
7. Low Energy E↵ective Actions

So far, we’ve only discussed strings propagating in flat spacetime. In this section we

will consider strings propagating in di↵erent backgrounds. This is equivalent to having

di↵erent CFTs on the worldsheet of the string.

There is an obvious generalization of the Polyakov action to describe a string moving

in curved spacetime,

S =
1

4⇡↵0

Z
d2�

p
g g↵� @↵X

µ @�X
⌫ Gµ⌫(X) (7.1)

Here g↵� is again the worldsheet metric. This action describes a map from the world-

sheet of the string into a spacetime with metric Gµ⌫(X). (Despite its name, this metric

is not to be confused with the Einstein tensor which we won’t have need for in this

lecture notes).

Actions of the form (7.1) are known as non-linear sigma models. (This strange name

has its roots in the history of pions). In this context, the D-dimensional spacetime is

sometimes called the target space. Theories of this type are important in many aspects

of physics, from QCD to condensed matter.

Although it’s obvious that (7.1) describes strings moving in curved spacetime, there’s

something a little fishy about just writing it down. The problem is that the quantization

of the closed string already gave us a graviton. If we want to build up some background

metricGµ⌫(X), it should be constructed from these gravitons, in much the same manner

that a laser beam is made from the underlying photons. How do we see that the metric

in (7.1) has anything to do with the gravitons that arise from the quantization of the

string?

The answer lies in the use of vertex operators. Let’s expand the metric as a small

fluctuation around flat space

Gµ⌫(X) = �µ⌫ + hµ⌫(X)

Then the partition function that we build from the action (7.1) is related to the partition

function for a string in flat space by

Z =

Z
DXDg e�SPoly�V =

Z
DXDg e�SPoly(1� V +

1

2
V 2 + . . .)
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where SPoly is the action for the string in flat space given in (1.22) and V is the

expression

V =
1

4⇡↵0

Z
d2�

p
g g↵�@↵ X

µ @�X
⌫ hµ⌫(X) (7.2)

But we’ve seen this before: it’s the vertex operator associated to the graviton state of

the string! For a plane wave, corresponding to a graviton with polarization given by

the symmetric, traceless tensor ⇣µ⌫ and momentum pµ, the fluctuation is given by

hµ⌫(X) = ⇣µ⌫ eip·X

With this choice, the expression (7.2) agrees with the vertex operator (5.9). But in

general, we could take any linear superposition of plane waves to build up a general

fluctuation hµ⌫(X).

We know that inserting a single copy of V in the path integral corresponds to the

introduction of a single graviton state. Inserting eV in the path integral corresponds

to a coherent state of gravitons, changing the metric from �µ⌫ to �µ⌫ + hµ⌫ . In this

way we see that the background curved metric of (7.1) is indeed built of the quantized

gravitons that we first met back in Section 2.

7.1 Einstein’s Equations

In conformal gauge, the Polyakov action in flat space reduces to a free theory. This

fact was extremely useful, allowing us to compute the spectrum of the theory. But on a

curved background, it is no longer the case. In conformal gauge, the worldsheet theory

is described by an interacting two-dimensional field theory,

S =
1

4⇡↵0

Z
d2� Gµ⌫(X) @↵X

µ @↵X⌫ (7.3)

To understand these interactions in more detail, let’s expand around a classical solution

which we take to simply be a string sitting at a point x̄µ.

Xµ(�) = x̄µ +
p
↵0 Y µ(�)

Here Y µ are the dynamical fluctuations about the point which we assume to be small.

The factor of
p
↵0 is there for dimensional reasons: since [X] = �1, we have [Y ] = 0

and statements like Y ⌧ 1 make sense. Expanding the Lagrangian gives

Gµ⌫(X) @Xµ@X⌫ = ↵0

Gµ⌫(x̄) +

p
↵0Gµ⌫,!(x̄)Y

! +
↵0

2
Gµ⌫,!⇢(x̄)Y

!Y ⇢ + . . .

�
@Y µ @Y ⌫

Each of the coe�cients Gµ⌫,... in the Taylor expansion are coupling constants for the

interactions of the fluctuations Y µ. The theory has an infinite number of coupling

constants and they are nicely packaged into the function Gµ⌫(X).
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We want to know when this field theory is weakly coupled. Obviously this requires

the whole infinite set of coupling constants to be small. Let’s try to characterize this in

a crude manner. Suppose that the target space has characteristic radius of curvature

rc, meaning schematically that

@G

@X
⇠ 1

rc

The radius of curvature is a length scale, so [rc] = �1. From the expansion of the

metric, we see that the e↵ective dimensionless coupling is given by

p
↵0

rc
(7.4)

This means that we can use perturbation theory to study the CFT (7.3) if the spacetime

metric only varies on scales much greater than
p
↵0. The perturbation series in

p
↵0/rc

is usually called the ↵0-expansion to distinguish it from the gs expansion that we saw

in the previous section. Typically a quantity computed in string theory is given by a

double perturbation expansion: one in ↵0 and one in gs.

If there are regions of spacetime where the radius of curvature becomes comparable

to the string length scale, rc ⇠
p
↵0, then the worldsheet CFT is strongly coupled and

we will need to develop new methods to solve it. Notice that strong coupling in ↵0 is

hard, but the problem is at least well-defined in terms of the worldsheet path integral.

This is qualitatively di↵erent to the question of strong coupling in gs for which, as

discussed in Section 6.4.5, we’re really lacking a good definition of what the problem

even means.

7.1.1 The Beta Function

Classically, the theory defined by (7.3) is conformally invariant. But this is not neces-

sarily true in the quantum theory. To regulate divergences we will have to introduce a

UV cut-o↵ and, typically, after renormalization, physical quantities depend on the scale

of a given process µ. If this is the case, the theory is no longer conformally invariant.

There are plenty of theories which classically possess scale invariance which is broken

quantum mechanically. The most famous of these is Yang-Mills.

As we’ve discussed several times, in string theory conformal invariance is a gauge

symmetry and we can’t a↵ord to lose it. Our goal in this section is to understand the

circumstances under which (7.3) retains conformal invariance at the quantum level.
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The object which describes how couplings depend on a scale µ is called the �-function.

Since we have a functions worth of couplings, we should really be talking about a �-

functional, schematically of the form

�µ⌫(G) ⇠ µ
@Gµ⌫(X;µ)

@µ

The quantum theory will be conformally invariant only if

�µ⌫(G) = 0

We now compute this for the non-linear sigma model at one-loop. Our strategy will be

to isolate the UV divergence of the theory and figure out what kind of counterterm we

should add. The beta-function will vanish if this counterterm vanishes.

The analysis is greatly simplified by a cunning choice of coordinates. Around any

point x̄, we can always pick Riemann normal coordinates such that the expansion in

Xµ = x̄µ +
p
↵0 Y µ gives

Gµ⌫(X) = �µ⌫ �
↵0

3
Rµ�⌫(x̄)Y

�Y  +O(Y 3)

To quartic order in the fluctuations, the action becomes

S =
1

4⇡

Z
d2� @Y µ @Y ⌫�µ⌫ �

↵0

3
Rµ�⌫ Y

�Y @Y µ@Y ⌫

We can now treat this as an interacting quantum field theory in two dimensions. The

quartic interaction gives a vertex with the Feynman rule,

⇠ Rµ�⌫ (k
µ · k⌫)

where kµ

↵
is the 2d momentum (↵ = 1, 2 is a worldsheet index) for the scalar field Y µ.

It sits in the Feynman rules because we are talking about derivative interactions.

Now we’ve reduced the problem to a simple interacting quantum field theory, we can

compute the �-function using whatever method we like. The divergence in the theory

comes from the one-loop diagram
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It’s actually simplest to think about this diagram in position space. The propagator

for a scalar particle is

hY �(�)Y (�0)i = �1

2
�� ln |� � �0|2

For the scalar field running in the loop, the beginning and end point coincide. The

propagator diverges as � ! �0, which is simply reflecting the UV divergence that we

would see in the momentum integral around the loop.

To isolate this divergence, we choose to work with dimensional regularization, with

d = 2 + ✏. The propagator then becomes,

hY �(�)Y (�0)i = 2⇡��
Z

d2+✏k

(2⇡)2+✏

eik·(���
0)

k2

�! ��

✏
as � ! �0

The necessary counterterm for this divergence can be determined simply by replacing

Y �Y  in the action with hY �Y i. To subtract the 1/✏ term, we add the counterterm

Rµ�⌫ Y
�Y @Y µ@Y ⌫ ! Rµ�⌫ Y

�Y @Y µ@Y ⌫ � 1

✏
Rµ⌫ @Y

µ@Y ⌫

One can check that this can be absorbed by a wavefunction renormalization Y µ !
Y µ+(↵0/6✏)Rµ

⌫
Y ⌫ , together with the renormalization of the coupling constant which,

in our theory, is the metric Gµ⌫ . We require,

Gµ⌫ ! Gµ⌫ +
↵0

✏
Rµ⌫ (7.5)

From this we learn the beta function of the theory and the condition for conformal

invariance. It is

�µ⌫(G) = ↵0Rµ⌫ = 0 (7.6)

This is a magical result! The requirement for the sigma-model to be conformally in-

variant is that the target space must be Ricci flat: Rµ⌫ = 0. Or, in other words, the

background spacetime in which the string moves must obey the vacuum Einstein equa-

tions! We see that the equations of general relativity also describe the renormalization

group flow of 2d sigma models.

