 2006). Heat from deep within the Earth drives

1



1. INTRODUCTION

underground hydrothermal convection that is crucial for the extraction of geother-

mal energy (Cheng, 1978), while convective currents in both the continental and

the oceanic lithosphere play a major role in the heat budget of the Earth (Stein,

1995; Cherkaouim & Wilcock, 1999). Density differences that drive convection

may also be due to variations in salinity, as in the flow of saline groundwater due

to evaporation from the surface (Wooding et al., 1997a,b). The convective grav-

ity drainage of brine from sea ice in the polar oceans has important implications

for global oceanic circulation and mixing (Notz & Worster, 2009), while a simi-

lar process is responsible for the formation of freckles in industrial alloy castings

(Fowler, 1985). In recent years, there has been particular interest in the effect

of porous convection on the long-term storage of CO2 by geological sequestra-

tion (Orr Jr., 2009), which has been widely proposed as a technological means of

stabilizing the rising concentration of atmospheric CO2 (Metz et al., 2005). The

importance of convection for the long-term sequestration of CO2 is the primary

motivation for this work, and is discussed in more detail in §1.1 below.

For the sake of clarity, throughout this dissertation we refer to convection in

a porous medium as ‘porous convection’, in contrast to ‘pure-fluid’ convection,

not in a porous medium. Porous convection, which is governed by Darcy’s law

rather than the full Navier–Stokes equations, provides a more tractable system

than pure-fluid convection in which to study the nonlinear dynamics and pattern

formation of convective flows (Graham & Steen, 1994), owing primarily to the

absence of inertia in Darcy’s law.

The vigour of convection and the associated dynamics of the flow depend in

large part on the driving strength of buoyancy and the inhibiting dissipative ef-

fects of diffusion and viscosity in the system. The ratio of driving and inhibiting

effects is given by a dimensionless parameter called the Rayleigh number Ra.

The aim of this dissertation is to provide a thorough exploration of convection

in a porous medium at high Ra, in a range of physical systems. In particular,

we examine in detail the complex nonlinear dynamics of high-Ra convection, and

we characterize the dependence of the convective transport of buoyancy, which

is perhaps the most physically important measure of convection, on the phys-

ical parameters and geometry of different systems. We also develop physically

motivated reduced models of convection that can be applied to different systems.

2



In §1.1, we outline the details of geological CO2 sequestration and the impor-

tance of convective transport for the long-term security of sequestered CO2. In

§1.2, we discuss the basic equations and modelling assumptions which underlie

the work throughout this dissertation, and in §1.3 we give a brief overview of

some previous studies of porous convection. In §1.4, we lay out the structure of

the dissertation.

1.1 Geological CO2 sequestration

There has been recent resurgent interest in the subject of convection in a porous

medium, owing to its relevance to the long-term storage of geologically se-

questered CO2. Geological sequestration entails the underground storage of pres-

surized CO2 in underground porous rock. With growing global demand for energy,

it seems probable that sequestration will need to play a major role as a part of

attempts to curb the rising anthropogenic emissions of CO2, which are now higher

than 30 gigtons a year (Metz et al., 2005; Friedlingstein et al., 2010). Estimates

of the subterranean storage capacity of CO2 range from 1700 to 14000 gigatons or

higher (Metz et al., 2005; Orr Jr., 2009). This wide range reflects both the large

uncertainty in the properties that constitute a suitable storage site, and the lack

of sufficiently accurate geological data of potential sites. Sequestration has been

tested on large scales in various locations around the world; the longest-running

industrial example is at the offshore Sleipner gas fields in the North sea, where

roughly one million tons of CO2 have been sequestered in the nearby Utsira sand

reservoir every year since 1996 (Kongsjorden et al., 1997).

After capturing and compressing CO2 into a supercritical liquid at its source

(e.g. a power plant), geological storage is achieved by injecting the supercritical

CO2 down into deep porous formations that are typically located at depths &

800 m below the Earth’s surface. The most abundant potential storage sites are

deep saline aquifers (brine-saturated porous rock), and it is these that are the

focus of this work; other possible sites include depleted oil and gas reservoirs,

coal beds, and seabed sediments. Under storage conditions in a saline aquifer,

supercritical CO2 is significantly less dense (∼ 700 kg m−3) than the ambient brine

(∼ 1000 kg m−3), and will rise through the aquifer after injection.

3



1. INTRODUCTION

From the point of view of both viability and safety, it is essential that the

long-term (∼ 104 years) underground storage of sequestered CO2 can be assured.

Therefore, since the injected CO2 is buoyant, the presence of a bounding imper-

meable caprock (typically a shale or clay layer) below which the CO2 can pool and

spread under gravity, is vital for any storage site. This ‘topographic’ trapping of

CO2 may not necessarily result in secure long-term storage, because fractures in

the caprock or migration due to its topography can lead to undesired leakage of

the buoyant CO2 plume (Pritchard, 2007; Neufeld et al., 2011; Vella et al., 2011).

There are, however, other mechanical and geochemical processes which take place

over different timescales. Three main process are: ‘residual trapping’, in which

small pockets of CO2 are immobilized in the brine by capillary forces; ‘mineral

trapping’, in which chemical reactions with minerals in the host rock lead to the

precipitation of CO2; and ‘dissolution trapping’, in which CO2 dissolves into the

host brine (Metz et al., 2005).

Residual or capillary trapping, well known to oil engineers and hydrologists

(Bear, 1988), takes place whenever the porous medium is initially saturated with

one fluid, which is then displaced by another immiscible fluid. Such is the case

with brine and CO2, where capillary forces act to trap pockets of CO2 in the wake

of the injected current over relatively short time scales (Hesse & Tchelepi, 2008;

Golding et al., 2011). Mineral trapping, on the other hand, is anticipated to take

place over extremely long time scales (typically much longer than the timescales

over which the injected CO2 might leak to the surface), and is very dependent on

the properties of the host rock (Orr Jr., 2009).

Dissolution trapping, or convective dissolution, forms the primary motivation

for this dissertation. Supercritical CO2 is roughly 3 − 5% soluble by weight in

brine under typical storage conditions (van der Meer, 2005). Although CO2 is

significantly less dense than brine, this weak dissolution forms a solution that

is denser than brine. The dense solution is, therefore, unstable to downwelling

convection, which enhances the transport of CO2 away from the injected cur-

rent, and leads to more secure storage. Geochemical field observations in natural

CO2 reservoirs suggest that convective dissolution provides a very significant and

persistent mechanism for the transport of CO2 (Gilfillan et al., 2009).

Typical values of the Rayleigh number (more formally defined in §1.2.3 below)

4



for convective dissolution can vary significantly, and can be very high owing to

the relatively small diffusivity of CO2 in brine (≈ 10−9 m2s−1), the potentially

large permeability of the rock (10−15 to 10−11 m2), and the large spatial scales of

subsurface saline aquifers (∼ 102 m). These parameter values give rise to Rayleigh

numbers in the range 10 < Ra < 105. If Ra is small, convective dissolution will

not have a significant impact; for Ra > O(1000), on the other hand, convective

dissolution is expected to play a major role in the long-term stability of stored

CO2. It is this parameter range that is the focus of this dissertation.

1.2 Governing equations and modelling as-

sumptions

1.2.1 Darcy velocity and Darcy’s law

The porosity φ of a porous medium is defined as the fraction of the medium that

is made up of pore space. Flow in the pore space is typically modelled by taking

the average of quantities like the local velocity and pressure in each pore over a

representative volume that encapsulates many pores (known as a ‘representative

elementary volume’ or REV; Bear 1988). The interstitial velocity v is defined to

be the mean velocity over all the pore space in a REV. The average volume flux

or Darcy velocity, u, is the average velocity over both the solid matrix and the

pore space in a REV, and is therefore given by u = φv.

The fluid is assumed to be incompressible, which gives

∇ · u = 0. (1.1)

The Darcy velocity u is governed by Darcy’s law (Bear, 1988; Phillips, 2009),

which relates the driving pressure and buoyancy forces to the viscous drag im-

parted by the medium on the pore scale. The driving forces are given by the

pressure gradient −∇p and buoyancy −ρg, where p is the pressure, ρ is the

density, and g is the gravitational acceleration. The viscous drag scales with

µ∇2v ∼ µv/δ2p, where µ is the viscosity of the fluid and δp is the typical length-

5



1. INTRODUCTION

scale of the pores. A balance of driving and drag forces gives Darcy’s law,

u = −K
µ

(∇p− ρg) , (1.2)

where K ∼ φ δ2p is the permeability. As well as depending on both the frac-

tion of pore space (φ) and the typical pore size (δp), the permeability typically

depends on properties of the complex pore network, like the tortuosity and the

‘connectedness’ of the pores.

Darcy’s law (1.2) rests on a number of assumptions. The medium is assumed

to be fully saturated by the fluid, so there are no effects of partial saturation. On

the pore scale, inertia is assumed to be negligible compared to viscous drag, such

that the pore-scale Reynolds number Rep is small1. The lengthscales of the flow

are also assumed to remain larger than the typical scale of the REV. The latter

two assumptions are discussed in more detail in §1.2.4 below.

Throughout this dissertation, we also make the assumption that density vari-

ations are small relative to the magnitude of the density itself; this is the (porous

equivalent of the) Boussinesq approximation. Mathematically, the assumption is

contained within the condition of incompressibility (1.1): variations in the den-

sity affect the buoyancy term in (1.2), but have a negligible effect on the velocity

via conservation of mass.

1.2.2 Transport of solute or heat

The equation of state describes the dependence of the density ρ either on the

concentration C of a solute, ρ(C) (as in the case of CO2 and brine), or on the

temperature T , ρ(T ). In the former case, the concentration field in the liquid

phase of the medium evolves by advection and diffusion, as described by

φ
∂C

∂t
+ u · ∇C = φ∇ · (D∇C) , (1.3)

1There have been numerous attempts to extend Darcy’s law or to re-derive the momentum
equation for Rep > O(1). These include simply appending inertial terms to Darcy’s law (e.g.
Wooding 1957), or adding a quadratic drag term (the ‘Forchheimer equation’; see e.g. Joseph
et al. 1982). In general, it is difficult to find a robust physical basis for these alternative
momentum equations, and they are not considered in this dissertation.

6



where D is the solutal diffusivity, which we assume is constant.

In the case of thermal convection, one needs to consider the conservation of

heat in both the solid and the liquid phases of the medium, which are coupled by

the transfer of heat between the phases. In general, the transport equations for

the temperature Ts of the solid phase and Tl of the liquid phase are given by

(1− φ) ρscs
∂Ts
∂t

= (1− φ)∇ · (αs∇Ts) + H (Ts − Tl) , (1.4a)

φρlcl
∂Tl
∂t

+ ρlcl u · ∇Tl = φ∇ · (αl∇Tl)−H (Ts − Tl) , (1.4b)

where ρs,l, cs,l, and αs,l are the density, the specific heat capacity, and the thermal

conductivity of the solid and liquid phases, respectively, and H is the volumetric

heat-transfer coefficient between the phases. Throughout this dissertation, we

will make the simplifying assumption that there is no heat transfer to the solid

phase (H = 0); as such, the temperature of the liquid and solid are decoupled.

The validity of this assumption is discussed in §1.2.4 below. We therefore need

only model the evolution of the temperature field in the liquid region (1.4b),

which, on setting Tl = T , reduces to

φ
∂T

∂t
+ u · ∇T = φ∇ · (κ∇T ) . (1.5)

Here, κ = αl/(ρlcl) is the thermal diffusivity of the liquid, which we assume

is constant. Equations (1.3) and (1.5) therefore have an identical form, and so,

under the assumption of negligible heat transfer to the solid phase, any analysis of

thermal convection (for which ρ is a function of T alone) will be directly applicable

to solutal convection (for which ρ is a function of C alone). For simplicity, both

for solutal and thermal convection, we have neglected the effects of dispersion in

the medium.

1.2.3 Dimensionless parameters

The ratio of the driving strength of buoyancy to the dissipative effects of diffusion

and viscosity is given by the Rayleigh number Ra, defined in the case of thermal
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convection by

Ra =
UH

φκ
=

∆ρ g KH

φκµ
, (1.6)

where U = ∆ρ gK/µ is the buoyancy velocity, ∆ρ is the driving density difference

and H is a typical length scale. For solutal convection, κ is replaced by D in (1.6).

The Rayleigh number can alternatively be thought of as the ratio of diffusive and

convective time scales; in this sense, it is also a Peclét number. In this dissertation,

we focus on convective systems in which Ra is large, and thus advection, rather

than diffusion, provides the dominant transport mechanism.

The dimensionless measure of the convective transport, or flux, of buoyancy

is given by the Nusselt number Nu. The Nusselt number is the ratio of the

total flux F ∗ of buoyancy to the diffusive flux that would occur if there were no

convection. In the case of thermal convection driven by a temperature contrast

∆T across a depth H, the Nusselt number is given by

Nu =
F ∗

φκ (∆T/H)
. (1.7)

If there is no convection, Nu = 1. Based on dimensional analysis, Nu = Nu(Ra),

and the form of this relationship has been widely studied. One of the main results

presented in chapter 2 is the characterization of this relationship for Ra� 1. We

note that, for solutal convection, the Nusselt number is sometimes referred to

as the Sherwood number; for simplicity, throughout the dissertation it will be

referred to as the Nusselt number.

1.2.4 Discussion of assumptions at high Ra

We recall that a number of assumptions lie behind Darcy’s law (1.2). Two

assumptions need particular consideration when the Rayleigh number is large.

First, viscous terms are assumed to dominate inertial terms on the pore-scale;

i.e., the pore-scale Reynolds number Rep is assumed to be small. Although this

condition cannot hold for arbitrarily large values of Ra, because Ra is propor-

tional to the buoyancy velocity, it can hold for Ra � 1 provided the pore scale

remains small. More formally, we recall that the typical pore size δp ∼ K1/2,

and define both the Darcy number Da = K/H2 ∼ (δp/H)2 to be a dimensionless
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measure of the pore size, and the Prandtl number Pr = µ/(ρκ) to be the ratio of

viscous and thermal/solutal diffusivity. Darcy’s law is expected to remain valid

if

Rep =
RaDa1/2

Pr
< O(1). (1.8)

Second, Darcy’s law is based on an assumption that the lengthscales of the

flow are larger than the scale of the REV, and therefore much larger than the pore

scale. At high Ra, the smallest lengthscales are diffusive, and are anticipated to

scale like H/Ra (see chapter 2). A comparison of the diffusive lengthscale with

the pore scale δp ∼ K1/2 suggests that Darcy’s law should remain valid if

RaDa1/2 � O(1). (1.9)

Throughout this dissertation, we assume that (1.8) and (1.9) apply. For a CO2

sequestration site, typical values of Da lie in the range 10−19 . Da . 10−15, while

Pr > 1, which suggests that Darcy’s law remains valid for at least Ra . 106.

The majority of geophysical values of Ra in a porous medium, and all the values

considered in this dissertation, lie below this bound.

Thus the work in this dissertation is directly relevant to solutal convection

at high Ra. To aid intuition, and in common with the many previous studies of

convection, however, we will use the terminology of thermally driven convection,

except in chapters 5 and 6. As mentioned above, analysis of thermal convection is

equally applicable to solutal convection under the assumption that there is no heat

transfer to the solid phase of the medium. It should be noted that, in a physical

system, this assumption is likely to break down at large values of Ra, particularly

when the temperature contrasts are large. However, while the specific physics of

a particular system may vary, the results detailed in this dissertation provide the

tools to systematically understand the dynamics of high-Rayleigh-number porous

convection in a wide variety of physical settings.
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1.3 Introduction to two-dimensional convection

in a porous Rayleigh–Bénard (‘Rayleigh–

Darcy’) cell

The Rayleigh–Bénard cell provides a canonical system for the study of convection.

The cell has lower and upper boundaries held at fixed hot and cold temperatures,

respectively, and thus attains a statistically steady state, which allows for accurate

characterization of both the convective flux through the system and the associated

nonlinear dynamics. The study of convection in a pure-fluid Rayleigh–Bénard

cell has a long and rich history, and remains an enduring and active subject of

fundamental interest in fluid dynamics (Siggia, 1994; Ahlers et al., 2009). Of

particular physical importance is the relationship between the convective flux of

buoyancy, as described by the Nusselt number Nu, and the relative ‘strength’ of

convection, as described by the Rayleigh number Ra.

In comparison to pure fluid convection, convection in a porous version of

the Rayleigh–Bénard cell has received rather less attention, particularly at high

values of Ra. In order to avoid confusion with the pure-fluid Rayleigh–Bénard

cell, throughout this dissertation we refer to this porous cell as a Rayleigh–Darcy

cell. The Rayleigh–Darcy cell is a ‘two-sided’ convective system, because there is

convective transport away from both the upper and the lower boundaries. Natural

convective systems in porous media are often driven by a source of buoyancy on

only one boundary, and we refer to such systems as ‘one-sided’. Convection in

one-sided systems is discussed in detail in chapter 5.

Convection in a two-dimensional Rayleigh–Darcy cell has been widely studied

forRa . 1300 (see Nield & Bejan 2006). ForRa < Racrit = 4π2, a vertically linear

and horizontally uniform temperature field is stable; there is no flow (Lapwood,

1948), and all the buoyancy transfer is diffusive (Nu = 1). For 4π2 < Ra . 382,

the convective flow takes the form of large-scale convective rolls, which are steady

and stable. The Nusselt number increases with Ra, and the relationship Nu(Ra)

can be well predicted by a weakly non-linear analysis (Nield & Bejan, 2006). For

382 . Ra . 1300, convective instabilities in the boundary layers result in a series

of bifurcations that perturb, but do not completely break down, the background

10



cellular structure of the flow (Robinson & O’Sullivan, 1976; Kimura et al., 1986;

Graham & Steen, 1994). The perturbations take the form of ‘dripping’ plumes

which grow from the boundary layers but are washed around with the background

circulation. The growth and migration of these plumes gives rise to periodic,

doubly periodic, or chaotic oscillations in the time-dependent Nusselt number.

The dynamics exhibit significant hysteresis in this regime, and so the values of

Ra at which bifurcations occur are approximate.

Above Ra ≈ 1300, the quasisteady background rolls are completely broken

down by the growth of destabilizing plumes from the upper and lower boundaries

(Otero et al., 2004). The change in the dynamical structure marks the transition

to the ‘turbulent’ high-Ra regime. Curiously, there is a sharp drop in Nu(Ra)

across the transition (Graham & Steen, 1994; Otero et al., 2004), which is pre-

sumably attributable to the reorganization of the flow structure. The high-Ra

regime in a Rayleigh–Darcy cell, which has been very little studied in the past,

is examined in detail in chapter 2, as discussed below.

1.4 Layout

The layout of the dissertation is as follows. In chapter 2, we present direct

numerical simulations of convection in a two-dimensional Rayleigh–Darcy cell

for Ra 6 4 × 104, and examine in detail the convective dynamics at high Ra,

which have been largely unexplored until now. In particular, our measurements

of the Nusselt number Nu are extremely well fitted in the high-Ra regime (Ra &

1300) by an expression of the form Nu = αRa + β, where α = 6.9 × 10−3 and

β = 2.75. This fit strongly suggests that the linear ‘classical’ scaling Nu ∼ Ra

(discussed in §2.1) is attained asymptotically. We show that the interior of the

vigorously convecting system is dominated by persistent vertical columnar flow.

Remarkably, the columnar flow is increasingly well described as Ra → ∞ by a

steady columnar ‘heat-exchanger’ solution with a single horizontal wavenumber

k. The wavenumber increases with Ra, and measurements of k are approximately

fitted by k ∼ Ra0.4.

In chapter 3, we examine the stability of columnar convection in a porous

medium. This work is motivated by the strikingly persistent quasisteady colum-
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nar flow observed in the previous chapter, and by the unexplained physical mech-

anism that controls the horizontal wavenumber k of this flow. We investigate

the hypothesis that the stability of the columnar flow provides the mechanism

for wavelength selection, by studying the linear stability of an unbounded ‘heat-

exchanger’ flow. The dimensionless flow comprises interleaving vertical columns

of horizontal wavenumber k and amplitude Â that are driven by a steady balance

between vertical advection of a background linear density stratification and hor-

izontal diffusion between the columns. We use a Floquet linear-stability analysis

to show that the unbounded flow is always unstable, and determine the largest

growth rate in the limit Ra� k/Â using a matched asymptotic expansion. The

most unstable perturbation in this limit takes the form of vertically propagat-

ing pulses on the background columns. Direct numerical simulations show that

the non-linear evolution of the instability results in a coarsening of the colum-

nar flow. We apply the results of the stability analysis to the columnar flow in

a two-dimensional Rayleigh–Darcy cell, by balancing time scales of propagation

and growth. This scaling argument suggests that the columnar flow would be

unstable if the wavenumber k were greater than k ∼ Ra5/14, as Ra → ∞. A

correction to this scaling for finite Ra gives a slightly stronger dependence on

Ra, in good agreement with the numerical measurements from chapter 2. The

agreement demonstrated suggests that stability of the columnar flow may pro-

vide the hitherto unexplained mechanism that controls the horizontal structure

of high-Ra porous convection.

In chapter 4, we present a numerical investigation of the flow in a porous cell

containing a thin horizontal layer of much lower permeability than the rest of the

cell. This work is motivated by the common occurrence of thin, roughly horizon-

tal, low-permeability layering in geophysical aquifers. We show that, if both the

height h and permeability Π of the interior layer are small compared with the

height and permeability of the rest of the cell, the flow is a function of their ratio,

Ω = h/Π, only. This observation is corroborated by direct numerical results. We

characterize the dependence of the convective flux and the associated dynamical

structure of the flow on Ω, which can be thought of as the impedance due to the

low-permeability layer. Two observations are particularly striking: first, the hor-

izontal lengthscale of the plumes in the interior of the cell increases dramatically
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as Ω is increased; and second, the presence of an interior low-permeability layer

can cause the Nusselt number Nu to increase appreciably from the value in a

homogeneous cell with no interior layer. We explore the dependence of Nu(Ω)

and the structure of the flow on Ra, and develop simple reduced models of the

system to describe some of the observed features.

In chapter 5 and chapter 6, we extend our previous work on ‘two-sided’ statis-

tically steady Rayleigh–Darcy convection to consider the evolution of convection

in a ‘one-sided’ system. A one-sided system has a source of buoyancy on one

boundary alone, and there is no steady state. In a closed domain, driven by

a dense source on an upper boundary, convection gradually ‘shuts down’ owing

to the increase in the average interior density. In chapter 5, we show that the

evolution of the convective flux in this one-sided shutdown system can be di-

rectly calculated from the relationship Nu(Ra) in a two-sided statistically steady

Rayleigh–Darcy cell (studied in chapter 2). We develop simple ‘box’ models that

give excellent agreement with high-resolution numerical calculations. We also

find a remarkable similarity in the dynamical structure of convection between the

one-sided evolving system and the two-sided statistically steady system; vertical

columnar plumes reach across the height of the domain, and their lateral scale

evolves in very good qualitative agreement with measurements of k(Ra) from

chapter 2. We extend this work to model the shutdown of convection with a

general power-law equation of state.

In chapter 6, we build on the work of the previous chapter to consider different,

more complex, physical systems, which comprise two fluid layers with an equation

of state such that the solution that forms at the interface is more dense than either

layer (as in the case of supercritical CO2 overlying brine). We consider both

immiscible and miscible fluids; in each case, the predictions of theoretical box

models agree well with the results of high-resolution numerical simulations. We

undertake both laboratory experiments and numerical simulations which show

that interfacial deformation can dramatically enhance the convective flux.

In chapter 7, we present the first numerical study of high-Ra Rayleigh–Darcy

convection in three dimensions. We give a brief overview and discussion of the

features of the flow below the transition to the high-Ra regime, as the system has

been very little studied previously except for the range Ra . 300 in which the
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convection is steady. Measurements of Nu(Ra) over the range 1500 6 2 × 104

are very well fitted by Nu = α3Ra + β3, for α3 = 9.6 × 10−3 and β3 = 4.28.

This fit strongly suggests that the classical linear scaling Nu ∼ Ra is attained

asymptotically, as in two dimensions (chapter 2). We also measure the dynamical

structure of the flow, and show that a steady heat-exchanger model provides an

increasingly good description of the interior exchange flow as Ra → ∞. The

dominant horizontal wavenumber of the interior flow is roughly fitted by k ∼
Ra0.54 over this range of Ra.

Finally, in chapter 8, we summarize all of this work. We discuss some of

the implications of our results for the geological storage of CO2, and directions

for future work. In appendix A, we give a detailed description of the numerical

schemes that were developed and used throughout the dissertation.
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Chapter 2

Two-dimensional Rayleigh–Darcy

convection at high Rayleigh

number

The material contained in this chapter has been published in Physical Review Let-

ters, under the title ‘Ultimate regime of high Rayleigh number convection in a porous

medium’ (Hewitt et al., 2012).

2.1 Introduction

The Rayleigh–Darcy cell (porous Rayleigh–Bénard cell) provides an archetypal

configuration in which to study convection in a porous medium. The cell has

imposed temperatures on its upper and lower boundaries and thus attains a

statistically steady state, which allows both for a detailed investigation of the

convective dynamics and for an accurate measurement of the convective flux, as

described by the Nusselt number Nu.

As discussed in the introduction, various authors have studied and charac-

terized the convective dynamics of the two-dimensional Rayleigh–Darcy cell for

low and moderate values of the Rayleigh number Ra (see Nield & Bejan 2006).

We recall that, for Ra < 4π2, there is no convection (Lapwood, 1948), while for

4π2 < Ra . 1300, the flow exhibits convective rolls, which undergo a series of
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bifurcations that perturb the background flow as Ra is increased (Kimura et al.,

1986; Graham & Steen, 1994). For Ra & 1300, this quasisteady background flow

breaks down completely, marking a transition to the high-Ra regime of interest

here. Although this transition was observed in a numerical study by Otero et al.

(2004), who measured Nu(Ra) for Ra 6 104, the dynamics of the flow in the

high-Ra regime have not previously been explored.

The Nusselt number, which describes the transport of buoyancy in a system,

provides perhaps the most physically important measure of convection. Charac-

terization of the relationship Nu(Ra) has been the subject of extensive research.

The famous ‘classical’ scaling argument (Howard, 1964) for convection in a pure-

fluid Rayleigh–Bénard cell claims that, for sufficiently large Ra, the heat transfer

into the domain becomes independent of the height H of the domain, because

the the structure of the flow is dominated by plume shedding from thin boundary

layers into a turbulent interior. This argument predicts a scaling of Nu ∼ Ra1/3

in a pure fluid.1

For porous convection in a Rayleigh–Darcy cell at high Ra, the classical ar-

gument instead predicts a linear scaling Nu ∼ Ra. In agreement with this

prediction, a linear scaling has been shown to be a rigorous upper bound for

the the flux (Busse & Joseph, 1972; Doering & Constantin, 1998; Otero et al.,

2004; Wen et al., 2012). However, in their direct numerical study of the high-Ra

regime, Otero et al. (2004) found a slightly reduced exponent Nu ∼ Ra0.9 for

1300 . Ra ≤ 104. Experimental results from a one-sided system with a convect-

ing upper boundary and a deep or no-flux bottom boundary have given scalings

closer to Nu ∼ Ra0.8 (Neufeld et al., 2010; Backhaus et al., 2011).

In this chapter, we use well-resolved direct numerical simulations of a two-

dimensional Rayleigh–Darcy cell over the range 1300 < Ra ≤ 4× 104 to examine

1The turbulent nonlinear dynamics of pure-fluid convection, together with dependence on
the Prandtl number, give rise to a system of rather more complexity than this simple argument
suggests (Siggia, 1994; Ahlers et al., 2009). For example, the widely cited (if no longer widely
believed) theory of Castaing et al. (1989) suggested that shear in the boundary layers due to
large-scale circulation could re-introduce a dependence on the height H at larger Ra, to give
a reduced scaling Nu ∼ Ra2/7, while the so-called ‘ultimate’ scaling of Nu ∼ Ra1/2, in which
the flux is controlled entirely by the turbulent interior dynamics, has been hypothesized by
rigorous upper bounds (Kraichnan, 1962; Doering & Constantin, 1996; Plasting & Kerswell,
2003), and observed in numerical simulations (Lohse & Toschi, 2003; Calzavarini et al., 2005)
and experiments (Chavanne et al., 1997; He et al., 2012) at very high values of Ra.
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the dynamics and behaviour of the flux in the high-Ra regime. In §2.2, we

present the governing equations and non-dimensionalization, and briefly outline

the numerical scheme that we employed (the numerical scheme is discussed in

detail in appendix A). In §2.3, we present the numerical results, which reveal

that, contrary to previous indications of a sub-linear scaling, the linear classical

scaling Nu ∼ Ra is attained asymptotically. In §2.4, we explore the dynamics of

the flow in the high-Ra regime; the dynamical structure of the flow is dominated

by vertical columnar ‘megaplumes’ that extend across the interior of the domain,

and are driven by entrainment and mixing of small ‘protoplumes’ near the upper

and lower boundaries. The flow in the interior is increasingly well described as

Ra → ∞ by a simple steady ‘heat-exchanger’ solution with a single horizontal

wavenumber k. Measurements of k give an approximate scaling of k ∼ Ra0.4.

In §2.5, we summarize and discuss our results.

2.2 Governing equations and numerical method

2.2.1 Dimensional equations

We consider the flow of a Boussinesq fluid in a two-dimensional homogeneous

and isotropic porous medium, with horizontal and vertical coordinates x∗ and z∗,

respectively (dimensional variables are denoted with a ∗). We assume that the

flow u∗ obeys Darcy’s law and is incompressible,

u∗ = −K
µ

(∇p∗ + ρ∗gẑ∗) , (2.1)

∇ · u∗ = 0, (2.2)

where K is the permeability of the porous medium and µ is the fluid viscosity,

both of which are assumed to be constant, p∗ is the pressure field, g is the accel-

eration due to gravity, and ẑ∗ is a unit vector in the positive z∗ direction. The

density ρ∗ satisfies a linear equation of state with respect to the temperature field

T ∗,

ρ∗ = ρ0 [1− a (T ∗ − T0)] , (2.3)
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z∗ = 0

z∗ = H
T ∗ = T0

T ∗ = T0 + ∆T

L∗

z = 0

z = 1
T = 0

T = 1

L

(a) (b)

Figure 2.1: A schematic of the setup for the (a) dimensional and (b) dimensionless
Rayleigh Darcy cell.

with constant coefficient of thermal expansion a and constant reference density

and temperature ρ0 and T0 respectively. The temperature field evolves in time t∗

by advection and diffusion,

φ
∂T ∗

∂t∗
+ u∗ · ∇T ∗ = φκ∇2T ∗, (2.4)

where φ is the porosity of the porous medium and κ is the thermal diffusivity,

both again assumed to be constant. Note that we have neglected heat transfer

to the solid phase of the medium in (2.4) (see §1.2).

We consider a domain of depth H and width L∗, with periodic boundary

conditions on the sides x∗ = 0, L∗ (figure 2.1a). We impose zero mass flux and

fixed temperature on the top and bottom of the domain:

T ∗ = T0 + ∆T, w∗ = 0 at z∗ = 0, (2.5a)

T ∗ = T0, w∗ = 0 at z∗ = H. (2.5b)

2.2.2 Dimensionless equations

We define the density scale ∆ρ = ρ0a∆T and the convective velocity scale U =

Kg∆ρ/µ. Lengths are scaled with H, velocity with U , pressure with gH∆ρ, and
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time with φH/U ; we also introduce a rescaled dimensionless temperature T given

by

T =
T ∗ − T0

∆T
. (2.6)

This rescaling gives dimensionless equations

u = − (∇P − T ẑ) , (2.7)

∇ · u = 0, (2.8)

∂T

∂t
+ u · ∇T =

1

Ra
∇2T, (2.9)

where P = p + z ρ0/∆ρ is a reduced pressure, and the Rayleigh number is given

by

Ra =
UH

φκ
=
ρ0a∆TgKH

φκµ
. (2.10)

The thermal boundary conditions in (2.5) become

T = 1 at z = 0, and T = 0 at z = 1. (2.11)

The dimensionless system is shown schematically in figure 2.1(b).

Non-dimensionalizing in this way gives rise to O(1) dimensionless temperature

and convective velocity and time scales, while diffusive time and length scales are

O(Ra−1). The Rayleigh number takes the role of an inverse diffusivity in (2.9).

This choice of dimensionless variables aids numerical calculations by leaving the

timescales for convergence to a statistically-steady state independent of Ra.

The Nusselt number Nu is the dimensionless average heat flux though the

system, scaled by the flux due to steady conduction alone. The heat flux can

be determined by the diffusive flux through the lower boundary of the domain,

which gives

Nu = 〈nu(t)〉 =

〈
− 1

L

∫ L

0

∂T

∂z

∣∣∣∣
z=0

dx

〉
, (2.12)

where angle brackets 〈 〉 denote a long-time average and L = L∗/H is the dimen-
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sionless width of the domain. We define the expression inside the angle brackets

of (2.12) to be the time dependent Nusselt number nu(t).

2.2.3 Numerical method

The requirement of incompressibility (2.8) can be satisfied by introducing a

streamfunction ψ, with (u,w) = (ψz,−ψx). We eliminate the pressure field P

by taking the curl of (2.7), which gives

∇2ψ = −∂T
∂x

. (2.13)

Equations (2.9) and (2.13) were solved numerically. The numerical method is

outlined very briefly below, and is discussed in detail in appendix A.

Equation (2.13) was solved using a spectral method, and (2.9) with an

alternating-direction implicit method. The diffusion and advection operators

in (2.8) were discretised using standard second-order finite differences and flux-

conservative techniques respectively. We used a vertical co-ordinate transforma-

tion in order to resolve the diffusive boundary layers at z = 0, 1 which have

an anticipated depth δ ∼ Ra−1. The numerical simulations are second order in

space and time, and have been extensively benchmarked against previous numer-

ical results at lower values of Ra (Graham & Steen, 1994; Otero et al., 2004), as

discussed in appendix A.

The numerical simulations were initialised in one of two ways: either with a

small (random) perturbation to the steady conduction solution T = 1− z, u = 0,

or with the statistically-steady output from a simulation at a lower or similar Ra.

After some initial transient dynamics, which depend on the initialisation method,

the system settles into a statistically steady state. Unlike at lower values of Ra

(see, e.g., Otero et al. 2004), we have seen no evidence that the initial conditions

play a role in the long-term behaviour of the system in the high-Ra regime.
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Figure 2.2: Snapshots of the temperature field for L = 2 at: (a) Ra = 5000; and
(b) Ra = 2 × 104, which highlights the three regions of differing dynamics, as
discussed in the main text.

2.3 Numerical results

2.3.1 Structure of the flow

For Ra & 1300, the system cannot sustain the large-scale quasi-periodic roll

structure found at lower Ra, which is broken down as unsteady plumes from

the boundaries drive a vigorous columnar exchange flow across the height of the

domain. This transition in the dynamics marks the start of the ‘high-Ra’ regime,

which is studied here.

The flow can be divided into three regions of differing dynamics, as illustrated

in figure 2.2, which shows snapshots of the temperature field for Ra = 5000

and Ra = 2 × 104. The interior region is dominated by predominantly vertical

21



2. 2D RAYLEIGH–DARCY CONVECTION

!"# !"$ !%& !%! !%"
'!&

'(&

'"&

'%&

'#&

!"" !#" $"" $#" %""

&"

'""

'!"

'%"

'("

'&"

!""

!"" !#" $"" $#" %""
!"

$"

%"

#"!!" !"" !#"

nu

t t t

Figure 2.3: The instantaneous Nusselt number nu(t) =
∫
∂T/∂z|z=0 dx for: (a)

Ra = 5000; and (b) Ra = 2 × 104, with the vertical axis showing the range
[Nu/2, 3Nu/2]. Panel (c) shows the same data as (b) on an expanded sale; the
individual data points shown are separated by ten time steps ∆t, illustrating that
the measurements are well resolved in time.

exchange flow, carried in columns or ‘megaplumes’ of a fairly regular and Ra-

dependent wavelength. At the very top and bottom of the domain are thin

diffusive boundary layers, where intermittent short-wavelength instabilities drive

the growth of small ‘protoplumes’. Between the boundary layers and the interior

columnar flow is a region where the dynamics are characterised by the rapid

growth and vigorous mixing of protoplumes. Lateral flushing by the large-scale

flow drives entrainment of the protoplumes into the interior megaplumes. As can

be observed by a comparison of figure 2.2(a) and (b), the horizontal scale of both

the protoplumes and the interior megaplumes decreases as Ra increases.

2.3.2 The Nusselt number

For Ra & 1300, the time-dependent Nusselt number, nu(t), of the statistically

steady state exhibits chaotic fluctuations about the time-averaged Nusselt number

Nu. The typical frequency scales of these fluctuations increase with Ra, while

their relative amplitude decreases, as shown for Ra = 5000 and Ra = 2 × 104

in figure 2.3. A numerical estimate of Nu is obtained by time-averaging until

statistical uncertainty in the mean of nu(t) is reduced to within 0.25%. The

details of this averaging technique are given in appendix 2.A.

Figure 2.4 shows Nu(Ra) for Ra 6 4 × 104. The transition to the high-Ra

regime is marked by a sharp discontinuity in Nu at Ra ≈ 1300. A least-squares fit
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Figure 2.4: (a) The time-averaged Nusselt number Nu(Ra), showing the onset
of convection at Ra = 4π2 and the transition to the high-Ra regime at Ra ≈
1300. (b) The scaled Nusselt number Nu/Ra in the high-Ra regime, for different
aspect ratios L, together with the data from Otero et al. (2004) for Ra 6 104 for
comparison. The best-fit power law Nu ∼ Ra0.95 (dotted line) does not capture
the trend as Ra increases; instead, the measurements are very well described by
Nu = αRa+ β, for α = 6.88× 10−3 and β = 2.75 (solid line).

of the data beyond this point gives a scaling of Ra ∼ Nu0.95±0.01, in approximate

agreement with previous results (Otero et al., 2004). However, the numerical

measurements for 1300 6 Ra 6 4 × 104 are much more accurately fitted by an

equation of the form

Nu = αRa+ β, (2.14)

where α ≈ 6.9 × 10−3 and β ≈ 2.75 are constants. Figure 2.4(b) shows a plot

of Nu/Ra against Ra, together with (2.14) and the best-fit power-law curve

Nu ∼ Ra0.95. We find that the linear fit (2.14) deviates from the data by less

than 0.6%, while the power-law fit deviates by more than 2%, over the range

shown. The excellent fit provided by (2.14) strongly suggests that the classical

linear scaling is attained asymptotically, and so the flux is asymptotically inde-

pendent of the height of the domain. This result is perhaps surprising, given

that the system is dominated by columnar exchange flow across the whole do-

main (fig. 2.2) which, we might imagine, could provide a mechanism by which

information could be propagated between the upper and lower boundaries. We

find that Nu exhibits no systematic dependence on the aspect ratio L; the slight

scatter in the measurements of fig. 2.4(b) is the result of extremely long-timescale
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Figure 2.5: The sign of the vertical velocity at z = 0.5 over time: (a) Ra = 5000;
and (b) Ra = 2 × 104. White and black signify positive and negative vertical
velocity respectively.

fluctuations in the number of megaplumes in the domain, as discussed in §2.4.1

below.

2.4 Dynamics of the flow

2.4.1 The interior region

We observed in figure 2.2 that the interior of the flow is dominated by vertical

columnar megaplumes in the high-Ra regime. Space-time plots of the sign of

the vertical velocity at z = 0.5 (figure 2.5) reveal the remarkable persistence of

this columnar structure, particularly at higher Ra. The location of the colum-

nar megaplumes appears to be almost steady in time, despite significant short-

timescale fluctuations in the position of the edges of the columns. There is some

slight variability in the number of columns over extremely long timescales, which

could be due to weak mode restriction imposed by the horizontal periodicity, al-

though similar long-timescale variability is observed in calculations with larger

aspect ratios L.
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2. 2D Rayleigh–Darcy convection

2.4.1.1 Heat-exchanger solution

Based on the observed persistence of the megaplumes in figure 2.5, we can develop

a simple, steady model of the columnar flow in the interior. There is an exact

‘heat-exchanger’ solution to (2.9) and (2.13) in an unbounded domain, in which

vertical advection of a background linear temperature gradient is exactly bal-

anced by horizontal diffusion between neighbouring megaplumes, giving a steady

solution,

T = Â cos (kx)− k2

Ra
z, (2.15a)

u = 0, (2.15b)

w = Â cos (kx). (2.15c)

The solution comprises interlocking columnar flow with amplitude Â and a reg-

ular horizontal wavenumber k.

