Quantum Field Theory: Example Sheet 2

Dr David Tong, October 2007

1. A string has classical Hamiltonian given by

$$
H=\sum_{n=1}^{\infty}\left(\frac{1}{2} p_{n}^{2}+\frac{1}{2} \omega_{n}^{2} q_{n}^{2}\right)
$$

where ω_{n} is the frequency of the nth mode. (Compare this Hamiltonian to the Lagrangian (3) in Example Sheet 1. We have set the mass per unit length in that question to $\sigma=1$ to simplify some of the formulae a little). After quantization, q_{n} and p_{n} become operators satisfying

$$
\left[q_{n}, q_{m}\right]=\left[p_{n}, p_{m}\right]=0 \quad \text { and } \quad\left[q_{n}, p_{m}\right]=i \delta_{n m}
$$

Introduce creation and annihilation operators a_{n} and a_{n}^{\dagger},

$$
a_{n}=\sqrt{\frac{\omega_{n}}{2}} q_{n}+\frac{i}{\sqrt{2 \omega_{n}}} p_{n} \quad \text { and } \quad a_{n}^{\dagger}=\sqrt{\frac{\omega_{n}}{2}} q_{n}-\frac{i}{\sqrt{2 \omega_{n}}} p_{n}
$$

Show that they satisfy the commutation relations

$$
\left[a_{n}, a_{m}\right]=\left[a_{n}^{\dagger}, a_{m}^{\dagger}\right]=0 \quad \text { and } \quad\left[a_{n}, a_{m}^{\dagger}\right]=\delta_{n m}
$$

Show that the Hamiltonian of the system can be written in the form

$$
H=\sum_{n=1}^{\infty} \frac{1}{2} \omega_{n}\left(a_{n} a_{n}^{\dagger}+a_{n}^{\dagger} a_{n}\right)
$$

Given the existence of a ground state $|0\rangle$ such that $a_{n}|0\rangle=0$, explain how, after removing the vacuum energy, the Hamiltonian can be expressed as

$$
H=\sum_{n=1}^{\infty} \omega_{n} a_{n}^{\dagger} a_{n}
$$

Show further that $\left[H, a_{n}^{\dagger}\right]=\omega_{n} a_{n}^{\dagger}$ and hence calculate the energy of the state

$$
\left|l_{1}, l_{2}, \ldots, l_{N}\right\rangle=\left(a_{1}^{\dagger}\right)^{l_{1}}\left(a_{2}^{\dagger}\right)^{l_{2}} \ldots\left(a_{N}^{\dagger}\right)^{l_{N}}|0\rangle
$$

2. The Fourier decomposition of a real scalar field and its conjugate momentum in the Schrödinger picture is given by

$$
\begin{aligned}
\phi(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left[a_{\vec{p}} e^{i \vec{p} \cdot \vec{x}}+a_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right] \\
\pi(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}}(-i) \sqrt{\frac{E_{\vec{p}}}{2}}\left[a_{\vec{p}} e^{i \vec{p} \cdot \vec{x}}-a_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right]
\end{aligned}
$$

Show that the commutation relations

$$
[\phi(\vec{x}), \phi(\vec{y})]=[\pi(\vec{x}), \pi(\vec{y})]=0 \quad \text { and } \quad[\phi(\vec{x}), \pi(\vec{y})]=i \delta^{(3)}(\vec{x}-\vec{y})
$$

imply that

$$
\left[a_{\vec{p}}, a_{\vec{q}}\right]=\left[a_{\vec{p}}^{\dagger}, a_{\vec{q}}^{\dagger}\right]=0 \quad \text { and } \quad\left[a_{\vec{p}}, a_{\vec{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{q})
$$

3. Consider a real scalar field with the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} \tag{1}
\end{equation*}
$$

Show that, after normal ordering, the conserved four-momentum $P^{\mu}=\int d^{3} x T^{0 \mu}$ takes the operator form

$$
P^{\mu}=\int \frac{d^{3} p}{(2 \pi)^{3}} p^{\mu} a_{\vec{p}}^{\dagger} a_{\vec{p}}
$$

where $p^{0}=E_{\vec{p}}$ in this expression. From this expression for P^{μ} verify that if $\phi(x)$ is now in the Heisenberg picture, then

$$
\left[P^{\mu}, \phi(x)\right]=-i \partial^{\mu} \phi(x)
$$

4. Show that in the Heisenberg picture,

$$
\dot{\phi}(x)=i[H, \phi(x)]=\pi(x) \quad \text { and } \quad \dot{\pi}(x)=i[H, \pi(x)]=\nabla^{2} \phi(x)-m^{2} \phi(x)
$$