There are several more magical things just around the corner, but it’s worth pausing

to make a few diverse comments.
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Beta Functions and Weyl Invariance

The above calculation e↵ectively studies the breakdown of conformal invariance in the

CFT (7.3) on a flat worldsheet. We know that this should be the same thing as the

breakdown of Weyl invariance on a curved worldsheet. Since this is such an important

result, let’s see how it works from this other perspective. We can consider the worldsheet

metric

g↵� = e2��↵�

Then, in dimensional regularization, the theory is not Weyl invariant in d = 2 + ✏

dimensions because the contribution from
p
g does not quite cancel that from the

inverse metric g↵�. The action is

S =
1

4⇡↵0

Z
d2+✏� e�✏@↵X

µ @↵X⌫ Gµ⌫(X)

⇡ 1

4⇡↵0

Z
d2+✏� (1 + �✏) @↵X

µ @↵X⌫ Gµ⌫(X)

where, in this expression, the ↵ = 1, 2 index is now raised and lowered with �↵�. If we

replace Gµ⌫ in this expression with the renormalized metric (7.5), we see that there’s

a term involving � which remains even as ✏ ! 0,

S =
1

4⇡↵0

Z
d2� @↵X

µ@↵X⌫ [Gµ⌫(X) + ↵0�Rµ⌫(X)]

This indicates a breakdown of Weyl invariance. Indeed, we can look at our usual

diagnostic for Weyl invariance, namely the vanishing of T ↵

↵
. In conformal gauge, this

is given by

T↵� = +
4⇡
p
g

@S

@g↵�
= �2⇡

@S

@�
�↵� ) T ↵

↵
= �1

2
Rµ⌫ @X

µ @X⌫

In this way of looking at things, we define the �-function to be the coe�cient in front

of @X@X, namely

T ↵

↵
= � 1

2↵0 �µ⌫ @X
µ@X⌫

Again, we have the result

�µ⌫ = ↵0Rµ⌫
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7.1.2 Ricci Flow

In string theory we only care about conformal theories with Ricci flat metrics. (And

generalizations of this result that we will discuss shortly). However, in other areas of

physics and mathematics, the RG flow itself is important. It is usually called Ricci

flow,

µ
@Gµ⌫

@µ
= ↵0Rµ⌫ (7.7)

which dictates how the metric changes with scale µ.

As an illustrative and simple example, consider the target space S2 with radius r.

This is an important model in condensed matter physics where it describes the low-

energy limit of a one-dimensional Heisenberg spin chain. It is sometimes called the

O(3) sigma-model. Because the sphere is a symmetric space, the only e↵ect of the RG

flow is to make the radius scale dependent: r = r(µ). The beta function is given by

µ
@r2

@µ
=

↵0

2⇡

Hence r gets large as we go towards the UV and small towards the IR. Since the coupling

is 1/r, this means that the non-linear sigma model with S2 target space is asymptoti-

cally free. At low energies, the theory is strongly coupled and perturbative calculations

— such as this one-loop beta function — are no longer trusted. In particular, one can

show that the S2 sigma-model develops a mass gap in the IR.

The idea of Ricci flow (7.7) was recently used by Perelman to prove the Poincaré

conjecture. In fact, Perelman used a slightly generalized version of Ricci flow which we

will see shortly. In the language of string theory, he introduced the dilaton field.

7.2 Other Couplings

We’ve understood how strings couple to a background spacetime metric. But what

about the other modes of the string? In Section 2, we saw that a closed string has

further massless states which are associated to the anti-symmetric tensor Bµ⌫ and the

dilaton �. We will now see how the string reacts if these fields are turned on in

spacetime.

7.2.1 Charged Strings and the B field

Let’s start by looking at how strings couple to the anti-symmetric field Bµ⌫ . We

discussed the vertex operator associated to this state in Section 5.4.1. It is given in
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(5.9) and takes the same form as the graviton vertex operator, but with ⇣µ⌫ anti-

symmetric. It is a simple matter to exponentiate this, to get an expression for how

strings propagate in background Bµ⌫ field. We’ll keep the curved metric Gµ⌫ as well to

get the general action,

S =
1

4⇡↵0

Z
d2�

p
g
�
Gµ⌫(X) @↵X

µ @�X
⌫g↵� + iBµ⌫(X) @↵X

µ @�X
⌫ ✏↵�

�
(7.8)

Where ✏↵� is the anti-symmetric 2-tensor, normalized such that
p
g✏12 = +1. (The

factor of i is there in the action because we’re in Euclidean space and this new term

has a single “time” derivative). The action retains invariance under worldsheet repa-

rameterizations and Weyl rescaling.

So what is the interpretation of this new term? We will now show that we should

think of the field Bµ⌫ as analogous to the gauge potential Aµ in electromagnetism. The

action (7.8) is telling us that the string is “electrically charged” under Bµ⌫ .

Gauge Potentials

We’ll take a short detour to remind ourselves about some pertinent facts in electro-

magnetism. Let’s start by returning to a point particle. We know that a charged point

particle couples to a background gauge potential Aµ through the addition of a worldline

term to the action,

Z
d⌧ Aµ(X) Ẋµ . (7.9)

If this relativistic form looks a little unfamiliar, we can deconstruct it by working in

static gauge with X0 ⌘ t = ⌧ , where it reads

Z
dt A0(X) + Ai(X) Ẋ i ,

which should now be recognizable as the Lagrangian that gives rise to the Coulomb

and Lorentz force laws for a charged particle.

So what is the generalization of this kind of coupling for a string? First note that (7.9)

has an interesting geometrical structure. It is the pull-back of the one-form A = AµdXµ

in spacetime onto the worldline of the particle. This works because A is a one-form and

the worldline is one-dimensional. Since the worldsheet of the string is two-dimensional,

the analogous coupling should be to a two-form in spacetime. This is an anti-symmetric
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tensor field with two indices, Bµ⌫ . The pull-back of Bµ⌫ onto the worldsheet gives the

interaction,
Z

d2� Bµ⌫(X) @↵X
µ @�X

⌫ ✏↵� . (7.10)

This is precisely the form of the interaction we found in (7.8).

The point particle coupling (7.9) is invariant under gauge transformations of the

background field Aµ ! Aµ + @µ↵. This follows because the Lagrangian changes by a

total derivative. There is a similar statement for the two-form Bµ⌫ . The spacetime

gauge symmetry is,

Bµ⌫ ! Bµ⌫ + @µC⌫ � @⌫Cµ (7.11)

under which the Lagrangian (7.10) changes by a total derivative.

In electromagnetism, one can construct the gauge invariant electric and magnetic

fields which are packaged in the two-form field strength F = dA. Similarly, for Bµ⌫ ,

the gauge invariant field strength H = dB is a three-form,

Hµ⌫⇢ = @µB⌫⇢ + @⌫B⇢µ + @⇢Bµ⌫ .

This 3-form H is sometimes known as the torsion. It plays the same role as torsion in

general relativity, providing an anti-symmetric component to the a�ne connection.

7.2.2 The Dilaton

Let’s now figure out how the string couples to a background dilaton field �(X). This is

more subtle. A naive construction of the vertex operator is not primary and one must

work a little harder. The correct derivation of the vertex operators can be found in

Polchinski. Here I will simply give the coupling and explain some important features.

The action of a string moving in a background involving profiles for the massless

fields Gµ⌫ , Bµ⌫ and �(X) is given by

S =
1

4⇡↵0

Z
d2�

p
g
�
Gµ⌫(X) @↵X

µ @�X
⌫g↵� + iBµ⌫(X) @↵X

µ @�X
⌫ ✏↵�

+ ↵0 �(X)R(2)
�

(7.12)

where R(2) is the two-dimensional Ricci scalar of the worldsheet. (Up until now, we’ve

always denoted this simply as R but we’ll introduce the superscript from hereon to

distinguish the worldsheet Ricci scalar from the spacetime Ricci scalar).
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The coupling to the dilaton is surprising for several reasons. Firstly, we see that the

term in the action vanishes on a flat worldsheet, R(2) = 0. This is one of the reasons

that it’s a little trickier to determine this coupling using vertex operators.

However, the most surprising thing about the coupling to the dilaton is that it

does not respect Weyl invariance! Since a large part of this course has been about

understanding the implications of Weyl invariance, why on earth are we willing to

throw it away now?! The answer, of course, is that we’re not. Although the dilaton

coupling does violate Weyl invariance, there is a way to restore it. We will explain

this shortly. But firstly, let’s discuss one crucially important implication of the dilaton

coupling (7.12).