Equation (2.15a) shows that the horizontally averaged temperature profile

is vertically linear. Numerical measurements of the temporally and horizontally

averaged temperature
〈
T
〉

(figure 2.6) agree with this linear behaviour in the

interior region. The gradient of
〈
T
〉

decreases as Ra increases. We compare the

amplitude of the columnar flow in the heat-exchanger model with the numerical

calculations by measuring the root-mean-square (rms) temperature perturbations

and velocity components, Trms, wrms and urms. In the heat-exchanger model,

Trms = wrms = Â/
√

2 and urms = 0, independent of z. Numerical measurements

of Trms, wrms and urms at different values of Ra (figure 2.7a) show very good

agreement with this behaviour asymptotically: urms decreases as Ra increases,

and Trms appears to tend towards wrms, which is itself roughly independent of

Ra, as Ra→∞.

These measurements indicate that the vigorously convecting system is domi-

nated by a remarkably persistent columnar flow that becomes increasingly ordered

and increasingly well-described by the steady heat-exchanger solution as Ra in-

creases. Moreover, the measurements presented in figure 2.7(a) suggest that Â

is asymptotically independent of Ra and given by Â =
√

2Trms ≈
√

2 (0.083) ≈
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Figure 2.6: The temporally and horizontally averaged temperature profile
〈
T
〉

for Ra = 1, 2, 4× 104, as marked. The profiles are approximately linear through
the interior of the domain, with a gradient that decreases with Ra.

0.117 as Ra → ∞. This observation agrees with the indications from figure 2.4

that the classical linear scaling for Nu(Ra) is attained asymptotically, and cor-

roborates the validity of the heat-exchanger model for the interior flow: since

the heat flux is dominated by advection in the interior at high Ra, the heat-

exchanger model (2.15) gives Nu ≈ RaÂ2/2 ≈ 0.0069Ra as Ra → ∞, in very

good agreement with the measured value of the coefficient α in (2.14). 1

Figure 2.7(b) shows the variation in the rms temperature and velocity fields

with z for a selection of values of Ra. The heat-exchanger solution requires the

rms values to be independent of z, and so we expect it to be valid across the

interior, where the measured quantities vary slowly and Trms ≈ wrms. Near to

the upper and lower boundaries of the domain, however, the rms quantities vary

significantly: Trms and wrms differ appreciably, and urms grows. These observations

signify that the heat-exchanger solution breaks down near to the upper and lower

boundaries of the domain, where protoplumes dominate the dynamics of the flow.

We have also adapted the unbounded heat-exchanger solution (2.15) to model

the effect of circulation in a finite domain, by including vertical variation with

a wavenumber m � k. The adapted model is discussed in appendix 2.B. The

model, which includes a non-zero horizontal velocity, gives good quantitative

1Interestingly, the average advective heat flux depends only on the amplitude Â, and is
independent of the wavenumber k.
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Figure 2.7: The temporally average root-mean-square temperature Trms (red),
vertical velocity wrms (blue) and horizontal velocity urms (green): (a) measured
at z = 0.5; and (b) plotted against z, for Ra = 104 (solid), Ra = 2×104 (dashed),
and Ra = 4× 104 (dotted).

agreement with the behaviour of the rms temperature and velocity perturbations

in figure 2.7(a), and reduces to the simple heat-exchanger solution (2.15) as Ra→
∞.

2.4.1.2 Measurements of the dominant wavenumber k

The heat-exchanger model per se leaves the wavenumber k of the columnar flow

undetermined. We measured k using a time-average of the Fourier transform of

the temperature field at z = 0.5, and these measurements are presented in figure

2.8(a). We obtained very similar results by applying the same method to the

vertical velocity field. The measurements of k can be fitted by an approximate

scaling

k = 0.48Ra0.4, (2.16)

(figure 2.8b), although the data also hints at a possible decrease in the exponent

for Ra & 2× 104 1. There is some variation between different calculations, even

for the same aspect ratio L, which is likely due to fluctuations in the dominant

wavenumber over extremely long timescales (as observed in figure 2.5).

1A larger range of Ra would be required to verify any change in exponent. However, results
from a stability analysis of the heat-exchanger solution (presented in chapter 3) are consistent
with the measurements presented here and suggest an asymptotic scaling of k ∼ Ra5/14 (5/14 ≈
0.357).
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Figure 2.8: Measurements of the temporally averaged horizontal wavenumber:
(a) the dominant wavenumber k, measured from a Fourier transform at z = 0.5,
for different aspect ratios L as marked; (b) the dominant wavenumber scaled by
Ra0.4; and (c) the time-averaged power spectra Pj against the scaled wavenum-
ber j/Ra0.4, for Ra = 1, 2, 4 × 104 (black, blue, and red, respectively), showing
exponential decay for large wavenumbers and a clear peak at j = k. We attribute
the variability in the measurements of k in (a) and (b) to very long timescale
fluctuations in the dominant wavenumber that are not fully time-averaged.

The time-averaged power spectra Pj, which are given as a function of the

wavenumber j by the square of the magnitude of the Fourier transform, show a

clear peak at the dominant wavenumber k, and an exponential decay for large

wavenumbers (figure 2.8c). While relatively low wavenumbers appear to exhibit

the same approximate scaling with Ra as k, larger wavenumbers seem to display

a stronger scaling, as can be seen by examining the measurements of Pj for large

wavenumbers in figure 2.8(c).

2.4.2 The proto-plume region

In a bounded domain, the interior columnar-exchange flow feeds into and is fed

by protoplumes near to the upper and lower boundaries. A plausible hypothesis

is that the horizontal wavenumber k and the amplitude Â of the interior flow

are determined by the interaction between the megaplumes and the protoplume

regions. To examine the dynamics in these regions, we constructed space-time

diagrams of the temperature in a slice at a fixed height just above the bottom

boundary layer (which exhibits behaviour that is mirrored at the top). Figure
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Figure 2.9: Space-time plots of the temperature in a slice just above the lower
boundary layer at z = 100/Ra, for: (a) Ra = 5000; and (b) Ra = 2× 104. These
plots show both the directly measured temperature (t < 120) and the results of a
plume-tracking algorithm (t > 120), which gives a way to analyse the dynamics
of plumes in more detail. Megaplume roots are highlighted, and the ‘ribs’ of
the fishbone structures (see the text) mark the formation and entrainment of
protoplumes.

2.9 reveals a characteristic repeating ‘fish-bone’ pattern, which corresponds to

persistent mega-plume roots (the ‘backbones’) together with transient formation

and entrainment of protoplumes on either side (the ‘ribs’).
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Figure 2.10: (a) The temporally averaged number of plumes in the boundary layer
for L = 2, counted by a plume-tracking algorithm: the total number of plumes
(red) is best fit by a scaling of Ra0.97±0.05, while the number of megaplumes alone
is best fit by a scaling of Ra0.39±0.06, in rough agreement with the measurements of
k in the interior (figure 2.8). (b) The dominant wavenumber kw(z) of the vertical
velocity, measured by a Fourier transform and scaled by Ra, for Ra = 1, 2, 4×104

(black, blue, and red, respectively). The wavenumber has a linear scaling with
Ra near the boundary, in contrast to the much weaker scaling of k in the interior.

The pattern of ribs shows bursts of protoplumes that typically commence

near a larger established plume, while later proto-plumes in the burst originate

successively further away. We interpret this as propagation of instability along

the boundary layer which drains the buoyancy accumulated since the previous

burst. Concomitantly each new proto-plume is entrained back towards the larger

established plume. This coupled mechanism of instability and entrainment leads

to episodic and highly time-dependent patterns of plume growth and flushing.

Counts from a plume-tracking algorithm of the number of plumes in the

boundary layer (figure 2.10a) and measurements of the dominant wavenumber

as a function of z (figure 2.10b) both strongly suggest that the typical lateral

lengthscale of the protoplumes scale like Ra−1, which is a much stronger scaling

than the megaplume spacing k−1 (2.16). This means that there are more proto-

plumes being entrained into each megaplume at higher values of Ra. In addition,

visual comparison and rescaling of plots like fig. 2.9(a) and (b) suggests that the

typical timescales and lateral lengthscales of the ‘ribs’ in the fish-bone structures

scale approximately like Ra−1. The lengthscales certainly decrease significantly

more rapidly with Ra than the mega-plume spacing, as can be seen by comparing
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the number of ‘ribs’ in fig. 2.9. We also observe that the patterns of ‘ribs’ are

increasingly initiated by protoplumes, as well as megaplumes, as Ra is increased,

which leads to increasingly ramified fish-bone patterns at higher Ra, and is sug-

gestive of a hierarchy of coarsening as Ra is increased. All of these observations

strongly suggest that the horizontal wavenumber k of the interior flow is not di-

rectly governed by the dynamics of protoplumes at the top and bottom of the

domain.

2.5 Conclusions

We have found that numerical measurements of the Nusselt number in a Rayleigh–

Darcy cell over the range 1300 < Ra 6 4 × 104 are extremely well fitted by

Nu = αRa+ β, with α = 6.9× 103 and β = 2.75. This fit strongly suggests that

the classical linear scaling Nu ∼ Ra is attained asymptotically, in contrast to

previous indications of a sub-linear scaling (Otero et al., 2004). An implication

of this linear scaling is that the dimensional flux is asymptotically independent

of the height of the domain.

Given the increasingly vigorous nature of the dynamics at the boundaries, it is

striking that the interior columnar flow displays such persistent regular structure

as Ra increases. Indeed, despite highly time-dependent forcing from the proto-

plume regions, we have shown that the steady heat-exchanger solution, which

comprises purely vertical flow, provides a remarkably good description of the dy-

namics of the interior region asymptotically. This increasingly ordered behaviour

as Ra is increased is quite unlike the disordered turbulent dynamics in the interior

of a pure-fluid Rayleigh–Bénard cell at high Ra (e.g. Ahlers et al. 2009). The

dominant horizontal wavenumber k of the interior flow increases with Ra, and

can be approximately fitted by a scaling of k ∼ Ra0.4 for 1300 < Ra 6 4× 104.

The episodic bursting and propagation of boundary-layer instabilities near

the upper and lower boundaries of the domain give rise to the fish-bone struc-

tures shown in figure 2.9. The typical horizontal lengthscale of the resultant

protoplumes approximately scales with Ra−1, which is a much stronger than the

dominant interior lengthscale k−1. The difference in scalings suggests that the

protoplumes do not govern the interior wavenumber k directly.
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Motivated by this intriguing observation, in chapter 3 we examine in detail

whether the interior wavenumber is determined instead by the stability of the

columnar flow itself. The results of the stability analysis are consistent with

the numerical measurements of k(Ra) presented in figure 2.8, and suggest an

asymptotic scaling for the wavenumber of k ∼ Ra5/14.

The measurements of the flux Nu(Ra) and the surprising dynamical structure

of the flow discussed in this chapter provide a basis for a wide range of buoyancy-

driven flows in porous media, some of which are discussed in the remainder of this

dissertation. In particular, the results of this chapter have implications for the

long-term stabilization of sequestered CO2 through dissolution-driven convection.

Appendices

2.A Averaging the Nusselt number

The local time-dependent Nusselt number, nu(t), is given by

nu(t) = − 1

L

∫ L

0

∂T

∂z

∣∣∣∣
z=0

dx = − 1

L

∂ζ

∂z

∫ L

0

∂T

∂ζ

∣∣∣∣
ζ=0

dx, (2.17)

where ζ(z) is the rescaled vertical coordinate (see appendix A). In the statistically

steady high-Ra regime, nu(t) exhibits chaotic fluctuations about a mean (see

figure 2.3). We measured and averaged nu(t) until the average had converged to

a suitably defined tolerance. To reduce computation time, we used a ‘quadratic-

box’ running average to reduce the convergence time.

We define the ‘quadratic-box’ (QB) average of length L, QL(t), to be the

weighted average,

QL(t) =
15

16L5

∫ t+L

t−L

(
L2 − [τ − t]2

)2
nu(τ) dτ . (2.18)

We generate a running QB average QL by averaging (2.18) over all previous time
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Figure 2.11: The instantaneous Nusselt number nu(t) at Ra = 2 × 104 (grey;
taken from figure 2.3(b) and plotted on a much larger scale), together with a
standard running average (blue) and the ‘quadratic box’ running average QL(t)
(red) as defined in the text.

(for the sake of this discussion, t = 0 is taken to correspond to a time after all

initial transients have decayed and the system is in a statistically steady state),

to give

QL(t) =
1

t− 2L

∫ t−L

L

QL(τ) dτ . (2.19)

Figure 2.11 shows an example of measurements of nu(t) at Ra = 2 × 104,

together with the standard running average (which simply averages all previous

data points equally) and the QB running average. The QB average gives a much

smoother signal than a standard running average. A QB will also give smoother

convergence than a simple unweighted box average would, because the averaging

function in (2.18) is only discontinuous in the second derivative rather than the

zeroth at t± L, which gives much more rapidly decaying Fourier modes.

The convergence of QL(t) is determined by specifying a convergence timescale

tconv and tolerance ε. We consider QL(t) to have converged to Nu if

∣∣QL(t1)−QL(t2)
∣∣ < ε

(
QL(t1) +QL(t2)

2

)
for all t1, t2 ∈ [t− tconv, t]. (2.20)

We typically used values of ε = 2.5 × 10−3 (i.e. convergence to 0.25%) and

tconv = 100.
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2.B The adapted heat-exchanger solution

In §2.4.1.1, we found that the flow in the interior of the Rayleigh–Darcy cell

is increasingly well described by a simple heat-exchanger solution as Ra → ∞.

The heat-exchanger solution (2.15) comprises purely vertical columnar flow in an

unbounded domain. In this appendix, we adapt the unbounded heat-exchanger

solution to model the effect of circulation in a finite domain, by including vertical

variation with a wavenumber m � k. The adapted heat-exchanger model takes

the form

T = T̂ cos (kx) sin (mz)− k2

Ra

(
1 +

m2

k2

)
z, (2.21a)

u = û sin (kx) cos (mz), (2.21b)

w = ŵ cos (kx) sin (mz), (2.21c)

where

û =
km

k2 +m2
T̂ , and ŵ =

k2

k2 +m2
T̂ . (2.22a, b)

Horizontal advection of temperature is neglected in this model, which is a valid ap-

proximation as long as T̂m� k2. We expect that m is related to the height of the

domain, which implies that the more rapid horizontal variations with wavenum-

ber k dominate as Ra increases; hence the simple heat-exchanger solution (2.15)

is recovered asymptotically.

Equations (2.21)–(2.22) provide three relationships which link five measurable

unknowns, T̂ , ŵ, û, k, and ∂T/∂z, together with one less easily measured, m.

These relationships allow us to test the accuracy of the model. Two comparisons,

for û and for ∂T/∂z, are presented below.

First, we consider the horizontal velocity û. Elimination of m from (2.22)

gives an alternative expression for û,

û = ŵ

(
T̂

ŵ
− 1

)1/2

. (2.23)

We also recall the relationships Trms = T̂ /
√

2, wrms = ŵ/
√

2, and urms = û/
√

2.
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Figure 2.12: Measurements of: (a) the average rms horizontal velocity urms at z =
0.5, from direct numerical measurements (blue squares) and calculated from the
adapted heat-exchanger model using (2.23) (red circles); and (b) the magnitude
of the temporally and horizontally averaged vertical temperature gradient, from
direct numerical measurements (blue squares), and calculated from the adapted
heat-exchanger model using (2.24) (red circles).

Figure 2.12(a) shows directly measured values of urms together with the theo-

retical values obtained from (2.23) and the measured values of Trms and wrms.

The measurements suggests a very reasonable agreement with the adapted heat-

exchanger model, although there is roughly a 10% difference in magnitude.

Second, we consider the magnitude of the linear gradient of the temporally

and horizontally averaged temperature profile, ∂
〈
T
〉
/∂z, that was shown in figure

2.6. Elimination of m from the theoretical expression for the gradient in (2.21a)

using (2.22a), gives ∣∣∣∣
∂T

∂z

∣∣∣∣ =
k2

Ra

T̂ 2

ŵ2
. (2.24)

Figure 2.12(b) shows a comparison of direct measurements of the interior gradient

with the calculated value obtained from (2.24) (together with measurements of

Trms and wrms). Again, we see a good qualitative fit, although with a difference in

magnitude of ∼ 15%. A power-law fit of the measured data gives a Ra exponent

of −0.27±0.05, while the theory (2.24) predicts an asymptotic scaling of approx-

imately Ra−0.2, based on the approximate fit k ∼ Ra0.4 in §2.4.1.2. The variation

in the data shown in figure 2.12 is related to the variation in the measurements

of k (figure 2.8), and is predominantly due to long-timescale variations in the
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2. 2D RAYLEIGH–DARCY CONVECTION

number of plumes in the domain, as discussed in §2.4.1.2.

There are at least two plausible reasons for the slight difference between the-

ory and measurements in figure 2.12. First, the measurements of k2 that we

have used in (2.24) are calculated from measurements of k; however, since the

true solution contains more than one Fourier mode, this calculation will yield

an underestimate the true value of k2. Second, there will be more horizontal

heat transfer than the purely diffusive transfer that the model predicts, because

of mixing due to transient dynamics in the interior of the Rayleigh–Darcy cell.

So vertical advection of heat, and therefore the background gradient of the flow,

will be slightly larger than the model predicts, in order to balance this increased

horizontal transfer.
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Chapter 3

Stability of columnar convection

in a porous medium

The material contained in this chapter has been accepted for publication in the Jour-

nal of Fluid Mechanics, under the title ‘Stability of columnar convection in a porous

medium’ (Hewitt et al., 2013b).

3.1 Introduction

In chapter 2, we found that vertical columnar flow dominates the flow in a two-

dimensional Rayleigh–Darcy cell at high Rayleigh number Ra. Curiously, the

columnar flow not only persists, but becomes increasingly well organized as Ra is

increased, in striking contrast to the disordered dynamics in a pure fluid Rayleigh–

Bénard cell at high Ra (e.g. Ahlers et al. 2009). We found that, as Ra increases,

the interior columnar flow becomes increasingly well described by a steady ‘heat-

exchanger’ solution, in which vertical advection of a background temperature

gradient exactly balances horizontal diffusion (figure 3.1). The numerical mea-

surements presented in chapter 2 gave an approximate scaling for the wavenumber

k of the columnar flow of k ∼ Ra0.4 over the range 1300 < Ra 6 4×104 (see figure

2.8), although it was noted that there was some suggestion of a slightly smaller

exponent asymptotically. While k clearly increases with Ra, the amplitude Â of

the columnar flow tends towards a constant (see figure 2.7), consistent with an
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3. STABILITY OF COLUMNAR CONVECTION

asymptotic Nusselt-number scaling Nu ∼ Ra.

Columnar structures are also very widely observed in two and three-

dimensional convective flow driven by a source of buoyancy on one boundary

only. Following the onset of convection, flow below a dense source (or, equiva-

lently, above a buoyant source) is marked by vigorous mixing at the boundary

which feeds into persistent downwelling plumes, as observed in several experimen-

tal (Neufeld et al., 2010; Backhaus et al., 2011; Slim et al., 2013) and numerical

(Pau et al., 2010; Hidalgo et al., 2012; Fu et al., 2013) studies. If the bound-

aries of the domain are impermeable then, over longer times, the convective flow

weakens as the density in the interior increases towards that of the upper bound-

ary. This ‘shutdown’ regime is studied in chapters 5 and 6: we will show in

these chapters that the columnar flow across the interior of the domain persists

throughout, with a wavenumber k that decreases slowly as the average interior

density increased and the effective Rayleigh number decreased. The relationship

between k(t) and Ra(t) gives excellent quantitative agreement with results from

the Rayleigh–Darcy cell presented in chapter 2.

The physical mechanism that governs the wavenumber k(Ra) has so far re-

mained elusive. In chapter 2 we argued that k is not controlled directly by the

small-scale dynamics of proto-plumes near the boundary, since these have a lat-

eral scale of Ra−1, which is a much stronger dependence on Ra than the observed

wavenumber exponent of about 0.4. It has been suggested by Wen et al. (2012,

2013) that the wavenumber is determined by the size of a ‘minimal flow unit’,

which is set by the largest wavenumber k for which the buoyancy flux remains in-

dependent of k. Solutions for steady convective flow in a narrow Rayleigh–Darcy

cell (Corson, 2011) give a scaling of k ∼ Ra1/2 for the minimal flow unit, while

recent numerical measurements of the minimal flow unit for unsteady flow sug-

gest a slightly weaker dependence on Ra (Wen et al., 2013), in rough agreement

with the observed wavenumber scaling of Ra ∼ k0.4. This observation does not,

however, provide a mechanism for the physical control of wavenumber. The aim

of this chapter is to explore whether the wavenumber might be determined by

the stability of the columnar flow.

Columnar ‘heat-exchanger’ flows are not only observed in porous media; sim-

ilar flow is found in double-diffusive systems, in the form of ‘salt fingers’. These
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Figure 3.1: (a) A snapshot of the temperature field in a Rayleigh–Darcy cell at
Ra = 2× 104 (see chapter 2), which is dominated by vertical columnar exchange
flow across the domain; (b) the corresponding temporally and horizontally av-
eraged temperature

〈
T
〉

(z), which shows the relatively weak linear temperature
gradient across the interior of the domain; and (c) the temperature field of steady
heat-exchanger flow with the same wavelength and background temperature gra-
dient as (a).

fingers can occur when the density is a function of two components with dif-

ferent molecular diffusivities, such as heat and salt, provided that the unstably

distributed component (salt) has a lower diffusivity than the stably distributed

component (heat) (Huppert & Turner, 1981). Stability of the salt fingers has

long been suggested as the controlling mechanism for their dynamical structure

(Stern, 1969); it was explored in detail by Holyer (1981, 1984), and remains an

active area of study (Schmitt, 2012; Radko & Smith, 2012). The Floquet anal-

ysis employed by Holyer (1984) to solve the linear-stability problem provides a

starting point for our approach here.

In this chapter, we examine the stability of two-dimensional columnar heat-

exchanger flow in a porous medium. The flow is driven by temperature differences

between the columns, but the analysis is equally applicable to compositional con-

vection (see §1.2). In §3.2, we set out the governing equations for heat-exchanger

flow in an unbounded medium, and find that the flow is controlled by a single

parameter, the rescaled amplitude A. In §3.3, we use Floquet theory to perform

a linear-stability analysis of this flow. We show that the dominant instability for

A & 17.2 has double the horizontal wavelength of the background columns and

a relatively small vertical wavenumber, and we determine the dependence on A

of the vertical wavenumber and growth rate of this mode. In §3.4, we present an
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3. STABILITY OF COLUMNAR CONVECTION

asymptotic analysis of the most unstable perturbation for A� 1, and discuss the

physical mechanism of instability. In §3.5, we explore the non-linear evolution of

the instability for large A using direct numerical simulations.

In §3.6, we discuss the relevance of all these results for the scaling of the

columnar wavenumber k in a Rayleigh–Darcy cell at high Ra. A balance of the

time scale for instability and the time scale for advection of perturbations across

the domain suggests that the columnar flow should be unstable for wavenumbers

k ∼ Ra5/14 as Ra → ∞, while a correction to this asymptotic estimate gives a

slightly stronger dependence on Ra for Ra < O(105). These scalings give good

agreement with numerical measurements of the dominant wavenumber k from

the interior of a Rayleigh–Darcy cell.

We conclude with a summary of the main results and their implications in

§3.7.

3.2 Governing equations

3.2.1 Dimensionless equations

We consider flow in a homogeneous, isotropic and unbounded two-dimensional

porous medium, with horizontal and vertical coordinates x and z, respectively. As

in chapter 2, the flow u = (u,w) is incompressible and satisfies Darcy’s law, and

the density ρ of the fluid is linearly related to the temperature T , which satisfies

a transport equation. These equations are given in dimensionless variables by

∇ · u = 0, u = − (∇P + ρẑ) , (3.1a, b)

ρ = 1− T, ∂T

∂t
+ u ·∇T =

1

Ra
∇2T, (3.2a, b)

where P is the reduced pressure (see §2.2.2). The Rayleigh number Ra is given

by

Ra =
ρ0a∆T gΠH

φκµ
, (3.3)
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3. Stability of columnar convection

where Π is the permeability, φ is the porosity, g is the gravitational acceleration,

ρ0 is a reference density, a is the coefficient of thermal expansion, κ is the thermal

diffusivity and µ is the viscosity of the fluid, all of which are assumed to be

constant. In common with the rest of this dissertation, we have assumed that

there is negligible heat transfer to the solid phase of the medium, and, as such,

these equations are equally applicable to compositional convection. We have non-

dimensionalized with respect to a temperature scale ∆T , which determines the

buoyancy-velocity scale U = ρ0β∆TgΠ/µ, and with respect to a length scale H,

which determines the convective time scale φH/U . In the case of a Rayleigh–

Darcy cell, these scales would correspond to the driving temperature difference

across the domain and the height of the domain, respectively, as in chapter 2.

We satisfy (3.1a) by introducing a streamfunction ψ, where (u,w) = (∂ψ/∂z,

−∂ψ/∂x). We take the curl of (3.1b) to eliminate the pressure, and combine with

the equation of state (3.2a) to obtain

∇2ψ = −∂T
∂x

. (3.4)

Equations (3.2b) and (3.4) govern the flow.

There is an exact solution of (3.2b) and (3.4) given by a steady ‘heat-

exchanger’ flow (see chapter 2; §2.4.1.1), in which vertical advection of a back-

ground linear temperature gradient by interleaving columns of exchange flow bal-

ances horizontal diffusion between the columns; the horizontal velocity is zero,

and the vertical velocity is directly proportional to the sinusoidal variation of

temperature across the columns. The heat-exchanger solution [ψ0, T0] is charac-

terized by a wavenumber k and amplitude Â, and is given by

T0 = Â cos kx− k2

Ra
z, ψ0 = −Â

k
sin kx, u0 = 0, w0 = Â cos kx,

(3.5a, b, c, d)

(cf. (2.15)), where u0 = ∂ψ0/∂z and w0 = −∂ψ0/∂x are the corresponding

horizontal and vertical velocity of the flow. The average vertical advective heat

flux for heat-exchanger flow scales with Â2, and is independent of the wavenumber

k.
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3. STABILITY OF COLUMNAR CONVECTION

3.2.2 Re-scaled equations

The heat-exchanger flow (3.5) is governed by three parameters k, Â, and Ra,

which describe the wavenumber, the amplitude, and the relative strength of ad-

vection and diffusion, respectively. We can scale out two of these apparent degrees

of freedom by setting

X = kx; Θ =
Ra

k
T ; Ψ = Raψ; τ =

k2

Ra
t. (3.6)

The governing equations (3.4) and (3.2b) become

∇2Ψ = − ∂Θ

∂X
,

∂Θ

∂τ
+
∂Ψ

∂Z

∂Θ

∂X
− ∂Ψ

∂X

∂Θ

∂Z
= ∇2Θ, (3.7a, b)

and the heat-exchanger solution (3.5) becomes

Θ0 = A cosX − Z, Ψ0 = −A sinX, U0 = 0, W0 = A cosX. (3.8a, b, c, d)

The rescaled strength of the flow

A =
ÂRa

k
, (3.9)

is now the only free parameter. Equation (3.8) gives the background flow for the

stability analysis of the subsequent sections of this chapter.

3.3 Linear-stability analysis

3.3.1 Theory

We consider small perturbations [Ψ̃, Θ̃] to the background heat-exchanger flow of

the form

Ψ̃ = Re {F (X) exp (σt+ iαZ)} , Θ̃ = Re {G(X) exp (σt+ iαZ)} ,
(3.10a, b)
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3. Stability of columnar convection

where |F |, |G| � 1. By retaining only terms that are linear in F and G, the

governing equations (3.7) become

F ′′ − α2F = −G′, (σ + iαA cosX)G+ F ′ − iαA sinXF = G′′ − α2G.

(3.11a, b)

Owing to the spatial dependence of the coefficients in (3.11b), we cannot

assume a simple-harmonic normal-mode form for F and G. Instead, we utilise

the periodicity of the equations: the coefficients are periodic in X with period

2π, and, therefore, (3.11) forms a Floquet system. Floquet theory (see Jordan &

Smith 1999, for example) implies that the eigenmodes yj(X) of any homogeneous

system of linear ordinary differential equations that has periodic coefficients with

period λ can be written in the form yj(X) = pj(X) exp (iβjX), where pj is

periodic with period λ, and βj is a (possibly complex) constant. If the eigenmodes

are also required to be spatially periodic, then βj must be real. In (3.11), λ = 2π,

and so the function pj(X) can be written as a sum of complex exponentials of the

form exp (inX) for integer n (Beaumont, 1981). We therefore look for spatially

periodic eigenmodes of the form

(
F

G

)
= Re

{
exp (iβX)

∞∑

n=−∞

(
Fn

Gn

)
exp (inX)

}
, (3.12)

where β is real. Due to the invariance of (3.12) under integer shifts in β and

under reflection β → −β, we can pick 0 6 β 6 1/2 without loss of generality.

We refer to β as the horizontal wavenumber of the perturbation; strictly, β is

the wavenumber of the largest horizontal scale, and the infinite sum allows for

perturbations on smaller scales.

The eigenvalue σ is given as a function of α and β by substituting the Fourier

sum (3.12) into (3.11) and rewriting sinX and cosX in terms of complex expo-

nentials. Equation (3.11) becomes

iγ2nFn = − (β + n)Gn, (3.13a)
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3. STABILITY OF COLUMNAR CONVECTION

i (β + n)Fn−
αA

2
(Fn−1 − Fn+1) = −

(
γ2n + σ

)
Gn−

iαA

2
(Gn−1 +Gn+1) , (3.13b)

where γ2n = (β + n)2 + α2, and eliminating F between (3.13a) and (3.13b) gives

[
(β + n)2

γ2n
− γ2n − σ

]
Gn =

iαA

2

[(
1 +

β + n+ 1

γ2n+1

)
Gn+1 +

(
1− β + n− 1

γ2n−1

)
Gn−1

]
.

(3.14)

Equation (3.14) can be written as an infinite matrix equation of the form

MG = σG, (3.15)

where the vector G = (· · ·Gn−1, Gn, Gn+1, · · · ), and M is an infinite (tridiagonal)

matrix. Solutions to (3.15) are found by looking for eigenvectors G of M with

eigenvalues σ. The real part of σ gives the growth rate of perturbations.

3.3.2 Solutions

3.3.2.1 The limit of large horizontal scales

The equations simplify dramatically if we only consider perturbations on the

largest horizontal scales, which is achieved by severely truncating the infinite

sum in (3.12) such that Gn = 0 for all n 6= 0. In this long-wavelength limit, the

columnar flow is completely decoupled from the perturbation, which is equivalent

to setting A = 0 and losing the effect of flow on stability. Equation (3.14) reduces

to the standard linear-stability analysis of a linear background temperature field

about rest (Nield & Bejan, 2006), and the growth rate is given by the usual

Rayleigh modes,

σ =
β2

β2 + α2
−
(
β2 + α2

)
. (3.16)

The flow is unstable if β > β2 + α2. If there is no constraint on the size of the

domain, then the growth rate is maximized by α� β � 1, which gives a limiting

growth rate Re{σ} = 1. If the perturbation is constrained in a finite domain,

then the instability takes the form of one or more large convective rolls.
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Figure 3.2: Contours of the growth rate Re{σ̂} (as marked) against the horizontal
wavenumber β and the vertical wavenumber α at amplitudes: (a) A = 0; (b)
A = 23; (c) A = 25; and (d) A = 212. The marginal-stability curve is independent
of A (§3.3.2.3). The maximum growth rate is initially Re{σ̂} = 1, which is
attained at α = β = 0. As A increases, a mode with horizontal wavenumber
β = 0.5 and α > 0 becomes increasingly unstable. For A & 17.2 (c,d), this mode
has a growth rate that is greater than 1.

3.3.2.2 Numerical solutions that incorporate smaller scales

We incorporated the effects of smaller horizontal modes on the stability of the

flow by retaining more terms in the Fourier sum in (3.12) and solving (3.15)

numerically. We found eigenvalues σ by truncating the infinite sum in (3.15) to

−N 6 n 6 N , for some integer N(α, β,A), which was increased until the relative

error in the eigenvalue with the largest real part (growth rate) was less than 10−5.

We denote the eigenvalue with the largest real part σ̂(α, β,A).

Figure 3.2 shows contour plots of the growth rate Re{σ̂} against the vertical
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Figure 3.3: (a) The maximum growth rate Re{σ
M
}, which asymptotically scales

like A4/9 as shown in the inset, and (b) the magnitude of the corresponding phase
speed c

M
= −Im{σ

M
}/α

M
, which tends to the maximum background velocity A

asymptotically, as shown in the inset. The cross signifies the first data point after
the change of most unstable mode at A ≈ 17.2.

and horizontal wavenumbers α and β, for different values of A. For all A, we

find that the growth rate is negative for α > 1/2, and this range is therefore not

shown. We also recall that we only need to consider values of β in the range

0 6 β 6 1/2 due to the symmetries of the system.

Figure 3.2 reveals three interesting features. First, the marginal-stability curve

Re{σ̂} = 0 appears to be independent of the amplitude A. This observation is

confirmed analytically in §3.3.2.3. Second, for A . 17.2, the most unstable mode

occurs at α = β = 0 and has constant growth rate Re{σ̂} = 1, which is the

same as the case A = 0 discussed above in §3.3.2.1. Third, a new mode with

β = 1/2 and α > 0 becomes increasingly unstable as A is increased, and, for

A & 17.2 (figure 3.2c,d), the new mode has a growth rate that exceeds that of

the zero-wavenumber mode. For all higher values of A, this mode is the most

unstable.

The most unstable mode is defined by the wavenumbers (α
M

(A), β
M

(A)) that

maximize the growth rate Re{σ̂(α, β,A)} over α and β. We label the most

unstable mode as σ
M

(A) = σ̂(α
M
, β

M
, A), and the corresponding cut-off value for

convergence of the Fourier sum in (3.12) as N
M

(A) = N(α
M
, β

M
, A).

The maximum growth rate Re{σ
M
} and the phase speed c

M
= −Im{σ

M
}/α

M
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3. Stability of columnar convection

are shown in figure 3.3. The change in the most unstable mode at A ≈ 17.2 can

be observed as the point where the maximum growth rate begins to increase and

the phase speed becomes non-zero. Both Re{σ
M
} and |c

M
| show an asymptotic

power-law dependence on A, which is very well fitted by

Re{σ
M
} = 0.231A4/9, c

M
= ±A as A→∞. (3.17a, b)

The most unstable mode, therefore, propagates at the maximum speed of the

background flow, either up or down depending on the alignment of the perturba-

tion (see §3.3.2.4 below). (In fact, we find that the magnitude of the phase speed

for all unstable modes with α > 0 is asymptotically given by A, while that of the

stable modes is zero.)

The wavenumbers of the most unstable mode are both zero for A . 17.2. At

A ≈ 17.2, the vertical wavenumber α
M

becomes non-zero, and gradually decreases

as A increases further (figure 3.4a). Asymptotically, α
M

is very well fitted by

α
M

= 0.332A−1/9 as A→∞. (3.18)

The corresponding horizontal wavenumber β
M

is 1/2 for all A & 17.2, as suggested

by the results of figure 3.2, which means that the most unstable perturbation has

twice the wavelength of the background flow.

The cut-off value N
M

= N(α
M
, β

M
, A) increases like A2/9 for large A (figure

3.4b). Since larger wavenumbers in the Fourier sum in (3.12) describe shorter hor-

izontal scales, the need to increase N
M

for convergence suggests that the smallest

horizontal scales of the most unstable perturbation decrease like

N−1
M
∼ A−2/9 as A→∞. (3.19)

In §3.4, we confirm that the truncated Fourier sum remains an accurate rep-

resentation of the solution by comparison with an asymptotic expansion of the

differential equations (3.11).
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Figure 3.4: (a) The vertical wavenumber α
M

of the most unstable mode, which
asymptotically scales like A−1/9 as shown in the inset, and (b) the cut-off N

M
=

N(α
M
, β

M
, A) for the Fourier sum in (3.12), which asymptotically scales like A2/9

as shown in the inset. The origin of the discontinuity at A ≈ 107 is unclear.
The cross signifies the first data point after the change of most unstable mode at
A ≈ 17.2.

3.3.2.3 Marginal stability

The results of figure 3.2 suggest that the marginal-stability curve is independent

of the amplitude A. Here we verify this suggestion analytically.

Marginal stability occurs when Re{σ̂} = 0. Numerical results for general

A > 0 suggest that the eigenvector G corresponding to the marginally stable

modes takes the simple form G−1 = ±G0, and Gn = 0 for n 6= 0,−1. Motivated

by this observation, and the corresponding form of Fn from (3.13a), we consider

eigenvectors [F,G] of the form

F = ± [sin βX + sin (1− β)X] , G = ∓ [cos βX + cos (1− β)X] . (3.20a, b)

On substituting (3.20) into the advection-diffusion equation (3.11b), we obtain

[
σ +

(
β2 + α2 − β

)]
G = iαA [sinXF − cosXG] , (3.21)

which, by using double-angle formulae and (3.20), reduces to

[
σ +

(
β2 + α2 − β

)]
= ±iαA. (3.22)
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The eigenfunctions (3.20) must also satisfy Poisson’s equation (3.11a); this gives

the requirement that

β = β2 + α2, (3.23)

which is precisely the marginal-stability relationship for A = 0 given in (3.16).

Combining (3.22) and (3.23) gives

σ = ±iαA, (3.24)

which corresponds to a phase speed of |c| = A and a growth rate of zero.

The marginal-stability curve (3.23) is, therefore, independent of A, as are the

corresponding eigenfunctions [F,G] (3.20), provided A > 0. Interestingly, the

eigenfunctions do differ from those for A = 0, which are pure Fourier modes with

wavenumber β; the presence of background flow with unit wavenumber introduces

an additional component to the marginally stable perturbation with wavenumber

1− β.

3.3.2.4 Structure of the most unstable perturbation

For A . 17.2, the most unstable mode has α
M

= β
M

= 0, growth rate

Re{σ
M
} = 1 and phase speed c

M
= 0. The instability takes the form of a

roll-like perturbation of the background temperature gradient, with a wavelength

that is independent of the background columnar flow. At A ≈ 17.2, a different

mode becomes the most unstable, which has half the horizontal wavenumber of

the background flow β
M

= 1/2. The vertical wavenumber and phase speed of this

mode are also both non-zero.

Figure 3.5 shows the structure of the most unstable mode for A = 25 = 32

(figure 3.5a,c) and A = 220 ≈ 106 (figure 3.5b,d). The perturbation takes the form

of tall, thin, counter-rotating rolls (figure 3.5a,b; right-hand plots). Each roll has

width 2π, and is centred on a downwelling of the background columnar flow. The

whole perturbation has horizontal period 4π. The temperature perturbation Θ̃

takes the form of claw-shaped pulses centred on the upwellings of the background

flow (figure 3.5a; left-hand plot), which, for larger amplitudes (figure 3.5b; left-

hand plot), split into two neighbouring pulses of the same sign.
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Figure 3.5: The structure of the most unstable perturbation (a,c) for A = 25

and (b,d) for A = 220. Panels (a) and (b) show contours of the perturbation tem-

perature Θ̃ (left) (scaled to unit amplitude), at intervals of 0.4, and streamlines
(right) with arrows showing the direction of the flow, together with schematic
profiles of the background flow Θ0 = W0 (top). The perturbation is doubly pe-
riodic, with horizontal period 4π and vertical period 2π/α

M
. Panels (c) and (d)

show horizontal profiles of the perturbation quantities (scaled to unit amplitude):

upper plots show the temperature Θ̃ (solid) and vertical velocity W̃ = −∂Ψ̃/∂X

(dashed) at Z = π/2α
M

; lower plots show the horizontal velocity Ũ = ∂Ψ̃/∂Z
(solid) at Z = π/α

M
together with the background columnar flow Θ0 (dotted)

scaled by A. The vertical velocity and temperature perturbations are almost
indistinguishable. The perturbations shown here propagate upwards; the same
perturbations shifted horizontally by π would propagate downwards and have the
same growth rate.

50



3. Stability of columnar convection

The vertical velocity W̃ and temperature Θ̃ of the dominant perturbation

(figure 3.5c,d) are symmetric about X = 2nπ for integer n, and are almost

indistinguishable from each other. As A increases, the profiles of Θ̃ and W̃ become

increasingly sinusoidal in the intervals (2nπ, 2(n+1)π), but their gradients change

by an O(1) amount through increasingly narrow regions centred on X = 2nπ. The

horizontal velocity Ũ either diverges away from or converges into these regions.

The perturbations shown in figure 3.5 have a phase speed c
M

= A to leading

order, and thus move upwards at the maximum speed of the background flow. If

the perturbation were shifted horizontally by π, the pulses would be centred on

the downwellings of the background flow and the phase speed would be c
M

= −A;

the growth rate and vertical wavenumber would be unchanged.