Hence show that the operator $\phi(x)$ satisfies the Klein-Gordon equation.
5. Let $\phi(x)$ be a real scalar field in the Heisenberg picture. Show that the relativistically normalized one-particle states $|p\rangle=\sqrt{2 E_{\vec{p}}} a_{\vec{p}}^{\dagger}|0\rangle$ satisfy

$$
\langle 0| \phi(x)|p\rangle=e^{-i p \cdot x}
$$

6. In Example Sheet 1, you showed that the classical angular momentum of field is given by

$$
Q_{i}=\frac{1}{2} \epsilon_{i j k} \int d^{3} x\left(x^{j} T^{0 k}-x^{k} T^{0 j}\right)
$$

Write down the explicit form of the angular momentum for a free real scalar field with Lagrangian (1). Show that, after normal ordering, the quantum operator Q_{i} can be written as

$$
Q_{i}=\frac{i}{2} \epsilon_{i j k} \int \frac{d^{3} p}{(2 \pi)^{3}} a_{\vec{p}}^{\dagger}\left(p^{j} \frac{\partial}{\partial p_{k}}-p^{k} \frac{\partial}{\partial p_{j}}\right) a_{\vec{p}}
$$

Hence confirm that the quanta of the scalar field have spin zero (i.e. a stationary one-particle state $|\vec{p}=0\rangle$ has zero angular momentum).
7. The purpose of this question is to introduce you to non-relativistic quantum field theory. This is the only place you will encounter such a thing in this course. Consider the Lagrangian for a complex scalar field ψ given by

$$
\mathcal{L}=+i \psi^{\star} \partial_{0} \psi-\frac{1}{2 m} \nabla \psi^{\star} \cdot \nabla \psi
$$

Determine the equation of motion, the energy-momentum tensor and the conserved current arising from the symmetry $\psi \rightarrow e^{i \alpha} \psi$. Show that the momentum conjugate to ψ is $i \psi^{\star}$ and compute the classical Hamiltonian.

We now wish to quantize this theory. We will work in the Schrödinger picture. Explain why the correct commutation relations are

$$
[\psi(\vec{x}), \psi(\vec{y})]=\left[\psi^{\dagger}(\vec{x}), \psi^{\dagger}(\vec{y})\right]=0 \quad \text { and } \quad\left[\psi(\vec{x}), \psi^{\dagger}(\vec{y})\right]=\delta^{(3)}(\vec{x}-\vec{y})
$$

Expand the fields in a Fourier decomposition as

$$
\begin{aligned}
\psi(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} a_{\vec{p}} e^{i \vec{p} \cdot \vec{x}} \\
\psi^{\dagger}(\vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} a_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}
\end{aligned}
$$

Determine the commutation relations obeyed by $a_{\vec{p}}$ and $a_{\vec{p}}^{\dagger}$. Why do we have only a single set of creation and annihilation operators $a_{\vec{p}}, a_{\vec{p}}^{\dagger}$ even though ψ is complex? What is the physical significance of this fact? Show that one particle states have the energy appropriate to a free non-relativistic particle of mass m.
8. Show that the time ordered product $\mathrm{T}\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right)$ and the normal ordered product : $\phi\left(x_{1}\right) \phi\left(x_{2}\right)$: are both symmetric under the interchange of x_{1} and x_{2}. Deduce that the Feynman propagator $\Delta_{F}\left(x_{1}-x_{2}\right)$ has the same symmetry property.
9. Verify Wick's theorem for the case of three scalar fields:

$$
\begin{aligned}
T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)\right)= & : \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right):+\phi\left(x_{1}\right) \Delta_{F}\left(x_{2}-x_{3}\right) \\
& +\phi\left(x_{2}\right) \Delta_{F}\left(x_{3}-x_{1}\right)+\phi\left(x_{3}\right) \Delta_{F}\left(x_{1}-x_{2}\right)
\end{aligned}
$$

10. Consider the scalar Yukawa theory given by the Lagrangian

$$
\mathcal{L}=\partial_{\mu} \psi^{\star} \partial^{\mu} \psi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-M^{2} \psi^{\star} \psi-\frac{1}{2} m^{2} \phi^{2}-g \psi^{\star} \psi \phi
$$

Compute the amplitude for

- "Nucleon-Anti-Nucleon" annihilation $\psi+\bar{\psi} \rightarrow \phi$ at order g
- "Nucleon-Meson" scattering $\phi+\psi \rightarrow \phi+\psi$ at order g^{2}