The Dilaton and the String Coupling

There is an exception to the statement that the classical coupling to the dilaton violates

Weyl invariance. This arises when the dilaton is constant. For example, suppose

�(X) = � , a constant

Then the dilaton coupling reduces to something that we’ve seen before: it is

Sdilaton = ��

where � is the Euler character of the worldsheet that we introduced in (6.4). This tells

us something important: the constant mode of the dilaton, h�i determines the string

coupling constant. This constant mode is usually taken to be the asymptotic value of

the dilaton,

�0 = limit
X!1

�(X) (7.13)

The string coupling is then given by

gs = e�0 (7.14)

So the string coupling is not an independent parameter of string theory: it is the

expectation value of a field. This means that, just like the spacetime metric Gµ⌫ (or,

indeed, like the Higgs vev) it can be determined dynamically.

We’ve already seen that our perturbative expansion around flat space is valid as long

as gs ⌧ 1. But now we have a stronger requirement: we can only trust perturbation

theory if the string is localized in regions of space where e�(X) ⌧ 1 for all X. If the

string ventures into regions where e�(X) is of order 1, then we will need to use techniques

that don’t rely on string perturbation theory as described in Section 6.4.5.
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7.2.3 Beta Functions

We now return to understanding how we can get away with the violation of Weyl

invariance in the dilaton coupling (7.12). The key to this is to notice the presence of

↵0 in front of the dilaton coupling. It’s there simply on dimensional grounds. (The

other two terms in the action both come with derivatives [@X] = �1, so don’t need

any powers of ↵0).

However, recall that ↵0 also plays the role of the loop-expansion parameter (7.4) in

the non-linear sigma model. This means that the classical lack of Weyl invariance in

the dilaton coupling can be compensated by a one-loop contribution arising from the

couplings to Gµ⌫ and Bµ⌫ .

To see this explicitly, one can compute the beta-functions for the two-dimensional

field theory (7.12). In the presence of the dilaton coupling, it’s best to look at the

breakdown of Weyl invariance as seen by hT ↵

↵
i. There are three di↵erent kinds of

contribution that the stress-tensor can receive, related to the three di↵erent spacetime

fields. Correspondingly, we define three di↵erent beta functions,

hT ↵

↵
i = � 1

2↵0�µ⌫(G) g↵�@↵X
µ @�X

⌫ � i

2↵0�µ⌫(B) ✏↵�@↵X
µ @�X

⌫ � 1

2
�(�)R(2) (7.15)

We will not provide the details of the one-loop beta function computations. We merely

state the results8,

�µ⌫(G) = ↵0Rµ⌫ + 2↵0rµr⌫�� ↵0

4
Hµ�H

�

⌫

�µ⌫(B) = �↵0

2
r�H�µ⌫ + ↵0r��H�µ⌫

�(�) = �↵0

2
r2�+ ↵0rµ�rµ�� ↵0

24
Hµ⌫�H

µ⌫�

A consistent background of string theory must preserve Weyl invariance, which now

requires �µ⌫(G) = �µ⌫(B) = �(�) = 0.

7.3 The Low-Energy E↵ective Action

The equations �µ⌫(G) = �µ⌫(B) = �(�) = 0 can be viewed as the equations of motion

for the background in which the string propagates. We now change our perspective: we

8
The relationship between the beta function and Einstein’s equations was first shown by Friedan

in his 1980 PhD thesis. A readable account of the full beta functions can be found in the paper by

Callan, Friedan, Martinec and Perry “Strings in Background Fields”, Nucl. Phys. B262 (1985) 593.

The full calculational details can be found in TASI lecture notes by Callan and Thorlacius which can

be downloaded from the course webpage.
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look for a D = 26 dimensional spacetime action which reproduces these beta-function

equations as the equations of motion. This is the low-energy e↵ective action of the

bosonic string,

S =
1

22
0

Z
d26X

p
�Ge�2�

✓
R� 1

12
Hµ⌫�H

µ⌫� + 4@µ� @µ�

◆
(7.16)

where we have taken the liberty of Wick rotating back to Minkowski space for this

expression. Here the overall constant involving 0 is not fixed by the field equations

but can be determined by coupling these equations to a suitable source as described,

for example, in 7.4.2. On dimensional grounds alone, it scales as 2
0 ⇠ l24

s
where ↵0 = l2

s
.

Varying the action with respect to the three fields can be shown to yield the beta

functions thus,

�S =
1

22
0↵

0

Z
d26X

p
�Ge�2� (�Gµ⌫ �

µ⌫(G)� �Bµ⌫ �
µ⌫(B)

�(2��+
1

2
Gµ⌫ �Gµ⌫)(�

�

�
(G)� 4�(�))

◆

Equation (7.16) governs the low-energy dynamics of the spacetime fields. The caveat

“low-energy” refers to the fact that we only worked with the one-loop beta functions

which requires large spacetime curvature.

Something rather remarkable has happened here. We started, long ago, by looking

at how a single string moves in flat space. Yet, on grounds of consistency alone, we’re

led to the action (7.16) governing how spacetime and other fields fluctuate in D = 26

dimensions. It feels like the tail just wagged the dog. That tiny string is seriously high-

maintenance: its requirements are so stringent that they govern the way the whole

universe moves.

You may also have noticed that we now have two di↵erent methods to compute the

scattering of gravitons in string theory. The first is in terms of scattering amplitudes

that we discussed in Section 6. The second is by looking at the dynamics encoded in

the low-energy e↵ective action (7.16). Consistency requires that these two approaches

agree. They do.

7.3.1 String Frame and Einstein Frame

The action (7.16) isn’t quite of the familiar Einstein-Hilbert form because of that

strange factor of e�2� that’s sitting out front. This factor simply reflects the fact

that the action has been computed at tree level in string perturbation theory and, as

we saw in Section 6, such terms typically scale as 1/g2
s
.
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It’s also worth pointing out that the kinetic terms for � in (7.16) seem to have

the wrong sign. However, it’s not clear that we should be worried about this because,

again, the factor of e�2� sits out front meaning that the kinetic terms are not canonically

normalized anyway.

To put the action in more familiar form, we can make a field redefinition. Firstly,

it’s useful to distinguish between the constant part of the dilaton, �0, and the part

that varies which we call �̃. We defined the constant part in (7.13); it is related to the

string coupling constant. The varying part is simply given by

�̃ = �� �0 (7.17)

In D dimensions, we define a new metric G̃µ⌫ as a combination of the old metric and

the dilaton,

G̃µ⌫(X) = e�4�̃/(D�2) Gµ⌫(X) (7.18)

Note that this isn’t to be thought of as a coordinate transformation or symmetry of

the action. It’s merely a relabeling, a mixing-up, of the fields in the theory. We could

make such redefinitions in any field theory. Typically, we choose not to because the

fields already have canonical kinetic terms. The point of the transformation (7.18) is

to get the fields in (7.16) to have canonical kinetic terms as well.

The new metric (7.18) is related to the old by a conformal rescaling. One can check

that two metrics related by a general conformal transformation G̃µ⌫ = e2!Gµ⌫ , have

Ricci scalars related by

R̃ = e�2!
�
R� 2(D � 1)r2! � (D � 2)(D � 1)@µ! @µ!

�

(We used a particular version of this earlier in the course when considering D = 2

conformal transformations). With the choice ! = �2�̃/(D�2) in (7.18), and restricting

back to D = 26, the action (7.16) becomes

S =
1

22

Z
d26X

p
�G̃

✓
R̃� 1

12
e��̃/3Hµ⌫�H

µ⌫� � 1

6
@µ�̃@

µ�̃

◆
(7.19)

The kinetic terms for �̃ are now canonical and come with the right sign. Notice that

there is no potential term for the dilaton and therefore nothing that dynamically sets

its expectation value in the bosonic string. However, there do exist backgrounds of

the superstring in which a potential for the dilaton develops, fixing the string coupling

constant.
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The gravitational part of the action takes the standard Einstein-Hilbert form. The

gravitational coupling is given by

2 = 2
0 e

2�0 ⇠ l24
s
g2
s

(7.20)

The coe�cient in front of Einstein-Hilbert term is usually identified with Newton’s

constant

8⇡GN = 2

Note, however, that this is Newton’s constant in D = 26 dimensions: it will di↵er from

Newton’s constant measured in a four-dimensional world. From Newton’s constant, we

define the D = 26 Planck length 8⇡GN = l24
p

and Planck mass Mp = l�1
p
. (With the

factor of 8⇡ sitting there, this is usually called the reduced Planck mass). Comparing

to (7.20), we see that weak string coupling, gs ⌧ 1, provides a parameteric separation

between the Planck scale and the string scale,

gs ⌧ 1 ) lp ⌧ ls

Often the mysteries of gravitational physics are associated with the length scale lp. We

understand string theory best when gs ⌧ 1 where much of stringy physics occurs at

ls � lp and can be disentangled from strong coupling e↵ects in gravity.

The original metric Gµ⌫ is usually called the string metric or sigma-model metric. It

is the metric that strings see, as reflected in the action (7.1). In contrast, G̃µ⌫ is called

the Einstein metric. Of course, the two actions (7.16) and (7.19) describe the same

physics: we have simply chosen to package the fields in a di↵erent way in each. The

choice of metric — Gµ⌫ or G̃µ⌫ — is usually referred to as a choice of frame: string

frame, or Einstein frame.