3.4 Asymptotic analysis of linear stability for

A� 1

Motivated by the structure of the most unstable perturbation as just described,

and in order to understand the physical balances behind the instability, we ex-

amine the linear stability of heat-exchanger flow in the asymptotic limit A� 1.

In this limit, the dominant balance in the advection–diffusion equation (3.11b)

is most obviously between horizontal advection of the background temperature

by the perturbation ∼ αA sinXF and vertical advection of the perturbation flow

by the background velocity ∼ αA cosXG. However, the perturbation plotted in

figure 3.5(d) shows that advection cannot dominate everywhere; the temperature

gradient changes by an O(1) amount through regions centred on X = 2nπ for

integer n, which suggests the presence of boundary layers in which horizontal

diffusion enters the leading-order balance.

We first observe that the linearized governing equations (3.11) exhibit a num-

ber of symmetries. Suppose that, for a given eigenvalue σ(A,α), we have solu-

tions [F (X), G(X)]. It is clear from the form of (3.11) that [−F (−X), G(−X)],

[F (2π + X), G(2π + X)], and [−F (2π − X), G(2π − X)] are all also solutions,

as are any linear combinations of these. Thus we are free to construct solutions

with any given reflectional symmetry around X = 0 and X = ±π. Therefore,
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3. STABILITY OF COLUMNAR CONVECTION

motivated by the symmetries of the most unstable mode shown in figure 3.5, we

consider a solution [F,G] in which G is even under reflection about X = 0 and

odd under reflection about X = ±π, and F is odd under reflection about X = 0

and even under reflection about X = ±π. Such a solution is periodic with period

4π.

As discussed above, we anticipate boundary-layer regions located near X =

2nπ, for integer n, in which horizontal diffusion (G′′) enters the leading-order

balance in (3.11b). We therefore look for an asymptotic solution over the range

0 6 X 6 2π, which has the symmetries of [F,G] discussed above, with an inner

region near X = 0 where diffusion is important, and an outer region away from

X = 0 where the advection terms dominate.

In order to motivate the asymptotic scalings, we also recall the measured

scalings from the full Floquet analysis of §3.3 for the growth rate Re{σ} ∼ A4/9,

the phase speed c
M

= −Im{σ}/α
M

= A, and the vertical wavenumber α
M
∼

A−1/9 (see 3.17 and 3.18).

3.4.1 Asymptotic expansion

We consider the limit of large amplitude A and of small vertical wavenumber α,

such that αA� 1 and α� 1, and we try

σ = −iσ0αA+ σ∗, (3.25)

where |σ∗| � αA, and σ0 is an O(1) constant to be determined. The perturbation

equations (3.11) can be rewritten as

F ′′ +G′ = α2F, iαA (cosX − σ0)G− iαA sinXF + σ∗G+ F ′ = G′′ − α2G.

(3.26a, b)

The boundary conditions come from the symmetries of the solution as discussed

above, and are given by

F (0) = G′(0) = G(π) = F ′(π) = 0. (3.27)

Based on the limits αA � 1, α � 1, the leading-order behaviour of (3.26)
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3. Stability of columnar convection

away from X = 0 is given by

F ′ +G = c0, (cosX − σ0)G− sinXF = 0, (3.28a, b)

where c0 is a constant of integration that comes from the first integral of (3.26a).

Equation (3.28) has solutions

F = (cosX − σ0)
(

1 + c0

∫
dX

cosX − σ0

)
, G = sinX

(
1 + c0

∫
dX

cosX − σ0

)
,

(3.29a, b)

where, without loss of generality, the arbitrary amplitude of the perturbations

has been scaled to unity. Based on the form of the numerical solutions in figure

3.5, we assume that there are no leading-order discontinuities in F at X = 0 or

in G at X = π. The boundary conditions (3.27) thus imply that σ0 = 1 and that

c0 = 0, such that the leading-order outer solutions are given by

F = cosX − 1, G = sinX. (3.30a, b)

The leading-order phase speed c = −Im{σ}/α = σ0A is given by c = A, as we

found numerically in (3.17b)

Since σ0 = 1, the coefficients cosX − σ0 and sinX of the O(αA) terms in

(3.26b) both vanish as X → 0, which suggests an inner boundary-layer region

there, as indicated by the numerical solutions. We look for a balance in (3.26b)

between the advection terms, horizontal diffusion G′′ and growth σ∗G. This

balance gives αAX2G ∼ αAXF ∼ σ∗G ∼ G/X2. From (3.30b), we also have

that G ∼ X as X → 0. Based on these balances, we define the following inner

variables:

ξ = (αA)1/4X; s = (αA)−1/2σ∗; g(ξ) = (αA)1/4G(X); f(ξ) = (αA)1/2F (X).

(3.31a, b, c, d)

Rewritten in terms of the inner variables, the governing equations (3.26) be-
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3. STABILITY OF COLUMNAR CONVECTION

come

f ′′ + g′ = α2 (αA)−1/2 f, g′′ −
(
s− iξ2

2

)
g + iξf = (αA)−1/2

(
f ′ + α2g

)
.

(3.32a, b)

At leading-order,

f ′ + g = γ0, g′′ −
(
s− iξ2

2

)
g + iξf = 0. (3.33a, b)

The constant of integration γ0 in (3.33a) is determined by matching with the

outer region: by integrating (3.26a) and substituting from (3.30a), we obtain to

leading order

F ′ +G = α2

∫ X

π

(cosX − 1) dX = α2 (sinX −X + π) , (3.34)

where the lower limit of the integral has been determined from the boundary

conditions (3.27c,d). The right-hand side of (3.34) is given by α2π to leading

order as X → 0, which, together with the inner scalings (3.31c,d), determines

the constant of integration in (3.33a) as

γ0 = α2 (αA)1/4 π =
(
αA1/9

)9/4
π. (3.35)

The boundary conditions for (3.33) are given by the two symmetry conditions

(3.27a,b) f(0) = g′(0) = 0 and a matching condition that g → ξ as ξ → ∞. In

appendix 3.A, we consider the generic behaviour of the solutions of (3.33), and

find that the matching condition constitutes two constraints on the differential

equation; we therefore have four conditions on a third-order system, which is

sufficient to determine the unknown eigenvalue s. We solve (3.33) numerically,

and determine s as a function of the rescaled vertical wavenumber

α∗ ≡ αA1/9, (3.36)

(cf. 3.35). The leading-order growth rate is then given by Re{σ∗} =
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3. Stability of columnar convection

ξ = (αA)1/4Xα∗

Re{S}
g

f

Figure 3.6: Asymptotic solutions (A � 1) and full numerical solutions
of the eigenvalue problem (3.15). (a) The leading-order scaled growth rate
Re{S} = α∗1/2Re{s} = A−4/9Re{σ∗} against the scaled vertical wavenumber
α∗ = αA1/9: the asymptotic solution (line), and the full numerical solutions
for A = 210 (crosses), A = 220 (squares), and A = 230 (dots). (b) The solu-
tion [f, g] = [(αA)1/2F, (αA)1/4G] (solid and dashed lines, respectively) of (3.33),
together with full solutions of (3.15) for A = 230 (solid and hollow circles, respec-
tively).

(αA)1/2 Re{s(α∗)} from (3.31b), or alternatively

Re{σ∗} = A4/9Re{S(α∗)}, where S(α∗) = α∗1/2s(α∗). (3.37)

Numerical solutions for the leading-order scaled growth rate Re{S(α∗)} are

shown in figure 3.6(a). The eigenvalue with the maximum growth rate is given by

S = 0.2308− 0.182i and occurs at α∗ = 0.332, such that Re{σ∗} = 0.2308A4/9 at

α = 0.332A−1/9. These values agree extremely well with the measurements pre-

sented in figures 3.3(a) and 3.4(a) for the maximum growth rate Re{σ
M
} and the

corresponding vertical wavenumber α
M

, respectively. Since the imaginary part

of S is negative, the second-order correction to the phase speed is positive, and

is given by −Im{σ∗}/α = 0.55A5/9. The dependence of Re{S} on the wavenum-

ber α∗ (figure 3.6a) shows very good agreement between the asymptotic analysis

and the full solutions of the Floquet analysis for large A, as do the eigenfunc-

tions [f, g] of (3.33), which give the leading-order behaviour of [F,G] near X = 0

(figure 3.6b).

The leading-order growth rate Re{S(α∗)} increases for small α∗ and decreases
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3. STABILITY OF COLUMNAR CONVECTION

for large α∗ (figure 3.6a). In appendix 3.B, in order to understand this behaviour,

we analyse the leading-order equations for the inner region (3.33) in the asymp-

totic limits α∗ � 1 and α∗ � 1. The physical basis for the decay in the growth

rate at small and large α∗ is discussed below.

3.4.2 Physical mechanism of instability for A� 1

It has proved difficult to unravel the precise details of the physical mechanism

of instability, largely owing to the fact that the growth rate depends on a sub-

tle second-order interaction between boundary-layer regions and the main flow.

However, based on the form of the asymptotic equations, we can make various

observations about the relevant physical components that control the propagation

and growth of perturbations.

The leading-order evolution of the most unstable perturbation for A � 1

is neutral propagation at speed c = ±A, which is the maximum speed of the

background flow. The neutral propagation is the result of a leading-order ad-

vective balance between two processes: horizontal advection of the background

temperature field Θ0 by the perturbation velocity Ũ , and vertical advection of the

perturbation temperature field Θ̃ by the background velocity W0. We illustrate

this balance by working in a frame of reference moving with the perturbation,

as sketched in figure 3.7. We consider an upwards propagating perturbation

(c = +A), but the discussion equally applies to downwards propagating pertur-

bations. Since the vertical wavenumber α∗ is small, Darcy’s law implies that the

perturbation temperature Θ̃ and vertical velocity W̃ are proportional. By mass

conservation, the horizontal velocity Ũ is strongest where the vertical variation

of W̃ is largest, which occurs where W̃ vanishes. The perturbation flow therefore

takes the form of tall thin circulating cells. Horizontal advection of Θ0 by Ũ leads

to an induced temperature perturbation (shown dashed on the right-hand side of

figure 3.7) that is vertically out of phase with the original temperature pertur-

bation. Downwards vertical advection of the induced temperature perturbation

by the background flow W0 (in this propagating frame) balances the horizontal

advection in such a way that the original perturbation is sustained.

The leading-order advective balance gives a neutrally propagating mode.
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3. Stability of columnar convection

Growth occurs because of horizontal diffusion in the thin boundary-layer regions

centred on the lines X = 2nπ, across which the temperature gradient changes sig-

nificantly. The importance of diffusion can be seen by an examination of (3.33b),

which shows that the two advective processes described above are balanced by

diffusion (g′′) and growth (sg) in these boundary-layer regions. Indeed, (3.33b)

also shows that the advective processes, which have imaginary coefficients, and

diffusion, which has a real coefficient, are vertically out of phase, so that we

might expect the rescaled eigenvalue s to have both a non-zero imaginary part,

which gives a correction to the phase speed, and a non-zero real part, which gives

growth.

The strength of diffusion, which must determine the growth rate, depends

on the rescaled vertical wavenumber α∗. We found in §3.4.1 that the growth

rate decreases at both large and small α∗ (figure figure 3.6a). For α∗ � 1,

the perturbation cells are very long, and, by continuity, the horizontal velocity

is weak. The boundary-layer regions, which have a width that is set by the

strength of the horizontal advection, are therefore wider (as in (3.31a)), so the

diffusive flux is weaker, and the growth rate decreases. Conversely, for α∗ � 1,

the horizontal velocity is strong. In this limit, the perturbation in the boundary-

layer regions takes a different form: the temperature is smoothed out by strong

horizontal advection, and the leading-order advective balance no longer gives

discontinuities in the temperature gradient (see appendix 3.B). Owing to this

smoothed temperature profile, diffusion only enters the balance at higher order,

and so both the diffusive flux and the growth rate decrease. We therefore find that

there is a balance between diffusion being too weak for α∗ � 1 and horizontal

velocity being too strong for α∗ � 1, which gives rise to an optimal wavenumber

α∗ = 0.332 at which the growth rate is maximum.

Interestingly, the instability process discussed above is independent of the

background linear temperature gradient. Indeed, the analysis of §3.4.1 shows

that the term describing advection of the background temperature gradient (F ′)

does not enter the asymptotic equations. This contrasts with the control of the

instability for small A by the background temperature gradient.

Another interesting implication of the above discussion is that thermal diffu-

sion provides a destabilizing mechanism for the flow. In appendix 3.C, we examine
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X = 0 X = 2π

X = 0 X = 2π

Z = π/αM

Z = π/2αM

Z = 0

W0
W0

W̃ ∼ Θ̃

Ũ

Z = 3π/2αM

Z = 2π/αM

W̃ ∼ Θ̃

Ũ

Figure 3.7: A schematic of the instability for A � 1, in a frame of reference
moving with the perturbation. The background vertical velocity W0 = A cosX−
A in this frame is shown at the top. The left-hand side shows streamlines of the
perturbation flow; the perturbation temperature Θ̃ is proportional to the vertical
velocity W̃ , and locations at which pulses form on the background columns as a
result of the instability are marked with a⊕. The right-hand side shows horizontal
profiles (all scaled to unit amplitude) along the lines of constant z as marked.
Each plot shows the background temperature field Θ0 (dotted), together with one
of the perturbation velocities (solid) as labelled on the right; in each plot, the
velocity not shown is zero. The plots at Z = π/α

M
and Z = 2π/α

M
also show the

induced temperature perturbations (dashed) that result from horizontal advection

of the background field Θ0 by Ũ . The neutral propagation of the perturbation is
sustained by downwards advection of the induced temperature perturbation by
the background velocity W0.
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3. Stability of columnar convection

a related system of columnar-exchange flow of two fluids of different densities in

the absence of diffusion, and we find that the flow is always neutrally stable. This

observation supports the idea that diffusion is required for the growth of pertur-

bations. There is some parallel between the role of thermal diffusion here and

the role of viscosity in the stability of plane Poiseuille flow (e.g. Drazin 2002),

where the flow is linearly unstable for sufficiently large Reynolds numbers, but is

linearly stable in the inviscid limit.

3.5 Evolution of the instability in the non-linear

regime

In order to explore the development of the instability beyond the linear regime, we

examined heat-exchanger flow using high-resolution direct numerical simulations.

We set the temperature Θ = Θ0 + Θ̃ to be the steady heat-exchanger solution

Θ0 = A cosX − Z, as in (3.8a), plus an initially small perturbation Θ̃(X,Z, τ),

and then solved the non-linear governing equations (3.7) for the evolution of Θ̃

numerically. In order to clearly observe the non-linear evolution of the instability,

we used doubly periodic boundary conditions for Θ̃ and for the corresponding

streamfunction Ψ̃ (given by 3.7a). We used a vertical period of 2π/α
M
≈ 18.9A1/9,

which is the height of the most unstable mode calculated in §3.3. The initial value

of Θ̃ was proportional to the most unstable mode.

Snapshots of the temperature field Θ at different times for A = 28 = 256 and

horizontal period L = 8π are shown in figure 3.8(a–d), together with the cor-

responding magnitude of the perturbation over time (figure 3.8e) and dominant

wavenumber of the flow (figure 3.8f ). The linear growth of the instability leads to

the formation of pulses (figure 3.8a) which move with the background flow. Once

the pulses have reached a certain size, the amplitude stops growing, and the flow

becomes unstable to a secondary instability, which breaks the symmetry of the

solution and results in less regular motion (figure 3.8b,c). The system gradually

re-organizes into columnar flow with a quarter of the wavenumber of the original

flow (figure 3.8d), but the same background temperature gradient, which remains

imposed by the representation Θ = Θ0 + Θ̃.

59



3. STABILITY OF COLUMNAR CONVECTION

0 5 10 15
0.2

0.4

0.6

0.8

1

1.2

0 5 10 15
100

102

104

106

0 8

0 8 0 8

0

35

35

0 -300

300

X

XX

Z

Z

ττ

-600

600

-400

400

-6000

6000
k

∼ e0.23A4/9τ

∼ e15τ/16

L = 8π

L = 4π

(a) (b) (c)

(d) (e) (f)

L = 6π

Figure 3.8: Nonlinear dependence of the instability for A = 28 and horizontal
period L = 8π. Snapshots of the temperature field Θ(X,Z, τ) at times: (a) τ = 4,
the growth of pulses on the background flow that result from linear instability;
(b) τ = 7 and (c) τ = 11, the secondary instability; and (d) τ = 14, the growing
heat-exchanger flow with a quarter of the original wavenumber (3.38). Panel
(e) shows the magnitude of the perturbation over time, as measured by the L2
norm and scaled by the initial magnitude; dots correspond to the pictures in
the previous panels. The asymptotic growth of the most unstable mode (from
(3.17a)) and the growth of the unsteady exchange flow (3.38) are also shown, for
comparison. Panel (f ) shows the dominant wavenumber k of the flow (measured
by a Fourier transform of the temperature field at Z = 0.5), for simulations with
different horizontal periods L as marked; in each case, the wavenumber decreases
towards the fundamental mode 2π/L.

However, the wavenumber and background gradient of a steady heat-

exchanger flow are linked by (3.5a); hence if the wavenumber decreases and the

gradient is fixed, the flow can no longer be a steady solution of the governing

equations. Instead, we find that the amplitude of the flow grows exponentially

(figure 3.8e). It is straightforward to show that the governing equations permit

unsteady columnar flow with a fixed background temperature gradient for any
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3. Stability of columnar convection

wavenumber κ; this generalized time-dependent columnar flow is given by

Θ = Ae(1−κ
2)τ cosκX − Z, W = Ae(1−κ

2)τ cosκX, (3.38a, b)

for any amplitude A. The steady solution κ = 1 (3.8) can be thought of as

the marginally stable solution: if κ > 1, horizontal diffusion dominates and the

amplitude decays; if κ < 1, advection dominates and the amplitude grows. In

the results of figure 3.8, the system ultimately adopts a wavenumber κ = 1/4,

and the magnitude of the flow grows like e15τ/16 (figure 3.8e). We note that the

continued exponential growth at late times only arises because it can feed off the

fixed background temperature gradient that is imposed in an effectively infinite

domain.

The main conclusion from this calculation is that the non-linear evolution of

the instability leads to a reduction of the wavenumber of the flow. We have also

carried out simulations in domains with different horizontal periods L; in each

case the flow coarsened due to a secondary instability, leaving one upwelling and

one downwelling column in the domain (figure 3.8f ).

3.6 Implications for two-dimensional convection

in a porous medium

In this section, we return to the linear-stability analysis of §3.3 and consider

the implications of this analysis for columnar flow in a vertically confined do-

main. Specifically, we investigate whether stability might provide the mechanism

that controls the horizontal scale of the columnar flow in the interior of a two-

dimensional Rayleigh–Darcy cell at high Ra.

3.6.1 The wavenumber of columnar flow in a Rayleigh–

Darcy cell at high Ra

Flow in a Rayleigh–Darcy cell for Ra & 1300 is dominated in the interior by

columnar flow. This nearly steady interior flow is fed from the upper and lower

boundaries of the cell by vigorous mixing and merging of short-wavelength pro-
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Ra

T̂

ŵ

Figure 3.9: Measurements of the amplitude of the temperature T̂ (dots) and ver-
tical velocity ŵ (circles) of the columnar flow in the interior of a Rayleigh–Darcy
cell (adapted from figure 2.7). The amplitudes appear to tend to approximately
the same constant value, T̂ , ŵ → 0.117, as Ra → ∞. (This result is directly
equivalent to the asymptotic ‘classical’ linear scaling of the Nusselt number with
Ra, as observed in chapter 2) For comparison with the linear-stability analysis,

we choose Â = ŵ.

toplumes (see figure 3.1a). The numerical measurements presented in chapter 2,

which are taken from a cell of height H = 1 for the range 1300 6 Ra 6 4× 104,

suggest that the columnar flow in the interior of the cell is increasingly well

described by the steady heat-exchanger solution in (3.5) as Ra → ∞. Measure-

ments of the dominant wavenumber k over the same range were approximated by

k ≈ 0.47Ra0.4, although there are significant fluctuations in the data, and there

is some suggestion of a slightly weaker exponent at very large Ra (see §2.4.1.2).

It is important to note that there are some significant differences between the

columnar flow in a Rayleigh–Darcy cell at high Ra and the steady unconfined

heat-exchanger flow that has been the subject of this paper so far. Most notably,

the cell has a finite height, and the flow in the interior is fed by time-dependent

proto-plumes at the upper and lower boundaries as discussed above, whereas the

heat-exchanger flow (3.5) has an infinite height, and any disturbances propagate

indefinitely. It is, nonetheless, interesting to try applying some of the results

from the stability of unconfined heat-exchanger flow to the flow in a vertically

confined domain, and to compare the resultant scalings of this simple analysis

with numerical measurements of the dominant wavenumber k.

In ideal heat-exchanger flow, the amplitude of the temperature and vertical

velocity are equal, as in (3.5). In a Rayleigh–Darcy cell, the numerical measure-
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ments presented in chapter 2 show that the amplitude of the temperature T̂ and

vertical velocity ŵ tend to approximately the same constant value, T̂ , ŵ → 0.117,

as Ra → ∞. However, for finite Ra, T̂ is somewhat larger than ŵ (figure 3.9).

There is, therefore, an ambiguity about which measurement to use. Since ŵ

varies less than T̂ over the measured range of Ra, we choose to set Â = ŵ for

the following analysis (although, in fact, we find very little difference if T̂ is used

instead).

In a vertically confined domain, we hypothesize that a perturbation to the

steady columnar flow will destabilize the flow if the time scale for growth of the

perturbation is shorter than the time scale for the perturbation to advect from one

boundary to the other. We assume that the regions of proto-plumes at the upper

and lower boundaries provide perturbations to the columnar flow on a range

of scales. Since the height of the Rayleigh–Darcy cell in rescaled co-ordinates

(§3.2.2) is H = k, the time scale for advection of the most unstable perturbation

across the domain for A � 1 is H/c
M

= k/A (from 3.17b), and the time scale

for growth of the most unstable perturbation is 1/Re{σ
M
} = 1/(0.231A4/9) (from

3.17a). A comparison of these time scales, which is the hypothesized condition

for instability, gives
k

A
&

1

0.231A4/9
for A� 1, (3.39)

which reduces to

k & 2.6 (ŵRa)5/14 & 1.2Ra5/14 for Ra� 1, (3.40)

on using A = ÂRa/k = ŵRa/k and the observation that ŵ → 0.117 as Ra→∞.

We note that, since (3.40) is simply obtained by a comparison of time scales, we

would not expect the numerical pre-factor in (3.40) to be accurate, beyond giving

a rough estimate of the order of magnitude.

For A . O(104), both the growth rate and the phase speed of the most unsta-

ble mode are found numerically to be slightly larger than the asymptotic scalings

(3.17) (see inset to figure 3.3). In addition, for Ra . O(104), the amplitude

ŵ is slightly larger than its asymptotic value (see figure 3.9). We found simple

empirical fits Re{σ
M
} ≈ 0.231A4/9 + 0.34A−0.2 and c

M
≈ A + 0.55A0.55 to the

numerical data for A & 17.2, and ŵ ≈ 0.117 + 2900Ra−1.8 to the amplitude for
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λ = 0.5
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Figure 3.10: Measurements of the wavenumber k from a Rayleigh–Darcy cell
of height H = 1 and aspect ratio either L = 1 or L = 2, taken from figure 2.8:
(a) the wavenumber k(Ra) (dots) together with the asymptotic stability estimate
(3.40) (dashed line) and the approximate correction to the asymptotic scaling for
finite Ra and A from (3.41) (solid line); and (b) the scaled wavenumber k/Raλ for
trial exponents λ = 5/14 (dots), λ = 0.4 (crosses), and λ = 0.5 (circles), together
with the asymptotic stability estimate (3.40) (dashed line) and the correction
from (3.41) (solid line), both scaled by 0.7Ra5/14. The measured data follows the
trend of the correction (solid line) over this range of Ra.

Ra > 1300. By using these fits in the balance of time scales k/c
M
∼ 1/Re{σ

M
},

as above, with A = ŵRa/k, we obtain a correction for finite Ra and A to the

asymptotic stability estimate (3.40). This approximate correction k(Ra) is given

implicitly by the equations

k =
A+ 0.55A0.55

0.231A4/9 + 0.34A−0.2
; kA = Ra

(
0.117 + 2900Ra−1.8

)
. (3.41)

Figure 3.10(a) shows measurements of the time-averaged dominant wavenum-

ber k(Ra) from a Rayleigh–Darcy cell for 1300 < Ra 6 4 × 104, together with

the asymptotic stability estimate (3.40) (dashed line), and the approximate cor-

rection to the asymptotic scaling, given by the solution of (3.41) (solid line). The

measured data lies inside the stable region, and appears to give good agreement

with the trend of the stability estimates.

In order to examine this agreement more closely, we can rescale the wavenum-

ber and the stability estimates by different trial powers of Ra (figure 3.10b). As

a preliminary observation, we can see from this rescaling that the measured data
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exhibits a distinctly weaker scaling than k ∼ Ra1/2, which was identified as the

‘minimal flow unit’ for steady convection (Corson, 2011). Instead, it appears that

the data is fairly well described by the scaling k ∼ Ra0.4 over this range of Ra,

which is slightly stronger than the asymptotic stability estimate k ∼ Ra5/14. How-

ever, it is also evident that the estimate corrected for finite Ra and A (solid line)

differs appreciably from the asymptotic estimate (dashed line) over this range of

Ra, and that the measured data follows the trend of the correction. (The pa-

rameter A for the data shown lies in the range 25 . A . 150.) In particular,

the data appears to show a slight trend towards a lower exponent at the highest

values of Ra, in agreement with the prediction of the stability estimate.

The measured data does, therefore, appear to be consistent with the theo-

retical stability estimate. Given the very different boundary conditions between

the Rayleigh–Darcy cell and the unconfined heat-exchanger flow, this qualitative

agreement is notable. Figure 3.10(b) suggests that the Rayleigh number for the

measured data is still too low to observe the hypothesized asymptotic scaling

k ∼ Ra5/14; numerical measurements of k at higher values of Ra would be needed

to confirm this suggestion.

3.6.2 The onset of the high-Ra regime in a Rayleigh–

Darcy cell

Working on the hypothesis that stability controls the horizontal scale of the inte-

rior flow in a Rayleigh–Darcy cell, it is natural to consider what happens as Ra

decreases, or, equivalently, as the re-scaled amplitude of the flow A decreases. In

§3.3.2, we found that the nature of the dominant instability in an unbounded do-

main changes completely when A . 17.2. A similar dramatic change is observed

in the dynamics of the Rayleigh–Darcy cell as Ra decreases below Ra ≈ 1300

(Graham & Steen, 1994; Otero et al., 2004), from columnar-exchange flow in the

interior for Ra & 1300 to large-scale convective rolls for Ra . 1300.

Numerical measurements of k and Â = ŵ at Ra = 1380, which is just above

the transition point, give a value of A ≈ 14.5 (alternatively, using Â = T̂ gives

A ≈ 15.6), which is remarkably close to the bifurcation value A ≈ 17.2 in the

linear-stability problem. In fact, since the most unstable mode of the unbounded
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flow for A < 17.2 has zero wavenumber in both directions, which is not physically

achievable in a finite domain, we would expect the Rayleigh–Darcy cell to have

a slightly lower bifurcation value of A. The rough agreement demonstrated here

provides an intriguing direction for further investigation, and again suggests that

stability criteria may play an important role in the dynamical structure of the

Rayleigh–Darcy cell.

3.7 Conclusions

We have examined the stability of columnar convection in a porous medium.

The flow is characterized by dimensionless horizontal wavenumber k, amplitude

Â, and background temperature gradient −k2/Ra. The stability of the flow in

an unbounded domain is then a function of the parameter A = ÂRa/k alone.

We used a Floquet analysis to determine the eigenvalues σ of the linear-

stability problem (3.11) numerically. Somewhat surprisingly, the marginal-

stability curve Re{σ} = 0 is independent of A and thus given by the usual

criterion β = β2 + α2 for stability of a linear temperature field, where β and α

are the horizontal and vertical wavenumbers, respectively. For small A, the most

unstable mode is given by α = β = 0, and has growth rate Re{σ} = 1; this mode

is an instability of the background linear temperature gradient, and is indepen-

dent of the columnar flow. However, at A ≈ 17.2, a different mode becomes the

most unstable. This mode has double the horizontal period of the background

flow (β = 1/2), takes the form of vertically propagating pulses on the background

columns, and has a growth rate that increases with A. Asymptotically, the ver-

tical wavenumber of the most unstable mode is given by α = 0.332A−1/9, the

growth rate by Re{σ} = 0.2308A4/9, and the vertical phase speed by |c| = A.

The sign of c changes if the perturbation is shifted horizontally by π (a quarter

period).

For A� 1, advective processes dominate the flow across almost all of the do-

main: horizontal advection of the background temperature by the perturbation

flow balances vertical advection of the perturbation temperature by the back-

ground flow. In the absence of any diffusion, this advective balance would simply

give a neutrally stable propagating mode. However, the temperature gradient
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changes significantly across thin boundary-layer regions that are centred on the

maxima (for upwelling perturbations) or minima (for downwelling perturbations)

of the background flow. Horizontal diffusion in these boundary-layer regions

provides a mechanism for growth, as discussed in §3.4.2. Interestingly, the insta-

bility is independent of the background vertical temperature gradient in the limit

A� 1, and is driven entirely by the columnar flow.

Numerical simulations of the non-linear evolution of the instability for A &

17.2 in a periodic domain show that perturbations initially grows in accordance

with linear theory, before the flow undergoes a secondary instability. After a

period of reorganization, the system evolves into a new columnar flow with a

smaller wavenumber than the original flow.

Persistent vertical columnar structures have also been observed in three-

dimensional porous convection (e.g. Pau et al. 2010; Fu et al. 2013, and chapter 7

below), and it seems likely that many of the ideas discussed in this chapter could

be extended to three dimensions. However, while it is straightforward to write

down three-dimensional heat-exchanger base flows, the linear-stability analysis of

such flows is much more complicated than in two dimensions (primarily owing

to the double expansion in the Floquet analysis). In fact, even the leading-order

advection–propagation balance for A � 1 does not yield analytic solutions in

three-dimensions, unlike in two dimensions (see (3.30)). A three-dimensional sta-

bility analysis is left for future work, while a detailed investigation of the interior

flow of statistically steady three-dimensional porous convection is presented in

chapter 7.

This work was motivated by the hitherto unexplained mechanism that con-

trols the horizontal wavenumber of the columnar flow in the interior of a two-

dimensional Rayleigh–Darcy cell at high Ra. Numerical measurements of this

flow suggest that it is increasingly well described by the steady heat-exchanger

solution as Ra→∞ (chapter 2). By a comparison of the time scales for growth

and propagation of the most unstable mode, we derived an asymptotic stability es-

timate k ∼ (ÂRa)5/14 for the wavenumber k of vertically confined heat-exchanger

flow. In a Rayleigh-Darcy cell, the amplitude Â is given by the amplitude of the

temperature T̂ or the vertical velocity ŵ, which numerical measurements suggest

are asymptotically equal and independent of Ra. The estimated stability bound-
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ary thus reduces to k ∼ Ra5/14 as Ra → ∞. For Ra < O(105), the stability

boundary has a slightly stronger dependence on Ra than this asymptotic scaling.

Although numerical measurements in a Rayleigh–Darcy cell at higher Ra would

be required to verify the asymptotic scaling k ∼ Ra5/14, the stability bound-

ary gives good agreement with the previously unexplained trend of numerical

measurements of k(Ra) over the range 1300 < Ra 6 4× 104.

The results of this chapter, therefore, support the hypothesis that the stability

of the interior columnar flow provides the mechanism that controls the wavenum-

ber k in Rayleigh–Darcy convection. The vigorous large-wavenumber dynamics

of protoplume formation at the upper and lower boundaries force the system over

a range of small scales, and the columnar flow adopts the smallest scale for which

it can remain stable over the height of the domain, which is given by k ∼ Ra5/14

as Ra → ∞. Any smaller scale of columnar flow would be unstable, and the

resulting instability would lead to a coarsening of the flow.

Appendices

3.A Generic behaviour of solutions of (3.33)

Equation (3.33) can be re-written as a single differential equation for f by sub-

stituting g = γ0 − f ′ into (3.33b) to to obtain

f ′′′ +

(
iξ2

2
− s
)
f ′ − iξf = γ0

(
iξ2

2
− s
)

(3.42)

We seek solutions that satisfy f(0) = f ′′(0) = 0 and the matching condition

f → −ξ2/2 (equivalently g → ξ) as ξ →∞. In order to determine the unknown

eigenvalue s, we require four boundary conditions for the third-order system

(3.42). It is not clear, per se, whether the matching condition constitutes one or

two constraints; this depends on the generic behaviour of the solutions as ξ →∞.

A WKB approximation to (3.42) in the limit ξ → ∞ gives leading-order
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solutions of the form

f ∼ c ξ2 − γ0ξ + d± ξ
b exp

[
±(1− i)

4
ξ2
]

+O(1) as ξ →∞, (3.43)

where b would be determined at the next order, and c and d± are constants.

The matching condition f → −ξ2/2 requires both that c = −1/2 and that

d+ = 0. It therefore constitutes two constraints, and we have sufficient conditions

to determine the eigenvalue s in (3.33).

3.B Variation of the growth rate Re{S} for α∗ �
1 and α∗ � 1

In §3.4.1, we determined the leading-order growth rate Re{σ∗} = A4/9Re{S} as

a function of the rescaled vertical wavenumber α∗, and found that Re{S(α∗)}
increased for small α∗ and decreased for large α∗ (figure 3.6a). In this appendix,

in order to understand this behaviour, we examine the limits α∗ � 1 and α∗ � 1.

For clarity, we re-write (3.33) and (3.37) here as

f ′ + g = α∗9/4π, g′′ −
(
s− iξ2

2

)
g + iξf = 0, S = α∗1/2s. (3.44a, b, c)

The boundary conditions are f(0) = g′(0) = 0 and g → ξ as ξ →∞.

In the limit α∗ � 1, (3.44a) becomes f ′ = −g to leading order, while (3.44b)

remains unchanged; the solution to these equations gives an eigenvalue s = (1−
i)/2 that is independent of α∗ to leading order. (The corresponding expression for

the eigenfunction f can be found analytically in integral form, but the expression

is not elucidating.) Hence

Re{S} =
1

2
α∗1/2 for α∗ � 1. (3.45)

In the limit α∗ � 1, the balance in (3.44a) requires that the eigenfunctions

[f, g] are O(α∗9/4) to leading-order. We write g = α∗9/4g0 + g1 + O(α∗−9/4) and

f = α∗9/4f0 + f1 + O(α∗−9/4), and expand s = s0 + α∗−9/4s1 + O(α∗−9/2). The

matching condition as ξ →∞ only applies at second order and is given by g1 → ξ;

69



3. STABILITY OF COLUMNAR CONVECTION

α∗

Re{S}

0.5α∗1/20.1164α∗−7/4

Figure 3.11: The leading-order growth rate Re{S} (solid) as a function of the
scaled vertical wavenumber α∗, together with the predictions from the asymptotic
analysis for α∗ � 1 (3.45) and α∗ � 1 (3.47) (dashed).

the first-order condition is instead given by g0 → 2π (or, equivalently, f0 → −πξ),
which comes from the form of the solution as ξ →∞ given by (3.43b) in appendix

3.A.

The solution of (3.44a,b) at leading order is simply given by [f0, g0] = [−πξ, 2π]

and s0 = 0; neither diffusion (g′′) or growth (sg) enter the leading-order balance,

which is instead simply between the advective terms. At second order, (3.44a,b)

become

f ′1 = −g1, g′′1 +
iξ2

2
g1 − 2πs1 + iξf1 = 0, (3.46a, b)

which can be solved numerically, together with boundary conditions f1(0) =

g′1(0) = 0 and g1 → ξ as ξ →∞, to give an eigenvalue s1 = 0.1164−0.048i. Thus

Re{S} = 0.1164α∗−7/4 for α∗ � 1. (3.47)

Figure 3.11 shows that the leading-order asymptotic predictions of Re{S(α∗)}
for small and large wavenumber from (3.45) and (3.47) give very good agreement

with the full solution of figure 3.6(a). The physical basis for the decay in the

growth rate at small and large α∗ is discussed in §3.4.2.
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3.C Stability of piecewise uniform exchange

flow in the absence of diffusion

In the main text of this chapter, we examined the stability of density-driven heat-

exchanger flow, in which vertical advection balanced horizontal diffusion between

the interleaving columns. Motivated by the interesting observation in §3.4.2 that

diffusion acts as a destabilizing mechanism for the columnar flow, in this appendix

we examine the related system of exchange flow of two distinct fluids of different

densities in the limit of negligible diffusion. The fluids again flow in interleaving

columns, as shown in figure 3.12.

The governing equations for the flow are incompressibility and Darcy’s law

(5.7). The system is horizontally periodic, and each period contains an upwelling

column of unit width and uniform velocity w and a downwelling column of width

λ−1 and velocity −λw by continuity (figure 3.12). The interface between the jth

and (j+ 1)th columns is labelled by Xj. The density is piecewise uniform, and so

the governing equations combine to give

∇2p = 0, (3.48)

in each column.

We look for a pressure perturbation p̃j in the jth column and a corresponding

interfacial perturbation X̃j of the form

p̃j = πj(x) exp (σt+ iαz), X̃j = ξj exp (σt+ iαz). (3.49)

The horizontal variation πj of the perturbed pressure is found by solving

(3.48), which gives

πj(x) = Aj cosh [α (x−Xj)] +Bj sinh [α (x−Xj)]. (3.50)

The constants Aj, Bj and ξj are determined by continuity of pressure and a

kinematic condition for each column at Xj + X̃j, which are linearized to give

πj(Xj) = πj−1(Xj), (3.51a)
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w wλwλw

λ−1λ−1
11

Xj Xj+1Xj−1

Figure 3.12: A schematic showing the interleaving flow of two distinct fluids of
different densities, in columns with width ratio λ.

(
∂

∂t
+ wj

∂

∂z

)
X̃j = −∂p̃j

∂z

∣∣∣∣
x=Xj

,

(
∂

∂t
+ wj−1

∂

∂z

)
X̃j = −∂p̃j−1

∂z

∣∣∣∣
x=Xj

.

(3.51b)

By substituting (3.49) into (3.51) and eliminating ξj, we obtain

Aj+1 = Aj coshαdj +Bj sinhαdj, (3.52a)

Bj+1 =
σ + iαwj+1

σ + iαwj
(Aj sinhαdj +Bj coshαdj) , (3.52b)

where [dj, wj] are the width and velocity of the jth column, given by [1, w] for

even j and [λ−1,−λw] for odd j.

We consider perturbations that are periodic over 2N columns, for some integer

N . Therefore, we equate the perturbations to the interface at X2N with those at

X0. The application of (3.52) 2N times gives a dispersion relation for σ of the

form

det
(
MN − I

)
= 0, (3.53)

where I is the identity matrix. The matrix M is given by

M =

(
Cλ Sλ

ΓSλ ΓCλ

)(
C1 S1

Γ−1S1 Γ−1C1

)
; Γ =

σ + iαw

σ − iαλw
, (3.54a, b)

where C1 = coshα, S1 = sinhα, Cλ = cosh (α/λ), and Sλ = sinh (α/λ).

Equation (3.53) has solutions if and only if MN has eigenvalue 1, or equiv-
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alently M has an eigenvalue that is an N th root of unity. Moreover, it is easily

shown that the determinant of M is 1, and so the product of the eigenvalues of M

is 1. Thus, (3.53) has solutions if and only if the eigenvalues of M are a conjugate

pair of N th roots of unity. We label these eigenvalues µ± = a± ib, for some real

a and b with |a| ≤ 1, |b| ≤ 1. Then (3.53) is equivalent to

det (M − µ±I) = 0, (3.55)

which can be reduced to

(
1 + Γ2

)
S1Sλ + 2 (C1Cλ − a) Γ = 0, (3.56)

Equation (3.56) is a quadratic for Γ, which has discriminant

∆ = 4
[
(C1 − Cλ)2 + 2(1− a)CλC1 + a2 − 1

]
. (3.57)

Since C1Cλ > 1 and |a| 6 1, (3.57) implies that ∆ > (a−1)2 > 0, and so solutions

Γ of (3.56) must be real. This constraint, together with (3.54b), requires that σ

is pure imaginary, which holds for any width ratio λ, velocity w, periodicity N , or

wavenumber α. Therefore, in the absence of diffusion, the columnar exchange flow

of two distinct fluids of different densities is neutrally stable to all wavelengths;

perturbations are advected by the flow without growth or decay. This result

is similar to the observation in §3.4.2 that the leading-order advection balance

for heat-exchanger flow gives neutral propagation, and growth is only possible

because of diffusion.
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Chapter 4

High-Rayleigh-number

convection in a porous medium

containing a thin

low-permeability layer

The material contained in this chapter is in preparation for submission to the Journal

of Fluid Mechanics.