The possibility of defining two metrics really arises because we have a massless scalar

field � in the game. Whenever such a field exists, there’s nothing to stop us measuring

distances in di↵erent ways by including � in our ruler. Said another way, massless

scalar fields give rise to long range attractive forces which can mix with gravitational

forces and violate the principle of equivalence. Ultimately, if we want to connect to

Nature, we need to find a way to make �massive. Such mechanisms exist in the context

of the superstring.

7.3.2 Corrections to Einstein’s Equations

Now that we know how Einstein’s equations arise from string theory, we can start to

try to understand new physics. For example, what are the quantum corrections to

Einstein’s equations?
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On general grounds, we expect these corrections to kick in when the curvature rc
of spacetime becomes comparable to the string length scale

p
↵0. But that dovetails

very nicely with the discussion above where we saw that the perturbative expansion

parameter for the non-linear sigma model is ↵0/r2
c
. Computing the next loop correction

to the beta function will result in corrections to Einstein’s equations!

If we ignore H and � , the 2-loop sigma-model beta function can be easily computed

and results in the ↵0 correction to Einstein’s equations:

�µ⌫ = ↵0Rµ⌫ +
1

2
↵0 2Rµ�⇢�R �⇢�

⌫
+ . . . = 0

Such two loop corrections also appear in the heterotic superstring. However, they are

absent for the type II string theories, with the first corrections appearing at 4-loops

from the perspective of the sigma-model.

String Loop Corrections

Perturbative string theory has an ↵0 expansion and gs expansion. We still have to

discuss the latter. Here an interesting subtlety arises. The sigma-model beta functions

arise from regulating the UV divergences of the worldsheet. Yet the gs expansion cares

only about the topology of the string. How can the UV divergences care about the

global nature of the worldsheet. Or, equivalently, how can the higher-loop corrections

to the beta-functions give anything interesting?

The resolution to this puzzle is to remember that, when computing higher gs correc-

tions, we have to integrate over the moduli space of Riemann surfaces. But this moduli

space will include some tricky points where the Riemann surface degenerates. (For

example, one cycle of the torus may pinch o↵). At these points, the UV divergences

suddenly do care about global topology and this results in the gs corrections to the

low-energy e↵ective action.

7.3.3 Nodding Once More to the Superstring

In section 2.5, we described the massless bosonic content for the four superstring the-

ories: Heterotic SO(32), Heterotic E8 ⇥ E8, Type IIA and Type IIB. Each of them

contains the fields Gµ⌫ , Bµ⌫ and � that appear in the bosonic string, together with a

collection of further massless fields. For each, the low-energy e↵ective action describes

the dynamics of these fields in D = 10 dimensional spacetime. It naturally splits up

into three pieces,

Ssuperstring = S1 + S2 + Sfermi
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Here Sfermi describes the interactions of the spacetime fermions. We won’t describe

these here. But we will briefly describe the low-energy bosonic action S1 + S2 for each

of these four superstring theories.

S1 is essentially the same for all theories and is given by the action we found for the

bosonic string in string frame (7.16). We’ll start to use form notation and denote Hµ⌫�

simply as H3, where the subscript tells us the degree of the form. Then the action

reads

S1 =
1

22
0

Z
d10X

p
�Ge�2�

✓
R� 1

2
|H̃3|2 + 4@µ� @µ�

◆
(7.21)

There is one small di↵erence, which is that the field H̃3 that appears here for the

heterotic string is not quite the same as the original H3; we’ll explain this further

shortly.

The second part of the action, S2, describes the dynamics of the extra fields which

are specific to each di↵erent theory. We’ll now go through the four theories in turn,

explaining S2 in each case.

• Type IIA: For this theory, H̃3 appearing in (7.21) is H3 = dB2, just as we saw

in the bosonic string. In Section 2.5, we described the extra bosonic fields of the

Type IIA theory: they consist of a 1-form C1 and a 3-form C3. The dynamics of

these fields is governed by the so-called Ramond-Ramond part of the action and

is written in form notation as,

S2 = � 1

42
0

Z
d10X

hp
�G

⇣
|F2|2 + |F̃4|2

⌘
+B2 ^ F4 ^ F4

i

Here the field strengths are given by F2 = dC1 and F4 = dC3, while the object

that appears in the kinetic terms is F̃4 = F4�C1^H3. Notice that the final term

in the action does not depend on the metric: it is referred to as a Chern-Simons

term.

• Type IIB: Again, H̃3 ⌘ H3. The extra bosonic fields are now a scalar C0, a

2-form C2 and a 4-form C4. Their action is given by

S2 = � 1

42
0

Z
d10X

p
�G

✓
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

◆
+ C4 ^H3 ^ F3

�

where F1 = dC0, F3 = dC2 and F5 = dC4. Once again, the kinetic terms involve

more complicated combinations of the forms: they are F̃3 = F3 � C0 ^ H3 and
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F̃5 = F5 � 1
2C2 ^H3 +

1
2B2 ^F3. However, for type IIB string theory, there is one

extra requirement on these fields that cannot be implemented in any simple way

in terms of a Lagrangian: F̃5 must be self-dual

F̃5 =
?F̃5

Strictly speaking, one should say that the low-energy dynamics of type IIB theory

is governed by the equations of motion that we get from the action, supplemented

with this self-duality requirement.

• Heterotic: Both heterotic theories have just one further massless bosonic ingre-

dient: a non-Abelian gauge field strength F2, with gauge group SO(32) or E8⇥E8.

The dynamics of this field is simply the Yang-Mills action in ten dimensions,

S2 =
↵0

82
0

Z
d10X

p
�GTr |F2|2

The one remaining subtlety is to explain what H̃3 means in (7.21): it is defined

as H̃3 = dB2�↵0!3/4 where !3 is the Chern-Simons three form constructed from

the non-Abelian gauge field A1

!3 = Tr

✓
A1 ^ dA1 +

2

3
A1 ^ A1 ^ A1

◆

The presence of this strange looking combination of forms sitting in the kinetic

terms is tied up with one of the most intricate and interesting aspects of the

heterotic string, known as anomaly cancelation.

The actions that we have written down here probably look a little arbitrary. But they

have very important properties. In particular, the full action Ssuperstring of each of the

Type II theories is invariant under N = 2 spacetime supersymmetry. (That means 32

supercharges). They are the unique actions with this property. Similarly, the heterotic

superstring actions are invariant under N = 1 supersymmetry and, crucially, do not

su↵er from anomalies. The second book by Polchinski is a good place to start learning

more about these ideas.

7.4 Some Simple Solutions

The spacetime equations of motion,

�µ⌫(G) = �µ⌫(B) = �(�) = 0

have many solutions. This is part of the story of vacuum selection in string theory.

What solution, if any, describes the world we see around us? Do we expect this putative
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solution to have other special properties, or is it just a random choice from the many

possibilities? The answer is that we don’t really know, but there is currently no known

principle which uniquely selects a solution which looks like our world — with the gauge

groups, matter content and values of fundamental constants that we observe — from

the many other possibilities. Of course, these questions should really be asked in the

context of the superstring where a greater understanding of various non-perturbative

e↵ects such as D-branes and fluxes leads to an even greater array of possible solutions.

Here we won’t discuss these problems. Instead, we’ll just discuss a few simple solu-

tions that are well known. The first plays a role when trying to make contact with the

real world, while the value of the others lies mostly in trying to better understand the

structure of string theory.

7.4.1 Compactifications

We’ve seen that the bosonic string likes to live in D = 26 dimensions. But we don’t.

Or, more precisely, we only observe three macroscopically large spatial dimensions.

How do we reconcile these statements?

Since string theory is a theory of gravity, there’s nothing to stop extra dimensions of

the universe from curling up. Indeed, under certain circumstances, this may be required

dynamically. Here we exhibit some simple solutions of the low-energy e↵ective action

which have this property. We set Hµ⌫⇢ = 0 and � to a constant. Then we are simply

searching for Ricci flat backgrounds obeying Rµ⌫ = 0. There are solutions where the

metric is a direct product of metrics on the space

R1,3 ⇥X (7.22)

where X is a compact 22-dimensional Ricci-flat manifold.

The simplest such manifold is just X = T22, the torus endowed with a flat met-

ric. But there are a whole host of other possibilities. Compact, complex manifolds

that admit such Ricci-flat metrics are called Calabi-Yau manifolds. (Strictly speaking,

Calabi-Yau manifolds are complex manifolds with vanishing first Chern class. Yau’s

theorem guarantees the existence of a unique Ricci flat metric on these spaces).

The idea that there may be extra, compact directions in the universe was considered

long before string theory and goes by the name of Kaluza-Klein compactification. If the

characteristic length scale L of the space X is small enough then the presence of these

extra dimensions would not have been observed in experiment. The standard model

of particle physics has been accurately tested to energies of a TeV or so, meaning that
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if the standard model particles can roam around X, then the length scale must be

L . (TeV)�1 ⇠ 10�16 cm.

However, one can cook up scenarios in which the standard model is stuck somewhere

in these extra dimensions (for example, it may be localized on a D-brane). Under

these circumstances, the constraints become much weaker because we would rely on

gravitational experiments to detect extra dimensions. Present bounds require only

L . 10�5 cm.

Consider the Einstein-Hilbert term in the low-energy e↵ective action. If we are

interested only in the dynamics of the 4d metric on R1,3, this is given by

SEH =
1

22

Z
d26X

p
�G̃ R̃ =

Vol(X)

22

Z
d4X

p
�G4d R4d

(There are various moduli of the internal manifold X that are being neglected here).

From this equation, we learn that e↵ective 4d Newton constant is given in terms of 26d

Newton constant by,

8⇡G4d
N

=
2

Vol(X)

Rewriting this in terms of the 4d Planck scale, we have l(4d)p ⇠ gsl12s /
p

Vol(X). To

trust this whole analysis, we require gs ⌧ 1 and all length scales of the internal space

to be bigger than ls. This ensures that l(4d)p < ls. Although the 4d Planck length

is ludicrously small, l(4d)p ⇠ 10�33 cm, it may be that we don’t have to probe to this

distance to uncover UV gravitational physics. The back-of-the-envelope calculation

above shows that the string scale ls could be much larger, enhanced by the volume of

extra dimensions.

7.4.2 The String Itself

We’ve seen that quantizing small loops of string gives rise to the graviton and Bµ⌫ field.

Yet, from the sigma model action (7.12), we also know that the string is charged under

the Bµ⌫ . Moreover, the string has tension, which ensures that it also acts as a source

for the metric Gµ⌫ . So what does the back-reaction of the string look like? Or, said

another way: what is the sigma-model describing a string moving in the background

of another string?

Consider an infinite, static, straight string stretched in theX1 direction. We can solve

for the background fields by coupling the equations of motion to a delta-function string
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source. This is the same kind of calculation that we’re used to in electromagnetism.

The resulting spacetime fields are given by

ds2 = f(r)�1 (�dt2 + dX2
1 ) +

P25
i=2 dX

2
i

B = (f(r)�1 � 1) dt ^ dX1 , e2� = f(r)�1 (7.23)

The function f(r) depends only on the transverse direction r2 =
P25

i=2 X
2
i
and is given

by

f(r) = 1 +
g2
s
Nl22

s

r22

HereN is some constant which we will shortly demonstrate counts the number of strings

which source the background. The string length scale in the solutions is ls =
p
↵0. The

function f(r) has the property that it is harmonic in the space transverse to the string,

meaning that it satisfies r2
R24f(r) = 0 except at r = 0.

Let’s compute the B-field charge of this solution. We do exactly what we do in

electromagnetism: we integrate the total flux through a sphere which surrounds the

object. The string lies along the X1 direction so the transverse space is R24. We can

consider a sphere S23 at the boundary of this transverse space. We should be integrating

the flux over this sphere. But what is the expression for the flux?

To see what we should do, let’s look at the action for Hµ⌫⇢ in the presence of a string

source. We will use form notation since this is much cleaner and refer to Hµ⌫⇢ simply

as H3. Schematically, the action takes the form

1

g2
s

Z

R26

H3 ^ ?H3 +

Z

R2

B2 =
1

g2
s

Z

R26

H3 ^ ?H3 + g2
s
B2 ^ �(!)

Here �(!) is a delta-function source with support on the 2d worldsheet of the string.

The equation of motion is

d?H3 ⇠ g2
s
�(!)

From this we learn that to compute the charge of a single string we need to integrate

1

g2
s

Z

S23

?H3 = 1

After these general comments, we now return to our solution (7.23). The above discus-

sion was schematic and no attention was paid to factors of 2 and ⇡. Keeping in this

spirit, the flux of the solution (7.23) can be checked to be

1

g2
s

Z

S23

?H3 = N
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This is telling us that the solution (7.23) describes the background sourced by N

coincident, parallel fundamental strings. Another way to check this is to compute

the ADM mass per unit length of the solution: it is NT ⇠ N/↵0 as expected.

Note as far as the low-energy e↵ective action is concerned, there is nothing that

insists N 2 Z. This is analogous to the statement that nothing in classical Maxwell

theory requires e to be quantized. However, in string theory, as in QED, we know the

underlying sources of the microscopic theory and N must indeed take integer values.

Finally, notice that as r ! 0, the solution becomes singular. It is not to be trusted

in this regime where higher order ↵0 corrections become important.

7.4.3 Magnetic Branes

We’ve already seen that string theory is not just a theory of strings; there are also

D-branes, defined as surfaces on which strings can end. We’ll have much more to say

about D-branes in Section 7.5. Here, we will consider a third kind of object that exists

in string theory. It is again a brane – meaning that it is extended in some number

of spacetime directions — but it is not a D-brane because the open string cannot end

there. In these lectures we will call it the magnetic brane.

Electric and Magnetic Charges

You’re probably not used to talking about magnetically charged objects in electro-

magnetism. Indeed, in undergraduate courses we usually don’t get much further than

pointing out that r · B = 0 does not allow point-like magnetic charges. However, in

the context of quantum field theory, much of the interesting behaviour often boils down

to understanding how magnetic charges behave. And the same is true of string theory.

Because this may be unfamiliar, let’s take a minute to discuss the basics.

In electromagnetism in d = 3 + 1 dimensions, we measure electric charge q by inte-

grating the electric field ~E over a sphere S2 that surrounds the particle,

q =

Z

S2

~E · d~S =

Z

S2

?F2 (7.24)

In the second equality we have introduced the notation of di↵erential forms that we

also used in the previous example to discuss the string solutions.

Suppose now that a particle carries magnetic charge g. This can be measured by

integrating the magnetic field ~B over the same sphere. This means

g =

Z

S2

~B · d~S =

Z

S2

F2 (7.25)
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In d = 3+1 dimensions, both electrically and magnetically charged objects are particles.

But this is not always true in any dimension! The reason that it holds in 4d is because

both the field strength F2 and the dual field strength ?F2 are 2-forms. Clearly, this is

rather special to four dimensions.

In general, suppose that we have a p-brane that is electrically charged under a suitable

gauge field. As we discussed in Section 7.2.1, a (p + 1)-dimensional object naturally

couples to a (p+ 1)-form gauge potential Cp+1 through,

µ

Z

W

Cp+1

where µ is the charge of the object, while W is the worldvolume of the brane. The

(p+ 1)-form gauge potential has a (p+ 2)-form field strength

Gp+2 = dCp+1

To measure the electric charge of the p-brane, we need to integrate the field strength

over a sphere that completely surrounds the object. A p-brane in D-dimensions has a

transverse space RD�p�1. We can integrate the flux over the sphere at infinity, which is

SD�p�2. And, indeed, the counting works out nicely because, in D dimensions, the dual

field strength is a (D � p� 2)-form, ?Gp+2 = G̃D�p�2, which we can happily integrate

over the sphere to find the charge sitting inside,

q =

Z

SD�p�2

?Gp+2

This equation is the generalized version of (7.24)

Now let’s think about magnetic charges. The generalized version of (7.25) suggest

that we should compute the magnetic charge by integrating Gp+2 over a sphere Sp+2.

What kind of object sits inside this sphere to emit the magnetic charge? Doing the

sums backwards, we see that it should be a (D � p� 4)-brane.

We can write down the coupling between the (D�p�4)-brane and the field strength.

To do so, we first need to introduce the magnetic gauge potential defined by

?Gp+2 = G̃D�p�2 = dC̃D�p�3 (7.26)

We can then add the magnetic coupling to the worldvolume W̃ of a (D� p� 4)-brane

simply by writing

µ̃

Z

W̃

C̃D�p�3
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where µ̃ is the magnetic charge. Note that it’s typically not possible to write down

a Lagrangian that includes both magnetically charged object and electrically charged

objects at the same time. This would need us to include both Cp+1 and C̃D�p�3 in

the Lagrangian, but these are not independent fields: they’re related by the rather

complicated di↵erential equations (7.26).

The Magnetic Brane in Bosonic String Theory

After these generalities, let’s see what it means for the bosonic string. The fundamental

string is a 1-brane and, as we saw in Section 7.2.1, carries electric charge under the

2-form B. The appropriate object carrying magnetic charge under B is therefore a

(D � p� 4) = (26� 1� 4) = 21-brane.

To stress a point: neither the fundamental string, nor the magnetic 21-brane are

D-branes. They are not surfaces where strings can end. We are calling them branes

only because they are extended objects.

The magnetic 21-brane of the bosonic string can be found as a solution to the low-

energy equations of motion. The solution can be written in terms of the dual potential

B̃22 such that dB̃22 = ?dB2. It is

ds2 =

 
�dt2 +

21X

i=1

dX2
i

!
+ h(r)

�
dX2

22 + . . .+ dX2
25

�
(7.27)

B̃22 = (1� h(r)�2) dt ^ dX1 ^ . . . ^ dX21

e2� = h(r)

The function h(r) depends only on the radial direction in R4 transverse to the brane:

r2 =
P25

i=22 X
2
i
. It is a harmonic function in R4, given by

h(r) = 1 +
Nl2

s

r2

The role of this function in the metric (7.27) is to warp the transverse R4 directions.

Distances get larger as you approach the brane and the origin, r = 0, is at infinite

distance.