4.1 Introduction

Porous media are often modelled as homogeneous (as in the rest of this dis-

sertation), and described by uniform averaged properties like the porosity and

permeability. Natural porous media, however, are rarely homogeneous. In par-

ticular, geophysical aquifers commonly consist of a series of roughly horizontal

layers of rock of distinctly different permeabilities (Monkhouse, 1970; Phillips,

2009). Layering of this sort can frequently be observed on exposed rock faces

in quarries or coastal cliffs, such as the Jurassic sandstone cliffs at Bridport in

Dorset, UK (Morris & Shepperd, 1982). Both the permeability and the depth

of layers can be much smaller than those of the main formation: the exposed

Aztec sandstone in Nevada, for example, at over a kilometre in depth, is charac-
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terized by multiple very thin (∼ 1 cm) horizontal layers that are several orders

of magnitude less permeable than the main formation (Sternlof et al., 2006). An

important example for the geological storage of CO2 is the Utsira sand formation

at the Sleipner field in the North Sea, where roughly 1 million tonnes of CO2

have been sequestered every year since 1996 (Bickle et al., 2007; Boait et al.,

2012). Seismic images have revealed that the flow of injected CO2 is significantly

affected by the presence of nine low-permeability roughly horizontal mudstone

layers which intersperse the formation, and are much thinner (roughly 1 − 5 m

deep) than the formation itself (roughly 200 m deep) (Bickle et al., 2007).

The study of convection in inhomogeneous or anisotropic media has tended

to focus on the onset of convection and the subsequent dynamics of the flow at

low Rayleigh numbers (Simmons et al., 2001; Ennis-King et al., 2005; Nield &

Bejan, 2006). In media comprising layers of high and low permeability, McKibben

& O’Sullivan (1980, 1981) found that, as the permeability contrast between the

layers is increased, there is a transition in the flow dynamics from large-scale

convective rolls to local convective structures confined to the higher-permeability

layers. McKibben & Tyvand (1983) examined the flow at low Ra in a medium

with thin low-permeability layers, and found that the presence of these layers

can significantly increase the critical Rayleigh number for the onset of convec-

tion. They modelled the flow under the assumption that both the height and

permeability of the low-permeability layers were small but their ratio was O(1);

we adopt a similar approach here for the case of vigorous high-Ra convection.

In this chapter, we use high-resolution numerical simulations to examine the

impact of a thin, horizontal, low-permeability layer on the strength and dynam-

ical structure of high-Ra convection in a porous medium. We consider a cell

comprising an identical upper and lower layer, between which there is a thin inte-

rior layer of a lower permeability. The whole cell is heated from below and cooled

from above. The flow thus attains a statistically steady state, which allows for a

systematic examination of the effect of a thin low-permeability layer on the heat

flux through the cell and on the associated flow structure. In the limit in which

there is no interior layer, the cell is identical to the homogeneous Rayleigh–Darcy

cell discussed in chapter 2. All physical properties of the fluid and the medium

except the permeability are assumed to be constant throughout the cell; in par-
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ticular, we assume for simplicity that the porosity φ of the medium is uniform,

and is thus independent of the permeability (see appendix 4.A for a discussion of

this assumption).

The chapter is laid out as follows. In §4.2, we present the governing equations

and non-dimensionalization. In §4.3, we discuss our numerical results. We show

that, in the limit that both the dimensionless height h and permeability Π of

the low-permeability interior layer are small, the flow can be described solely by

their ratio Ω = h/Π. The dominant horizontal lengthscale of the flow increases

dramatically as Ω is increased, and the Nusselt number can increase for small

values of Ω, before decreasing significantly for larger values of Ω. Motivated

by these observations, in §4.4 we develop simple one-dimensional models of the

system, and discuss future directions and challenges for modelling. Finally, in

§4.5, we summarize and discuss our main results.

4.2 Governing equations

We consider the flow of a Boussinesq fluid in a two-dimensional porous medium,

with horizontal and vertical coordinates x∗ and z∗ respectively. The medium

comprises a thin interior layer between a relatively deep upper and lower layer

(figure 4.1a). The combined depth of the three layers is z∗ = H. The upper

and lower layers have uniform permeability K1, while the thin interior layer has

uniform permeability K2 < K1 and depth h∗ � H, and lies between z∗1 = (H −
h∗)/2 and z∗2 = (H + h∗)/2. Within each layer, the medium is homogeneous and

isotropic.

We assume that the flow u∗ = (u∗, w∗) in all three layers is incompressible

and is governed by Darcy’s law. The equation of state ρ∗(T ∗) is linear, and the

temperature field T ∗ satisfies an advection–diffusion transport equation. These

equations are given by

∇ · u∗ = 0, (4.1a)

µu =

{
−K1 (∇p∗ + ρ∗gẑ∗) 0 6 z∗ 6 z∗1 , z

∗
2 6 z∗ 6 H,

−K2 (∇p∗ + ρ∗gẑ∗) z∗1 < z∗ < z∗2 ,
(4.1b)
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ρ∗ = ρ0 [1− a (T ∗ − T0)] , (4.1c)

φ
∂T ∗

∂t∗
+ u∗·∇T ∗ = φD∇2T ∗, (4.1d)

where µ is the viscosity, p∗ is the pressure, g is the gravitational acceleration,

ẑ∗ is a unit vector in the z∗ direction, ρ0 and T0 are a constant reference density

and temperature, respectively, a is the coefficient of thermal expansion, φ is the

porosity of the medium, and D is the constant thermal diffusivity in the liquid

phase. As in the rest of this dissertation (see §1.2), heat transfer to the solid

phase of the medium is neglected; as such, these equations are equally applicable

to compositionally driven convection.

On the upper and the lower boundaries of the domain, the vertical velocity

vanishes and a fixed temperature is imposed, such that

T ∗|z∗=0 = T0 + ∆T, T ∗|z∗=H = T0, w∗|z∗=0,H = 0, (4.2)

where ∆T is a fixed unstable (positive) temperature difference. The pressure,

temperature and normal velocity are continuous at the internal boundaries z∗ =

z∗1,2. The domain is periodic in the x∗ direction, with period x∗ = L∗.

We non-dimensionalize the system with respect to the depth H of the whole

domain, the permeability K1 of the upper and lower layers, the density difference

across the domain ∆ρ = ρ0a∆T , and the convective time scale φHµ/(g∆ρK1).

The dimensionless rescaled temperature is given by T = (T ∗ − T0)/∆T .

In dimensionless variables, the governing equations (4.1) reduce to

∇ · u = 0, (4.3a)

u =

{
− (∇p− T ẑ) 0 6 z 6 z1, z2 6 z 6 1,

−Π (∇p− T ẑ) z1 < z < z2,
(4.3b)

∂T

∂t
+ u ·∇T =

1

Ra
∇2T, (4.3c)
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T ∗ = T0 + ∆T

T ∗ = T0

T = 1
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Figure 4.1: A schematic showing the system under consideration, with the per-
meability of each layer and the thermal boundary conditions marked, for (a)
dimensional and (b) dimensionless variables.

where p = [p∗/(Hg) + ρ0z]/∆ρ is a reduced pressure, Π = K2/K1 < 1 is the

ratio of the two permeabilities, and we have combined the equation of state (4.1c)

with Darcy’s law (4.1b). The dimensionless edges of the interior layer are given

by z1,2 = (1∓h)/2. The parameter Ra is the Rayleigh number, which is the ratio

of the driving strength of buoyancy to inhibiting dissipative effects of viscosity

and diffusion, given by

Ra =
g∆ρK1H

φDµ
. (4.4)

The dimensionless boundary conditions on the upper and lower boundaries of

the domain are given from (4.2) by

T |z=0 = 1, T |z=1 = 0, w|z=0,1 = 0, (4.5)

(figure 4.1b). The conditions at the internal interfaces between the different layers

are given by continuity of temperature, pressure and normal velocity,

[T ] = [p] = [w] = 0 at z = z1, z2. (4.6)

As in chapter 2, incompressibility (4.3a) is satisfied by the introduction of

a streamfunction ψ which obeys (u,w) = (∂ψ/∂z,−∂ψ/∂x). We eliminate the
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pressure field by taking the curl of (4.3b), which gives

∇2ψ =

{
−∂T/∂x 0 6 z 6 z1, z2 6 z 6 1,

−Π ∂T/∂x z1 < z < z2.
(4.7)

We incorporate the boundary condition for the pressure at the interfaces with the

interior layer by combining (4.6) with Darcy’s law (4.3b), to give the boundary

conditions in terms of discontinuities of the horizontal velocity:

u|z=z+1 = Π u|z=z−1 , u|z=z−2 = Π u|z=z+2 . (4.8)

The flow is described by four dimensionless parameters: the Rayleigh number

Ra; the permeability ratio Π; the relative depth of the interior layer h = h∗/H;

and the width of the domain L = L∗/H. Unless otherwise stated, all the numer-

ical results presented in this chapter have L = 4.

The statistically steady convective flux, or, in dimensionless variables, the

Nusselt number Nu(Ra,Π, h), can be defined as the temporally and horizontally

averaged heat flux across the lower boundary of the domain:

Nu = 〈nu(t)〉 =

〈
− 1

L

∫ L

0

∂T

∂z

∣∣∣∣
z=0

dx

〉
, (4.9)

where nu(t) is the instantaneous flux through the lower boundary at a given time

t. The angle brackets 〈 〉 signify a long-time average.

We solved (4.3b) and (4.7) numerically. The numerical method is discussed

very briefly here, and is described in more detail in appendix A, §A.2.1. We

employed a vertical coordinate transformation in order to fully resolve both the

thin boundary layers at the upper and lower boundaries of the domain, and the

interfaces between the different layers inside the cell. Unless explicitly noted in

the text below, the initial condition for all calculations was given by a linear

vertical temperature gradient with a small random perturbation. After an initial

reorganization period, the flow attains a statistically steady state (although this

state is affected by hysteresis; see §4.3.4.2 below). At high Ra, the local flux

through the boundary nu(t) exhibits chaotic fluctuations about a mean in this

state, and the computations are continued until the Nusselt number (4.9) has
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4. Convection in a layered medium

converged to within 0.25% of its mean.

4.3 Numerical results

We begin by presenting our numerical measurements and discussing the obser-

vations. We focus initially on simulations at Ra = 5000, which is appreciably

higher than the onset of the high-Ra regime for homogeneous Rayleigh-Darcy

convection at Ra ≈ 1300 (Otero et al., 2004). We then examine the dependence

of the system on Ra in §4.3.5.

4.3.1 Numerical results for Ra = 5000

Snapshots of the statistically steady temperature field for different values of the

height h of the interior layer and two different permeability ratios Π are shown

in figures 4.2 and 4.3, together with profiles of the temporally and horizontally

averaged temperature
〈
T
〉

(z). The homogeneous case h = 0 (equivalently Π = 1)

is shown in figure 4.2(a).

These figures show that the structure of the flow changes significantly as

the height of the interior layer increases. For homogenous convection (figure

4.2a), the flow is dominated in the interior by columnar megaplumes with a

roughly regular horizontal wavelength (see chapter 2). The most evident change

in the flow structure as the height h of the interior layer is increased (figure 4.2b–

f ) is a remarkably significant increase in the horizontal scale of these plumes.

The widths of upwelling and downwelling plumes become increasingly different

on either side of the interior low-permeability layer, and the flow increasingly

resembles an ordered array of cells; each cell is half the height of the domain

and comprises a thin vertical plume flowing up/down and a much wider plume

carrying the return flow. The horizontally averaged temperature
〈
T
〉

profiles

also change appreciably as h is increased. For homogeneous convection (figure

4.2a), the profile has a very weak negative gradient throughout the interior of

the domain. As h is increased, (figure 4.2b–f ), the profiles appear to ‘double

back’ in the upper and lower halves of the domain and the gradient becomes

positive, giving an apparent stable background stratification in each layer. The
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Figure 4.2: Snapshots of the temperature field T ∈ [0, 1] for Ra = 5000, Π = 0.04,
and height h of the interior layer: (a) h = 0 (no interior layer); (b) h = 0.005;
(c) h = 0.01; (d) h = 0.02; (e) h = 0.04; and (f ) h = 0.08. The temporally and
horizontally averaged temperature

〈
T
〉

is shown on the right-hand side.

temperature difference across the interior low-permeability layer increases with

h.

For a smaller value of Π (figure 4.3), we find that the horizontal scale increases

even more rapidly as h is increased. In fact, for sufficiently large values of h, the

horizontal scale of the plumes appears to have become so broad that protoplumes
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Figure 4.3: Snapshots of the temperature field T ∈ [0, 1] for Ra = 5000, Π = 0.01,
and height of the interior layer: (a) h = 0.005; (b) h = 0.01; (c) h = 0.02;,
(d) h = 0.04; and (e) h = 0.08. The temporally and horizontally averaged
temperature

〈
T
〉

is shown on the right-hand side.

form near the interior low-permeability layer (figures 4.3d,e). In these cases with

only a few megaplumes in the domain, it is likely that the dominant horizontal

scale is affected by the aspect ratio L. The profiles of
〈
T
〉

again show an increasing

temperature difference across the interior layer as h is increased, although the

apparent stratification that we observed in figure 4.2 appears to decrease for

large h. The structure of the flow is discussed in more detail in §4.3.4 below.

Figure 4.4(a) shows measurements of the Nusselt number as a function of the

height h of the interior layer for different values of Π. Surprisingly, the Nusselt

number does not decreases monotonically as h increases; rather, it increases for
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Ω = h/Πh

Figure 4.4: The Nusselt numberNu forRa = 5000: (a) as a function of the height
of the low permeability layer h; and (b) as a function of the parameter Ω = h/Π.
Measurements are shown for different values of the permeability ratio Π: Π = 0
(squares); Π = 0.005 (circles); Π = 0.01 (stars); Π = 0.02 (crosses); Π = 0.04
(pluses); Π = 0.08 (dots). The solid line in (a) is the theoretical prediction
for an impermeable interior layer (see §4.4.2). For homogeneous Rayleigh–Darcy
convection (i.e. the limit h → 0), Nu = 37.25 (dashed line). Surprisingly, the
Nusselt number initially increases with Ω, before decreasing for Ω & 0.25.

small h and non-zero Π. It is also notable that, even if Π � 1 (but Π 6= 0), the

flux can remain close to the value for homogeneous convection if h is sufficiently

small. The measurements roughly collapse onto a single curve when plotted as

a function of the quantity Ω = h/Π (figure 4.4b), as discussed in the following

section.

4.3.2 Dependence on Ω = h/Π

The measurements of Nu presented in figure 4.4(b) appear to collapse onto a

single curve as a function of Ω = h/Π. This dependence can be understood by

a simple examination of the governing equations in the limit h,Π � 1. In this

limit, Darcy’s law (4.3b) implies that the horizontal velocity in the interior layer

is small (O(Π)), while the vertical velocity is given by

w = −Π

(
∂p

∂z
− T

)
= −Π

h
[p(z2)− p(z1) +O(h)] . (4.10)
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The flow through the interior layer is therefore predominantly vertical if h,Π� 1

and Π/h ∼ O(1), and is driven by pressure differences, rather than by buoyancy.

In this limit, the flow is controlled by the parameter Ω = h/Π, which is an

impedance or resistance, being a ratio of pressure and Darcy velocity.

We can parameterize the effect of the interior layer by manipulating (4.10)

and working in the distinguished limit h,Π → 0 such that Ω = h/Π remains

finite. The derivative of (4.10) with respect to x, together with the continuity

conditions for w and p from (4.6), gives

Ω
∂w

∂x
≈ u(z2+)− u(z1−). (4.11)

We note that there is no requirement of continuity for the horizontal velocity

at z = z1,2. In the limit h,Π → 0, (4.11) reduces to a jump condition for the

horizontal velocity, given by

Ω
∂w

∂x

∣∣∣∣
z=0.5

= [u]z=0.5+
z=0.5−

. (4.12)

The temperature and vertical velocity are continuous at z = 0.5 in this limit.

4.3.3 Reduced numerical simulations

Motivated by the results of the previous section, we developed a simplified nu-

merical scheme in which the thin interior layer is parameterized by the jump

condition (4.12), together with continuity of temperature and vertical velocity,

at z = 0.5 (see appendix A for details). This parameterization both simplifies

the numerical computations and appreciably reduces the numerical cost, as there

is no longer an interior layer to be resolved. We refer to these simulations as

‘reduced’, to distinguish from ‘full simulations’ in which the interior layer is fully

resolved.

Measurements of Nu(Ω) from reduced simulations give good agreement with

results from full simulations for different values of h and Π (figure 4.5). There

appears to be a slight difference in some of the measurements for large values of

Ω; this is likely owing in part to the relatively large values of h in some of the
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Figure 4.5: The Nusselt number Nu(Ω) from full simulations for 10−3 6 h 6 0.2
and 10−4 6 Π 6 0.1 (dots; includes the data from figure 4.4), and from reduced
simulations (crosses), for Ra = 5000. The results give very good agreement,
and tend to the homogeneous value of Nu = 37.25 (dashed line) in the limit
Ω → 0. The slight discrepancy that can be observed at large values of Ω is
because of the relatively large values of h in some of the full simulations; in fact,
the relatively small difference in the measurements suggests that the reduced
framework provides a reasonable approximation even when, as in some of the full
simulations, the interior layer is as much as half of the height of the upper and
lower layers.

full simulations. There is also significant variability in the measurements of Nu,

which is related to variability in the horizontal structure of the flow, as discussed

in §4.3.4.2 below.

Figure 4.5 shows that Nu increases gradually with Ω, to give a maximum

of Nu ≈ 41.2 at Ω ≈ 0.25. This is an increase of approximately 10% from the

value of Nu for homogeneous convection. For Ω & 0.25, Nu decreases rapidly.

For Ω & 5, measurements from reduced simulations level off at roughly a quarter

of the value of Nu for homogeneous convection, while measurements from full

simulations appear to continue to decrease slowly. The difference in behaviour is

discussed in §4.4.2.

4.3.4 The dynamical structure of the flow

We have previously observed in figures 4.2 and 4.3 that the dynamics of the flow

change dramatically for different values of h and Π, and we showed in §4.3.2 that

the flow is a function of Ω = h/Π only, for h,Π� 1. In this section we describe
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Figure 4.6: (a) Measurements of Nu(Ω) from reduced simulations for Ra =
5000, from figure 4.5 (dots), and from a series of simulations for increasing Ω in
which the initial condition for each value of Ω was given by the final state from
the previous value (crosses). Snapshots (i)–(vi) of the statistically steady-state
temperature field for different values of Ω demonstrate both the increase in the
wavenumber with Ω, and the effects of hysteresis on the structure and on Nu
(discussed in §4.3.4.2). Panels (b) and (c) show space-time plots of the sign of
the vertical velocity at z = 0.5, for: (b) Ω = 2.5×10−3, corresponding to snapshot
(i); and (c) Ω = 0.25, corresponding to snapshot (iv).

in detail the change in the dynamical structure with Ω, and the corresponding

form of Nu(Ω).

4.3.4.1 Dependence on Ω

Figure 4.6(a) shows measurements of Nu(Ω) from reduced simulations, together

with snapshots of the temperature field which show how the dynamical structure

of the flow varies with Ω. For Ω . 0.05 (figure 4.6a: i and ii), the dynamics are

dominated by columnar flow across the full height of the domain with a fairly

small wavelength, as in the case of homogeneous flow. The flow in the interior of
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the cell is predominantly vertical, and the widths of upwelling and downwelling

plumes appear to be roughly equal throughout the domain. The interior flow is

also noticeably affected by transient dynamics, as can be observed in a spatio-

temporal plot of the sign of the vertical velocity at z = 0.5 in figure 4.6(b). This

plot shows variability in the size and location of the edges of the megaplumes.

The Nusselt number does not change appreciably for Ω . 0.05.

For 0.05 . Ω . 0.3 (figure 4.6a: iii and iv), the flow structure appears to be

increasingly cellular. The horizontal lengthscale of the flow increases dramatically

in this range. The flow resembles a series of cells of half the height of the domain;

in the lower half of the domain, for example, these cells take the form of a thin

cold downwelling plume neighbouring a much wider hot upwelling plume, which

impinges on the inner boundary and ‘leaks’ through into the upper half of the

domain, feeding the base of a thin upwelling plume there. The effect of transient

dynamics on the flow appears to decrease, and the flow becomes increasingly

‘ordered’; in particular, there is much less variability in the location and width of

the plumes than at lower values of Ω (figure 4.6c). Somewhat unexpectedly, the

Nusselt number increases over this range of Ω. For fixed height h, this observation

implies that the flux increases as the permeability of the interior layer is decreased.

For 0.3 . Ω . 5 (figure 4.6a: v), the horizontal lengthscale of the flow

continues to increase. In this range, the flow near to the interior boundary appears

to be unstable to the growth of protoplumes, which perturb the cellular structure

that dominated the flow at lower values of Ω. The Nusselt number decreases

markedly in this range of Ω.

At Ω ≈ 5, the structure of the flow changes completely. For Ω & 5 (figure

4.6a: vi), the flow resembles two independent cells, each of half the original height

and half the original temperature contrast, placed one on top of the other. Unlike

at lower values of Ω, there are no plumes that reach across the full height of the

domain. The Nusselt number appears to be roughly constant for Ω & 5.

Figure 4.7 shows four sets of a selection of temporally averaged measurements

of the flow, with each set corresponding to a different range of Ω discussed above.

For each set, the figure shows three panels corresponding to profiles of the average

temperature (left), the asymmetry between the widths of upwelling and down-

welling plumes (centre), and the magnitudes of horizontal temperature contrasts
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Figure 4.7: Measurements from reduced simulations: left panels show
〈
T
〉

(z)
(solid), together with the average temperature of upwelling fluid (dashed) and the
average temperature of downwelling fluid (dot-dashed); centre panels show the
proportion of the fluid with w > 0, which gives a measure of the asymmetry be-
tween the widths of upwelling and downwelling plumes; and right panels show the
temporally averaged rms temperature perturbations and velocities Trms(z) (red,
solid), wrms(z) (blue, dashed), and urms(z) (green, dot-dashed). Measurements
are shown for: (a) Ω = 0.04, corresponding to figure 4.6(a:ii); (b) Ω = 0.25,
corresponding to figure 4.6(a:iv); (c) Ω = 1.28, corresponding to figure 4.6(a:v);
and (d) Ω = 10, corresponding to figure 4.6(a:vi).

and velocities provided by the root-mean-square (rms) quantities Trms, wrms, and

urms (right).

For Ω = 0.04 (figure 4.7a),
〈
T
〉

is roughly uniform in the interior of the

domain, except for a small temperature difference across the interior boundary

at z = 0.5. Similarly, the rms quantities are fairly uniform, with small deviations

in the vicinity of z = 0.5.

For Ω = 0.25 (figure 4.7b), which corresponds to the maximum value of Nu,

the average temperature field appears to have a weak stable stratification in

the upper and lower layers of the domain. The temperature difference across

the interior low-permeability layer is larger than in figure 4.7(a), and the rms

quantities vary appreciably near z = 0.5. For Ω = 1.28 (figure 4.7c), much of

this behaviour is more pronounced: there is still an apparent stable stratification
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Figure 4.8: Measurements from reduced simulations of the temporally averaged
rms temperature perturbations and velocities at z = 0.5, as marked. The Nusselt
number Nu(Ω) from figure 4.5 is shown above for comparison. The vertical
velocity at z = 0.5 is approximately zero for Ω & 5; this reflects the transition
from advective to diffusive transport across the interior low-permeability layer,
marked by the dashed line.

in each layer, the temperature difference across the interior layer is larger again,

and there is even greater variation in the rms quantities near z = 0.5.

At both Ω = 0.25 and Ω = 1.28 (figure 4.7b,c), however, there is a significant

asymmetry between upwelling and downwelling plumes, that changes with depth,

and which corresponds to the visual impression from figure 4.6(a:iv,v) of inter-

leaving plumes with different widths. In addition, we observe that the average

temperature restricted to either upwellings or downwellings alone does not display

as strong a stratification as
〈
T
〉
. These observations suggest that the measured

stratification in the average temperature does not so much indicate a ‘true’ back-

ground stratification throughout the flow (although there is a weak stratification

in the wider plume; see figure 4.7c), but is predominantly a reflection of the fact

that the widths of the hot and cold plumes vary with height.

For Ω = 10 (figure 4.7d), the profiles look quite different to those at lower

values of Ω. There is no apparent stratification in either layer; the vertical velocity

appears to vanish at z = 0.5; the temperature variations decrease, rather than

increase, near z = 0.5; and the magnitude of the rms quantities throughout the
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domain is much less than at lower values of Ω.

Figure 4.8 shows measurements of the rms quantities at z = 0.5, for different

values of Ω. As Ω is increased, wrms decreases, while urms and Trms increase. There

is, however, a clear change in the trend of these measurements at Ω ≈ 5, which

corresponds to the transition in the dynamics that we observed in figure 4.6(a),

and to the difference in the profiles in figure 4.7(d) discussed in the previous

paragraph. In particular, wrms ≈ 0 for Ω & 5, which means that there is no

appreciable advective flux through the low-permeability layer. We interpret the

change in the dynamics as a transition from advection to diffusion as the dominant

transport mechanism across the interior layer. The diffusive transport across the

layer is independent of Ω, since it is independent of the permeability, and so

Nu(Ω) should become constant in this regime, as we observed in figure 4.6(a).

The flow resembles two separate Rayleigh–Darcy cells with roughly a quarter of

the original Rayleigh number, since both the height and the temperature contrast

across each cell are half the original value. For ease of notation, we will refer to

this regime for Ω & 5 as the ‘diffusion regime’, and to the regime for Ω . 5 as

the ‘advection regime’.

4.3.4.2 Hysteresis

We also observed significant hysteresis in the dynamical structure of the flow,

which affects the value of Nu(Ω). In order to demonstrate this effect, measure-

ments from two different series of simulations with different initial conditions were

included in figure 4.6(a). In the first series of simulations (dots), the initial condi-

tion was given by a random perturbation to a linear base state, as in all the other

measurements presented in this paper. In the second (crosses), the final state

of each simulation was used as the initial condition for the next simulation at a

higher value of Ω. Both the measurements of Nu(Ω) and the horizontal structure

of the flow show significant variability between the different simulations, as can

be seen by a comparison of the statistically steady-state dynamics in figure 4.6(a:

iii and iv). This comparison suggests that multiple statistically steady (or at

least quasi-steady) states exist for a given value of Ω. The hysteresis is likely due

in large part to restriction imposed by the horizontal periodicity of the domain,
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Figure 4.9: Measurements from reduced simulations, for Ra = 2500 (dots),
Ra = 5000 (pluses), Ra = 104 (crosses), and Ra = 2 × 104 (circles), of: (a)
the Nusselt number Nu(Ω), scaled by the Nusselt number Nu0 for homogeneous
convection (from chapter 2); and (b) the average wavenumber k scaled by 2π,
measured by the temporally averaged mode of the wavenumbers from a Fourier
transform of the temperature field at z = 0.5. The inset shows the same data on
a log-log scale, together with the scaling k ∼ Ω−1/2. Note that the simulations at
Ra = 2× 104 have aspect ratio L = 2.

rather than to initial conditions alone; we have also observed the flow attain quite

different statistically steady states in simulations with the same initial conditions.

4.3.5 Dependence on Ra

We have, thus far, focused on the flow at a fixed value of Ra = 5000. Figure 4.9(a)

shows measurements of Nu(Ω) for different values of Ra in the range 2500 6

Ra 6 2×104, scaled by the Nusselt number Nu0(Ra) for homogeneous Rayleigh–

Darcy convection. The values of Nu0 are taken directly from the measurements

in chapter 2. There are two particularly interesting features of this plot. First,

we observe that the initial trend in Nu(Ω) as Ω is increased changes with the
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value of Ra; at Ra = 2500, Nu increases by over 30% before then decreasing,

while at Ra = 2 × 104, Nu decreases monotonically. Second, as we observed in

the previous section, Nu is approximately constant for large Ω in the diffusion

regime. Figure 4.9(a) suggests that the transition to this regime occurs at a value

of Ω that is roughly independent of Ra. This observation is perhaps surprising,

given that the Rayleigh number can be interpreted as a measure of the relative

strengths of advection and diffusion.

The corresponding average horizontal wavenumber k(Ω) of the statistically

steady flow at z = 0.5 is shown in figure 4.9(b). The data is somewhat noisy, which

reflects the degree of hysteresis that can affect the flow. The wavenumber for small

Ω tends to the value for homogeneous Rayleigh–Darcy convection (measurements

of which are approximately fitted by k = 0.48Ra0.4; see figure 2.8 of chapter 2).

The wavenumber decreases dramatically for Ω & 0.1 and the value of Ω at which

the wavenumber begins to decrease roughly coincides with the value at which

Nu/Nu0 begins to differ appreciably from 1. The subsequent decrease in k has

an approximate scaling of k ∼ Ω−1/2 (figure 4.9b inset). This scaling in discussed

in §4.4.3. There is some suggestion from these measurements that k becomes

independent of Ra as Ω increases.

A comparison of snapshots of the flow for different values of Ra at Ω = 0.1

and Ω = 0.3 is shown in figure 4.10. For Ω = 0.1, the dominant horizontal

lengthscale of the flow decreases as Ra is increased. For Ω = 0.3, the difference

in the horizontal lengthscale is less clear, but the dynamical structure of the flow

exhibits a strong dependence on Ra. In particular, the flow for larger Ra (figure

4.10c,d) is affected by the formation of protoplumes near the inner boundary. As

a result, the flow appears more ‘disordered’ than the cellular flow at smaller values

of Ra (figure 4.10a, b). The presence of protoplumes near the interior boundary

is also reflected in the proportion of fluid with positive vertical velocity (figure

4.10, right column). At smaller values of Ra (e.g. figure 4.10a), the variation in

the proportion of upwelling and downwelling fluid with height is bigger at Ω = 0.3

than it is at Ω = 0.1, and, as a consequence, the apparent stratification in the

upper and lower layers is larger. In contrast, at higher values of Ra (e.g. figure

4.10c,d), the variation is less at Ω = 0.3 than at Ω = 0.1, presumably owing to

the presence of protoplumes near the interior boundary.
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Figure 4.10: Snapshots of the temperature field from reduced simulations for
Ω = 0.1 (left) and Ω = 0.3 (right), together with profiles of

〈
T
〉

(z) (solid lines)
and the average temperature of fluid with w > 0 (dashed lines) and of fluid with
w < 0 (dot-dashed lines), for: (a) Ra = 2500; (b) Ra = 5000; (c) Ra = 104; and
(d) Ra = 2× 104. The right-hand column shows the proportion of the fluid with
w > 0, for Ω = 0.1 (solid) and Ω = 0.3 (dashed). Although all snapshots are
shown over the range 0 6 x 6 2 for concision, simulations in (a)–(c) have aspect
ratio L = 4, and simulations in (d) have L = 2.

We note (with reference to figure 4.9a), that Nu increases between Ω = 0.1

and Ω = 0.3 for the lower values of Ra (figure 4.10a,b), but decreases over this

range for the higher values (figure 4.10c,d). Based on the observations above,

the increase in Nu appears to coincide with the increasingly ordered cellular

structure, while the absence of such an increase at higher Ra coincides with the

presence of protoplumes near the interior layer, which break down the cellular

structure and result in a more disordered flow.

It seems likely that one factor which controls whether the flow near the interior

layer is unstable to the growth of short-wavelength protoplumes is the distance

between the interveaving plumes. It is plausible that the lengthscale for instability

should scale with the protoplume lengthscale ∼ Ra−1 (measured in chapter 2,
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figure 2.10). In contrast, as Ω → 0 the length between the megaplumes is given

by the homogeneous scaling of roughly ∼ Ra−0.4 (2.16). The difference in scaling

between Ra−1 and Ra−0.4 suggests that, as Ra is increased, the flow near z = 0.5

should be unstable to the formation of protoplumes at smaller values of Ω, in

agreement with the the observations from figure 4.10.

4.3.6 Summary of main observations

We have shown that the dynamics of the flow depend only on the ratio Ω = h/Π

for h,Π � 1, and a given values of Ra and L. We found that the horizontal

lengthscale of the flow increases dramatically as Ω is increased. For small values

of Ω, the structure of the flow resembles homogeneous columnar flow. For larger

values of Ω, the flow adopts an ordered cellular structure which, for sufficiently

large Ω, is unstable to the formation of protoplumes near the interior boundary.

For even larger Ω, there is a transition in the dynamics; we surmise that the

transition occurs when the advective flux across the inner boundary becomes

weaker than the diffusive.

For Ra = 5000, we found the unexpected result that the Nusselt number

initially increases with Ω, to a maximum at Ω ≈ 0.25. For larger values of Ω,

Nu decreases. Beyond the transition to the diffusion regime at Ω ≈ 5, Nu is

independent of Ω. In full simulations with a finite height h of the interior layer,

Nu continues to decrease in the diffusion regime as h is increased (figure 4.5).

There are two main differences in this behaviour at different values of Ra.

First, the initial increase in Nu with Ω is greater as Ra is decreased, and is weaker

as Ra is increased, such that, at Ra = 2 × 104, Nu(Ω) decreases monotonically.

Second, as Ra is increased, the formation of protoplumes near the inner boundary

appears to occur at a lower value of Ω. Measurements of the decrease in the

horizontal wavenumber k over the range of Ω for which Nu decreases, which

are roughly fitted by k ∼ Ω−1/2, show no clear dependence on Ra (figure 4.9b).

Similarly, the value of Ω ≈ 5 at which there is a transition in the flow to the

diffusion regime appears to be roughly independent of Ra.
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4.4 Simple theoretical models

In order to understand some of the observed behaviour of Nu(Ω), in this section

we develop simple one-dimensional ‘toy’ models of the statistically steady con-

vective system. These models provide a basis for further study of the dynamical

behaviour that we have observed, as discussed in §4.4.3. They involve a balance

of the heat flux across the boundary layers at the upper and lower boundaries

of the domain and the pressure-driven ‘leakage’ flux through the interior low-

permeability layer, within a one-dimensional horizontally averaged framework.

We derive two simple models of the relationship Nu(Ω) in each of the regimes

identified in §4.3: first, in §4.4.1, for the advection regime (Ω . 5); and second,

in §4.4.2, for the diffusion regime (Ω & 5).

For simplicity, in both models, we make the assumption that the horizontally

averaged temperature T in the upper and the lower layers of the domain is ap-

proximately uniform, except in thin boundary regions near z = 0, z = 0.5 and

z = 1. We note that this approximation neglects any background stratification

in the upper and lower layers; however, as discussed in §4.3.4.1, the apparent

observed stratification is largely a reflection of the changing widths of upwelling

and downwelling plumes. We therefore set

T = Θ(Ω) in z > 0.5, and T = 1−Θ(Ω) in z < 0.5, (4.13)

as shown schematically in figure 4.11.

We model the flux through the upper and lower layers of the system by a

suitable rescaling of the Rayleigh and Nusselt numbers, to relate the flux to that

in a homogeneous Rayleigh–Darcy cell. In chapter 2 we found that this flux,

Nu0(Ra), is well described for Ra & 1300 by

Nu0 = αRa+ β, (4.14)

where α = 6.9 × 10−3 and β = 2.75. Suitable rescaling can be made as follows.

The Rayleigh number is proportional to both a temperature and a height scale,

while the Nusselt number is proportional to the same height scale, and inversely

proportional to the same temperature scale. In the upper and lower layers, the
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driving temperature difference between the boundary and the interior is given by

Θ(Ω) and the height is (1− h)/2 ≈ 1/2 in the limit h� 1. These values can be

compared to the homogeneous values of ≈ 1/2 and 1 for the driving temperature

contrast and the height, respectively. The rescaled effective Rayleigh number R

and Nusselt number N for the upper and lower cells are thus given by

R = 2Θ

(
1

2

)
Ra = ΘRa, N =

(
1

2Θ

)(
1

2

)
Nu =

Nu

4Θ
. (4.15a, b)

Under the assumption that N and R are related by (4.14), we deduce the rela-

tionship

Nu = 4
(
αΘ2Ra+ βΘ

)
, (4.16)

for the convective flux in the upper and lower layers of the domain.

Equation (4.16) is matched with a parameterization of the flux through the

thin interior layer, as discussed separately for the advection and diffusion regime

below. For the advection regime we work in the limit h,Π� 1, as in the reduced

simulations. For the diffusion regime, however, the flux across the interior layer

is independent of Π, and so we develop a model for the flux Nu(h). In the limit

h→ 0, this model suggests that Nu→ constant, in agreement with the numerical

observations from reduced simulations. For both regimes, under the assumption

that the dynamics of the flow are mirrored in z = 0.5, we consider the flow in

z > 0.5 only.

4.4.1 Advective transport across the interior low-

permeability layer

If Ω is sufficiently small, then fluid can flow relatively easily across the interior

layer, and the dominant mechanism for heat transport across the layer is advec-

tion. The ‘leakage’ flux across the layer should therefore scale with Ra w T .

We expect that T scales with the temperature difference ∆Θ across the interior

layer. As we previously observed in §4.3.2, the flow w is driven by the pressure

difference [p] across the interior layer, and, from Darcy’s law (4.3b), is given by

w ∼ [p]/Ω. By the symmetry of the system, we might expect that the driving

pressure difference [p] across the layer is equal to the horizontal pressure difference
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Figure 4.11: A schematic showing profiles of the horizontally averaged temper-
ature T in the one-dimensional model setup: (a) for the advection regime in the
limit h,Π � 1; and (b) for the diffusion regime. For the diffusion regime in the
limit h,Π→ 0 such that Ω remains large, Θ→ 1/4.

between upwelling and downwelling plumes on either side of the layer. Under the

assumption that the horizontal pressure difference is predominantly hydrostatic,

we deduce that [p] ∼ ∆Θ. Therefore, upon substitution of the expression for

∆Θ = 1− 2Θ (see figure 4.11a), the leakage flux is parameterized by

Nu = γRa w T = γRa
(1− 2Θ)2

Ω
, (4.17)

for some constant γ.

Since the convective flux is the same throughout the domain, we equate (4.16)

and (4.17) to generate a quadratic equation for Θ(Ω). Only one root of this

equation lies in the range 0 6 Θ 6 1; this root combined with (4.17) yields an

expression for the flux given by

Nu(Ω) =
γ

Ra

[
(αRa+ β) Ω1/2 −

√
β2Ω + 2βγRa+ αγRa2

αΩ− γ

]2
. (4.18)

We note that both the numerator and the denominator of (4.18) vanish at Ω =

γ/α, such that Nu(Ω) remains well defined.

Figure 4.12 shows a comparison of numerical measurements of Nu(Ω) and the

predictions of (4.18). Based on a rough fit with the data at Ra = 2×104, we used

a value γ = 0.1. While the model does not describe the initial increase of Nu(Ω)

98



4. Convection in a layered medium

!"
!#

!"
"

!"
#

$

!"

!$

#"

#$

%"

%$

&"

&$

!"
!#

!"
"

!"
#

!"

#"

$"

%"

&"

'"

("

)"

!"
!#

!"
"

!"
#

#"

$"

%"

&"

!""

!#"

!$"

!%"(a) (b) (c)

Nu

Ω ΩΩ

Figure 4.12: A comparison of measurements of Nu(Ω) from reduced simulations
and the predictions of the simple models, in the advection regime (4.18) with
γ = 0.1 (solid lines) and in the diffusion regime (4.21b), for: (a) Ra = 5000; (b)
Ra = 104; and (c) Ra = 2× 104.

for Ra < 104, it does gives a rough qualitative fit to the decrease of Nu as Ω is

increased. The predictions appear to underestimate the slope of the decrease in

Nu(Ω) for relatively large values of Ω. Based on a comparison of the shape of the

predicted relationship Nu(Ω) and the measured data, figure 4.12 suggests that

the model gives an increasingly good fit as Ra is increased. A discussion of the

limitations and possible extensions to this simple model is given in §4.4.3 below.

4.4.2 Diffusive transport across the interior low-

permeability layer

In §4.3.4, we found that, for sufficiently large values of Ω, the leakage flux is

primarily diffusive. In the diffusion regime there is very little flow across the

interior layer; the system resembles two homogeneous Rayleigh–Darcy cells placed

one on top of the other, and there are boundary-layer regions above and below

the interior layer as well as near the upper and lower boundaries of the domain

(see figure 4.11b).