It can be checked that the solution carried N units of magnetic charge and has

tension

T ⇠ N

l22
s

1

g2
s
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Let’s summarize how the tension of di↵erent objects scale in string theory. The powers

of ↵0 = l2
s
are entirely fixed on dimensional grounds. (Recall that the tension is mass

per spatial volume, so the tension of a p-brane has [Tp] = p + 1). More interesting is

the dependence on the string coupling gs. The tension of the fundamental string does

not depend on gs, while the magnetic brane scales as 1/g2
s
. This kind of 1/g2 behaviour

is typical of solitons in field theories. The D-branes sit between the two: their tension

scales as 1/gs. Objects with this behaviour are somewhat rarer (although not unheard

of) in field theory.

In the perturbative limit, gs ! 0, both D-branes and magnetic branes are heavy.

The coupling of an object with tension T to gravity is governed by T2 where the grav-

itational coupling scales as  ⇠ g2
s
(7.20). This means that in the weak coupling limit,

the gravitational backreaction of the string and D-branes can be neglected. However,

the coupling of the magnetic brane to gravity is always of order one.

The Magnetic Brane in Superstring Theory

Superstring theories also have a brane magnetically charged under B. It is a (D� p�
4) = (10� 1� 4) = 5-brane and is usually referred to as the NS5-brane. The solution

in the transverse R4 again takes the form (7.27).

The NS5-brane exists in both type II and heterotic string. In many ways it is

more mysterious than D-branes and its low-energy e↵ective dynamics is still poorly

understood. It is closely related to the 5-brane of M-theory.

7.4.4 Moving Away from the Critical Dimension

The beta function equations provide a new view on the critical dimension D = 26 of

the bosonic string. To see this, let’s look more closely at the dilaton beta function

�(�) defined in (7.15): it takes the same form as the Weyl anomaly that we discussed

back in Section 4.4.2. This means that if we consider a string propagating in D 6= 26

then the Weyl anomaly simply arises as the leading order term in the dilaton beta

function. So let’s relax the requirement of the critical dimension. The equations of

motion arising from �µ⌫(G) and �µ⌫(B) are unchanged, while the dilaton beta function

equation becomes

�(�) =
D � 26

6
� ↵0

2
r2�+ ↵0rµ�rµ�� ↵0

24
Hµ⌫�H

µ⌫� = 0 (7.28)

The low-energy e↵ective action in string frame picks up an extra term which looks like

a run-away potential for �,

S =
1

22
0

Z
dDX

p
�Ge�2�

✓
R� 1

12
Hµ⌫�H

µ⌫� + 4@µ� @µ�� 2(D � 26)

3↵0

◆
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This sounds quite exciting. Can we really get string theory living in D = 4 dimensions

so easily? Well, yes and no. Firstly, with this extra potential term, flat D-dimensional

Minkowski space no longer solves the equations of motion. This is in agreement with

the analysis in Section 2 where we showed that full Lorentz invariance was preserved

only in D = 26.

Another, technical, problem with solving the string equations of motion this way is

that we’re playing tree-level term o↵ against a one-loop term. But if tree-level and

one-loop terms are comparable, then typically all higher loop contributions will be as

well and it is likely that we can’t trust our analysis.

The Linear Dilaton CFT

In fact, there is one simple solution to (7.28) which we can trust. It is the solution to

@µ� @µ� =
26�D

6↵0

Recall that we’re working in signature (�,+,+, . . .), meaning that � takes a spacelike

profile if D < 26 and a timelike profile if D > 26,

� =

r
26�D

6↵0 X1 D < 26

� =

r
D � 26

6↵0 X0 D > 26

This gives a dilaton which is linear in one direction. This can be compared to the study

of the path integral for non-critical strings that we saw in 5.3.2. There are two ways of

seeing the same physics.

The reason that we can trust this solution is that there is an exact CFT underlying

it which we can analyze to all orders in ↵0. It’s called, for obvious reasons, the linear

dilaton CFT. Let’s now look at this in more detail.

Firstly, consider the worldsheet action associated to the dilaton coupling. For now

we’ll consider an arbitrary dilaton profile �(X),

Sdilaton =
1

4⇡

Z
d2�

p
g �(X)R(2) (7.29)

Although this term vanishes on a flat worldsheet, it nonetheless changes the stress-

energy tensor T↵� because this is defined as

T↵� = �4⇡
@S

@g↵�

����
g↵�=�↵�
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The variation of (7.29) is straightforward. Indeed, the term is akin to the Einstein-

Hilbert term in general relativity but things are simpler in 2d because, for example

R↵� = 1
2 g↵�R. We have

�(
p
gg↵�R↵�) =

p
gg↵� �R↵� =

p
gr↵v↵

where

v↵ = r��g↵� � g��r↵�g��

Using this, the variation of the dilaton term in the action is given by

�Sdilaton =
1

4⇡

Z
d2�

p
g
�
r↵r���r2� g↵�

�
�g↵�

which, restricting to flat space g↵� = �↵�, finally gives us the stress-energy tensor of a

theory with dilaton coupling

T dilaton
↵�

= �@↵@��+ @2� �↵�

Note that this stress tensor is not traceless. This is to be expected because, as we

described above, the dilaton coupling is not Weyl invariant at tree-level. In complex

coordinates, the stress tensor is

T dilaton = �@2� , T̄ dilaton = �@̄2�

Linear Dilaton OPE

The stress tensor above holds for any dilaton profile �(X). Let’s now restrict to a

linear dilaton profile for a single scalar field X,

� = QX

where Q is some constant. We also include the standard kinetic terms for D scalar

fields, of which X is a chosen one, giving the stress tensor

T = � 1

↵0 : @X @X : �Q @2X

It is a simple matter to compute the TT OPE using the techniques described in Section

4. We find,

T (z)T (w) =
c/2

(z � w)4
+

2T (w)

(z � w)2
+

@T (w)

z � w
+ . . .

where the central charge of the theory is given by

c = D + 6↵0Q2

Note that Q2 can be positive or negative depending on the whether we have a timelike

or spacelike linear dilaton. In this way, we see explicitly how a linear dilaton gradient

can absorb central charge.
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7.4.5 The Elephant in the Room: The Tachyon

We’ve been waxing lyrical about the details of solutions to the low-energy e↵ective

action, all the while ignoring the most important, relevant field of them all: the tachyon.

Since our vacuum is unstable, this is a little like describing all the beautiful pictures

we could paint if only that damn paintbrush would balance, unaided, on its tip.

Of course, the main reason for discussing these solutions is that they all carry directly

over to the superstring where the tachyon is absent. Nonetheless, it’s interesting to ask

what happens if the tachyon is turned on. Its vertex operator is simply

Vtachyon ⇠
Z

d2�
p
g eip·X

where p2 = 4/↵0. Piecing together a general tachyon profile V (X) from these Fourier

modes and exponentiating, results in a potential on the worldsheet of the string

Spotential =

Z
d2�

p
g ↵0 V (X)

This is a relevant operator for the worldsheet CFT. Whenever such a relevant operator

turns on, we should follow the RG flow to the infra-red until we land on another CFT.

The c-theorem tells us that cIR < cUV , but in string theory we always require c = 26.

The deficit, at least initially, is soaked up by the dilaton in the manner described above.

The end point of the tachyon RG flow for the bosonic string is not understood. It may

be that there is no end point and the bosonic string simply doesn’t make sense once

the tachyon is turned on. Or perhaps we haven’t yet understood the true ground state

of the bosonic string.

7.5 D-Branes Revisited: Background Gauge Fields

Understanding the constraints of conformal invariance on the closed string backgrounds

led us to Einstein’s equations and the low-energy e↵ective action in spacetime. Now we

would like to do the same for the open string. We want to understand the restrictions

that consistency places on the dynamics of D-branes.

We saw in Section 3 that there are two types of massless modes that arise from the

quantization of an open string: scalars, corresponding to the fluctuation of the D-brane,

and a U(1) gauge field. We will ignore the scalar fluctuations for now, but will return

to them later. We focus initially on the dynamics of a gauge field Aa, a = 0, . . . , p

living on a Dp-brane
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The first question that we ask is: how does the end of the string react to a background

gauge field? To answer this, we need to look at the vertex operator associated to the

photon. It was given in (5.10)

Vphoton ⇠
Z

@M
d⌧ ⇣a @

⌧Xa eip·X

which is Weyl invariant and primary only if p2 = 0 and pa⇣a = 0. Exponentiating this

vertex operator, as described at the beginning of Section 7, gives the coupling of the

open string to a general background gauge field Aa(X),

Send�point =

Z

@M
d⌧ Aa(X)

dXa

d⌧

But this is a very familiar coupling — we’ve already mentioned it in (7.9). It is telling

us that the end of the string is charged under the background gauge field Aa on the

brane.

7.5.1 The Beta Function

We can now perform the same type of beta function calculation that we saw for the

closed string9. To do this, it’s useful to first use conformal invariance to map the open

string worldsheet to the Euclidean upper-half plane as we described in Section 4.7. The

action describing an open string propagating in flat space, with its ends subject to a

background gauge field on the D-brane splits up into two pieces

S = SNeumann + SDirichlet

where SNeumann describes the fluctuations parallel to the Dp-brane and is given by

SNeumann =
1

4⇡↵0

Z

M
d2� @↵Xa @↵ X

b �ab + i

Z

@M
d⌧ Aa(X)Ẋa (7.30)

Here a, b = 0, . . . , p. The extra factor of i arises because we are in Euclidean space.