The flux given by (4.16) must be matched with the diffusive flux across the

interior layer, which, if the layer has depth h, is given by

Nu ≈ ∆Θ

h
=

1− 4Θ

h
, (4.19)

(see figure 4.11b). The Nusselt number Nu(h) is determined by equating (4.16)
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and (4.19), solving the resultant quadratic equation for Θ(h) (choosing the root

in the range 0 < Θ < 1), and recombining to give

Nu =
1

αRah2

[
(αRa+ 2β)h+ 2− 2

√
αRah+ (1 + βh)2

]
. (4.20)

Predictions of Nu(h) given by (4.20) were included in figure 4.4(a); they show

that Nu decreases as h is increased, and give very good agreement with numerical

measurements for Π = 0.

In the limit h,Π � 1, the interior temperature and Nusselt number from

(4.20) reduce to

Θ =
1

4
−O(h) and Nu =

1

4
αRa+ β −O(h). (4.21a, b)

Thus, in the limit h→ 0, Nu is a constant, as we observed in numerical measure-

ments of the diffusion regime from reduced simulations (figure 4.5). Predictions

of (4.21b) give relatively good agreement with these measurements at large Ω

(figure 4.12, dashed lines), although they appear to slightly underestimate the

measurements. This small difference is discussed in §4.4.3 below.

We expect Nu to be described by (4.20) and (4.21) when advection through

the interior layer is weaker than diffusion. A balance of the advective flux (4.17)

and the diffusive flux (4.19) through the interior layer gives a condition for the

flow to be in the diffusion regime of Π < (γRa)−1. In the limit h,Π→ 0, however,

the condition is instead determined by a comparison of (4.21) and (4.18), which

gives

Ω >
γ

α + 4β/Ra
. (4.22)

Equation (4.22) has only a very weak dependence on Ra at high Ra, in agreement

with the observation in figure 4.9(a) that the transition to the diffusion regime in

the limit h,Π � 1 occurs at a value of Ω that is roughly independent of Ra. It

should be noted that the quantitative predictions of (4.22) are somewhat larger

(Ω ≈ 12.5 at Ra = 104 and γ = 0.1) than the value observed for the transition

to the diffusion regime in figure 4.9(a) of Ω ≈ 5.
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4.4.3 Discussion

The results of figure 4.12 demonstrate that some of the observed features of

the relationship Nu(Ω) can be qualitatively described by simple one-dimensional

models, in which the fluxes are parameterized in terms of the average tempera-

tures in each half of domain. However, there are some very notable differences

between the model prediction and the numerical measurements in the advection

regime; the extent of these differences is perhaps surprising, and would seem to

reflect the need to go beyond a simple one-dimensional framework to describe

some of the features of the flow that we observed in §4.3.

In the advection regime, the model suggests that the decrease in Nu(Ω) as Ω is

increased is controlled by a balance between the increased pressure needed to drive

plumes through the interior low-permeability layer and the the pressure differ-

ences that arises from the buoyancy contrasts between these interleaving plumes.

Based on the observations of §4.3, there are a variety of possible extensions of this

idea. An important and inherently two-dimensional feature of the flow that we

observed in §4.3 is the cellular structure, combined with the asymmetry between

upwelling and downwelling plumes and the non-uniform width of these plumes

with height. The cellular flow structure appears to be related to the surprising

increase in Nu(Ω) for small Ω, which is not described by our one-dimensional

model. Another feature of the flow that is not included in the present model is

the presence of protoplumes near the interior layer. We previously observed in

§4.3.5 that protoplumes partially break down the cellular structure and reduce

the asymmetry between upwelling and downwelling plumes. It is plausible that

mixing due to protoplumes would decrease the temperature contrasts between

the exchange flow on either side of the interior layer, which would decrease the

horizontal pressure differences there, and thus weaken the flow across the layer

and reduce the flux. Indeed, figure 4.8 shows that the trend in the measurements

of Trms at z = 0.5 with Ω is disrupted over roughly the range of Ω for which there

are protoplumes near the interior layer. According to this hypothesis, mixing due

to protoplumes is responsible for the underestimate of the slope of the curve of

Nu(Ω) in the model, observed in figure 4.12.

In the diffusion regime, the simple model describes the diffusive flux between
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two cells in which the dynamics evolve independently of each other. The model

has no undetermined parameters, and gives a good prediction of measurements of

the flux from full simulations with Π = 0, and of the constant flux from reduced

simulations in the limit h → 0. In both cases, the predictions lie slightly below

the measured flux; we anticipate that this small underestimate is related to the

implicit assumption in the model that the temperature at the boundaries with the

interior layer is uniform. In measurements from reduced simulations, we observed

non-zero horizontal fluctuations in T at z = 0.5 (figure 4.7d), which will induce

flow, potentially leading to thinner diffusive boundary layers above and below the

interior layer and a larger flux than the model predicts.

The simple models developed above are independent of the dominant hori-

zontal lengthscale of the flow. In figure 4.9(b), we presented measurements of the

dominant horizontal wavenumber k of the flow through the interior layer, which

were very roughly fitted by a scaling of k ∼ Ω−1/2. A simple argument for this

scaling can be developed by a combination of mass conservation and continuity

of pressure across the interior layer, as follows. Mass conservation in each half of

the domain gives w ∼ u/x ∼ ku, while the balance of pressures near the interior

layer, discussed in §4.4.1, gives w ∼ [p]/Ω and u ∼ [p]/x ∼ k[p]. These scalings

combine to give k ∼ Ω−1/2. Physically, the scaling argument is saying that, as Π

is decreased or h increased, a larger pressure difference is required to drive flow

across the interior layer owing to the increased impedance Ω. The correspond-

ing increase in the horizontal pressure difference between the interleaving plumes,

which drives flow across the interior layer, drives larger horizontal velocities in the

upper and lower layers, where, by mass conservation, the horizontal lengthscale

of the flow must increase. It is important to note that this scaling argument rests

on the assumption that w in the upper and lower layers of the domain scales with

w through the interior layer, and a theoretical basis for this assumption is not

evident. There is some suggestion from the numerical measurements in figure 4.7

that the assumption may be reasonable over the range of Ω for which the scaling

k ∼ Ω−1/2 is observed.

In addition to further developments to the modelling of this system, to under-

stand more of the observed features of the flow, there are a number of directions

in which this work could be extended. In particular, it would be interesting to
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consider the effect of multiple low-permeability layers. It would also be inter-

esting to develop the statistically steady results of this chapter to time-evolving

systems of convection from one boundary alone (‘one-sided systems’), which have

a more direct physical applicability.

4.5 Conclusions

We have undertaken a detailed numerical investigation of statistically steady

convection at high Ra in a cell containing an interior low-permeability layer of

height h and relative permeability Π < 1. In the limit h,Π � 1, we found that

the flow depends only on the parameter Ω = h/Π, and that the interior layer can

be parameterized by a jump condition for the horizontal velocity at z = 0.5. We

developed reduced numerical simulations which solved the jump condition, and

found good agreement with fully resolved numerical simulations, for a range of

values of h and Π.

In §4.3.4, we examined the structure of the flow for Ra = 5000, in the reduced

framework h,Π� 1. We found that, for Ω & 0.05, the flow develops an ordered

cellular structure with a horizontal lengthscale that increases dramatically with

Ω. Each cell is roughly half the height of the domain, and comprises a thin

vertical plume carrying fluid in one direction and a much wider plume carrying

the return flow, together with some ‘leakage’ of buoyancy across the interior layer.

Remarkably, Nu increases as Ω increases (i.e. as the permeability of the interior

layer decreases) in this dynamical regime. For Ω & 0.3, the flow is unstable to the

formation of protoplumes near the interior layer; the flow becomes less ordered,

and Nu decreases. For Ω & 5, advection through the interior layer is weaker than

diffusion, and the flow structure changes completely to resemble two independent

cells placed one on top of the other. We found that the structure of the flow and

the associated convective flux are strongly affected by hysteresis, likely owing, at

least in part, to restriction imposed on the flow by the horizontal periodicity of

the domain.

In §4.3.5, we explored the dependence of this behaviour on Ra. We found

that the initial increase in Nu with Ω was more pronounced at smaller Ra, and

less pronounced at larger Ra. We also found that, as Ra is increased, the flow
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near the interior layer is unstable to the growth of protoplumes at lower values of

Ω. Measurements of the dominant horizontal wavenumber k at z = 0.5 suggest

that the increase in the horizontal lengthscale with Ω roughly fits a scaling of

k ∼ Ω−1/2, with no clear dependence on Ra.

In §4.4, we developed one-dimensional models that describe the the behaviour

of Nu(Ω), for both the advection regime and the diffusion regime. These simple

models give a rough qualitative description of the decrease in Nu(Ω) with Ω and

of the transition to the diffusion regime, but also display a number of differences

from the measurements, which raises interesting questions for further modelling

of the system, as discussed in §4.4.3.

In this numerical study, we have observed a number of surprising features

of the flow in the presence of a thin low-permeability layer. Two observations

are particularly striking: the dramatic increase in the horizontal lengthscale of

the flow with Ω, and the unexpected increase in Nu with Ω for some values of

Ra. These observations could have important consequences in physical settings.

In particular, the ability to engineer an increase in the transfer of buoyancy in

a porous convective system by the simple addition of a thin lower-permeability

layer could be of significant industrial value.

Appendix

4.A Discussion of the assumption of uniform

porosity

Throughout this paper we make the assumption that the porosity φ is uniform

throughout the domain, and is thus independent of the permeability K. Typical

models of the relationship K(φ) (such as the Kozeny–Carman model) suggest that

the porosity scales with roughly the cube root of the permeability (Bear, 1988),

such that changes in the porosity are likely to be much weaker than changes in

the permeability.
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Here we briefly consider the qualitative effect of a lower porosity in the thin

low-permeability interior layer. Suppose that the porosity of the upper and lower

layers is φ1, while that of the interior layer is φ2 < φ1. The flow u is determined

by the solution of the Poisson equation (4.3b), and is thus not directly dependent

on the porosity. Under the assumption that the flow through the interior layer is

not dominated by time-dependent dynamics, the advective flux through the layer,

which scales with wT , is not significantly affected by a decrease in the porosity.

The diffusivity, however, is multiplied by the porosity (see (4.1d)), and so the

diffusive flux would be scaled by a factor of φ2/φ1. Thus, we might anticipate

that a lower porosity in the interior layer would not have an appreciable effect on

the flux in the advection regime, but would lead to a lower flux in the diffusion

regime. As a result, the transition between advection and diffusion regimes would

likely occur at a larger value of Ω. A simple parameterization of the effect of a

lower porosity in the interior layer could be incorporated into our model of the

flux in the diffusion regime (§4.4.2), by including a factor of φ2/φ1 in (4.19), which

is equivalent to the rescaling h→ h(φ1/φ2).
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Chapter 5

Shutdown of convection in a

porous medium I: fixed interface

The material contained in both this and the following chapter has been published in the

Journal of Fluid Mechanics, under the title ‘Convective shutdown in a porous medium’

(Hewitt et al., 2013a). This chapter contains the first half of the paper. The paper was

selected to be the subject of a Focus on Fluids review article (Pritchard, 2013), and

figure 6.5(a) was adapted for the front-cover picture of the journal.

5.1 Introduction

In chapter 2, we explored in detail the flow in a Rayleigh–Darcy cell, which

provides a canonical system for the study of convection. The Rayleigh–Darcy

cell is a ‘two-sided’ system, in which there is convective transport away from

both the upper and lower boundaries. The system therefore attains a statistically

steady state, which allows both for examination of the dynamical structures and

emergent patterns of the flow, and for accurate characterization of the convective

flux.

Natural convective systems in porous media tend instead to be driven by a

source of buoyancy on one boundary alone. We refer to such systems as ‘one-

sided’. There are fundamental questions relating to the differences and similarities

of the dynamics between one-sided and two-sided convective systems, some of
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which we address in this chapter and the next. For clarity, when we consider one-

sided systems we will assume throughout that the convective flow is downwards,

away from an active upper boundary. All the other boundaries of the domain are

assumed to be impermeable and perfectly insulating. Furthermore, in contrast to

the previous chapters of this dissertation, we consider systems in which convection

is driven solely by compositional density differences, such that the density ρ∗ of

the fluid is a function of the concentration of solute C∗ only. It should be noted,

however, that the governing equations are equally applicable both to convection

from a buoyant source at the base of the domain, and to thermal convection,

provided that heat transfer in the solid phase of the medium can be neglected (as

discussed in §1.2).

This chapter and the next are closely linked, and, for clarity, are introduced

together. The principal objective of this chapter is to examine the relationship

between two-sided and one-sided convection with a fixed upper boundary. Then,

in chapter 6, we will extend these ideas to examine different physically moti-

vated one-sided systems, each of which comprises two fluid layers with a moving

interface (such as in the case of sequestered CO2 and brine).

Previous work on the two-dimensional Rayleigh–Darcy cell was discussed in

§1.3. This work has focused on examining the dimensionless heat (or solute) flux

through the cell, as described by the Nusselt (or Sherwood) number Nu, and

the corresponding dynamical structures of the flow, as functions of the Rayleigh

number Ra. In chapter 2, we examined the flow in a Rayleigh–Darcy cell in

the ‘high-Ra’ regime (Ra & 1300). We recall that the dynamical structure in

this regime is dominated by vertical columnar ‘megaplumes’ that extend across

the interior of the domain, and are driven by entrainment and mixing of small

‘protoplumes’ near the upper and lower boundary. Numerical measurements of

Nu were extremely well described by a function of the form Nu = αRa + β, for

constant α and β (see §2.3).

In contrast to the two-sided, statistically steady Rayleigh–Darcy configura-

tion, the dynamics and the buoyancy flux in a one-sided convective system evolve

over time. Many previous studies of one-sided convective systems have focused

on the conditions required for the onset of convection, which presents significant

theoretical challenges as the diffusive base state is both time-dependent and non-
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linear. Various theoretical studies (Riaz et al., 2006; Xu et al., 2006; Hassanzadeh

et al., 2006; Slim & Ramakrishnan, 2010) have been complemented by direct nu-

merical investigations (Riaz et al., 2006; Hassanzadeh et al., 2007) and laboratory

experiments (Fernandez et al., 2002; Backhaus et al., 2011; Slim et al., 2013) that

explore the onset of convection.

After onset, the convective flow is dominated by large dense plumes which

merge and coarsen as they descend. These descending plumes are fed by the

entrainment of smaller plumes near the upper boundary, which are themselves

generated episodically by short-wavelength instabilities in the boundary layer.

The system evolves independently of the depth of the domain until the largest

plumes reach the lower boundary. There have been a number of numerical studies

for Ra . O(103) which examine the evolution of the dynamics and the merging

of descending plumes before they interact with the lower boundary (Pau et al.,

2010; Hassanzadeh et al., 2007). Slim et al. (2013) performed experiments in a

Hele-Shaw cell for 100 < Ra < 1700, and categorized the evolution of the system

from the onset of convection in detail. In a recent study, Slim (2013) explored the

same evolution numerically. Further experimental studies by Neufeld et al. (2010)

for 5× 104 < Ra < 6× 105 in a quasi-2D porous medium, and by Backhaus et al.

(2011) for 6 × 103 < Ra < 9 × 104 in a Hele-Shaw cell, provided measurements

of the convective flux after the onset of convection.

When the descending plumes reach the lower boundary, the domain begins

to fill up with dense fluid. Once this dense fluid reaches the upper boundary,

the dynamics of the system change and the convective flux begins to decrease.

The qualitative behaviour of the flux in this ‘shutdown’ regime has been observed

in numerical simulations by Hassanzadeh et al. (2007) for Ra < 1000, although

they provided no theoretical analysis of the system. Slim et al. (2013) presented

experimental results in this regime for 100 < Ra < 1700, and derived a phe-

nomenological model which describes the evolution of the flux based on an ad

hoc parameterization of the typical boundary-layer depth. We are not aware

of any studies that explore the shutdown regime, in which the convective flux

steadily decreases, for Ra > 1700.

In this chapter and the next, we focus on the evolution of the dynamics and

the convective flux during the shutdown regime for Ra > O(103). In this chap-
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ter, we show that the evolution of the flux in this one-sided problem can be

directly calculated using measurements of the convective flux from a Rayleigh–

Darcy cell. We develop a simple theoretical ‘box’ model for this system that

uses these measurements to predict the timescales for shutdown, and compare

the results to high-resolution numerical simulations. Furthermore, we find that

the dynamical structure of the flow in the shutdown regime exhibits a remarkable

similarity to that in a Rayleigh–Darcy cell: the flow is dominated by vertical

columnar ‘megaplumes’ that extend across the height of the domain, and the

lateral spacing of these plumes increases as the average concentration increases

and the system shuts down, in excellent quantitative agreement with measure-

ments from a Rayleigh–Darcy cell. Motivated by previous experimental systems

(Neufeld et al., 2010; Backhaus et al., 2011) with a nonlinear density curve, we

also examine how the rate of shutdown depends on the form of the density ρ∗(C∗)

by considering a power-law equation of state.

In chapter 6, we will develop these ideas to model convective systems com-

prising two fluid layers, with an interface that that is free to move, as discussed

in more detail in §6.1.

5.2 Overview of physical systems for chapters 5

and 6

In this chapter and the next, we explore three different model systems for one-

sided convection in a porous medium, each with different physical applications

(figure 5.1). The systems are distinguished primarily by different properties of

the active interface at the top of the convecting region: the first system is a ‘fixed-

interface’ system, in the sense that the interface is stationary and is located at a

fixed upper boundary; the second and third systems are ‘free-interface’ systems,

in the sense that the active interface is free to move and divides the convecting

region below from a non-convecting region of fluid above. The second and third

systems are distinguished by whether the fluids on either side of the interface are

immiscible or miscible, as discussed below.

The first system is the ‘fixed-interface’ system, in which the convective flux
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Figure 5.1: A schematic diagram showing typical equations of state ρ∗(C∗), ver-
tical concentration profiles C∗(z∗), and vertical density profiles ρ∗(z∗), for each
of the three physical systems outlined in the text (§5.2). In each case the maxi-
mum density ρ∗m is attained at concentration C∗m, the interfacial height is given
by z∗ = h∗, and the domain has constant depth H∗: (a) the ‘fixed-interface’
system, with a stationary upper boundary z∗ = h∗ = H∗ held at concentration
C∗m; (b) the ‘immiscible’ (free-interface) system, in which fluid with concentration
C∗+ overlies fluid with initial concentration C∗−, and the upper fluid is partially
soluble in the lower; (c) the ‘miscible’ (free-interface) system, in which the two
fluids are fully soluble, and the interfacial height z∗ = h∗ is given by the isopycnal
of maximum density.

111



5. CONVECTIVE SHUTDOWN I: FIXED INTERFACE

away from an interface does not significantly change its height. There are a

broad range of geophysical systems for which this is an excellent approxima-

tion, including the convection of saline groundwater driven by evaporation at the

upper surface (Duffy & Al-Hassan, 1988; Wooding et al., 1997a,b), and the ex-

traction of geothermal energy driven by underground heat sources (Cheng, 1978;

Goldstein et al., 2011). We consider a fluid that initially contains a dissolved

solute at some concentration C∗−. The upper boundary of the domain is held

at a fixed larger concentration C∗m. We consider a density curve that increases

monotonically from ρ∗(C∗−) to ρ∗m = ρ∗(C∗m). A typical density curve for such

a system is shown schematically in figure 5.1(a), together with vertical profiles

of the concentration and density. Diffusion of solute across the upper boundary

forms a dense solution which is unstable to downwards convection. Over time,

the concentration increases from C∗− towards C∗m, and convection gradually shuts

down.

The second and third systems form two different sorts of ‘free-interface’ sys-

tem, in which the convective flux away from an interface causes the interface to

move. These are typically two-component systems, which initially comprise a

light fluid A overlying a dense fluid B. Dissolution of A into B creates fluid that

is more dense than pure B. The system is thus unstable to convection, and the

active interface between the two layers moves as A dissolves into B and convection

transports the dense solution down into the lower layer. The concentration C∗

describes that of the solution of A in B, with pure A having concentration C∗+,

and pure B having concentration C∗− < C∗+. Mathematically, this is related to the

classical Stefan problem (see e.g. Hill 1987), and our approach to the modelling

is similar to that used for convection in a (non-porous) fluid layer below a melting

interface (e.g. Huppert & Sparks 1988a,b; Huppert 1989).

We consider two qualitatively different free-interface systems, which corre-

spond to immiscible and miscible fluids respectively. In the ‘immiscible’ system,

A is only partially soluble in B, and, for simplicity, we assume that B is not at

all soluble in A. The density is largest (ρ∗ = ρ∗m) at the maximum concentra-

tion of A in B, denoted by C∗m. The concentration C∗ cannot lie in the range

C∗m < C∗ < C∗+, and, as such, there is a discontinuity in the concentration and

density fields at the interface, which divides pure A above from a solution of A
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in B below. This behaviour can be seen in figure 5.1(b), which shows a typical

density curve for the immiscible system, together with vertical profiles of the

concentration and density.

In contrast, in the ‘miscible’ system A and B are fully soluble, and the equation

of state ρ∗(C∗) is continuous, with a maximum at some intermediate concentra-

tion C∗m as shown schematically in figure 5.1(c). There is a qualitative distinction

here from the immiscible system, in that there is not a genuine interface between

different fluids when the fluids are miscible. Instead, we define the interface to

be equal to the contour of maximum density (ρ∗ = ρ∗m). This isopycnal separates

stably stratified fluid above from unstably stratified fluid below, and is therefore

an interface in the sense that it lies between regions of dynamically different fluid

behaviour.

Both immiscible and miscible systems have important applications, most per-

tinently to the subject of CO2 sequestration. Supercritical CO2 and brine are

immiscible, with CO2 being only 3− 5% soluble by weight in brine under typical

storage conditions (van der Meer, 2005). In contrast, many experimental ana-

logues of sequestration systems are based on mixtures of glycol and water, and

form miscible systems (e.g. Neufeld et al. 2010; Backhaus et al. 2011).

In this chapter and the next, we develop a series of mathematical models

which describe the different physical systems that we have introduced above. In

this chapter, we examine the ‘fixed-interface’ system. In chapter 6, we examine

both immiscible and miscible free-interface systems; first, under the assumption

that the interface remains flat, and second, when this assumption is relaxed and

the interface is free to deform. The layout of chapter 6 is discussed in §6.1.

The layout of this chapter is as follows. In §5.3, we present the governing

equations, non-dimensionalization, and numerical scheme used to model these

different one-sided systems. In §5.4, we present the results of high-resolution

numerical calculations of the fixed-interface system. Motivated by these results,

in §5.5 we derive a simple theoretical ‘box’ model of this system, which describes

the shutdown of the solute flux over time using measurements of Nu(Ra) from a

Rayleigh-Darcy cell. We compare the theoretical and numerical results in §5.6.

We also show, in §5.7, that the dynamical structure of the flow in the one-sided

system can be accurately predicted by measurements from a Rayleigh–Darcy cell.
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Finally, in §5.8, we summarize the main results.

5.3 Governing equations for chapters 5 and 6

5.3.1 Dimensional equations

In common with the previous chapters of this dissertation, we consider the flow of

a Boussinesq fluid in a two-dimensional, homogeneous, isotropic porous medium,

with horizontal and vertical co-ordinates x∗ and z∗ respectively. We assume that

the flow u∗ = (u∗, w∗) obeys Darcy’s law and is incompressible,

u∗ = −K
µ

(∇p∗ + ρ∗gẑ∗) , ∇ · u∗ = 0, (5.1a, b)

where K is the permeability of the porous medium and µ is the fluid viscosity,

both of which are assumed to be constant, p∗ is the pressure field, g is the accel-

eration due to gravity, and ẑ∗ is a unit vector in the positive z∗ direction. Unlike

in previous chapters, the density ρ∗ is a function of the local concentration C∗.

The concentration C∗ evolves in time t∗ by advection and diffusion,

φ
∂C∗

∂t∗
= −u∗ · ∇C∗ + φD∇2C∗, (5.2)

where φ is the porosity of the porous medium and D is the diffusivity, both again

assumed to be constant. We recall that these equations are equally applicable to

thermal convection, provided heat transfer in the solid phase of the medium can

be neglected (see §1.2).

We consider here the boundary and initial conditions for both fixed-interface

systems, which are the subject of this chapter, and free-interface systems, which

are the subject of chapter 6. The fixed-interface system has a stationary active

upper boundary. The domain has height h∗0 and width L∗, and the upper bound-

ary has an imposed constant concentration C∗|z∗=h∗0 = C∗m and no vertical velocity

w∗|z∗=h∗0 = 0. The lower and side boundaries have zero mass and buoyancy fluxes,

w∗ =
∂C∗

∂z∗
= 0 at z∗ = 0, u∗ =

∂C∗

∂x∗
= 0 at x∗ = 0, L∗. (5.3a, b)
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Figure 5.2: A schematic showing the initial conditions in both dimensional and
dimensionless variables: (a) the fixed-interface system with a stationary upper
active boundary, which is the subject of this chapter; (b) free-interface systems
(either immiscible or miscible) with an interfacial height that evolves in time,
which are the subject of chapter 6.

The medium is initially saturated with fluid at a concentration C∗− < C∗m. The

initial and boundary conditions for this system are shown schematically in fig-

ure 5.2(a), and the equation of state is discussed below.

Free-interface systems (both immiscible and miscible) have an active interface

that is located in the interior of the domain, and is free to move. The domain

has a constant depth H∗ and width L∗, with zero mass and buoyancy fluxes on

every boundary,

w∗ =
∂C∗

∂z∗
= 0 at z∗ = 0, H∗, u∗ =

∂C∗

∂x∗
= 0 at x∗ = 0, L∗. (5.4a, b)

The medium is initially saturated with fluid in two layers (figure 5.2b): a lower

layer of concentration C∗−, and an upper layer of concentration C∗+ > C∗−. The

density of the lower layer ρ∗− = ρ∗(C∗−) is greater than the density of the upper

layer ρ∗+ = ρ∗(C∗+), and, as such, the system is stable to large-scale overturning.

The initial height of the interface between the layers is given by z∗ = h∗0. For

t∗ > 0, the interfacial height is given by z∗ = h∗(x∗, t∗), which is defined to be

the contour of maximum density ρ∗ = ρ∗m. The details of how the location of the

interface is determined over time in each of the different model frameworks that

we employ are discussed in §6.2 and §6.3.

For both fixed-interface and free-interface systems, we consider general power-
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law equations of state,

ρ∗ = ρ∗m [1− b (C∗m − C∗)n] , (5.5)

where b > 0 is a constant coefficient and n is a positive integer. The maximum

density, given by the constant ρ∗m, is attained at concentration C∗m. For the fixed-

interface system, the concentration C∗ is always less than C∗m, and so ρ∗(C∗) 6 ρ∗m

irrespective of n. For immiscible free-interface systems, the concentration above

the interface is fixed at C∗ = C∗+, while below the interface the concentration

is again always less than C∗m. For miscible free-interface systems, however, (5.5)

holds for C∗ > C∗m, and so we require n to be an even (positive) integer in order to

satisfy ρ∗+ < ρ∗−. Representative equations of state for each system are shown in

figure 5.1. In this paper we focus primarily on either linear (n = 1) or quadratic

(n = 2) equations of state.

5.3.2 Dimensionless equations

For all the systems considered, we define a density scale ∆ρ∗ = ρ∗mb(C
∗
m − C∗−)n

to be the difference between the maximum density and the initial density of the

lower layer, and a convective velocity scale U∗ = Kg∆ρ∗m/µ. We also define the

dimensionless interfacial height h, concentration C and density ρ to be

h =
h∗

h∗0
, C =

C∗ − C∗m
C∗m − C∗−

, ρ = 1 +
ρ∗ − ρ∗m

∆ρ∗
. (5.6a, b, c)

The dimensionless concentration below the interface is then negative, and C = 0

at the interface where the density is maximum (ρ = 1). We scale lengths with

the initial interfacial height h∗0, velocities with U∗, pressures with µU∗h∗0/K, and

times with the convective time scale T ∗ = φh∗0/U
∗.

Rescaling in this way gives dimensionless governing equations

u = − [∇P − (−C)nẑ] , (5.7)

∇ · u = 0, (5.8)
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ρ = 1− (−C)n , (5.9)

∂C

∂t
= −u · ∇C +

1

Ra0
∇2C, (5.10)

with a reduced pressure P = p+ z/[b(C∗m − C∗−)n], and an initial Rayleigh number

Ra0 =
h∗0U

∗

φD
=
h∗0Kg∆ρ∗

φDµ
. (5.11)

For the fixed-interface system, the dimensionless initial condition is C(x, z, t =

0) = −1, and the upper boundary condition is C|z=1 = 0. For free-interface

systems, the dimensionless initial concentration profile is given by

C(x, z, t = 0) =

{
−1 for 0 6 z 6 1,

C+ for 1 < z < H,
(5.12)

as shown schematically in figure 5.2.

5.3.3 Numerical method

As in previous chapters, the requirement of incompressibility (5.8) can be satisfied

by introducing a streamfunction ψ, with (u,w) = (ψz,−ψx), and we can eliminate

pressure by taking the curl of (5.7), to give

∇2ψ = − ∂

∂x
(−C)n . (5.13)

Equations (5.10) and (5.13) were solved numerically. The numerical method

is briefly outlined here, and discussed in more detail in appendix A, §A.2.2. We

anticipated a thin diffusive boundary layer below the interface z = h(x, t) and, in

order to ensure that the dynamics near the interface are well resolved, we used a

vertical co-ordinate transformation ζ = f [z, h(t)]. For the free-interface systems,

this transformation is adaptive, and is recalculated once the interface has moved

a sufficient distance to require it. The horizontal and temporal resolution are

uniform.
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We solved the Poisson equation (5.13) using a spectral method in the hor-

izontal direction, and a compact fourth-order finite-difference operator for the

vertical derivatives. The diffusion and advection operators in the transport equa-

tion (5.10) were discretized using standard second-order finite differences and

flux-conservative techniques respectively, and the equation was solved using an

alternating-direction implicit method (Press et al., 1989). The boundary condi-

tions were imposed in such a way as to ensure that the numerical scheme retained

second-order accuracy (see appendix A for details).

5.3.4 The flux

We have non-dimensionalized the variables with respect to the convective time

scale T ∗ = φh∗0/U
∗. For the fixed interface, the dimensionless diffusive solute flux

through the upper boundary is therefore given by Ra−10 ∂C/∂z|z=1 (from 5.10).

However, we are aiming to compare the one-sided system with the Rayleigh–Darcy

cell, where the dimensionless flux is more commonly defined with respect to the

diffusive time scale (as in, for example, standard definitions of the Nusselt number

used throughout this dissertation; see (2.12)). It is thus helpful to consider a

rescaled flux, which we define to be the actual dimensionless flux scaled by the

flux Ra−10 that would be given by diffusion down a unit linear concentration

gradient in the absence of convection. The horizontally averaged rescaled flux

F (t) is therefore given by

F (t) =
1

L

∫ L

0

∂C

∂z

∣∣∣∣
z=1

dx. (5.14)

Throughout this chapter, we measure and model the rescaled flux F (t).

5.4 Numerical results

For the remainder of this chapter, we consider a fixed-interface system, in which

the active interface is located at the stationary upper boundary z = 1. We begin

with the results of high-resolution numerical calculations of the fixed-interface

system. Numerical snapshots of the concentration field C(x, z, t) are shown in
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figure 5.3, together with the horizontally averaged concentration profile C(z, t) =

L−1
∫ L
0
C dx at different times, for a linear equation of state (n = 1) and an initial

Rayleigh number Ra0 = 104. The corresponding average solute flux F (t) (figure

5.4) will be discussed in detail at the end of this subsection.

Initially, a stable diffusive boundary layer grows below the upper boundary.

After a critical time tc ∼ Ra−10 (see, for example, Riaz et al. 2006), the boundary

layer becomes unstable to short-wavelength instabilities leading to downward

convection (figure 5.3a). At this point both the flux from the upper boundary and

the convective dynamics are independent of the location of the lower boundary.

At some time t1, the first generation of convecting plumes reaches the base of

the domain (figure 5.3b), while at some later time t2, the return flow from this

interaction reaches the upper boundary and the flux begins to decrease. For t > t2

the system enters a different, ‘shutdown’, regime in which the solute flux F (t)

decreases as the interior of the domain becomes steadily more concentrated with

solute. The times t1 and t2 are controlled both by the diffusive onset time scale

tc ∼ Ra−10 and the O(1) convective time scale. Since Ra0 � O(1), we expect the

convective time to dominate: thus t1 can be assumed to be independent of Ra0,

and t2 ≈ 2t1. We find numerically that t1 ≈ 7.5 and t2 ≈ 15, in broad agreement

with the experimental results of Slim et al. (2013). For t > t2, the horizontally

averaged concentration C(z, t) is approximately independent of z away from the

boundary layer, and C increases steadily over time (figures 5.3c and d). These

observations underpin the theoretical modelling in §5.5.

The dynamics in the shutdown regime, t > t2, are dominated by persistent,

descending ‘megaplumes’ interleaved with a columnar return flow that rises to-

wards the upper boundary. Instabilities in the thin boundary layer at the upper

boundary drive the growth of small vigorous ‘protoplumes’, which carry dense

fluid from the boundary layer into the larger descending megaplumes. As the

interior becomes more concentrated, the dynamics of the flow become less vig-

orous; the depth of the boundary layer increases as the density contrast with

the interior decreases; and the (differing) horizontal length scales associated with

both protoplumes and megaplumes increase. The dynamical structure of the flow

appears qualitatively very similar to that of the upper half of a Rayleigh–Darcy

cell in the high-Ra regime (see chapter 2). This similarity is discussed in §5.5.1.
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Figure 5.3: Snapshots of the concentration field C in a fixed-interface system,
from numerical simulations, for n = 1, Ra0 = 104, and aspect ratio L = 2,
together with plots of the horizontally-averaged concentration profile C(z, t) =

L−1
∫ L
0
C dx: (a) time t = 4, before the first generation of plumes has reached the

base of the domain; (b) t = 8 ≈ t1, when the descending plumes first reach the
base; (c) t = 32, in the shutdown regime; (d) t = 128. The horizontally averaged
concentration profile in (c) and (d) is approximately uniform away from the upper
boundary. The horizontal spacing of the downwelling plumes increases over time.
Note the different colour scales on the left.
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Figure 5.4: The horizontally averaged solute flux F (t) (5.14), for a linear equation
of state n = 1, aspect ratio L = 2, and Ra0 = 1 × 104 and Ra0 = 2 × 104 as
marked: (a) measurements from one numerical simulation, showing the variability
of F ; and (b) measurements ensemble-averaged over eight numerical simulations
(solid), together with the theoretical predictions (5.28) (dotted) as discussed in
§5.5. The transition to the shutdown regime at t = t2 is marked.

The horizontally averaged solute flux (5.14) exhibits rapid chaotic fluctuations

about a time-varying mean. Measurements of other variables from our numerical

calculations also show some chaotic variation about time-varying average values.

We typically ensemble-average our numerical results to reduce the fluctuations

and to give clearer measurements for comparison with the theoretical modelling.

The variables used in the theoretical sections of this paper refer to the mean

values. The number of repeat simulations used in an ensemble-average is given

in the caption of the relevant figure.

Figure 5.4 shows numerical measurements of the horizontally averaged flux

F (t). The chaotic variation discussed above can be observed in measurements

from a single simulation (figure 5.4a). Ensemble-averaged measurements (figure

5.4b) show that the flux initially fluctuates about an approximately constant

value. Once the first generation of plumes have reached the lower boundary, and

the domain has filled up with denser fluid, the flux decays slowly in the shutdown

regime t > t2.
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5.5 Theoretical box model

The numerical calculations showed that the horizontally averaged interior con-

centration is approximately uniform for t > t2 (figures 5.3c and d), apart from in

a thin boundary layer near the upper boundary. This observation provides the

motivation for the development of a simple box model, using a well-mixed ap-

proximation. We assume that, outside the thin boundary layer, the horizontally

averaged concentration is independent of z, so that

C = Θ(t) 6 0. (5.15)

As Θ(t) increases towards zero, the strength of convection decreases. Based

on the definition of the Rayleigh number in (5.11), we define a time-dependent

Rayleigh number Ra(t) to be proportional to the current density difference be-

tween the upper boundary (C = 0) and the interior (C = Θ(t) 6 0). Thus

Ra(t) = Ra0 |Θ(t)|n . (5.16)

We further define a time-dependent Nusselt number Nu(t), by scaling the flux

F (t) up to a unit concentration difference, which gives

Nu(t) =
F (t)

|Θ(t)| . (5.17)

We expect Nu(t) to be given by some function of the current Rayleigh number,

so that Nu(t) = N[Ra(t)]. The functional form of N(Ra) is discussed in §5.5.2.

We integrate the transport equation (5.10) over the whole domain, and use

the boundary conditions to obtain

d

dt

∫ 1

0

∫ L

0

C dx dz =
1

Ra0

∫ L

0

∂C

∂z

∣∣∣∣
z=1

dx. (5.18)

Using (5.14) and the definition of the horizontally averaged concentration C(z, t),
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5. Convective shutdown I: fixed interface

(5.18) can be rewritten as

d

dt

∫ 1

0

C dz =
F

Ra0
. (5.19)

Since under the well-mixed approximation (5.15) we are neglecting the area of

the thin boundary layer, (5.19) can be combined with (5.15) and (5.17) to give

dΘ

dt
=
|Θ|
Ra0

N [Ra(t)] . (5.20)

Equation (5.20) gives a theoretical prediction for the evolution of the shutdown

regime, which we can solve for a given form of the Nusselt number N(Ra).

The model applies for t > t2, and so (5.20) can be solved together with

an initial condition for the interior concentration Θ(t2). In fact, solutions can be

extrapolated back to t < t2, and (5.20) can thus be solved with an initial condition

Θ(t0) = −1, where t0 < t2 is a virtual origin that allows for the differing dynamics

of the system before it enters the shutdown regime. We find numerically that

t0 = 0 provides a very good approximation.

5.5.1 Relationship to the two-sided Rayleigh–Darcy cell

As noted earlier, the dynamical structure of one-sided flow in the shutdown regime

(figure 5.3c and d) appears qualitatively very similar to half of the convective

profile observed in a two-sided Rayleigh–Darcy (RD) cell (chapter 2). We now

show that the Nusselt number N
RD

(Ra) measured in a RD cell is quantitatively

applicable to shutdown in the one-sided system.

We consider first, for simplicity, the case of a linear equation of state (n = 1).

Suppose a statistically steady RD cell has boundary conditions of constant con-

centration C = 0 on the upper boundary and C = −1 on the lower, and an average

concentration C i
RD

= −1/2 in the interior. As n = 1, the density difference ∆ρ
RD

between the upper boundary and the interior is given by ∆ρ
RD

= −C i
RD

= 1/2.

In contrast, while the one-sided system also has a boundary condition of C = 0 on

the upper boundary, it has a condition of no solute flux through the lower bound-

ary, and an average interior concentration C i = Θ(t). The density difference
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5. CONVECTIVE SHUTDOWN I: FIXED INTERFACE

between the upper boundary and the interior is therefore given by ∆ρ = |Θ(t)|.
We compare the two systems by rescaling Ra(t) to take account of the different

boundary conditions and density differences between the upper boundary and the

interior. Firstly, because of the different lower boundary conditions, we suggest

that the one-sided system is related to the upper half of a RD cell of double the

depth. Secondly, in order that the density difference should agree in the two

systems, we require the total density difference across the RD cell to be scaled

by a factor ∆ρ/∆ρ
RD

= 2|Θ|. The factor ∆ρ = |Θ| is already included in the

definition of Ra(t) (5.16), and we therefore define the effective Rayleigh number

Rae for the equivalent RD cell to be Rae = 4Ra(t).

For the general case with a nonlinear equation of state (n > 1), we can

perform a similar analysis. However, there are two differences. Firstly the interior

concentration C i
RD

of the Rayleigh–Darcy cell is a function of n, as discussed in

appendix 5.A. Secondly, the dimensionless density difference is not simply equal

to the concentration difference, but is given by ∆ρ
RD

= |C i
RD
|n and ∆ρ = |Θ|n.

Therefore, the effective Rayleigh number is given by

Rae = r(n)Ra(t), where r(n) =
2

∆ρ
RD

, (5.21a, b)

as, again, the factor ∆ρ = |Θ|n is already included in the definition of Ra(t)

(5.16). In appendix 5.A we provide numerical estimates of C i
RD

(n), and show

that it can be well approximated by the empirical formula C i
RD

= −(n + 1)−1/n

for n 6 5. Thus, ∆ρ
RD

(n) = 1/(n + 1), and the constant premultiplying factor

r(n) reduces to

r(n) = 2 (n+ 1) . (5.22)

5.5.2 The functional form of the Nusselt number

In a RD cell, the time-averaged Nusselt number Nu is a function of the Rayleigh

number Ra only, and is given by the form N
RD

(Ra). In chapter 2, we found that

N
RD

asymptotically scales linearly with Ra. We also recall that the numerical

measurements of N
RD

(Ra) for 1300 < Ra < 4× 104 were extremely well fitted by
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Figure 5.5: The solute flux F (t) given by (5.28) for Ra0 = 104, n = 1 (solid)
and n = 2 (dashed), illustrating that the initial decrease of the flux is faster at
larger n, while the long-time decay is slower and the flux is predicted to scale
with t−(n+1)/n.

an equation of the form

N
RD

(Ra) = αRa+ β, (5.23)

(cf. (2.14)), where α ≈ 6.9× 10−3 and β ≈ 2.75 are constants.