Meanwhile, the fields transverse to the brane have Dirichlet boundary conditions and

take range I = p+ 1, . . . , D � 1. Their dynamics is given by

SDirichlet =
1

4⇡↵0

Z

M
d2� @↵XI @↵ X

J �IJ

9
We’ll be fairly explicit here, but if you want to see more details then the best place to look is the

original paper by Abouelsaood, Callan, Nappi and Yost, “Open Strings in Background Gauge Fields”,

Nucl. Phys. B280 (1987) 599.
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The action SDirichlet describes free fields and doesn’t play any role in the computation

of the beta-function. The interesting part is SNeumann which, for non-zero Aa(X), is

an interacting quantum field theory with boundary. Our task is to compute the beta

function associated to the coupling Aa(X). We use the same kind of technique that we

earlier applied to the closed string. We expand the fields Xa(�) as

Xa(�) = x̄a(�) +
p
↵0 Y a(�)

where x̄a(�) is taken to be some fixed background which obeys the classical equations

of motion,

@2x̄a = 0

(In the analogous calculation for the closed string we chose the special case of x̄a

constant. Here we are more general). However, we also need to impose boundary

conditions for this classical solution. In the absence of the gauge field Aa, we require

Neumann boundary conditions @�Xa = 0 at � = 0. However, the presence of the gauge

field changes this. Varying the full action (7.30) shows that the relevant boundary

condition is supplemented by an extra term,

@�x̄
a + 2⇡↵0i F ab @⌧ x̄b = 0 at � = 0 (7.31)

where the Fab is the field strength

Fab(X) =
@Ab

@Xa
� @Aa

@Xb
⌘ @aAb � @bAa

The fields Y a(�) are the fluctuations which are taken to be small. Again, the presence

of
p
↵0 in the expansion ensures that Y a are dimensionless. Expanding the action

SNeumann (which we’ll just call S from now on) to second order in fluctuations gives,

S[x̄+
p
↵0Y ] = S[x̄] +

1

4⇡

Z

M
d2� @Y a @Y b�ab

+ i↵0
Z

@M
d⌧

✓
@aAb Y

a Ẏ b +
1

2
@a@bAc Y

a Y b ˙̄x
c

◆
+ . . .

where all expressions involving the background gauge fields are now evaluated on the

classical solution x̄. We can rearrange the boundary terms by splitting the first term

up into two halves and integrating one of these pieces by parts,
Z

d⌧ (@aAb)Y
aẎ b =

1

2

Z
d⌧ @aAb Y

a Ẏ b � @aAb Ẏ
aY b � @c@aAb Y

aY b ˙̄x
c
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Combining this with the second term means that we can write all interactions in terms

of the gauge invariant field strength Fab,

S[x̄+
p
↵0Y ] = S[x̄] +

1

4⇡

Z

M
d2� @Y a @Y b�ab

+
i↵0

2

Z

@M
d⌧
⇣
Fab Y

aẎ b + @bFac Y
aY b ˙̄x

c

⌘
+ . . . (7.32)

where the + . . . refer to the higher terms in the expansion which come with higher

derivatives of Fab, accompanied by powers of ↵0. We can neglect them for the purposes

of computing the one-loop beta function.

The Propagator

This Lagrangian describes our interacting boundary theory to leading order. We can

now use this to compute the beta function. Firstly, we should determine where possible

divergences arise. The o↵ending term is the last one in (7.32). This will lead to a

divergence when the fluctuation fields Y a are contracted with their propagator

hY a(z, z̄)Y b(w, w̄)i = Gab(z, z̄;w, w̄)

We should be used to these free field Green’s functions by now. The propagator satisfies

@@̄Gab(z, z̄) = �2⇡�ab�(z, z̄) (7.33)

in the upper half plane. But now there’s a subtlety. The Y a fields need to satisfy a

boundary condition at Im z = 0 and this should be reflected in the boundary condition

for the propagator. We discussed this briefly for Neumann boundary conditions in

Section 4.7. But we’ve also seen that the background field strength shifts the Neumann

boundary conditions to (7.31). Correspondingly, the propagator G(z, z̄;w, w̄) must now

satisfy

@�G
ab(z, z̄;w, w̄) + 2⇡↵0i F a

c
@⌧G

cb(z, z̄;w, w̄) = 0 at � = 0 (7.34)

In Section 4.7, we showed how Neumann boundary conditions could be imposed by

considering an image charge in the lower half plane. A similar method works here.

We extend Gab ⌘ Gab(z, z̄;w, w̄) to the entire complex plane. The solution to (7.33)

subject to (7.34) is given by

Gab = ��ab ln |z � w|� 1

2

✓
1� 2⇡↵0F

1 + 2⇡↵0F

◆ab

ln(z � w̄)� 1

2

✓
1 + 2⇡↵0F

1� 2⇡↵0F

◆ab

ln(z̄ � w)
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The Counterterm and Beta Function

Let’s now return to the interacting theory (7.32) and see what counterterm is needed

to remove the divergence. Since all interactions take place on the boundary, we should

evaluate our propagator on the boundary, which means z = z̄ and w = w̄. In this case,

all the logarithms become the same and, in the limit that z ! w, gives the leading

divergence ln |z � w| ! ✏�1. We learn that the UV divergence takes the form,

�1

✏

"
�ab +

1

2

✓
1� 2⇡↵0F

1 + 2⇡↵0F

◆ab

+
1

2

✓
1 + 2⇡↵0F

1� 2⇡↵0F

◆ab
#
= �2

✏

✓
1

1� 4⇡2↵0 2F 2

◆ab

It’s now easy to determine the necessary counterterm. We simply replace Y aY b in the

final term with
⌦
Y aY b

↵
. This yields

� i2⇡↵0 2

✏

Z

@M
d⌧ @bFac


1

1� 4⇡2↵0 2 F 2

�ab
˙̄x
c

For the open string theory to retain conformal invariance, we need the associated beta

function to vanish. This gives us the condition on the field strength Fab: it must satisfy

the equation

@bFac


1

1� 4⇡2↵0 2F 2

�ab
= 0 (7.35)

This is our final equation governing the equations of motion that Fab must satisfy to

provide a consistent background for open string propagation.

7.5.2 The Born-Infeld Action

Equation (7.35) probably doesn’t look too familiar! Following the path we took for the

closed string, we wish to write down an action whose equations of motion coincide with

(7.35). The relevant action was actually constructed many decades ago as a non-linear

alternative to Maxwell theory: it goes by the name of the Born-Infeld action:

S = �Tp

Z
dp+1⇠

p
� det (⌘ab + 2⇡↵0 Fab) (7.36)

Here ⇠ are the worldvolume coordinates on the brane and Tp is the tension of the Dp-

brane (which, since it multiplies the action, doesn’t a↵ect the equations of motion).

The gauge potential is to be thought of as a function of the worldvolume coordinates:

Aa = Aa(⇠). It actually takes a little work to show that the equations of motion that

we derive from this action coincide with the vanishing of the beta function (7.35). Some

hints on how to proceed are provided on Example Sheet 4.
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For small field strengths, Fab ⌧ 1/↵0, the action (7.36) coincides with Maxwell’s

action. To see this, we need simply expand to get

S = �Tp

Z
dp+1⇠

✓
1 +

(2⇡↵0)2

4
FabF

ab + . . .

◆

The leading order term, quadratic in field strengths, is the Maxwell action. Terms with

higher powers of Fab are suppressed by powers of ↵0.

So, for small field strengths, the dynamics of the gauge field on a D-brane is governed

by Maxwell’s equations. However, as the electric and magnetic field strengths increase

and become of order 1/↵0, non-linear corrections to the dynamics kick in and are

captured by the Born-Infeld action.

The Born-Infeld action arises from the one-loop beta function. It is the exact result

for constant field strengths. If we want to understand the dynamics of gauge fields with

large gradients, @F , then we will have determine the higher loop contributions to the

beta function.

7.6 The DBI Action

We’ve understood that the dynamics of gauge fields on the brane is governed by the

Born-Infeld action. But what about the fluctuations of the brane itself. We looked at

this briefly in Section 3.2 and suggested, on general grounds, that the action should

take the Dirac form (3.6). It would be nice to show this directly by considering the beta

function equations for the scalar fields �I on the brane. Turning these on corresponds

to considering boundary conditions where the brane is bent. It is indeed possible to

compute something along the lines of beta-function equations and to show directly that

the fluctuations of the brane are governed by the Dirac action10.