5.5.3 Analytic solution of the box model

The effective Rayleigh number Rae = r Ra0 |Θ|n, given by (5.16) and (5.21a),

can be combined with (5.23) to give an expression for the Nusselt number in the

one-sided system:

N[Ra(t)] = N
RD

[Rae], (5.24)

= α r Ra0 |Θ(t)|n + β. (5.25)

We use (5.25) to integrate (5.20) analytically. As discussed above, we take an

initial condition Θ(t0) = −1, where t0 < t2 is a virtual time origin. The solution

is given by

Θ(t) = −γ1/n
[
(1 + γ) eαγnr(t−t0) − 1

]−1/n
, (5.26)

where γ = β/(αrRa0).

If Ra0 is sufficiently large (Ra0 � 103) then γ � 1. In the limit γ → 0, which
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corresponds to the simple asymptotic linear scaling N = α r Ra in (5.25), (5.26)

reduces to

Θ(t) = − [1 + αn r (t− t0)]−1/n , (5.27)

and the solute flux F (t), given by (5.17), becomes

F (t) = α r Ra0 |Θ|n+1 = α r Ra0 [1 + αn r (t− t0)]−(n+1)/n . (5.28)

Thus, in the limit of large Ra0 (γ → 0), the evolution of the interior concen-

tration Θ(t) becomes independent of Ra0, and the flux F (t) is proportional to

Ra0 (as we might expect from the Nusselt number scaling), but otherwise evolves

independently of Ra0.

An important feature of these results is the length of time it takes for the

convective flux to shut down. The rate at which the flux F decreases is controlled

by α, the constant in the Nusselt number relationship (5.23). Since α � 1,

the time scales for the shutdown of convection are much greater than the O(1)

convective time scale.

The dependence on the equation of state (5.9) of both the flux and the interior

concentration is different at early and late times (figure 5.5). Initially, the flux

decreases more rapidly at larger values of n. This behaviour can be seen from

leading-order expansions of (5.27) and (5.28) (with t0 = 0), which show that

Θ = −
[
1− α r t+O(α2t2)

]
, F = α r Ra0

[
1− (n+ 1)α r t+O(α2t2)

]
.

(5.29a, b)

Therefore, using (5.22), to leading order dΘ/dt ∼ 2α (n+ 1) and dF/dt ∼
−4α2 (n+ 1)3, both of which increase in magnitude with n. However, at late

times (5.27) and (5.28) are dominated by different scalings with time: the model

predicts that the interior concentration Θ(t) increases towards zero like t−1/n,

and the flux F (t) decays like t−(n+1)/n. Therefore, the increase of the interior

concentration and the resulting decrease of the flux are both ultimately slower at

larger n.

These differences can be understood by the shape of the density curve ρ(C) =

1− (−C)n (5.9) for different values of n. At larger n, the gradient of the density

curve near C = −1 is larger, and therefore the density difference |Θ|n which
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Figure 5.6: Measurements from full numerical calculations (solid) together with
theoretical predictions, for Ra0 = 104 and aspect ratio L = 2: (a) the interior
concentration Θ(t), ensemble-averaged over four calculations, for n = 1 and n = 2
as marked, together with the theoretical predictions from (5.26) (dotted); (b) the
solute flux F (t) for n = 2, ensemble-averaged over four calculations, together
with the theoretical prediction from (5.17) and (5.26) (dashed), and the theoret-
ical prediction in the asymptotic limit γ → 0 from (5.28) (dotted). Numerical
measurements of F (t) for n = 1 are shown in figure 5.4.

drives convection initially decreases more rapidly. However, the different scaling

behaviour of ρ(C) near to the stationary point C = 0 means that the long-time

scaling of F (t) and Θ(t) has a weaker exponent at larger n.

5.6 Comparison of the box model and numerical

results

In this section we compare the analytic solutions with numerical measurements.

We find empirically that t0 = 0 gives good agreement with the numerical results,

and therefore we use this value throughout.

The interior average concentration Θ(t) is measured in the numerical sim-

ulations by defining a time-dependent boundary-layer depth, below which the

concentration is averaged in both spatial directions. Figure 5.6(a) shows numer-

ical measurements and theoretical predictions of Θ(t), for both a linear (n = 1)

and a quadratic (n = 2) equation of state. The theoretical predictions from the

box model (5.26) give very good agreement with the full numerical solutions.
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Figure 5.7: Numerical measurements of the average wavenumber k of the down-
welling megaplumes, for a linear equation of state n = 1, an aspect ratio L = 2,
and Ra0 = 2×104, measured at z = 0.5 and plotted against the effective Rayleigh
number Rae = 4Ra0|Θ| (5.21): (a) measurements from one simulation, showing
the typical variability of k; and (b) measurements ensemble-averaged over eight
simulations (solid line), together with direct measurements of k(Rae) in a RD cell
(points) (adapted from figure 2.8).

Figure 5.6(b) shows numerical measurements of the solute flux F (t) for a

quadratic equation of state (n = 2). The theoretical solution derived from (5.26)

and the simpler asymptotic solution (5.28) are also shown. These solutions are

almost indistinguishable from each other except at late times. Both solutions

give excellent agreement with the numerical results.

These figures show that simple one-dimensional box models give a very good

description of the evolution of the system in the shutdown regime. We have

also shown that the results from a RD cell can be used both qualitatively and

quantitatively to describe the average behaviour of the flux in the shutdown

regime, and the corresponding evolution of the interior concentration Θ. More-

over, these results suggest that the simple asymptotic linear scaling N = α r Ra,

with α = 6.9 × 10−3 and r(n) given by (5.22), is a very good approximation

provided Ra0 > 103.
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5. Convective shutdown I: fixed interface

5.7 Dynamical structure of shutdown: the hor-

izontal wavenumber

The correspondence between one-sided and two-sided convection is further

strengthened by a comparison of the dynamical structure of the flow. Figure

5.3 shows that in the shutdown regime the flow is dominated by long descending

megaplumes, with an average horizontal wavenumber that decreases over time.

Based on the discussion above, we might expect the average horizontal wavenum-

ber k(t), which will depend on the time-dependent Rayleigh number Ra(t), to be

in agreement with the equivalent dependence k(Rae) from a RD cell.

We measured the average horizontal wavenumber k(t) by taking the Fourier

transform of the concentration profile at z = 0.5, and calculating the average value

of k from the Fourier spectrum. Figure 5.7 shows this measured k as a function

of Rae = r Ra(t), together with numerical results from chapter 2; figure 2.8 for

k(Rae) in a RD cell. The good agreement seen in this figure provides further

evidence that the one-sided system can be quantitatively compared to the upper

half of a RD cell, and that the dynamical structures of the shutdown regime are

well described by the results from a RD cell.

5.8 Conclusions

In this chapter, we have shown that measurements of the Nusselt number Nu(Ra)

from the statistically steady two-sided Rayleigh–Darcy cell can be used to accu-

rately predict the shutdown of the flux F (t) in one-sided convective systems. We

have shown that the relationship Nu(Ra) = αRa + β, found in chapter 2, not

only qualitatively describes the decay of the flux F (t) in the one-sided shutdown

system, but can also be used to give very good quantitative agreement with the

results of numerical calculations.

Furthermore, we have found that the dynamical structure of the flow in the

shutdown regime can be accurately described by the structures of a Rayleigh–

Darcy cell: the shutdown regime is dominated by downwelling megaplumes with

an average horizontal wavenumber k(t), which decreases over time in quantitative
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agreement with the measurements of the wavenumber k(Ra) from a Rayleigh–

Darcy cell.

We also characterized the effect of different power-law equations of state ρ =

1−(−C)n on the flux of solute, and thus on the time scale for shutdown. We have

found that, while the rate of shutdown is initially more rapid for larger values of

n, at late times the flux decreases more slowly. The initial linear rate of decrease

of the flux scales like (n+1)3, while at long times the flux decreases like t−(n+1)/n.

The time scale for shutdown (∼ α−1) is, irrespective of the form of the equation

of state, much greater than the convective time scale (∼ 1). This observation is a

result of the relative ‘inefficiency’ of the flux, as described by the small coefficient

α in the relationship for the Nusselt number in a Rayleigh–Darcy cell (5.23).

In chapter 6, we develop this work by examining the shutdown of convection

in ‘free-interface’ systems, which comprise two fluid layers with an interface that

can move as a result of convection across it.

Appendix

5.A Discussion of the average interior concen-

tration in a Rayleigh–Darcy cell

We consider a two-dimensional Rayleigh–Darcy cell in a porous medium, con-

taining a fluid that satisfies a dimensionless power-law equation of state ρ =

1− (−C)n, as in (5.9). The cell has periodic (or no-flux) boundary conditions on

the side walls, and fixed concentrations on the upper and lower boundaries,

C(x, z = 1) = 0, (5.30)

C(x, z = 0) = −1. (5.31)

We consider the system in statistically steady state.
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Figure 5.8: Numerical measurements from a Rayleigh–Darcy cell, with Ra =
104: (a) the average concentration C(z) for different values of n as marked; (b)
estimated range of the interior concentration C i

RD
(n) in the linear interior region,

taken from the measurements in (a), together with an approximate analytic fit
C i

RD
= −(n+ 1)−1/n (dashed).

In chapter 2, we presented numerical results for the case of a linear equation

of state (n = 1)1. We showed that, close to the upper and lower boundaries of

the domain, the horizontally averaged concentration profile C(z) varies rapidly.

However, in the interior of the domain C(z) has a small linear gradient that

decreases as the Rayleigh number Ra increases. In the limit Ra → ∞, the

average concentration in the interior tends to a constant value, C i
RD

= −1/2.

We have also carried out numerical calculations of (5.10) and (5.13) in a

Rayleigh–Darcy cell for 1 6 n 6 5, at Rayleigh number Ra = 104. Measure-

ments of the interior concentration C(z) from these calculations are shown in

figure 5.8(a). Based on the results for n = 1 discussed above, we make the as-

sumption for n > 1 that the gradient of C(z) in the interior of the domain also

decreases as Ra increases, and that, as Ra → ∞, the average concentration in

the interior tends to a constant value C i
RD

(n). By extrapolating the linear inte-

rior gradient of C(z) for each value of n from our measurements in figure 5.8(a),

we generate estimates for the range of possible values of C i
RD

(n), as shown in

figure 5.8(b). We find that an approximate analytic fit lying within this range is

given by C i
RD

= − (n+ 1)−1/n, which is also shown in figure 5.8(b). This curve

1In that chapter, concentration C was replaced by temperature T ; as discussed in §1.2, the
governing equations for thermal and compositional convection are taken to be identical
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provides a reasonable approximation for n < 5, which includes the physically

important cases, n = 1 and n = 2. We use this approximate form for C i
RD

throughout the paper.
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Chapter 6

Shutdown of convection in a

porous medium II: free interface

The material contained in this chapter forms the second half of the paper ‘Convective

shutdown in a porous medium’ (Hewitt et al., 2013a), which has been published in the

Journal of Fluid Mechanics.

6.1 Introduction

In chapter 5, we explored in detail the shutdown of convection in a one-sided

‘fixed-interface’ system, as defined in §5.2, and demonstrated the close link be-

tween such a one-sided system and the two-sided Rayleigh–Darcy cell. In this

chapter, we will develop these ideas to model convective systems comprising two

fluid layers, in which the flux of solute across an interface causes that interface to

move. We examine the dynamics and evolution of these systems using a combina-

tion of simple theoretical box models, high-resolution numerical simulations, and

laboratory experiments. These tools allow us to investigate and understand the

similarities and differences between a variety of physical systems, as described in

§5.2.

These different physical systems comprise two fluids that can be either im-

miscible or miscible (see §5.2): in an immiscible system, the upper fluid is only

partially soluble in the lower, and (by assumption) the lower is not at all soluble
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in the upper; while in a miscible system, the upper fluid is fully soluble in the

lower. For both immiscible and miscible systems, dissolution of the upper fluid

into the lower causes a change in the density of the solution, which drives con-

vection. Typical equations of state, average concentration profiles, and average

density profiles for immiscible and miscible systems can be seen in figures 5.1(b)

and (c).

In this chapter, we develop two different mathematical models to describe

free-interface systems. In §6.2, we consider both immiscible and miscible sys-

tems under the assumption that the moving interface can be approximated as

remaining flat. Therefore, the interfacial height h is a function of time alone.

This assumption allows us to use the results of the previous chapter to derive

theoretical box models of each system, which are compared with direct numer-

ical measurements. For the immiscible system (§6.2.1), we make the additional

modelling assumption that the pore space is always fully saturated: there is no

capillary retention of fluid in the pores of the medium, and as such the interface

remains ‘sharp’. The reader is reminded that, in the miscible system (§6.2.2), the

‘interface’ is defined by the isopycnal of maximum density (see §5.2). In §6.2.3,

we summarize the main results of this section, and compare the two systems.

In §6.3, we relax the assumption of a flat interface, and present experimental

and numerical results for the miscible system when the interface is free to deform.

The experimental system consists of water overlying propylene glycol in a Hele-

Shaw cell. Solutions of these fluids have a density curve that is qualitatively

similar to that shown in figure 5.1(c). We find that the effects of interfacial

deformation and entrainment can be considerable in the miscible system. In

contrast, in §6.3.3 we argue that interfacial deformation is likely to be negligible

in the immiscible system.

In §6.4, we summarize the main results of this paper, and discuss the impli-

cations for the shutdown of convection in different physical settings. Estimates

based on this work of the typical time scales for shutdown in current CO2 seques-

tration sites will be discussed in §8.2.

The relevant governing equations, variables, and non-dimensionalization for

free-interface systems were introduced in §5.3. We recall that the system is ini-

tially stratified in two layers (figure 5.2b), with a lower layer 0 < z < 1 of
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concentration −1 and an upper layer 1 < z < H of concentration C+ > 0. The

maximum density is attained at C = 0. The density is given as a function of the

concentration by (5.9).

6.2 Free-interface systems (a): Flat interface

If the interface is assumed to remain flat, then the interfacial height is a function

of time alone, and is given by z = h(t), with h(0) = 1.

As in §5.3.4, we consider the flux scaled by the diffusive flux in the absence

of convection. Under the assumption of a flat interface, the scaled horizontally

averaged flux F (t) across the interface is given by

F (t) =
1

L

∫ L

0

∂C

∂z

∣∣∣∣
z=h(t)

dx. (6.1)

The evolution of the interfacial height h(t) can be calculated from conservation

of solute over the entire domain, which gives

∫ H

0

∫ L

0

C(x, z, t) dx dz = L [−1 + (H − 1)C+] . (6.2)

The right-hand side of (6.2) is the result of evaluating the integral at t = 0.

6.2.1 Immiscible system

When the two fluids are immiscible (and, by assumption, the lower fluid is insol-

uble in the upper), the concentration C+ above the interface z > h(t) remains

constant, as does the corresponding density ρ+ < 0. Hence global conservation

of solute (6.2) reduces to

∫ h(t)

0

C dz = −1 + [h(t)− 1]C+. (6.3)
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6.2.1.1 Theoretical box model

Following the analysis of §5.5, we use a well-mixed approximation for the interior

of the system in z < h(t): we assume that, below a thin boundary layer, the

horizontally averaged concentration C(z, t) is independent of z, and is given by

C = Θ(t) 6 0. (6.4)

Starting from the definition of the initial Rayleigh number (5.11), we now define

the time-dependent Rayleigh number Ra(t) to be

Ra(t) = Ra0 |Θ(t)|n h(t), (6.5)

which accounts for the changes in concentration and depth of the convecting

layer. We further define a time-dependent Nusselt number Nu(t), by scaling the

horizontally averaged flux F up to a unit concentration difference and height,

which gives

Nu(t) =
h(t)F (t)

|Θ(t)| . (6.6)

The Nusselt number is given by the functional form Nu(t) = N[Ra(t)], as dis-

cussed in §5.5.2, and the flux F (t) is given by (6.1).

As in §5.5, we integrate the transport equation (5.10) over the lower layer

z 6 h, and use the boundary conditions together with (6.1) to obtain

d

dt

∫ h(t)

0

C dz =
F

Ra0
. (6.7)

Under the well-mixed approximation (6.4), contributions to the area integral in

(6.7) from the thin boundary layer below the interface are neglected. Equations

(6.4), (6.6), and (6.7) can be combined to give

h
dΘ

dt
=
|Θ|
hRa0

N [Ra(t)] . (6.8)

Equation (6.8) can be compared to (5.20), which is the equivalent governing

equation for the fixed-interface box model.
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Figure 6.1: Theoretical results for the immiscible system with n = 1, C+ = 1.2,
t0 = 0, and Ra0 = 2 × 104: (a) the average concentration Θ(t) given implicitly
by (6.12) (solid), together with the prediction for a stationary interface given by
(5.27) (dashed); (b) the solute flux F (t) given by (6.13) (solid), together with the
prediction for a stationary interface given by (5.28) (dashed); (c) the interfacial
height h(t) given by (6.10) and (6.12).

The well-mixed approximation (6.4) can also be combined with global conser-

vation of solute (6.3) to give

hΘ = −1 + (h− 1)C+, (6.9)

which can be rearranged to obtain the interfacial height,

h(t) =
C+ + 1

C+ + |Θ(t)| . (6.10)

One could solve (6.8) and (6.10) numerically using any functional form of the

Nusselt number N(Ra), including the numerical parameterization in (5.25). We

have shown in chapter 5 that the asymptotic linear scaling N(Ra) = α r Ra, where

α = 6.9× 10−3 and r(n) is defined in (5.22), provides a very good approximation

to (5.25) if Ra > 103, and we therefore use this scaling here. Equations (6.8)

and (6.10), together with this linear scaling, give a simple ordinary differential

equation for Θ, (
C+ + 1

C+ + |Θ|

)
dΘ

dt
= α r |Θ|n+1 . (6.11)

Equation (6.11) describes the evolution of Θ(t) in the shutdown regime, t > t2.

In a similar manner to the analysis of §5.5, we extrapolate solutions back to t < t2,

and apply an initial condition Θ(t0) = −1, where t0 < t2 is a virtual origin. The
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solution to (6.11) is then given implicitly by

n∑

k=1

[
Ck

+

kΘk

(
1− |Θ|k

)]
+ ln

[
C+ + |Θ|
|Θ| (1 + C+)

]
= −α r(−C+)n+1

1 + C+

(t− t0) . (6.12)

The height of the interface h(t) is related to the interior concentration Θ(t) by

(6.10). Using (6.6), the flux F (t) is related to Θ(t) by

F = α r Ra0 |Θ|n+1 . (6.13)

Figure 6.1 shows solutions calculated from (6.12) for Θ(t), F (t), and h(t). The

concentration Θ(t) < 0 increases monotonically towards Θ(t→∞) = 0, while

the corresponding interfacial height h(t) increases monotonically towards h(t →
∞) = h∞ = 1+1/C+, independent of n. In the limit of large C+, which physically

corresponds to the limit (C∗+ − C∗m) � (C∗m − C∗−), equation (6.12) reduces to

the solution for a stationary interface (5.27), and the height h of the interface

remains approximately constant for all time. For any value of C+, the evolution

of the system is ultimately given by the solution for a fixed interface (5.27) (up

to an additional factor of 1/h∞ multiplying t− t0), since h→ h∞ at long times.

The predictions for a stationary interface from §5.5 are also shown for Θ and

F in figures 6.1(a) and (b). Given the relatively large change in the interfacial

height h over time (figure 6.1c), it is surprising that the interior concentration

Θ (figure 6.1a) does not display a significant difference to the prediction for a

stationary interface. This observation is related to the differences in the solute

flux (figure 6.1b) between the predictions for a moving and a stationary interface:

while the area of the domain below the interface (∝ h) is greater in the former

case than in the latter, the flux F across the interface is also greater, and therefore

the interior concentration Θ is not significantly different. For larger values of C+

(not shown here), we find that the solutions of (6.11) increasingly resemble those

for a stationary interface.

The dependence of Θ and F on n is also qualitatively similar to that for a

stationary interface, which was discussed in §5.5.3. The interior concentration

and the flux again have long-time behaviour Θ ∼ t−1/n and F ∼ t−(n+1)/n to

leading order, and the initial decay of the flux is again more rapid for larger n.
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Figure 6.2: Numerical measurements for the immiscible system with a flat inter-
face for Ra0 = 2 × 104, and domain width L = 2 and height H = 2, showing
the horizontally averaged concentration C(z, t) at times t = 4 (solid), t = 32
(dashed), and t = 256 (dotted), and the interfacial height h(t): (a) linear equa-
tion of state n = 1; and (b) quadratic equation of state n = 2. Dashed lines
show the theoretical predictions for the interfacial height h(t) from box models.
The dots on the left-hand figures show the location of the interface, and corre-
spond to the dots on the right-hand figures. Each subfigure shows results for
both C+ = 1.2 and C+ = 2, as marked.

6.2.1.2 Numerical results

We solved the full governing equations for the flat-interface immiscible system

numerically as outlined in appendix A. These equations are (5.10) and (5.13) for

the convecting region z < h(t), subject to boundary conditions C = 0 and w = 0

imposed at a flat interface h(t), which is determined from (6.3).

Figure 6.2 shows measurements of the horizontally averaged concentration

C(z, t) and the interfacial height h(t) for both linear (n = 1) and quadratic

(n = 2) equations of state. The upwards retreat of the interface is approxi-

139



6. CONVECTIVE SHUTDOWN II: FREE INTERFACE

mately linear at early times (t < t2), while the downwelling plumes are descending

through unmixed fluid. Once the system enters the shutdown regime (t > t2), the

behaviour of h(t) changes. The interface moves more slowly for larger values of

C+, as there is more solute per unit volume in the upper layer. The corresponding

profiles of C(z, t) show that the interior of the domain is well mixed for t > t2,

in agreement with the behaviour below a fixed interface (chapter 5) and with

the well-mixed assumption (6.4). The predictions of the theoretical box model

for the interfacial height h(t), which is based upon this well-mixed assumption,

are also shown in figure 6.2, and give very good agreement with the numerical

simulations.

6.2.2 Miscible system

When the two fluids are miscible, the relatively low concentration below the

moving interface can affect the concentration field above the interface by diffusion.

Since, by assumption, the interface z = h(t) remains flat, the concentration C is

independent of x for z > h. In this region, the governing transport equation (5.10)

therefore reduces to a one-dimensional partial differential equation describing

vertical diffusion away from the moving interface h(t). In the frame of reference

moving with the interface, (5.10) becomes

∂C

∂t
− dh

dt

∂C

∂z
=

1

Ra0

∂2C

∂z2
. (6.14)

6.2.2.1 Theoretical box model

The development of a theoretical box model for the miscible system follows similar

reasoning to that for the immiscible system §6.2.1.1. The horizontally averaged

interior concentration Θ(t) 6 0 (6.4), the time-dependent Rayleigh number Ra(t)

(6.5), and the time-dependent Nusselt number Nu(t) (6.6) are all as defined in

§6.2.1.1. The evolution equation for the average interior concentration Θ(t) is

again given by (6.8).

Unlike the immiscible system, the concentration above the interface does not

remain constant. Instead, it evolves by diffusion (6.14), and varies over some

length scale between C = 0 at the interface and C = C+ (as shown schematically
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Figure 6.3: Theoretical predictions for the immiscible (dashed) and miscible
(solid) systems, with n = 2, C+ = 2, t0 = 0, and Ra0 = 2× 104: (a) the average
concentration Θ(t), for which the two predictions are almost indistinguishable;
(b) the solute flux F (t); (c) the interfacial height h(t), which has qualitatively
different late-time behaviour in the two systems.

in figure 5.1c). In order to generate a simple box model that approximates the

solution of (6.14), we define a diffusive boundary-layer depth

δ(t) =
2

C+

∫ H

h

(C+ − C) dz, (6.15)

which is an integral measure of the length scale of the concentration profile in

z > h. We then approximate (6.14) by assuming that the evolution of δ can be

described by a simple ordinary differential equation of the form

dδ

dt
=

a1
Ra0 δ

− a2
dh

dt
, (6.16)

where a1 and a2 are numerical coefficients. Equation (6.16) is motivated by the

physical balances that control the boundary-layer depth δ: the first term on the

right hand side of (6.16) describes the diffusive growth of a boundary layer with

a flux proportional to the diffusivity Ra−10 and the concentration gradient, while

the second term describes the advection of the interface.

The constants a1 and a2 in (6.16) are chosen so that the total solute δC+/2

contained in the boundary layer gives a good approximation to that in the full

solution of (6.14). We find a1 and a2 by comparing solutions of (6.16) with

analytic solutions of (6.14) in two limits. In the limit where dh/dt is negligible,

the pure-diffusion solution of (6.14) has the form C ∼ erf[(z − h)
√
Ra0/4t], and
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(6.16) gives δ =
√

2a1t/Ra0. Similarly, in the steady limit in which advection

balances diffusion, the solution of (6.14) has the form C ∼ exp [−ḣ Ra0 (z − h)],

where ḣ = dh/dt, while (6.16) gives δ = a1/a2ḣRa0. We use (6.15) to equate each

of these solutions at leading order, which gives a1 = 8/π, and a2 = a1/2 = 4/π.

Including the contribution from the diffusive upper boundary layer, global

conservation of solute (6.2) gives

h (C+ + |Θ|) = (1 + C+)− δC+

2
. (6.17)

After rearranging (6.8), (6.16), and (6.17), we extract coupled evolution equations

for the concentration Θ, the height of the interface h, and the diffusive boundary

layer depth δ,

dΘ

dt
=
|Θ|N
h2Ra0

, (6.18)
(
|Θ|+ C+ −

a2C+

2

)
dh

dt
= − a1C+

2δ Ra0
+
|Θ|N
hRa0

, (6.19)

(
|Θ|+ C+ −

a2C+

2

)
dδ

dt
=
a1 (C+ + |Θ|)

δ Ra0
− a2 |Θ|N

hRa0
. (6.20)

Equations (6.18)–(6.20) give a theoretical prediction for the evolution of shutdown

in a miscible flat-interface system. We integrate these equations numerically using

the functional form N(Ra) in (5.25).

The solutions for the interior concentration Θ and the flux F from this model

(figures 6.3a,b) are almost indistinguishable from those for the immiscible system.

However, the interfacial height h for the miscible system exhibits qualitatively

different behaviour at long times (figure 6.3c). The diffusion of solute above

the interface slows the upward motion of the interface, and eventually leads to a

decrease in the isopycnal that defines h. Equation (6.19), together with (6.6), give

an equation for dh/dt, which shows that the height of the interface will decrease

when

F <
a1C+

2δ
, (6.21)

i.e. the height of the interface will decrease when the flux of solute into the lower

layer (F ) is less than the diffusive flux into the upper layer (∼ C+/δ).

142



6. Convective shutdown II: free interface

! "!! #!! $!! %!! &!! '!!
"

"("

"(#

"($

"(%

"(&

"('

!" # " $

% %

!" # "

h

t

C+ = 1.2

C+ = 2

!

!"#

$

$"#

%

z

C C

C+ = 1.2 C+ = 2

t = 4

t = 32

t = 256
!!"!""

Figure 6.4: Numerical measurements for the miscible system with a flat interface,
for Ra0 = 2 × 104, domain width L = 2 and height H = 2, and a quadratic
equation of state n = 2: (a) the horizontally averaged concentration C(z, t) at
times t = 4 (solid), t = 32 (dashed), and t = 256 (dotted); and (b) the interfacial
height h(t). Dashed lines show the theoretical predictions for the interfacial height
h(t) from box models. The dots in (a) show the location of the interface, and
correspond to the dots in (b). Each subfigure shows results for both C+ = 1.2
and C+ = 2, as marked.

In a finite system with no-flux boundaries, the final steady state must have

a uniform concentration C∞, which is determined by conservation of solute (6.2)

to be

C∞ =
−1 + (H − 1)C+

H
. (6.22)

If C∞ < 0, then the interface z = h(t) must reach the upper boundary z = H,

and (6.21) is never satisfied. Conversely, if C∞ > 0 the interface must eventually

descend, and approaches the base of the domain by diffusion. From (6.22), C∞ >

0 if H > 1 + 1/C+. This condition is satisfied for all the results presented in this

paper.

6.2.2.2 Numerical results

We solved the full governing equations for the miscible system numerically (see

appendix A). These equations are (5.10) and (5.13) for z < h(t), and (6.14)

for z > h(t), together with conservation of solute (6.2), and the flat-interface

assumption w = 0 at z = h(t).

Figure 6.4 shows measurements of the horizontally averaged concentration
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C(z, t) and the interfacial height h(t), with a quadratic equation of state n =

2. As in the case of the immiscible system (figure 6.2), the rate of upwards

retreat of the interface is approximately constant for t < t2, and then decreases

once the system enters the shutdown regime (t > t2). Unlike the immiscible

system, however, the concentration field above the interface evolves in time (figure

6.4a). This evolution becomes very significant at long times, and results in an

eventual decrease of the interfacial height h(t) (figure 6.4b). The time at which the

interface begins to descend decreases with increasing C+, as predicted by (6.21).

The predictions of the box model are also shown in figure 6.4b, and accurately

capture both the slowing of the interface and its eventual descent.

6.2.3 Conclusions for immiscible and miscible systems

with a flat interface

The results in figures 6.2 and 6.4 show that the theoretical box models give excel-

lent predictions for the shutdown of free-interface systems, under the assumption

that the interface remains flat. These figures also highlight the main difference

between the immiscible and miscible systems: the long-time evolution of the in-

terfacial height h(t), which continually increases in the immiscible system, but

eventually decreases in the miscible system. Given this qualitative difference in

the interfacial behaviour, it is remarkable that the solute flux F (t) and the in-

terior concentration Θ(t) are so similar between the two systems (figure 6.3).

The timescales for the shutdown of convection in the two systems are therefore

roughly equal, even though observations of the interfacial height h(t) might sug-

gest otherwise. In the limit of large C+, we find that the predictions of the box

models for these free-interface systems can be well approximated by the solution

in §5.5 for a fixed interface.

These results apply when the assumption of a flat interface is appropriate.

In the next section, we examine miscible systems with a deformable interface,

and show that the removal of the flat-interface approximation can lead to very

different rates of shutdown.
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6. Convective shutdown II: free interface

6.3 Free-interface systems (b): Deformable in-

terface

In this section we relax the flat-interface assumption. Therefore, the interface is

free to ‘deform’, and solute can be entrained across it.

In §6.3.1 we present numerical results for the miscible system. In §6.3.2,

to test the validity of the numerical results in a physical system, we compare

with measurements from an experimental miscible system in a Hele-Shaw cell.

In §6.3.3, we consider the validity of the flat-interface approximation for miscible

systems and discuss the anticipated effects of a deformable interface on immiscible

systems.

6.3.1 Numerical results for the miscible system

We solved the governing equations (5.10) and (5.13) over the whole domain, with

an initial condition given by (5.12) and a quadratic equation of state (n = 2) (see

appendix A for numerical details). As discussed in §5.2, the interfacial height

z = h(x, t) is defined by the contour of maximum density ρ = ρm, which is a

function of horizontal position. We therefore define the average interfacial height

z = h(t) to be the height at which the horizontally averaged density is maximum

(which corresponds to the height at which C(z, t) = 0).

Snapshots of the concentration field (figure 6.5a) show that there can be sig-

nificant interfacial deformation in the miscible system. The extent of the defor-

mation decreases with increasing C+. The dominant wavelength of the deformed

interface appears to be set by the lateral spacing of the descending megaplumes.

The average interfacial height h(t) and the interior concentration Θ(t) are com-

pared with predictions from the miscible box model under a flat-interface ap-

proximation in figures 6.5(b) and (c). Both variables increase significantly more

rapidly than the box model predicts, which suggests that the total solute flux

F (t) is initially much greater than with a flat interface. Measurements of F (t)

from the numerical simulations (not shown here) suggest that the initial flux

is approximately 3 times larger than with a flat interface when C+ = 1.2, and

approximately 2 times larger when C+ = 2.
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Figure 6.5: Numerical results at Ra0 = 2× 104, domain width L = 2 and height
H = 2, and a quadratic equation of state n = 2: (a) snapshots of the concentra-
tion profile at t = 5, for C+ = 1.2 and C+ = 2, showing significant deformation
of the interface; (b) the average interfacial height h(t) (solid) for C+ = 1.2 and
C+ = 2, together with the height predicted by the miscible theoretical box model
(dashed); (c) the interior concentration Θ(t) (solid) for C+ = 1.2, together with
the prediction of the miscible theoretical box model (dashed).

6.3.2 Experimental results for the miscible system

In order to explore the effects of a deformable interface further, and to corroborate

the numerical results of §6.3.1, we conducted an experiment in a Hele-Shaw cell

using two miscible fluids: propylene glycol (PPG) and water. Backhaus et al.

(2011) used these fluids to examine the onset of convection and the evolution
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Figure 6.6: Relationship between density and concentration for the propylene
glycol–water system. Concentration C∗ = 1 corresponds to pure water. Symbols
denote measurements made in a densitometer, of which the curve is a cubic fit
ρ∗ = f ∗(C∗) = ρ∗− (1 + 0.077C∗ − 0.173C∗2 + 0.062C∗3), with ρ∗− = 1.036 g/cm3.

of the initial convective plumes. Neufeld et al. (2010) used a similar system,

composed of water with a mixture of methanol and ethylene-glycol, to examine

the convective flow for tc < t < t2. Here, in contrast, we examine the long-time

evolution of the system in the shutdown regime.

The experimental system consists of two glass sheets, separated by a shim of

thickness l = 0.41 mm. The cell has width L∗ = 40 cm and height 80 cm. The flow

in the gap satisfies Darcy’s law (5.1a), with an effective permeability K = l2/12 =

1.4× 10−4 cm2 and porosity φ = 1. PPG, of density ρ∗− = 1.0367 g/cm3, filled the

lower layer of the cell up to a depth h∗0 = 32.5 cm. The PPG was overlain by a

layer of water, of density ρ∗+ = 0.9995 g/cm3, up to a total depth H∗ = 66 cm. We

define the concentration C∗ to be the proportion of water by weight, so that the

concentration of pure PPG is C∗− = 0 and that of water is C∗+ = 1. Measurements

of the density for different concentrations are shown in figure 6.6, together with

a cubic fitting equation ρ∗ = f ∗(C∗). The maximum density is obtained at

C∗m ≈ 0.25, and is given by ρ∗m = 1.0451 g/cm3. The diffusivity of PPG in water

varies a little with concentration, but is roughly constant between C∗− = 0 and

C∗m = 0.25, with an approximate value D = 2.5×10−6 cm2/s (Wang et al., 2010).

We measured the average interfacial height h∗(t) and the interior concentra-

tion Θ∗(t) by the addition of blue dye to the water. The ambient temperature

varied by less than 2◦C for the duration of the experiment (≈ 3 weeks). The

147



6. CONVECTIVE SHUTDOWN II: FREE INTERFACE

t (= t∗/2.2 hrs)

h Θ

t (= t∗/2.2 hrs)

Figure 6.7: Comparison of experimental and numerical results: (a) an image-
processed snapshot of the lower half of the experimental setup, at time t = 8
(t∗ ≈ 18 hours), which roughly marks the transition to the shutdown regime; (b)
a snapshot from the numerical calculations described in the text, with domain
width L = 1 and height H = 2, at time t = 8; (c) the dimensionless average
height of the interface h(t), from the experiment (solid) and from the numerical
calculations (dashed); (d) the interior concentration Θ(t), from the experiment
(scattered points) and from numerical calculations (dashed line).

experiment was set up by injecting both fluids into the cell from the top: the cell

was first filled with the layer of PPG, which was allowed to settle; the overlying

layer of water was then added over a period of some tens of seconds. Setting

the experiment up in this way led to some initial local mixing and interfacial

deformation, the effects of which decayed over about 10 mins; from then onwards
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the flow was dominated by downwelling fingers spread uniformly across the cell,

and the interface was horizontal, except for the local deformation. This time over

which the start-up transients decayed is much less than the time taken for the

plumes to reach the base of the cell (t∗1 ≈ 8− 9 hours).

We also performed numerical simulations to compare with the experimen-

tal results (figure 6.7). In order to make a fair comparison, we estimate the

effects of two physical processes in the experimental system. Firstly, the viscos-

ity of aqueous PPG depends strongly on concentration. Pure PPG has viscos-

ity µ ≈ 0.05 Pa s, while the solution with the maximum density has viscosity

µ ≈ 0.015 Pa s (Sun & Teja, 2004). Therefore the average viscosity below the in-

terface will decrease over time as the average concentration increases. Secondly,

experimental measurements of the velocity of the downwelling plumes suggest

that Taylor dispersion (Taylor, 1953) will act to increase the effective diffusivity

by a factor of 2 − 3. An estimate of both of these effects, together with the pa-

rameters presented above, gives an initial Rayleigh number Ra0 ≈ 2× 104, and a

convective time scale T ∗ ≈ 2.2 hours. The numerical simulations used this initial

value of Ra0, together with the equation of state ρ = f(C) (figure 6.6) and an

upper concentration C+ = 3.

In order to give a simple approximation of the change of viscosity over time,

we assume that the relevant viscosity scale is given by the average viscosity of all

the fluid below the interface, and that the viscosity varies linearly with 1/Θ∗(t).

Since Ra0 is inversely proportional to the viscosity, the value of the Rayleigh

number Ra0 in the simulations was changed over time, such that it increased

linearly with the average concentration Θ(t). This simple approximation is not

intended to reproduce the exact evolution of the experimental system, but rather

to provide a reasonable qualitative estimate of the effects of viscosity variation.

The dynamical structure of the flow and the profile of convection in the exper-

imental system are very similar to those in the numerical simulations (figures 6.7a

and b). The average interfacial height h(t) and the interior concentration Θ(t)

(figures 6.7c and d) similarly show excellent agreement between the experimen-

tal and numerical measurements. The transition to the shutdown regime can be

observed at t2 ≈ 8 by the change in behaviour of the average interfacial height h

(figure 6.7c): before this time the upward retreat of the interface is approximately
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linear. At much later times, both the experimental and numerical measurements

show that the interface slows down and eventually the height starts to decrease.

The initial linear upward retreat of the interface agrees qualitatively with

the numerical observations in §6.2.2.2, and the eventual decrease of the interface

agrees qualitatively with the predictions from the miscible box model in §6.2.2.1.

We note, however, that the time t2 ≈ 8 is much earlier than the predictions and

numerical measurements of t2 in §6.2, because of the enhanced solute flux through

the deformable interface here.

6.3.3 Discussion of systems with a deformable interface

The above results show that the effects of a deformable interface can be very

significant for the miscible system. The excellent agreement between the nu-

merical and experimental results with a deformable interface corroborates this

observation.

We suggest that the removal of the flat-interface assumption leads to a sig-

nificantly larger solute flux for two main reasons. Firstly, interfacial deformation

results in the sloping of isopycnals below the interface, which leads to a baroclinic

generation of lateral flow along the sloping boundary layer, and so an enhance-

ment of the diffusive flux through the interface. (The simple increase in the

length of the interface due to deformation is too small to account for the signifi-

cant increase in flux.) Secondly, there is a contribution to the flux from material

transport: positively buoyant fluid from above the interface can be entrained

down across the interface. As the fluid loses solute by diffusion to its surround-

ings, its density increases because of the non-monotonic equation of state, and it

continues to descend. It is difficult to quantify the relative importance of these

two effects to the increase of the solute flux

The interface deforms due to the competing effects of the stabilizing density

gradients above the interface and the density gradients between upwelling and

downwelling plumes that drive convection below the interface. If the stabilizing

density gradient is much greater than the driving density gradients, then we

expect both the interfacial deformation and any entrainment across the interface

to be small. This prediction is given credence by the numerical results of §6.3.1,
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which show that the interfacial deformation, and the corresponding enhancement

of the solute flux, are less at larger values of C+. These observations suggests that

the approximation of a flat interface is likely to be more appropriate for larger

C+ in the miscible system.

We have not examined the immiscible system with a deformable interface in

this paper. In order to model this system numerically, we would need a different

approach from that used in the rest of this dissertation, as the free interface

would need to be tracked in both space and time, and the domain over which the

equations were to be solved would no longer have a flat upper boundary.

We can, however, consider the expected effects of a deformable interface in

an immiscible system. At the interface, there is a constant stable density jump

1+|ρ+|, which is always greater than the typical density differences (< 1) between

upwellings and downwellings that drive convection. We therefore anticipate that

the interface will remain approximately planar, and that the approximation of

a flat interface will be appropriate for immiscible systems, particularly if |ρ+| is

large. This observation highlights an important difference between the immiscible

and miscible systems.

6.4 Conclusions

One-sided porous convection at high Rayleigh number bears many of the dynam-

ical signatures of the statistically steady two-sided Rayleigh–Darcy cell. We have

used this observation to develop theoretical box models which describe the shut-

down of complex one-sided convective systems, by coupling the evolution of the

interior concentration with the flux through the boundary layer. These theoreti-

cal models, together with our numerical and experimental tools, have allowed for

the examination of a variety of different physically motivated systems, in which

the active interface is either fixed or is free to move.

In this chapter, we used the techniques developed in chapter 5 to consider two

different free-interface systems, comprising immiscible or miscible fluids. In §6.2,

we examined both of these systems under the assumption that the interface, as

defined in §5.2, remained flat. Our models predict very similar behaviour for the

flux over time between the immiscible and miscible systems. In the limit of large
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C+, the models can be very reasonably approximated by the solution for a fixed

interface. Physically, this limit corresponds to the case when the concentration

of maximum density C∗m is much closer to the concentration of the lower layer

C∗− than to that of the upper C∗+.

We have shown, however, that the evolution of the interfacial height h(t)

in the two systems is qualitatively different at long times: in the immiscible

system the height increases for all time, while in the miscible system it eventually

decreases, provided H is sufficiently large, even although the flux of solute across

the interface into the lower layer remains positive. This observation provides an

important difference when comparing the two systems, as discussed below.

In §6.3, we relaxed the assumption of a flat interface. We presented numerical

simulations of the miscible system, which show that the interfacial height even-

tually decreases, in qualitative agreement with the predictions of our theoretical

box model. However, the solute flux is much larger than the box model predicts.

This observation was corroborated by experimental results from a Hele-Shaw cell,

which show excellent agreement with full numerical simulations. We suggest that

the enhancement of the flux in the miscible system is due to entrainment across

the interface and sloping isopycnals below the interface, as discussed in §6.3.3.

These effects are the result of a balance between the stabilizing density gradients

above the interface and the driving density gradients between the interleaving

plumes below the interface.

In immiscible systems, however, these density gradients are not comparable,

as there is a stabilizing discontinuity in the density (1 + |ρ+|) across the interface

which will dominate, particularly if |ρ+| is large. Therefore, we anticipate that

the interface will remain approximately planar and entrainment across it will be

negligible, in agreement with the assumptions of a flat interface.

The relative applicability of the flat-interface approximation, and the long-

time behaviour of the interfacial height h(t), each provide an important difference

between the immiscible and miscible systems, and suggest that care should be

taken when modelling immiscible systems with a miscible analogue, or vice versa.

For example, Neufeld et al. (2010) and Backhaus et al. (2011) each use miscible

experimental systems to model the convective dissolution of CO2 in a deep saline

aquifer, which is an immiscible system. In the miscible experimental systems, we
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anticipate that the effects of interfacial deformation and entrainment would lead

to a significant enhancement (≈ 200−300%) of the solute flux. In contrast, in the

CO2 sequestration system, the stabilizing density difference between supercritical

CO2 and brine (∼ 300 kg/m3) is very much larger than the density contrasts that

drive convection (∼ 10 − 20 kg/m3), and therefore we anticipate that interfacial

deformation and entrainment would be negligible.

Under the assumption that capillary retention in the pore space can be ig-

nored, and thus that the interface is ‘sharp’, the convective dissolution of CO2 can

be well described by our immiscible box model with a moving flat interface and a

linear equation of state n = 1, presented in §6.2.1. In addition, since CO2 is only

very weakly soluble in brine (3− 5% by weight), the value of C+ for this system

would be very large (∼ 20− 30), and the flux would be well approximated by the

solution for a fixed interface (5.28). In dimensional form, the total horizontally

averaged solute flux for the fixed-interface system with n = 1 is given by

F ∗(t) =
4αφh∗0T

∗ (C∗m − C∗−
)

(T ∗ + 4α t)2
, (6.23)

where T ∗ is the convective time scale, given by T ∗ = φh∗0µ/(Kg∆ρ∗m), and α =

6.9 × 10−3. In §8.2, we consider an illustrative example of convection in a high-

permeability, and use (6.23) to estimate typical time scales for shutdown in CO2

sequestration systems.

The models presented in these two chapters describe the shutdown of convec-

tion in a range of systems with different physical applications. Our theoretical,

numerical and experimental results characterize the evolution of shutdown and

the decay of the convective flux over time. The theoretical one-dimensional box

models that we have derived provide analytically tractable tools that accurately

capture the governing physics of the different convective systems. These simple

models describe the relevant time scales of shutdown, and, for the free-interface

systems studied in this chapter, the motion of the active interface.
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Chapter 7

Three-dimensional

Rayleigh–Darcy convection at

high Rayleigh number

7.1 Introduction

Thus far in this dissertation we have been concerned with two-dimensional flow.

The numerical study of three-dimensional porous convection remains largely un-

explored, except at low values of Ra, primarily owing to the high numerical

cost required to fully resolve calculations. In this chapter, we present what is,

to our knowledge, the first numerical investigation of statistically steady three-

dimensional high-Rayleigh-number convection in a porous medium. This chapter

forms a three-dimensional analogue of much of the work in chapter 2, and, as we

shall see, reveals a number of similarities, and some interesting differences, be-

tween two-dimensional and three-dimensional Rayleigh–Darcy convection at high

Ra.

The majority of previous numerical studies of three-dimensional Rayleigh–

Darcy convection, which date from over 30 years ago, focussed on steady convec-

tion for Ra . 300. The onset of convection, as in a two-dimensional cell, is at

Ra = Racrit = 4π2 ≈ 40, and the most unstable mode is purely two dimensional

(i.e. with zero wavenumber in the third dimension). The onset of convection with
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a fully three-dimensional mode is at Ra = 4.5π2 ≈ 45 (Holst & Aziz, 1972); how-

ever, the two-dimensional mode continues to give a larger heat flux for Ra . 97

(Straus & Schubert, 1979). For 97 . Ra . 300, the heat flux is maximised by a

steady three-dimensional planform (Schubert & Straus, 1979), although multiple

possible steady states exist for the flow in this range (Straus & Schubert, 1981).

Schubert & Straus (1979) reported that the flow becomes unsteady for Ra & 300.

Some of the dynamics of the unsteady flow for Ra . 740 were investigated by

Kimura et al. (1989); these are briefly discussed in §7.3.1 below. We are not

aware of any numerical studies of the statistically steady system that explore the

dynamics of the flow for Ra > 740.

Statistically steady three-dimensional convection has also been investigated in

experimental work. Elder (1967) reports some experimental results using a variety

of porous media, while, in a detailed set of experiments, Lister (1990) measured

both the heat flux and the dominant planform of statistically steady convection.

Both authors examined a range of values of Ra, from onset up to Ra = O(1000).

The convection was driven by a temperature contrast applied across the domain,

and so it is likely that heat transfer to the solid phase had a significant effect at

large values of Ra. Lister (1990) observed that the planform of convection for

Ra & 1000 consisted of ‘a significant number of dendritic downwellings’, which

fed into larger plumes; his measurements suggested that the lateral scale of the

large plumes decreased roughly like (Ra+ c)−0.5, for a constant c.

Other studies have explored transient porous convection in three-dimensions

In particular, Pau et al. (2010) presented numerical simulations of the startup of

‘one-sided’ convection, comprising downwelling convection from a dense source

on an upper boundary into a deep domain, in both two and three dimensions.

They identified that the flux in three dimensions was roughly 25% higher than in

two dimensions. A similar recent numerical study by Fu et al. (2013) explored the

dynamics of one-sided convection for Ra 6 6400, and identified cellular structures

of plumes near the upper boundary, that coarsened over time and entrained heat

into larger downwelling fingers. They suggested that the cellular structures near

the upper boundary had a lengthscale that decreased linearly with Ra.

In this chapter, we present a numerical study of statistically steady high-Ra

convection in a three-dimensional Rayleigh–Darcy cell. We explore in detail the
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dynamics of the flow and the variation of the flux, as described by the Nusselt

number Nu, over the range 1500 6 Ra 6 2×104, using high-resolution numerical

simulations. Many of the questions that motivated the two-dimensional study in

chapter 2, concerning both the flux (and whether the ‘classical’ linear scaling

Nu ∼ Ra is attained) and the dynamical structure of the flow, have evident

analogues here.

In §7.2, we outline the governing equations, mathematical formulation, and

numerical scheme (the latter is discussed in more detail in appendix A, §A.3). In

§7.3.1, we briefly describe the features of the flow for 4π2 6 Ra . 1500. In §7.3.2,

we explore in detail the dynamical structure of the flow and the corresponding

relationship Nu(Ra) in the ‘high-Ra’ regime, over the range 1500 6 Ra 6 2×104.

Many of the questions that motivated the two-dimensional study in chapter 2

have evident analogues here. In particular, our measurements strongly suggest

that the classical linear scaling Nu ∼ Ra (discussed in chapter 2) is attained

asymptotically. In addition, we show that a steady ‘heat-exchanger’ framework

provides an increasingly good description as Ra → ∞ of the interior flow in the

three-dimensional cell. Measurements of the dominant horizontal wavenumber

k(Ra) are roughly fitted by k ∼ Ra0.54.

In §7.4, we summarize and discuss the main results of this work.

7.2 Governing equations and numerical scheme

We consider Boussinesq flow u = (u, v, w) in a three-dimensional, homogeneous

and isotropic porous medium. The flow is incompressible and satisfies Darcy’s

law. The equation of state ρ(T ) is linear, and the temperature field T evolves by

advection and diffusion. In dimensionless variables, these equations give

∇ · u = 0, (7.1a)

u = − (∇p+ T ẑ) , (7.1b)
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Figure 7.1: A schematic of the dimensionless three-dimensional Rayleigh–Darcy
cell under consideration. All boundaries other than the upper and lower bound-
aries are periodic.

∂T

∂t
= −u · ∇T +

1

Ra
∇2T, (7.1c)

where Ra is the Rayleigh number, given, as in (2.10), by

Ra =
∆ρgKH

φκµ
, (7.2)

and ∆ρ is the driving density difference between the upper and lower boundaries

of the domain, g is the gravitational acceleration, K is the permeability, H is the

height of the domain, φ is the porosity, κ is the thermal diffusivity, and µ is the

viscosity, all of which are assumed to be constant.

The cell has height z = 1, with boundary conditions on the upper and lower

boundaries of the cell given by

w = 0, T = 1 on z = 0, w = T = 0 on z = 1. (7.3)

The domain is periodic in the two horizontal directions, with period L (figure 7.1).

The average dimensionless flux is given by the Nusselt number,

Nu = 〈nu(t)〉 =

〈
1

L2

∫ L

0

∫ L

0

− ∂T

∂z

∣∣∣∣
z=0

dx dy

〉
, (7.4)
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where nu(t) is the instantaneous Nusselt number.

We satisfy incompressibility (7.1a) by the introduction of a vector potential

Ψ = (ψx, ψy, ψz), which obeys

u =∇×Ψ =

(
∂ψz
∂y
− ∂ψy

∂z
,
∂ψx
∂z
− ∂ψz

∂x
,
∂ψy
∂x
− ∂ψx

∂y

)
. (7.5)

The vector potential Ψ is defined by (7.5) only up to the addition of ∇ξ, for any

scalar ξ. To constrain this gauge freedom, we consider the curl of (7.1b), which,

together with the definition of Ψ in (7.5), gives

∇× u = ∇ (∇ ·Ψ)−∇2Ψ =

(
∂T

∂y
, −∂T

∂x
, 0

)
. (7.6)

In order to generate a set of simple Poisson equations for the components ψx,y,z

of the vector potential (similar to the Poisson equation for the streamfunction ψ

in two-dimensions; see §2.2), we set the gauge condition to be

∇ ·Ψ = 0, (7.7)

(cf. the Lorentz gauge condition in electrodynamics). Equation (7.6) then reduces

to

∇2ψx = −∂T
∂y

, ∇2ψy =
∂T

∂x
, ∇2ψz = 0. (7.8a, b, c)

It is straightforward to show (see, e.g., E & Lui 1997) that the gauge condition

(7.7) is satisfied throughout the domain provided that is is satisfied on the bound-

aries. Since the domain is periodic in both x and y, both the gauge condition

(7.7) and the velocity boundary conditions in (7.3) are satisfied by setting

ψx = ψy =
∂ψz
∂z

= 0, on z = 0, 1. (7.9a, b, c)

Equations (7.8c) and (7.9c) combine to give ψz = 0 everywhere. The velocity u

is therefore determined by the Poisson equations for ψx and ψy given by (7.8a,b),

with boundary conditions given by (7.9a,b).

We solved (7.1c) and (7.8a,b) numerically. The numerical scheme is briefly

outlined here, and discussed in detail in appendix A, §A.3. As with the two-
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dimensional simulations of chapter 2, we used a coordinate transformation ζ(z)

to fully resolve the thin diffusive boundary layers near the upper and lower bound-

aries of the domain. The Poisson equations (7.8a,b) were solved using fast Fourier

transforms for the x and y derivatives, and second-order finite differences for the

vertical derivatives. The transport equation (7.1c) was solved using an uncondi-

tionally stable three-dimensional alternating-direction implicit method devised by

Brian (1961). As in two dimensions, we spatially discretized the diffusion terms

using second-order finite differences, and we used a flux-conservative approach for

the advection operator. We used a midpoint method for the time derivatives to

give second-order temporal accuracy. We parallelized the numerical scheme using

a hybrid of both open multi-processing (OpenMP) and message-passing interface

(MPI) specifications.

For all the simulations presented in this chapter, the initial condition was

given by a linear vertical temperature gradient T (x, y, z) = 1 − z, with a small

and spatially random perturbation.

7.3 Results

The primary focus of this chapter is to explore three-dimensional flow in the

‘high-Ra’ regime, which, for the purposes of this chapter, we define as Ra & 1500

(see §7.3.2 below). In order to provide a context for these results, we begin in

§7.3.1 with a very brief outline of the dynamics of the flow for Ra . 1500. For

this range of Ra, the system exhibits an array of interesting dynamical structures,

bifurcations, and pattern-formation, as discussed below, which warrant a more

systematic study; such a study is left for future work. In § 7.3.2, we investigate

the ‘high-Ra’ regime in detail.

7.3.1 Overview of the flow dynamics for moderate values

of Ra

Figure 7.2 shows numerical measurements of Nu(Ra) from a three-dimensional

cell with aspect ratio L = 2. For comparison, measurements from a two-

dimensional cell (taken from chapter 2) are also shown. The results show the

160



7. 3D Rayleigh–Darcy convection

102 103 104
100

101

102

2d rolls 3d rolls 'diamonds' unsteady 'high-Ra'

Ra

Nu

x

y

0 2 0 2 0 2 0 2 0 2x x x x
0

2

(a)

(b) Ra = 50 Ra = 180 Ra = 282 Ra = 400 Ra = 1000(i) (ii) (iii) (iv) (v)

Figure 7.2: (a) Measurements of Nu(Ra) (circles) from the onset of convection at
Ra = Racrit = 4π2 to the ‘high-Ra’ regime. All calculations with Ra < 1500 have
aspect ratio L = 2; the calculations for Ra > 1500 are discussed in §7.3.2 below.
Measurements from a two-dimensional cell from chapter 2 (dots) are included
for comparison. (b) Snapshots of the temperature field at depth z = 30/Ra, just
above the lower boundary, for a selection of values of Ra as marked, corresponding
to the red circles in (a).

onset of convection at Ra = Racrit = 4π2. As discussed in the introduction,

the planform of the steady flow just above onset is purely two-dimensional (fig-

ure 7.2b,i). For Ra & 97, the heat flux is instead maximised by a steady three-

dimensional roll (figure 7.2b,ii), while for Ra & 250, a steady ‘diamond’ plan-

form (figure 7.2b,iii) gives a distinctly larger heat flux again. We found that, for

Ra & 400, the steady flow is unstable to a secondary instability; the flow is thus

unsteady, and the transition from steady to unsteady flow is marked by a clear

decrease in the heat flux1. Over the range 400 . Ra . 1500, the flow exhibits a

range of dynamical structures and patterns (e.g. figure 7.2b,iv-v); the heat flux

1Previous authors have suggested that the flow is unsteady for Ra & 300 (e.g. Schubert &
Straus 1979); we found steady solutions in that range, and unsteady flow for Ra & 400. We
have not, however, explored this transition in detail.
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appears to be periodic in time for low values of Ra in this range, but becomes

chaotic for Ra & 500. For Ra & 1500, the system is in the high-Ra regime; the

transition to this regime is discussed in §7.3.2 below.

Through examination of a number of simulations (not presented here), we have

observed that both hysteresis and aspect ratio play a large part in determining

the dynamical structure of the flow; there appear to be multiple steady and quasi-

steady states for a given value of Ra and aspect ratio L. The transitions between

the different regimes identified above are therefore approximate. For example, it

can be seen in figure 7.2 that the calculation at Ra = 63 has a lower heat flux

than the trend in the data would suggest, which is because the system adopted

a steady three-dimensional roll planform, rather than the two-dimensional roll

planform adopted in each of the calculations at neighbouring values of Ra.

Although some of the features of the flow for Ra . 1500 have been previ-

ously explored (e.g. Schubert & Straus 1979; Kimura et al. 1989), the wealth of

pattern formation and series of bifurcations exhibited by the flow over this range

certainly warrant more detailed study. In particular, it would be interesting to

systematically explore hysteretic effects and the relationship between the aspect

ratio of the cell and the flow structure in the unsteady range Ra & 400. Since the

focus of this chapter is to explore the flow in the high-Ra regime, such a study is

left for the future.

7.3.2 The high-Ra regime

In a two-dimensional cell, the transition to the ‘high-Ra’ regime is marked by

a change in the dynamical structure, from unit-aspect-ratio rolls with ‘dripping’

plumes to columnar exchange flow in a thinner aspect ratio. The transition

at Ra ≈ 1300 is marked by a clear decrease in Nu (see chapter 2). In a three-

dimensional cell, such a transition is more difficult to identify. In fact, the high-Ra

regime is only rather loosely defined: a plausible description of the transition to

the high-Ra regime is that below the transition, the flow comprises a steady plan-

form of convection that is not completely broken down by perturbing instabilities

in the boundary layers, whereas above the transition, the steady background flow

is completely broken down. Thus, the calculation at Ra = 1000 shown in fig-
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ure 7.2(b,v) lies below the transition as there is an evident background diamond

structure to the flow.

Based on examination of a series of snapshots of the flow in the range 1000 6

Ra 6 2000, we have found that the transition to the high-Ra regime exhibits

significant dependence on aspect ratio (as well as hysteresis). Indeed, for aspect

ratio L = 2, calculations at Ra = 1100 appear to lie above the transition to the

high-Ra regime (this can be indirectly observed in figure 7.2 by the slight decrease

in Nu between Ra = 1000 and Ra = 1100). However, for L = 1 we have found

simulations up to Ra = 1500 that still appear to be dominated by a background

steady flow that has not been broken down.

Further investigation into the transition to the high-Ra regime is ongoing. In

this chapter, however, we take Ra ≈ 1500 to be the transition, to ensure that all

the calculations presented lie in the high-Ra regime.

7.3.2.1 Structure of the flow

Figure 7.3 shows snapshots of the temperature field in the high-Ra regime at

three different depths z and three different values of Ra, while figure 7.4 shows

snapshots from the same simulations at fixed x = L/2. The flow has many

analogues with the two-dimensional flow discussed in chapter 2; indeed, there are

clear visual parallels between the vertical slices in figure 7.4 and the snapshots

of the flow in two dimensions (figure 2.2). As in two-dimensions, the flow can

be divided into three regions of differing dynamics. The interior region appears

to be dominated by roughly vertical and fairly large-scale exchange flow with

distinct regions of hot rising fluid and cold sinking fluid. At the upper and lower

boundaries of the domain there are thermal boundary layers which are almost too

small to distinguish in figure 7.4. Between the boundary layers and the interior

flow is a region dominated by the growth and intermittent flushing of long, thin,

filamentary structures that arise from time-dependent boundary-layer instabilities

(figure 7.3). The filaments are the three-dimensional analogue of two-dimensional

protoplumes, and so, for simplicity, we refer to this region as the protoplume

region. Vigorous mixing by the filamentary protoplumes drives entrainment into

the interior large-scale exchange flow. Visual inspection of figure 7.3 suggests that
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Figure 7.3: Snapshots of the temperature field at heights of z = 30/Ra near
to the lower boundary, (left), z = 0.5 in the interior of the flow (centre), and
z = 1 − 30/Ra near to the upper boundary (right), for: (a) Ra = 4000 and
L = 2; (b) Ra = 8000 and L = 1; and (c) Ra = 1.6× 104 and L = 0.5. Note the
different scales on the axes for each subfigure.

the spatial scale of the filamentary plumes near the boundary layers decreases

more rapidly with Ra (note the different spatial scales in the figure) than the

scale of the dominant wavelength in the interior of the flow (see also §7.3.2.4

below).
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Figure 7.4: Snapshots of the temperature field (from the same simulations as in
figure 7.3) at x = L/2, for (a) Ra = 4000 and L = 2; (b) Ra = 8000 and L = 1;
and (c) Ra = 1.6× 104 and L = 0.5.

7.3.2.2 The Nusselt number Nu(Ra)

In a statistically steady state in the high-Ra regime, the time-dependent Nusselt

number, nu(t), exhibits chaotic fluctuations about the time-averaged value Nu.

The amplitude of the fluctuations is notably smaller than that measured for two-

dimensional porous convection at the same values ofRa (figure 7.5), which is likely

a reflection of the additional spatial dimension over which the flux is averaged.

The time-averaged Nusselt number Nu = 〈nu〉 is estimated numerically by time-

averaging nu(t) until the uncertainty in the mean is less than 0.25%, as discussed

in appendix 2.A of chapter 2.

Measurements of Nu(Ra) for different aspect ratios L in the high-Ra regime

(Ra & 1500) are shown in figure 7.6. A least-squares power-law approximation
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Figure 7.5: The instantaneous Nusselt number nu(t) for Ra = 104 and L = 1: (a)
together with nu(t) from two-dimensional simulations at Ra = 104 (lower line);
and (b) individual data points separated by five time steps ∆t, which illustrate
the high temporal resolution of the calculations.

to the data is given by Nu = 0.0163Ra0.95±0.01; however, the data is much more

accurately fit by an expression of the form

Nu = α3Ra+ β3; α3 ≈ 9.6× 10−3, β3 ≈ 4.28. (7.10)

Figure 7.5 shows a comparison of the best-fit power-law curve and (7.10). The

good fit given by (7.10) strongly suggests that the classical linear scaling Nu ∼ Ra

is attained asymptotically.

The fit given by (7.10) has an analogous form to the fit found for two-

dimensional convection in chapter 2, (2.14). Perhaps the most important ob-

servation from these measurements, however, is that the flux Nu(Ra) is much

larger than in two dimensions. A comparison of the pre-factor α3 from (7.10)

with the pre-factor α = 6.9×10−3 from the two-dimensional fit (2.14) shows that

the flux in the high-Ra regime is approximately 40% larger in three dimensions.

The slight variation in the measurements shown in figure 7.6 is likely a reflec-

tion of some long-timescale variability in the structure of the flow in the interior

of the domain. It is possible that the structure, in turn, is slightly affected by

mode restriction from the horizontal periodicity of the domain. We return to this

point when we investigate the dominant horizontal length scales of the flow in

§7.3.2.4 below.
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Figure 7.6: The time-averaged Nusselt number scaled by Ra, in the high-Ra
regime, for aspect ratio L = 2 (blue squares), L = 1 (green triangles), and L = 0.5
(red dots). As in two-dimensions, the best-fit power law Nu = 0.0163Ra0.95

(dashed line) does not capture the trend in the data as Ra is increased; instead,
a good fit is provided by Nu = α3Ra + β3 (solid line) for α3 = 9.6 × 10−3 and
β3 = 4.28 (7.10).

7.3.2.3 Three-dimensional heat-exchanger solution

Movies of the flow through the interior of the domain reveal that the large-scale

exchange flow appears to be almost quasi-steady: the upwelling and downwelling

plumes are ‘persistent’, in that their locations only vary over timescales that are

very many times longer than the timescales for flushing of filamentary plumes in

the protoplume region.

By analogy with the two-dimensional results in chapter 2, we can write down a

simple, steady ‘heat-exchanger’ solution for buoyancy-driven columnar exchange

flow, as a model for the exchange flow in the interior of the domain. Heat-

exchanger solutions comprises a steady balance between vertical advection along

a background temperature gradient, in columns with a given planform, and hor-

izontal diffusion between the interleaving columns. The simplest such three-

dimensional heat-exchanger model, with a square columnar planform, is given by

T = Â cos kx cos ky − 2k2

Ra
z, (7.11a)

u = v = 0, (7.11b)
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Figure 7.7: The temporally and horizontally averaged temperature profile
〈
T
〉
,

for Ra = 4000 (red solid), Ra = 8000 (green dashed), and Ra = 1.6 × 104 (blue
dot-dashed). The profiles are approximately linear through the interior of the
domain, with a gradient that increases with Ra; this is the opposite behaviour to
two-dimensional Rayleigh–Darcy convection (figure 2.6).

w = Â cos kx cos ky, (7.11c)

and consists of square columns with amplitude Â and wavenumber k in both x

and y directions.

Using measurements from the numerical calculations, we can examine whether

or not a heat-exchanger model of the form given in (7.11) provides a good de-

scription of the flow in the interior of the Rayleigh–Darcy cell at high Ra. Profiles

of the temporally and horizontally averaged temperature
〈
T
〉

(figure 7.7) show

that the background temperature is roughly linear throughout the interior region,

in agreement with the prediction of (7.11a). However, unlike in two dimensions,

where the gradient decreases with Ra (see figure 2.6), here we observe that the

magnitude of the weak negative gradient increases as Ra is increased. We return

to this observation in §7.3.2.5 below.

We compare the amplitude of the flow from the numerical simulations with

the amplitude in the heat-exchanger model by measuring the root-mean-squared

(rms) temperature perturbations and velocities, Trms, wrms, vrms, and urms. Ana-

lytic calculation of the rms values from (7.11) shows that, in the heat-exchanger

model, Trms = wrms = Â/2 and urms = vrms = 0. Numerical measurements of the
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Figure 7.8: Measurements of the temporally averaged rms temperature per-
turbations Trms and velocities wrms and urms at (a) z = 0.5, against Ra; and (b)
Ra = 4000 and L = 2 (solid), Ra = 8000 and L = 1 (dashed), and Ra = 1.6×104

and L = 0.5 (dotted), against z. Measurements of vrms are indistinguishable from
urms, and, for clarity, are not shown.

rms quantities at z = 0.5 in the high-Ra regime indicate an increasing agreement

with the model predictions as Ra is increased (figure 7.8a): the horizontal veloc-

ities decrease with Ra, and the vertical velocity and temperature appear to tend

to the same constant value. This value gives an estimate of Â = 2Trms ≈ 0.2.

As a consistency check, this measurement can be used with the heat-exchanger

theory to estimate the flux Nu(Ra), as follows. As Ra → ∞, vertical advection

dominates the flux through the interior of the domain, and the vertical advec-

tive flux given by (7.11) is Nu = Â2Ra/4. Using the measured estimate of Â

gives a prediction of Nu ≈ 0.01Ra, which is comfortingly close to the asymptotic

prediction from the directly measured relationship (7.10) of Nu = 9.6× 10−3Ra.

Figure 7.8(b) shows the vertical variation of the rms measurements at dif-

ferent values of Ra. The figure displays the same qualitative features as the

equivalent figure for two-dimensional convection (figure 2.7): specifically, the rms

quantities are increasingly uniform throughout the interior of the domain as Ra

is increased, in agreement with the heat-exchanger model, while near the upper

and lower boundaries the rms quantities vary appreciably. The latter observa-

tion indicates that the heat-exchanger model breaks down near the boundaries,

and is a reflection of the presence of the flushing and entrainment of filamentary

protoplumes in those regions.
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These measurements all indicate that a heat-exchanger model provides an

increasingly good description as Ra → ∞ of the flow throughout the interior

region of a three-dimensional Rayleigh–Darcy cell. This observation implies that,

as for two-dimensional convection, the interior flow becomes increasingly ordered

as Ra→∞ into columns of steady exchange flow, with a lateral wavenumber k.

In the following section we present measurements of this wavenumber.

7.3.2.4 The average horizontal wavenumber k(Ra)

We extract a measure of the average horizontal wavenumber k(Ra) from the

numerical calculations by taking a double Fourier transform of the temperature

field. Snapshots of the resultant power spectra as a function of the horizontal

wavenumbers kx and ky (figure 7.9a–c) reveal that the power P depends predom-

inantly on the magnitude of the wavenumber vector, or the ‘radial wavenumber’

kr =
√
k2x + k2y. This observation implies that the convection is isotropic, both

near the upper and lower boundaries and in the interior of the flow. It is clear,

from a comparison of power spectra at different values of Ra (figure 7.9a–c), that

the decay in the power at large wavenumbers has a much stronger scaling with

Ra in the protoplumes regions than in the interior of the domain.

We can extract a measure of the average dominant wavenumber k by taking

the expected value of kr =
√
k2x + k2y over two dimensions, and averaging over

time, to give

k =

〈∫ ∫ √
k2x + k2y P (kx, ky) dkx dky∫ ∫
P (kx, ky) dkx dky

〉
=

〈∫
krP̃ (kr) kr dkr∫
P̃ (kr) kr dkr

〉
, (7.12)

where the second equality follows from converting to radial co-ordinates, and

setting P̃ =
∫
P dθ, where θ = tan−1 (ky/kx). We observed above that measure-

ments of P depend predominantly on kr, rather than on θ, and so we expect

P̃ ∝ P . Measurements of the radial power krP (kr) show both a clear peak

at a relatively small wavenumber, which confirms the presence of a well-defined

dominant horizontal lengthscale for the flow, and an exponential decay for larger

wavenumbers (figure 7.9d,e). The decay in the wavenumber is much slower in

the protoplume regime (figure 7.9e) than in the interior of the flow (figure 7.9d),
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Figure 7.9: Snapshots of the instantaneous power spectra P (kx, ky) at z = 0.5
(left) and z = 30/Ra in the protoplume region (right), for: (a) Ra = 4000
and L = 2; (b) Ra = 8000 and L = 1; and (c) Ra = 1.6 × 104 and
L = 0.5. At both depths, the spectra show no systematic dependence on the
angle θ = tan−1 (ky/kx), which suggests that the flow is isotropic. Note the log-
arithmic colour scale. The radial power kr P from (7.12) is shown against the
radial wavenumber kr =

√
k2x + k2y scaled by Ra, at depths: (d) z = 0.5; and (e)

z = 30/Ra. Both plots show a peak corresponding to the dominant wavenum-
ber of the interior flow; however, at a depth of z = 30/Ra the decay at larger
wavenumbers scales with kr/Ra, whereas at z = 0.5, the scaling with Ra appears
to be much weaker. Note the different scales on the horizontal axis in (d) and
(e).

which reflects the presence of the high-wavenumber filamentary structures that

dominate the flow there (note the different horizontal scale between these figures).

As in the snapshots of the power spectra discussed above, the decay in the radial

power exhibits a much weaker scaling with Ra in the interior of the flow (fig-

ure 7.9d) than in the protoplume region (figure 7.9e), where the measurements

show a clear scaling of kr ∼ Ra.

For computational ease, we measured k using the first equality of (7.12).

Measurements of k(Ra) at z = 0.5 are shown in figure 7.10(a). A least-squares
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Figure 7.10: Measurements of the dominant horizontal wavenumber k. (a)
k(Ra) at z = 0.5, from simulations with L = 2 (blue squares), L = 1 (green
triangles), and L = 0.5 (red dots). The best-fit power law k ∼ Ra0.54 (7.13) is
given by the solid line. The best-fit curve from measurements of k(Ra) for two-
dimensional Rayleigh–Darcy convection, given by k = 0.48Ra0.4 (2.16), is shown
for comparison (dashed line). (b) k(z), for Ra = 4000 and L = 2 (red solid),
Ra = 8000 and L = 1 (green dashed), and Ra = 1.6 × 104 and L = 0.5 (blue
dot-dashed). The scaling with Ra appears to be roughly linear (k ∼ Ra) near
the boundaries, in contrast to the much weaker scaling in the interior.

power-law fit to the data gives a scaling of

k ≈ 0.142Ra0.54, (7.13)

with 95% confidence intervals giving a range of ±0.05 for the exponent. For

comparison, figure 7.10(a) also shows the fitted relationship k(Ra) for two-

dimensional porous convection from chapter 2, given by k = 0.48Ra0.4 (2.16).

In magnitude, the two-dimensional and three-dimensional wavenumbers are sim-

ilar over the range of Ra for which we have measurements; however, the two-

dimensional wavenumber displays a discernibly weaker scaling with Ra.

The dominant wavenumber k(z) is shown over the whole depth of the do-

main in figure 7.10(b). These measurements confirm the previous indications of

figure 7.9 that the dominant lengthscales of the flow have a much stronger de-

pendence on Ra in the protoplume regions near the upper and lower boundaries

than in the interior of the domain. The evidence of figure 7.10(b), together with

the decay of the spectra in figure 7.9 and a visual comparison of the snapshots in
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figure 7.3, suggests that the dominant lengthscale in the protoplume regions has

a scaling of roughly Ra−1. This result agrees with previous suggestions for the

scaling of these structures in transient (‘one-sided’) three-dimensional convection

(Fu et al., 2013).

An important caveat about the measurements of k(Ra) in the interior of the

flow (z = 0.5) is the effect of the aspect ratio. At Ra = 2× 104, for example, the

domain has aspect ratio L = 0.5, and k/(2π) ≈ 4.5. These values indicate that,

in a statistically steady state, there were on average between two and three sets

of upwelling and downwelling plumes in the interior of the domain. Since these

numbers are relatively small, it is possible that mode restriction has some effect

on the measured value of k.

To investigate this effect, we undertook two calculations at Ra = 4000, one

with L = 1 and one with L = 2. The calculations gave a very similar measurement

of k (figure 7.10a), which suggests that mode restriction is not playing a major role

here, although further calculations at non-integer aspect ratios would be needed

to confirm this suggestion. At other values of Ra and smaller aspect ratios, we

have observed mode restriction: at Ra = 5000, for example, the measurement of

k for L = 0.5 (not included in figure 7.10a because of its extremely anomalous

value) was more than double that for L = 1. Further investigation of calculations

at different aspect ratios L is ongoing, to determine the effect of mode restriction

on the measurements of k.

7.3.2.5 The vertical temperature gradient

Having measured the wavenumber k, we are now in a position to understand the

intriguing increase with Ra of the magnitude of the linear background temper-

ature gradient, which we observed in figure 7.7. The heat-exchanger framework

(7.11) suggests a relationship between the wavenumber k and the background

temperature gradient −2k2/Ra. Since the measured exponent for the relation-

ship k(Ra) in (7.13) is greater than 0.5, the theory predicts that the background

gradient ∼ k2/Ra should scale with a positive exponent of Ra, and so will in-

crease in magnitude as Ra is increased. In contrast, two-dimensional convection

gives an exponent less than 0.5 for the relationship k(Ra) (2.16), and so the
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Figure 7.11: (a) Measurements of the negative background gradient −∂
〈
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〉
/∂z.

(b) A comparison of direct measurements of the wavenumber k from figure 7.10(a)

(dots) and the prediction of k =
√

(−∂
〈
T
〉
/∂z)Ra/2 from the measurements in

(a) and the heat-exchanger theory (7.11a) (squares). In each plot, colours denote
aspect ratios L = 2 (blue), L = 1 (green), and L = 0.5 (red).

background gradient decreases with Ra.

Direct measurements of the negative temperature gradient −∂
〈
T
〉
/∂z con-

firm the previous observation that the magnitude of the gradient increases as

Ra is increased (figure 7.11a). There is a suggestion from the data that the

rate of increase is slowing at the largest values of Ra. We can further verify

the applicability of the heat-exchanger framework by comparing measurements

of the wavenumber with measurements of the gradient using the expression for

the gradient of −2k2/Ra from (7.11a). A comparison between the two measures

(figure 7.11b) shows an increased agreement as Ra is increased, which provides

further evidence to suggest that the heat-exchanger model gives an increasingly

good description of the interior flow.

The possible decrease in the rate of change of the gradient with Ra observed

in figure 7.11(a), together with the agreement demonstrated in figure 7.11(b),

raises the suggestion that the measured relationship k(Ra) is (7.13) is not a fully

asymptotic scaling, and that the wavenumber might have a slightly weaker scaling

with Ra as Ra → ∞. Measurements at higher values of Ra would be required

to confirm this suggestion. However, the suggestion seems likely, since the heat-

exchanger model shows that the background gradient in the interior of the flow

would diverge as Ra → ∞, if the measured exponent of 0.54 > 0.5 were an
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asymptotic result.

7.4 Conclusions and discussion

In this chapter, we have presented the first measurements of statistically steady

three-dimensional convection in a porous medium at high Ra. Our measurements

of the flux, over the range 1500 6 Ra 6 2 × 104, are very well fitted by an

expression of the form Nu = α3Ra+ β3, for α3 = 9.6× 10−3 and β3 = 4.28. This

fit, which has the same form as the fit of the flux Nu(Ra) in two-dimensional

high-Ra porous convection (see chapter 2), strongly suggests that the flux attains

the classical linear scaling asymptotically. The flux is roughly 40% larger than

the flux for two-dimensional convection; this difference has evident importance

for physical applications, where fluxes might be significantly underestimated if a

two-dimensional parameterization of the flux is used.

The structure of the flow for Ra & 1500 is dominated in the interior by

persistent exchange flow, with dominant horizontal wavenumber k. Instabilities

in the thin thermal boundary layers near the upper and lower boundaries give rise

to vigorous flushing and mixing of long, thin, filamentary ‘protoplume’ structures,

which drive entrainment into the interior exchange flow. Numerical measurements

strongly suggest that the interior flow is increasingly well described by a three-

dimensional heat-exchanger model as Ra is increased. The model consists of a

steady balance of vertical advection in interleaving columns along a background

linear temperature gradient and horizontal diffusion between the columns. We

considered a specific heat-exchanger model with a square planform, although it

is difficult to discern a distinct horizontal planform of the exchange flow from

snapshots of the interior flow (e.g. figure 7.3). The trend of the measurements

presented in this chapter, which indicate that the heat-exchanger model provides

an increasingly good description of the interior flow as Ra → ∞, suggests that

the planform might become more distinct at higher values of Ra.

Measurements of the wavenumber and visual inspection of the flow in the fil-

amentary protoplume regime suggest a scaling for the lateral lengthscale of the

thin filaments of approximately Ra−1. This scaling would agree with the observed

scaling for the protoplumes in two-dimensional porous convection (chapter 2). In
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the interior of the flow, however, the dominant wavenumber is fairly well described

by a scaling of k ∼ Ra0.54, which is much stronger than the analogous scaling

for k in two dimensions. Measurements of the background temperature gradient

provided, via heat-exchanger theory, confirmation of these measurements. Fur-

ther investigation into the effect, if any, of aspect ratio on the measurements of

k is ongoing.

We found some suggestion from measurements of a reduction in the measured

exponent of 0.54 as Ra is increased. The confirmation of this suggestion would

require calculations at higher values of Ra and larger aspect ratios L, both of

which are currently unfeasible owing to the very high numerical cost required to

fully resolve the dynamics on the smallest scales. Without undertaking direct

numerical simulations, however, we can still predict that an asymptotic exponent

for the relationship k(Ra) of greater than 0.5 seems implausible. This is because,

for an exponent greater then 0.5, the effect of horizontal diffusion (k2/Ra) would

increase with Ra; to balance this increase, the background gradient would also

increase, leading ultimately to a reduction in the temperature contrast across the

boundary layers at the upper and lower boundaries, and so a reduction in the

flux. An interesting question then remains, as to whether k ∼ Ra0.5 might be the

asymptotic scaling, or whether the exponent might reduce further still, towards

the scaling observed for two-dimensional convection. Motivated by the results of

chapter 3, it is likely that a linear-stability analysis of the three-dimensional heat-

exchanger flow might shed light on this question. Such an analysis, discussed at

the end of chapter 3, is left for future work.

Some of this work was performed using the Darwin Supercomputer of the

University of Cambridge High Performance Computing Service, provided by Dell

Inc. using Strategic Research Infrastructure Funding from the Higher Educa-

tion Funding Council for England and funding from the Science and Technology

Facilities Council; these resources are gratefully acknowledged.
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Chapter 8

Conclusions, and implications for

CO2 sequestration

8.1 Conclusions

In this dissertation we have studied a range of problems involving convection in

a fluid-saturated porous medium at high Rayleigh number Ra.

In chapter 2, we presented a detailed numerical investigation of the statisti-

cally steady flow in a two-dimensional Rayleigh–Darcy (porous Rayleigh–Bénard)

cell at high Ra. Rayleigh–Darcy convection undergoes a transition at Ra ≈ 1300

from predominantly large-scale quasi-periodic rolls to vigorous columnar exchange

flow driven by unsteady plume formation in boundary layers. Our measurements

of the convective flux, as described by the Nusselt number Nu, in this ‘high-

Ra’ regime reveal that, contrary to some previous indications, the classical linear

scaling Nu ∼ Ra is attained asymptotically. The measurements of Nu(Ra) for

1300 < Ra 6 4 × 104 are extremely well described by Nu = αRa + β, for

α = 6.9× 10−3 and β = 2.75.

The structure of the flow is characterised in the interior by vertical columnar

exchange flow of ‘megaplumes’ across the height of the cell at a (statistically) reg-

ular and Ra-dependent horizontal wavenumber. Near the boundaries, the flow

is instead dominated by short wavelength boundary layer instabilities that drive

vigorous protoplume growth and entrainment into the interior megaplume flow.

177



8. CONCLUSIONS

We found that the interior flow is increasingly well described as Ra→∞ by a sim-

ple, steady, columnar heat-exchanger model with a single horizontal wavenumber

k(Ra) and a linear background temperature field. The flow, therefore, becomes

increasingly ‘ordered’ as Ra is increased, in clear contrast to the turbulent interior

dynamics of pure-fluid Rayleigh–Bénard convection for Ra � 1. The dominant

horizontal wavenumber k of the interior flow increases as Ra is increased, and

numerical measurements of k(Ra) for 1300 < Ra 6 4× 104 are roughly fitted by

k ∼ Ra0.4, although there is some suggestion of a weaker scaling at the highest

values of Ra. An investigation of the dynamics of protoplumes near the upper

and lower boundaries of the cell suggested that the columnar wavenumber is not

controlled directly by the vigorous dynamics near the boundaries.

In chapter 3, we examined the hypothesis that the columnar flow-structure of

high-Ra porous convection is instead determined by the stability of the colum-

nar flow. We tested this hypothesis by examining the linear stability of an un-

bounded columnar heat-exchanger solution, which is governed by the parameter

A = ÂRa/k, where Â is the amplitude of the flow. The flow is always un-

stable; for A . 17.2 the instability takes the form of a largescale overturning

associated with the background unstable linear temperature gradient, while for

A & 17.2, the instability takes the form of vertically propagating pulses on the

background columns. By solving a matched asymptotic expansion in the limit of

strong columnar flow or large Ra (i.e. A � 1), we found that the growth rate

Re{σ} asymptotes to Re{σ} = 0.2308A4/9 as A→∞. We used direct numerical

simulations to show that the evolution of the instability in the non-linear regime

results in a coarsening of the columnar flow.

We applied the results of the stability analysis to the columnar flow in a

Rayleigh–Darcy cell, by balancing the time scales for growth of the most unstable

perturbation and vertical propagation across the domain. This balance suggests

that the columnar flow is unstable for wavenumbers k greater than k ∼ Ra5/14, as

Ra→∞. A correction to this scaling for non-asymptotic values of Ra predicts a

slightly stronger dependence on Ra for Ra 6 4×104, in good agreement with the

trend of the numerical measurements presented in chapter 2. This result supports

the hypothesis that the physical mechanism controlling the horizontal scale of

columnar convection is the stability of the columnar flow. Under this hypothesis,
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the interior flow in a Rayleigh–Darcy cell is forced at small lengthscales (∼ Ra−1)

by protoplumes near the upper and lower boundaries, but the flow coarsens and

the horizontal lengthscales increase until the flow becomes stable, at a lengthscale

∼ k−1 ∼ Ra−5/14 as Ra→∞.

In chapter 4, we examined the implications for high-Ra convection of het-

erogeneity in the porous medium, specifically when the heterogeneity takes the

form of thin low-permeability horizontal layers. We presented a numerical study

of statistically steady convection in a Rayleigh–Darcy cell containing a thin low-

permeability horizontal layer centred in the middle of the cell. When both the

height h and the relative permeability Π of the interior low-permeability layer

are small, the flow is governed solely by their ratio Ω = h/Π, the impedance. We

studied the flow in this limit, and analysed the dependence of both the convective

flux Nu and the dynamical flow-structure on Ω.

We observed two particularly striking features. First, as Ω is increased from

zero (the limit of homogeneous Rayleigh–Darcy convection), the flow develops a

cellular structure and the horizontal lengthscale of the cells increases dramati-

cally. Second, the flux Nu can increase as Ω is increased from zero (i.e. as the

permeability of the inner layer is decreased, for fixed h � 1), before decreasing

significantly for larger values of Ω. At Ra = 2500, for example, Nu attains a

maximum at Ω ≈ 0.3 that is roughly 30% larger than the Nusselt number for

homogeneous convection. For larger values of Ra, the increase in Nu with Ω is

weaker. For larger values of Ω (Ω & 5), there is a transition in the flow structure

as the impedance to flow across the interior layer is so large that diffusion becomes

the dominant transport mechanism across the layer. We demonstrated that the

qualitative decrease of the flux with Ω, and the flux in the diffusive regime, can be

described with very simple reduced models. Our observations provide a number

of directions for future work, as discussed in §4.4.3 and §4.5.

The work of chapters 2–4 was concerned primarily with statistically steady

‘two-sided’ convection. In chapter 5 and chapter 6, we developed this work to

study ‘one-sided’ porous convection, driven by a source of density on one bound-

ary only. We developed theoretical and numerical models of the shutdown of

convection in one-sided porous systems at high Ra. In chapter 5, we revealed

a close dynamical relationship between the slowly evolving one-sided shutdown
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system and the two-sided Rayleigh–Darcy cell. Our results showed that mea-

surements of Nu(Ra) from a Rayleigh–Darcy cell can be used to give excellent

quantitative agreement with the evolution of the flux in the shutdown regime.

We used this observation to develop simple reduced theoretical models of the

shutdown of convection, which give excellent predictions of the evolution of the

convective flux when compared with direct numerical simulations. The dynamical

structure of the flow in the shutdown regime is dominated by persistent colum-

nar megaplumes that extend across the height of the domain, and the horizontal

spacing of these plumes changes with the evolving average density in very good

quantitative agreement with measurements from a Rayleigh–Darcy cell. We ex-

tended this work to consider the effect of general power-law equations of state.

In chapter 6, we developed the ideas of the previous chapter to investigate

a range of different physical systems. We considered systems comprising two

fluid layers, separated by an active interface which can move as a result of the

convective flux across it. We separately examined the case of two immiscible

fluids and the case of two miscible fluids. Under the assumption that the interface

remains flat as it moves, we developed reduced theoretical models of each system,

which give excellent agreement with measurements of the evolution of the flux

and the height of the interface from direct numerical simulations. In the case

of miscible fluids with an interface that is free to deform, we also found good

agreement between laboratory experiments in a Hele–Shaw cell and numerical

simulations. These investigations showed that the flux could be dramatically

enhanced by interfacial deformation. For immiscible fluids like CO2 and water,

we argued that interfacial deformation was unlikely to be important owing to the

stabilizing density jump at the interface; this observation highlights an important

difference between immiscible and miscible systems.

In common with the majority of previous studies of porous convection, the

work in chapters 2-6 concerned two-dimensional flow. In chapter 7, we presented

the first numerical study of three-dimensional statistically steady convection in

a porous medium at high Rayleigh number. We developed fully resolved nu-

merical simulations of the flow in a three dimensional Rayleigh–Darcy cell for

Ra . 2 × 104. An overview of the flow for Ra < 1500 revealed a range of inter-

esting and largely unexplored convective dynamics, which deserve further study.
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In the ‘high-Ra’ regime (Ra & 1500), measurements of the convective flux were

very well described by Nu = α3Ra+β3, for α3 = 9.6× 10−3 and β3 = 4.28. This

fit both implies that the classical linear scaling Nu ∼ Ra is attained asymptoti-

cally, and also indicates that the convective flux is roughly 40% larger than the

corresponding flux in the two-dimensional cell, measured in chapter 2.

There are certain clear analogues between the three-dimensional flow structure

in the high-Ra regime and the two-dimensional structure characterized in chap-

ter 2. The statistically steady three-dimensional convective flow for Ra & 1500

consists of large-scale persistent exchange flow in the interior of the domain.

Instabilities in the thin thermal boundary layers near to the upper and lower

boundaries of the domain give rise to episodic and highly time-dependent bursts

of long, thin, filamentary protoplumes, which drive the interior exchange flow.

The interior flow is increasingly well described by a steady heat-exchanger model,

characterized by a linear background temperature gradient and a dominant hor-

izontal wavenumber k. Numerical measurements of the wavenumber are roughly

fitted over the range 1500 6 Ra 6 2× 104 by k ∼ Ra0.54, which gives a distinctly

larger exponent that the equivalent expression for two-dimensional convection

(roughly k ∼ Ra0.4; chapter 2). There is some suggestion from the measurements

of a reduction in this scaling for larger values of Ra, as might also be expected

by theoretical considerations (see §7.4).

8.2 CO2 sequestration

8.2.1 Implications and discussion

The primary motivation for this work, as discussed in §1.1, was to model and

understand the convective dissolution of geologically sequestered CO2 in saline

aquifers. In this dissertation, we have measured flux laws, analysed the dynamical

structure of convection, and developed simple reduced models of convection that

can be used in geophysical settings. We consider the implications of some of these

results here.

For the sake of this discussion we will use illustrative parameter values from

a relatively high permeability aquifer, such as the Utsira sand reservoir at Sleip-
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ner (Ennis-King & Paterson, 2005; Bickle et al., 2007). We take: permeabil-

ity K = 5 × 10−12 m2; porosity φ = 0.3; g = 10 m/s2; driving density con-

trast between dense CO2 solution and brine ∆ρ∗ = 15 kg/m3; viscosity of brine

µ = 5× 10−4 Pa s; and diffusivity of CO2 D = 10−9 m2/s. The equation of state

for CO2 and brine is linear (n = 1 in the terminology of chapters 5 and 6). We

consider an aquifer of depth H = 100 m. The convective time scale T ∗ for this

system is given by T ∗ = φHµ/(∆ρ∗gK) ≈ 0.6 years; for comparison, the diffu-

sive time scale is given by H2/D ≈ 3× 105 years. The Rayleigh number for this

illustrative aquifer, which is the ratio of these time scales, is Ra ≈ 6× 105.

In chapter 2, we determined the flux law Nu = αRa+ β for two-dimensional

statistically steady convection. For Ra > O(104), this expression can be very well

approximated by setting β = 0. The horizontally averaged dimensional flux F ∗

(i.e. the volume flux per unit area) is then given by the expression

F ∗ =
α b gK

(
C∗m − C∗−

)2

µ
, (8.1)

where b is the coefficient in the linear equation of state ρ(C) (5.5). The flux is

thus independent of both the height H of the aquifer and the diffusivity D. The

expression
(
C∗m − C∗−

)
denotes the difference in the concentration of CO2 between

the dense CO2-saturated solution (C∗m ≈ 0.05) and pure brine (C∗− = 0); the fact

that this driving concentration difference is small reflects the weak solubility of

CO2 in brine (∼ 5% by weight).

The parameter values above give F ≈ 5 × 10−10 m s−1. Using a density of

700 kg m−3, this value gives a mass flux of supercritical CO2 of about 11 thousand

tons per year, per kilometre squared of the CO2-brine interface. The typical

lengthscales of the flow can also be calculated: based on the parameters above,

together with the observed scalings from chapter 2, the width of a megaplume is

roughly 3 m, while protoplumes are approximately 5 cm wide.

These estimates are based on measurements from statistically steady two-

dimensional two-sided convection. A comparison of measurements of the flux at

early times in a one-sided system (e.g. figure 5.4) with measurements from a

Rayleigh–Darcy cell (figure 2.4), shows that the flux in the one-sided system is

more than double that in the two-sided system; thus, in a (one-sided) unbounded
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aquifer, we would expect the values of the flux to be at least double the estimates

given above. Moreover, the results are for two-dimensional convection; based on

the results of chapter 7, we would expect the flux to be ≈ 40% larger again in a

real, three-dimensional, unbounded aquifer.

If, however, the aquifer were closed, the convective flux would shut down

over time. The dissolution of CO2 in this situation can be well described by our

immiscible box model with a moving flat interface, as discussed in §6.4. Using the

values above (with the initial height of the CO2-brine interface at h∗0 = 100 m),

together with the observations in chapters 5 and 6, we would expect the transition

to the shutdown regime to occur after roughly t∗2 ≈ 10 years. The subsequent

evolution of the horizontally averaged flux is determined from our box models

and given by (6.23), which can be rewritten as:

F ∗(t) =
4α b gK

(
C∗m − C∗−

)2

µ (1 + 4α t/T ∗)2
, (8.2)

where T ∗ = φh∗0µ/(∆ρ
∗gK) ≈ 0.6 years is the convective time scale, and α =

6.9 × 10−3. Based on our immiscible box model, after 20 years, the solute flux

would have halved. After 75 years, it would be one tenth of its initial value.

In this time, the interface would have retreated by nearly 4 metres (4% of the

original depth), and about 0.8 million tons of CO2 would have dissolved for every

square kilometre of the CO2-brine interface. For comparison, roughly one million

tons of CO2 are injected at Sleipner each year. We again note that these results

are for two-dimensional convection; based on the results of chapter 7, we would

predict that the values of the flux would be ≈ 40% larger in the shutdown regime

in a three-dimensional system. We also note that these illustrative results apply

to laterally confined aquifers, and, while the physical processes that we examined

in chapter 5 and 6 are still relevant, the time scales and dynamics of shutdown

in laterally unconfined aquifers may differ substantially.

We can also consider the effects of heterogeneous layering in the medium.

Suppose that the exemplar aquifer, of total depth H = 100 m, contains a thin

horizontal layer of depth h∗ = 1 m. The magnitudes of these values are consistent

with observations of thin mudstone layers at Sleipner (Bickle et al., 2007). The
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permeability of the layers could range from 10−1000 times smaller than the main

aquifer, which gives rise to values of the impedance Ω in the range 0.1 . Ω . 10.

Neufeld & Huppert (2009) used an example value for the relative permeability

at Sleipner of Π ≈ 0.05, which gives Ω ≈ 0.2. In this case, our results in chap-

ter 4 suggest that the low-permeability layers would have little negative effect on

the rate of dissolution. In contrast, the flux would be considerably lower if the

permeability contrast was larger, in which case it is likely that lateral migration

along the top of the low-permeability layer or leakage through fractures in the

layer would dominate the dynamics (see, e.g. Pritchard et al. 2001; Neufeld &

Huppert 2009), rather than convection across the layer.

The representative values and time scales given here correspond to high-

permeability aquifers like that at Sleipner. Some potential storage sites have

permeabilities that are 2 − 3 orders of magnitude smaller than that considered

here, in which case the flux would be extremely weak; even the transition to the

shutdown regime would take thousands of years.

8.2.2 Directions

An important future direction for understanding the dynamics of CO2 sequestra-

tion systems is the integration of these models of convection into dynamic models

of flow in porous media. In particular, current parameterizations of convection

assume that the injected CO2 is stationary, whereas, in general, the current will

either be rising as a plume or laterally migrating as a gravity current. Since the

density difference between supercritical CO2 and brine (∼ 300 kg m−3) that drives

this migration is many times stronger than the density difference driving convec-

tion (∼ 10− 20 kg m−3), it is possible that the motion of the current would have

an appreciable effect on the rate of dissolution. The study of convection in the

presence of flow (or, analogously, convection forced with an imposed velocity),

provides the next step for the modelling presented in here. A fuller understanding

of the effect of flow on the strength of convection would allow for a more accurate

comparison of the timescales of dissolution with those of spreading (e.g. Lyle

et al. 2005; Vella & Huppert 2006) or leakage (e.g. Pritchard 2007; Neufeld et al.

2011).

184



8. Conclusions

In common with previous studies of porous convection, throughout this dis-

sertation we have made the assumption that capillary retention in the pore space

can be neglected, and thus that the interface between CO2 and brine is ‘sharp’.

Capillary retention will have two main effects: first, isolated pockets off CO2 will

be retained and trapped in the pores, in the wake of the migrating CO2 current

(this effect provides another secure trapping mechanism for CO2; see §1.1 and

Hesse & Tchelepi 2008); and second, a ‘capillary fringe’ of partially saturated

CO2 and brine will form at the interface. The extent of the capillary fringe de-

pends on the capillary forces and pore-size distribution of the rock. Golding et al.

(2011) used measurements of the capillary pressure to estimate that the depth

of the partially saturated region lies in the range 0.1− 100 m (high-permeability

aquifers, which thus have weaker capillary pressures, are likely to have depths

towards to lower end of this range). In contrast, the illustrative values quoted

above give an estimate of the boundary-layer depth of O(1) cm. This comparison

suggests that the effects of partial saturation may be important for convective

dissolution, and warrant further investigation.

It should be noted that, from the point of view of laboratory experiments, an

examination of the interaction between convective dissolution and the effects of

partial saturation is not straightforward. Most analogue fluids used in previous

experiments of convective dissolution are miscible (such as, for example, the fluids

used in chapter 6), and so there are no capillary effects. Similarly, there is no par-

tial saturation in a Hele–Shaw cell, which provides a useful setup for experiments

as it is easy to observe the flow. Nevertheless, the development of a viable ex-

perimental setup that exhibits both partial saturation and convective dissolution

would be useful, since a theoretical approach is also complicated. It is proba-

ble that the most promising theoretical approach would involve the modelling of

both effects on the pore scale, and the development of a parameterization which

could be incorporated into continuum (numerical) models. There are also per-

haps some analogues with previous work on evaporation from partially saturated

porous media which could be explored.

For a fuller understanding of the effect of dissolution on sequestered CO2, com-

parison with reservoir-scale experiments and field observations is also required.

The complex geometry and heterogeneity of most aquifers indicates that care
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must be taken with models developed for idealised systems, and comparison with

field data provides a meaningful check on the accuracy of model predictions. Such

comparison for simple models of spreading under gravity has been ongoing us-

ing seismic data at the Sleipner site (Bickle et al., 2007; Boait et al., 2012). It

would be interesting to extend the modelling of this dissertation to compare the

effects of dissolution more directly with field measurements, both from natural

CO2 reservoirs (Gilfillan et al., 2009) and from sequestration sites like Sleipner.
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Appendix A

Numerical Method

The governing equations for Boussinesq convection in an ideal porous medium

are given by Darcy’s law, incompressibility, and a transport equation for the

density field. In this appendix, we discuss the techniques used throughout this

dissertation to solve these equations numerically. All the numerical code was

written in the Fortran 90 programming language.

Throughout the appendix, superscript indices with index n refer to temporal

discretization with timestep ∆t, while the subscript indices i, j, and k refer to

spatial discretization in the x, y, and z directions, respectively.

A.1 Two-dimensional Rayleigh–Darcy convec-

tion

As discussed in chapter 2, the governing equations for two-dimensional Rayleigh–

Darcy convection with a linear equation of state are given by

∇2ψ = −∂T
∂x

, (A.1)

∂T

∂t
+∇ · uT =

1

Ra
∇2T, (A.2)
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Figure A.1: (a) The coordinate transformation z(ζ) for Ra = 2 × 104. The
grid points shown are separated by five (uniform) vertical steps ∆ζ. (b) The
horizontally and temporally averaged temperature profile

〈
T
〉

for Ra = 2 × 104

near to the lower boundary z = 0, showing the high density of grid points in the
boundary layer.

(cf. §2.2). The boundary conditions on the upper and lower boundaries of the

domain are given by

T = 1, w = 0 at z = 0, and T = 0, w = 0 at z = 1, (A.3a, b)

and the domain is periodic at x = 0, L.

In this section, we discuss the numerical methods used to solve (A.1)–(A.3).

A.1.1 Coordinate transformation and grid spacing

Based on a balance between advection and diffusion in (A.2), the diffusive

boundary-layer depth is expected to scale with Ra−1. At high Ra, we there-

fore anticipate extremely thin vertical boundary layers at the upper and lower

boundaries, in contrast with much larger vertical scales throughout the interior

of the domain. In order to accurately resolve the boundary layers with a verti-

cally uniform grid, we would therefore over-resolve the interior. We dramatically

reduced the computational cost of the calculations by using a vertical coordinate

transformation ζ(z) which maps points from the boundary layer into the interior.
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x = 0 ∆x 2∆x 3∆x

∆ζ

2∆ζ

ζ = z = 0

Figure A.2: A schematic showing the location of the discretized variables on a
regular grid in (x, ζ) coordinates. The temperature T is calculated at the centre of
every grid square, signified by a plus, while the streamfunction ψ is calculated on
the vertices, signified by a circle. The velocity vectors are calculated at the edges
of the grid squares, signified by blue arrows. The edge of the domain x = z = 0
is shown in bold.

The transformation from ζ ∈ [0, 1] to z ∈ [0, 1] is given by

z =
1

2

[
1 +

tanh [η (ζ − 1/2)]

tanh (η/2)

]
, (A.4)

where η is an adjustable parameter. For a given value of Ra, η is defined implicitly

by the requirement that
∂T

∂ζ

∣∣∣∣
z=0

≈ O(1). (A.5)

An example of this coordinate transformation z(ζ) with η ≈ 8.3 for Ra =

2 × 104 is shown in figure A.1(a). The extremely high spatial resolution that

we are able to employ in the boundary layers is demonstrated in figure A.1(b),

which shows the horizontally averaged temperature profile near to the bottom

boundary.

The governing equations (A.1) and (A.2) are transformed analytically to (x, ζ)

coordinates and then solved on a uniform rectangular grid using horizontal and

(transformed) vertical resolution ∆x and ∆ζ respectively. The temperature and

streamfunction are calculated on a staggered grid in (x, ζ) coordinates (see fig-
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ure A.2). This discretization both arises naturally from the flux-conservative

numerical method that we employ, which is discussed below, and it also aids

the implementation of the boundary conditions. The temperature field is cal-

culated at the centre of every grid square, which equates to points with coor-

dinates ([n+ 1/2]∆x, [m+ 1/2]∆ζ) for integer n and m. The streamfunction is

calculated at the vertices of the grid, which equates to points with coordinates

(n∆x,m∆ζ). In order to implement second-order boundary conditions for the

temperature field, we also store an additional temperature point half a grid cell

outside the domain on every side, as shown in figure A.2.

A.1.2 The Poisson equation

The Poisson equation (A.1) was solved using a fast-Fourier transform in the

horizontal (x) direction, and a simple tridiagonal finite difference method in the

vertical. This technique is useful for periodic problems without rapid variation

between gridpoints, and is cheaper and quicker than relaxation methods.1

After taking the Fourier transform and changing variables to ζ(z), (A.1) be-

comes
∂ζ

∂z

∂

∂ζ

(
∂ζ

∂z

∂ψ̃

∂ζ

)
− k2ψ̃ = −ikT̃ , (A.6)

where a tilde signifies a Fourier transform in the x component, and k is the

horizontal wavenumber. Given T̃ (k, z), (A.6) is discretized using standard second-

order finite difference operators, ψ̃(k, z) is determined by inverting the resulting

tridiagonal equation, and the solution ψ(x, z) is determined by an inverse Fourier

transform of ψ̃. Therefore, given the temperature field T at time t, we can

calculate ψ, and so the velocity, at time t.

The standard real Fourier transform enforces periodic boundary conditions

on the flow at x = 0, L. Alternatively, boundary conditions of zero heat flux (as

in chapters 5 and 6) can be enforced by using a Fourier sine transform, in which

case the single spatial derivative on the right-hand side of (A.6) is given by a

1We also developed a successive over-relaxation (SOR) method and a multi-grid method to
solve the Poisson equation, but, based on a comparison of speed, accuracy and ease of imple-
mentation, particularly with respect to the periodic boundary conditions, we used a spectral
method in all the simulations presented in this dissertation.
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cosine transform.

A.1.3 The transport equation

Equation (A.2) was discretized using an alternating-direction implicit (ADI)

method (e.g. Press et al. 1989), centred on the half time-step to give second-

order accuracy in time. The temporal discretization takes the semi-implicit form

T n+1 − T n
∆t

=
1

2
∇·
(
un+1/2

[
T n+1 + T n

])
+

1

2Ra
∇2
(
T n+1 + T n

)
+O(∆t2). (A.7)

The diffusion terms in (A.7) were spatially discretized using standard second-

order finite-difference operators. The advection operator was discretized using a

flux-conservative representation, which matches the advective fluxes into and out

of grid squares and retains second-order spatial accuracy by using the velocities

at the boundaries of the grid cells (as in figure A.2). The spatial discretization

of the advection operators thus takes the form

[
∂

∂x
(uT )

]

i

=
1

∆x

[
ui+1/2

(
Ti+1 + Ti

2

)
− ui−1/2

(
Ti + Ti−1

2

)]
+O(∆x2), (A.8)

[
∂

∂z
(wT )

]

k

=
1

∆ζ

(
∂ζ

∂z

)

k

[
wk+1/2

(
Tk+1 + Tk

2

)
− wk−1/2

(
Tk + Tk−1

2

)]
+O(∆ζ2).

(A.9)

The ADI scheme involves the recasting of (A.7) into two coupled discrete

equations, each of which is implicit in one spatial direction and explicit in the

other. The equations were solved by inverting a cyclic tridiagonal matrix in the x

direction, and a regular tridiagonal matrix in the ζ direction. The ADI scheme is

unconditionally stable, and the time step ∆t was selected to satisfy the Courant

condition, as discussed in §A.1.6 below.
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A.1.4 Combining the equations

There are various methods for calculating un+1/2 given the temperature and ve-

locity at previous time-steps. For the sake of compactness, we used a midpoint

method rather than an extrapolation method like Adams-Bashforth. The mid-

point method updates T n to T n+1 as follows. First, the velocity field un is

calculated using (A.6). Second, this velocity field is used as an approximation of

un+1/4 in the transport equation (A.7) with half the time-step, to give an approx-

imation of the temperature at the half time-step T n+1/2. Third, this temperature

field is used to calculate the velocity at the half time-step un+1/2 using (A.6)

again. Finally, given the velocity at the half time-step, (A.7) is used to evolve

the original temperature field T n forward one time-step to give T n+1.

A.1.5 Boundary conditions

The arrangement of grid points shown in figure A.2 means that the vertical veloc-

ity w is stored at points along the upper and lower boundaries of the domain, so

that is is very straightforward to impose no-flow boundary conditions there. The

fixed-temperature boundary conditions at these boundaries in (A.3) are slightly

more complicated to impose, as the temperature is not calculated exactly on the

boundary (see figure A.2). In order to retain second-order spatial accuracy, we use

a quadratic extrapolation of the nearest three grid points to the boundary. For

example, if we desire T = Ξ at z = 0 in the simple case of no vertical coordinate

transformation (ζ = z), quadratic extrapolation gives

T−1/2 = −2T1/2 +
T3/2 + 8Ξ

3
+O(∆z2). (A.10)

In the general case with a coordinate transformation (z 6= ζ), we can generate a

similar, but more involved, expression for the temperature T−1/2.

Since all the heat flux into the domain is diffusive, the heat flux at the upper

or lower boundary is easily measured using the temperature points on either side

of the boundary. For example, the heat flux at the lower boundary is given by

∂T

∂z

∣∣∣∣
z=0

=

(
∂ζ

∂z

)∣∣∣∣
z=0

T1/2 − T−1/2
∆ζ

+O(∆z2). (A.11)
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Figure A.3: The time-dependent Nusselt number nu(t) = L−1
∫
∂T/∂z|z=0 dx at

Ra = 2× 104. The data points shown are separated by ten time-steps ∆t.

A.1.6 Verification of numerical scheme

We have compared our solutions of both (A.6) and (A.7) against known ana-

lytic solutions of the Poisson and transport equations, to confirm that the code

gives second-order spatial and temporal errors. With the full combined code, we

have observed the well-known onset of convection at Ra = 4π2, and found good

agreement with weakly non-linear theory for slightly larger values of Ra (Nield

& Bejan, 2006). We have recovered the results of Graham & Steen (1994) for

moderate values of Ra 6 1300, and of Otero et al. (2004) for Ra < 104, as shown

in figure 2.4 in chapter 2.

In the high-Ra regime, the smallest horizontal scales are found in thin

boundary-layer instabilities (protoplumes), and the horizontal resolution is cho-

sen to ensure that the thinnest points of these structures contain at least ten

grid points. These horizontal scales appear to decrease like Ra−1 (see chapter 2,

§2.4.2). For all but the highest decade of Ra data, we have confirmed that our

results are sufficiently well resolved by doubling both the horizontal and verti-

cal (ζ) resolution and recovering statistically identical results. For the highest

decade, we used a resolution that is consistent with the observed spatial scalings

at lower values of Ra, giving us confidence that all our results are well resolved.

Typical values of the horizontal and (transformed) vertical discretization range

from ∆x = (256)−1 and ∆ζ = (180)−1 at Ra = 2500, to ∆x = (4096)−1 and

∆ζ = (450)−1 at Ra = 4× 104.
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The time-step ∆t is chosen to be smaller than the Courant time scale

∆x/max|u|, which corresponds to the physical requirement that fluid is not ad-

vected further than one grid cell in one time step. At Ra0 = 2 × 104, the time

step was ∆t = (1400)−1. Figure A.3 shows the time-dependent Nusselt number

nu(t) at Ra = 2× 104; the points shown are separated by ten time steps, and the

fluctuations are well resolved.

A.2 Extensions of numerical scheme in two-

dimensions

In this section we outline the manner in which the numerical scheme discussed

above can be extended to model the different systems that we have considered in

this dissertation.

A.2.1 Convection with a low-permeability layer: chap-

ter 4

In chapter 4, we developed the numerical scheme discussed above to model high-

Ra convection in a Rayleigh–Darcy cell with a low-permeability interior layer in

the region z1 < z < z2. We developed both ‘full simulations’, in which the interior

layer was fully resolved, and ‘reduced simulations’, in which the interior layer was

parameterized by a jump condition for the horizontal velocity (4.12).

The basic numerical scheme is very similar to that described above; the main

difference lies in the choice of coordinate transformation ζ(z) needed to resolve

both the dynamics at the upper and lower boundary layers, and the dynamics

near to the interior layer. For the ‘full simulations’, we used a rather convoluted

coordinate transformation from ζ ∈ [0, 1] to z ∈ [0, 1] of the form

z(ζ) =
T (ζ, 0.25 + ν, η1) + T (ζ, 0.75− ν, η1) + εT (ζ, 0.5, η2)

T (1, 0.25 + ν, η1) + T (1, 0.75− ν, η1) + εT (1, 0.5, η2)
, (A.12)

where

T(x, y, η) = tanh [η (x− y)] + tanh (ηy), (A.13)
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and η1, η2, ν and ε are specified parameters that depend on the height h and

Rayleigh number Ra, and were chosen to ensure sufficient grid points lay in both

the boundary layers near z = 0 and z = 1, and the regions near z = z1 and

z = z2.

For the ‘reduced simulations’, we used a simpler transformation of the form

z(ζ) =
T (ζ, 0.25 + ν, η) + T (ζ, 0.75− ν, η)

T (1, 0.25 + ν, η) + T (1, 0.75− ν, η)
, (A.14)

where T is defined in (A.13), and η and ν are again parameters that control the

stretching, and depend on Ω and Ra. The parameters were chosen to ensure the

dynamics near z = 0, z = 0.5, and z = 1 are fully resolved.

In the reduced simulations, we solved a jump condition for the horizontal

velocity at z = 0.5, given by

Ω
∂w

∂x
= [u]

z=0.5+
z=0.5− . (A.15)

In order to incorporate (A.15) into the numerical scheme, it can be written in

terms of the streamfunction ψ. The horizontal Fourier transform of the resultant

equation takes the form

Ωk2 ψ̃ =
∂ψ̃

∂z

∣∣∣∣∣
z=0.5+

− ∂ψ̃

∂z

∣∣∣∣∣
z=0.5−

. (A.16)

Equation (A.16) replaces the usual transformed Poisson equation (A.6) for the

value of ψ̃ at z = 0.5. Numerically, the expression for ψ̃k at z = 0.5 is replaced by

the discretized form of (A.16), which depends on ψ̃k±1; the system thus remains

tridiagonal and can be solved as before. In addition, since temperature T is

continuous at z = 0.5, the transport equation can be solved across the whole

domain, just as in §A.1.3.

A.2.2 One-sided convection: chapters 5 and 6

In chapters 5 and 6, we developed numerical schemes to describe both fixed-

interface and free-interface one-sided convection, with immiscible fluids and a
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flat interface, and miscible fluids and both flat and deformable interfaces.

In chapter 5, the governing equations (5.10) and (5.13) were solved through-

out the domain 0 6 z 6 1. Similarly, in §6.3 the same equations were solved

throughout the domain 0 6 z 6 H. In §6.2, however, the equations (5.10) and

(5.13) were solved below the interface 0 6 z 6 h(t) only, in order to impose a

flat interface at z = h(t). Above the interface, the concentration either remains

constant (immiscible system) or satisfies a one-dimensional advection-diffusion

equation (6.14) (miscible system).

As in previous chapters, in order to accurately resolve the dynamics near to

the interface z = h, we used a vertical-coordinate transformation ζ(z, h). In

chapter 5 and in §6.2, the transformation from ζ ∈ [0, h] to z ∈ [0, h] was given

by

z =
h

2

[
1 +

tanh [η (ζ − h/2)]

tanh [η h/2]

]
, (A.17)

where η(Ra0) is a stretching parameter that was chosen to ensure that sufficient

points lay in the boundary layer below the interface. In §6.3, the governing

equations were solved over the whole domain, and the interface was located in the

interior. A more complex transformation was required to accurately resolve the

boundary layers on either side of the interface, without dramatically increasing

the computational cost. We employed a transformation of the form

z =
H

A1 + A2

{
A1

tanh (a1 η ζ)

tanh (H a1 η)
+ A2

[
1 +

tanh (a2 η [ζ −H])

tanh (H a2 η)

]}
(A.18)

where η(Ra0) is again a constant stretching parameter, and A1, A2, a1 and a2

are specified functions of the average interfacial height h(t), which were chosen

to increase the resolution in a region centred on z = h, and wider than the

range of any interfacial deformations. To reduce the computational cost, the

transformation ζ[z, h(t)] was not re-calculated at every time step, but only when

the interface z = h had moved a sufficient distance to require it. After each

calculation of a new vertical discretization ζ(z, h), the variables were mapped

from the previous discretization to the new grid using quadratic interpolation.

The governing equations (5.10) and (5.13) were again solved using a fast-

Fourier transform and an ADI method, as described above in §A.1.2 and (A.1.3).
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In §6.2 (free-interface systems with a flat interface), the location of the interface

h(t) was found by global conservation of solute (6.2) at each time step. For

the miscible system with a flat interface (§6.2.2), the one-dimensional transport

equation (6.14) was solved at each time step using standard second-order finite-

difference operators on a uniform grid above the interface.

A.3 Three-dimensional Rayleigh–Darcy convec-

tion

In chapter 7, we presented results for three-dimensional Rayleigh–Darcy convec-

tion in the high Ra regime. The governing equations consist of two Poisson

equations for the non-zero components of the vector potential Ψ = (ψx, ψy, 0),

and a transport equation for the temperature T (see §7.2). These equations,

introduced in (7.8a,b) and (7.1c), respectively, are given by

∇2ψx = −∂T
∂y

, ∇2ψy =
∂T

∂x
,

∂T

∂t
= −u · ∇T +

1

Ra
∇2T. (A.19a, b, c)

The velocity u = (u, v, w) is given from Ψ by

(u, v, w) =∇×Ψ =

(
−∂ψy
∂z

,
∂ψx
∂z

,
∂ψy
∂x
− ∂ψx

∂y

)
. (A.20)

The boundary conditions on the upper and lower boundary of the domain are

given by

ψx = ψy = 0T = 1 on z = 0, ψx = ψy = T = 0 on z = 1, (A.21)

which the cell is periodic in both x and y directions, with period L.

A.3.1 Coordinate transformation and grid spacing

As for two-dimensional convection, we employed a vertical coordinate transforma-

tion ζ(z) to fully resolve the thin diffusive boundary layers near to z = 0, 1. The

transformation was identical to that used for the two-dimensional simulations,
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A. NUMERICAL METHOD
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Figure A.4: (a) A schematic showing one cuboid of the numerical grid, with the
locations at which ψx and ψy are calculated. The components of the velocity, given
by (A.20), are thus determined at the centre of each face of the cuboid as shown.
The temperature is calculated at the centre of each cuboid. (b) Measurements of
the average temperature

〈
T
〉

near to the lower boundary, which demonstrate the
the boundary layer is well resolved.

discussed in §A.1.1.

The governing equations (A.19) were transformed to (x, y, ζ) coordinates and

discretized on a uniform cuboidal grid. The three variables (ψx, ψy, T ) are calcu-

lated on a staggered grid, which is a requirement of the flux-conservative scheme

and helps to facilitate implementation of the boundary conditions: the tempera-

ture is calculated at the centre of each grid cuboid, while ψx and ψy are calculated

around the cuboid in such a manner that u, v and w are determined in the centre

of the relevant faces of the cuboid (see figure A.4a). The boundary conditions

for ψx and ψy on z = 0, 1 from (A.21) are straightforward to impose with this

staggered layout.

A.3.2 The equations

The two Poisson equations (A.19a,b) were solved using fast-Fourier transforms in

both the x and y directions, and second-order finite differences to discretize the

resultant tridiagonal system in the ζ direction.

The transport equation (A.19c) was solved using a three-dimensional ADI

scheme, following Brian (1961), which is discussed below. As in §A.1.3, the dif-
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fusion operator was discretized using standard two-dimensional finite difference

operators. The advection operator was discretized using a flux-conservative for-

mulation, such that the velocity into and out of every grid cell is calculated (as

in figure A.4).

Second-order ADI methods are closely related to second-order semi-implicit

(Crank–Nicholson) methods (Douglas, 1962; Press et al., 1989). Given an equa-

tion like (A.19c), an ADI method involves the recasting of the equation into

multiple coupled discretized equations, each of which is implicit in some spatial

directions and explicit in others. By reformulating these equations back into one

equation, it can be shown that the set of ADI equations is equivalent, up to

second order in ∆t, to the semi-implicit discretization of the original equation.

While the ADI scheme is unconditionally stable in two spatial direction,

in three dimensions it is not, necessarily. In particular, the ‘natural’ three-

dimensional ADI scheme, which has three coupled discretized equations, each

of which advances an interval ∆t/3 and is implicit in one direction and explicit

in the others, is only conditionally stable, and the requirements of stability give

a restrictively small value of ∆t. There are, however, a multitude of possible sets

of coupled discrete equations that, when combined, give the same semi-implicit

equation up to second order in ∆t. This fact has given rise to a number of dif-

ferent three-dimensional ADI schemes, which have different stability properties.

The method that we have used is unconditionally stable, and is attributable to

Brian (1961) and Douglas (1962).

As in two dimensions, we used a midpoint method to determine the veloc-

ity at the half time step, and so to retain second-order accuracy for the time

derivative. We parallelized the code using a hybrid scheme involving both open

multi-processing (OpenMP) and message-passing interface (MPI) specifications.

A.3.3 Verification of numerical scheme

We verified our numerical scheme by reproducing published measurements of

Nu(Ra) for low values of Ra. We observed the onset of convection with a two-

dimensional mode at Ra = Rac = 4π2 (Holst & Aziz, 1972). We recovered the

results of Schubert & Straus (1979) for Ra < 300, including the transition at
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Ra ≈ 97 to fully three-dimensional convection.

As discussed above in §A.1.6, we chose a horizontal resolution to fully resolve

the smallest horizontal scales, which appear to decrease like Ra−1. The vertical

scale was chosen to ensure that multiple grid points lay inside the thin boundary

layers near the upper and lower boundaries of the domain, the depth of which is

also anticipated to scale with Ra−1. We tested simulations with both double and

half the horizontal resolutionRa = 2000, and with both larger and smaller vertical

resolutions, and we recovered statistically identical results. Although, to reduce

the numerical cost, we used slightly fewer points in the vertical direction than

for the two-dimensional simulations discussed in §A.1, the simulations remain

very well resolved in the vertical direction (see figure A.4b). Typical values of

the horizontal and (transformed) vertical discretization range from ∆x = ∆y =

(128)−1 and ∆ζ = (130)−1 at Ra = 1000, to ∆x = ∆y = (1024)−1 and ∆ζ =

(200)−1 at Ra = 104.
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