More generally, one could consider both the dynamics of the gauge field and the

fluctuation of the brane. This is governed by a mixture of the Dirac action and the

Born-Infeld action which is usually referred to as the DBI action,

SDBI = �Tp

Z
dp+1⇠

p
� det(�ab + 2⇡↵0 Fab)

As in Section (3.2), �ab is the pull-back of the the spacetime metric onto the worldvol-

ume,

�ab =
@Xµ

@⇠a
@X⌫

@⇠b
⌘µ⌫

10
A readable discussion of this calculation can be found in the original paper by Leigh, Dirac-Born-

Infeld Action from Dirichlet Sigma Model, Mod. Phys. Lett. A4: 2767 (1989).
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The new dynamical fields in this action are the embedding coordinates Xµ(⇠), with

µ = 0, . . . , D � 1. This appears to be D new degrees of freedom while we expect only

D � p � 1 transverse physical degrees of freedom. The resolution to this should be

familiar by now: the DBI action enjoys a reparameterization invariance which removes

the longitudinal fluctuations of the brane.

We can use this reparameterization invariance to work in static gauge. For an infinite,

flat Dp-brane, it is useful to set

Xa = ⇠a a = 0, . . . , p

so that the pull-back metric depends only on the transverse fluctuations XI ,

�ab = ⌘ab +
@XI

@⇠a
@XJ

@⇠b
�IJ

If we are interested in situations with small field strengths Fab and small derivatives

@aX, then we can expand the DBI action to leading order. We have

S = �(2⇡↵0)2Tp

Z
dp+1⇠

✓
1

4
FabF

ab +
1

2
@a�

I@a�I + . . .

◆

where we have rescaled the positions to define the scalar fields �I = XI/2⇡↵0. We have

also dropped an overall constant term in the action. This is simply free Maxwell theory

coupled to free massless scalar fields �I . The higher order terms that we have dropped

are all suppressed by powers of ↵0.

7.6.1 Coupling to Closed String Fields

The DBI action describes the low-energy dynamics of a Dp-brane in flat space. We

could now ask how the motion of the D-brane is a↵ected if it moves in a background

created by closed string modes Gµ⌫ , Bµ⌫ and �. Rather than derive this, we’ll simply

write down the answer and then justify each term in turn. The answer is:

SDBI = �Tp

Z
dp+1⇠ e��̃

p
� det(�ab + 2⇡↵0Fab +Bab)

Let’s start with the coupling to the background metric Gµ⌫ . It’s actually hidden in the

notation in this expression: it appears in the pull-back metric �ab which is now given

by

�ab =
@Xµ

@⇠a
@X⌫

@⇠b
Gµ⌫

It should be clear that this is indeed the natural place for it to sit.
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Next up is the dilaton. As in (7.17), we have decomposed the dilaton into a constant

piece and a varying piece: � = �0 + �̃. The constant piece governs the asymptotic

string coupling, gs = e�0 , and is implicitly sitting in front of the action because the

tension of the D-brane scales as

Tp ⇠ 1/gs

This, then, explains the factor of e��̃ in front of the action: it simply reunites the

varying part of the dilaton with the constant piece. Physically, it’s telling us that the

tension of the D-brane depends on the local value of the dilaton field, rather than its

asymptotic value. If the dilaton varies, the e↵ective string coupling at a point X in

spacetime is given by geff
s

= e�(X) = gs e�̃(X). This, in turn, changes the tension of the

D-brane. It can lower its tension by moving to regions with larger geff
s

.

Finally, let’s turn to the Bµ⌫ field. This is a 2-form in spacetime. The function Bab

appearing in the DBI action is the pull-back to the worldvolume

Bab =
@Xµ

@⇠a
@X⌫

@⇠b
Bµ⌫

Its appearance in the DBI action is actually required on grounds of gauge invariance

alone. This can be seen by considering an open string, moving in the presence of both

a background Bµ⌫(X) in spacetime and a background Aa(X) on the worldvolume of a

brane. The relevant terms on the string worldsheet are

1

4⇡↵0

Z

M
d2� ✏↵�@↵X

µ @�X
⌫Bµ⌫ +

Z

@M
d⌧ AaẊ

a

Under a spacetime gauge transformation

Bµ⌫ ! Bµ⌫ + @µC⌫ � @⌫Cµ (7.37)

the first term changes by a total derivative. This is fine for a closed string, but it

doesn’t leave the action invariant for an open string because we pick up the boundary

term. Let’s quickly look at what we get in more detail. Under the gauge transformation

(7.37), we have

SB =
1

4⇡↵0

Z

M
d2� ✏↵�@↵X

µ @�X
⌫Bµ⌫

�! SB +
1

2⇡↵0

Z

M
d�d⌧ ✏↵�@↵X

µ @�X
⌫ @µC⌫

= SB +
1

2⇡↵0

Z

M
d�d⌧ ✏↵�@↵ (@�X

⌫C⌫)

= SB +
1

2⇡↵0

Z

@M
d⌧Ẋ⌫C⌫ = SB +

1

2⇡↵0

Z

@M
d⌧ẊaCa
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where, in the last line, we have replaced the sum over all directions X⌫ with the sum

over those directions obeying Neumann boundary conditions Xa, since ẊI = 0 at the

end-points for any directions with Dirichlet boundary conditions.

The result of this short calculation is to see that the string action is not invariant

under (7.37). To restore this spacetime gauge invariance, this boundary contribution

must be canceled by an appropriate shift of Aa in the second term,

Aa ! Aa �
1

2⇡↵0 Ca (7.38)

Note that this is not the usual kind of gauge transformation that we consider in elec-

trodynamics. In particular, the field strength Fab is not invariant. Rather, the gauge

invariant combination under (7.37) and (7.38) is

Bab + 2⇡↵0Fab

This is the reason that this combination must appear in the DBI action. This is

also related to an important physical e↵ect. We have already seen that the string in

spacetime is charged under Bµ⌫ . But we’ve also seen that the end of the string is

charged under the gauge field Aa on the D-brane. This means that the open string

deposits B charge on the brane, where it is converted into A charge. The fact that the

gauge invariant field strength involves a combination of both Fab and Bab is related to

this interplay of charges.

7.7 The Yang-Mills Action

Finally, let’s consider the case of N coincident D-branes. We discussed this in Section

3.3 where we showed that the massless fields on the brane could be naturally packaged

as N ⇥ N Hermitian matrices, with the element of the matrix telling us which brane

the end points terminate on. The gauge field then takes the form

(Aa)
m

n

with a = 0, . . . , p and m,n = 1, . . . , N . Written this way, it looks rather like a U(N)

gauge connection. Indeed, this is the correct interpretation. But how do we see this?

Why is the gauge field describing a U(N) gauge symmetry rather than, say, U(1)N
2
?

The quickest way to see that coincident branes give rise to a U(N) gauge symmetry

is to recall that the end point of the string is charged under the U(1) gauge field

that inhabits the brane it’s ending on. Let’s illustrate this with the simplest example.

Suppose that we have two branes. The diagonal components (Aa)11 and (Aa)22 arise
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from strings which begin and end on the same brane. Each is a U(1) gauge field. What

about the o↵-diagonal terms (Aa)12 and (Aa)21? These come from strings stretched

between the two branes. They are again massless gauge bosons, but they are charged

under the two original U(1) symmetries; they carry charge (+1,�1) and (�1,+1)

respectively. But this is precisely the structure of a U(2) gauge theory, with the o↵-

diagonal terms playing a role similar to W-bosons. In fact, the only way to make sense

of massless, charged spin 1 particles is through non-Abelian gauge symmetry.

So the massless excitations of N coincident branes are a U(N) gauge field (Aa)mn,

together with scalars (�I)m
n
which transform in the adjoint representation of the U(N)

gauge group. We saw in Section 3 that the diagonal components (�I)m
m

have the

interpretation of the transverse fluctuations of the mth brane. Can we now write down

an action describing the interactions of these fields?

In fact, there are several subtleties in writing down a non-Abelian generalization of

the DBI action and such an action is not known (if, indeed, it makes sense at all).

However, we can make progress by considering the low-energy limit, corresponding to

small field strengths. The field strength in question is now the appropriate non-Abelian

expression which, neglecting the matrix indices, reads

Fab = @aAb � @bAa + i[Aa, Ab]

The low-energy action describing the dynamics of N coincident Dp-branes can be shown

to be (neglecting an overall constant term),

S = �(2⇡↵0)2Tp

Z
dp+1⇠ Tr

 
1

4
FabF

ab +
1

2
Da�

IDa�I � 1

4

X

I 6=J

[�I ,�J ]2
!

(7.39)

We recognize the first term as the U(N) Yang-Mills action. The coe�cient in front of

the Yang-Mills action is the coupling constant 1/g2
YM

. For a Dp-brane, this is given by

↵0 2Tp, or

g2
YM

⇠ lp�3
s

gs

The kinetic term for �I simply reflects the fact that these fields transform in the adjoint

representation of the gauge group,

Da�
I = @a�

I + i[Aa,�
I ]

We won’t derive this action in these lectures: the first two terms basically follow from

gauge invariance alone. The potential term is harder to see directly: the quick ways to

derive it use T-duality or, in the case of the superstring, supersymmetry.
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A flat, infinite Dp-brane breaks the Lorentz group of spacetime to

S(1, D � 1) ! SO(1, p)⇥ SO(D � p� 1) (7.40)

This unbroken group descends to the worldvolume of the D-brane where it classifies all

low-energy excitations of the D-brane. The SO(1, p) is simply the Lorentz group of the

D-brane worldvolume. The SO(D� p� 1) is a global symmetry of the D-brane theory,

rotating the scalar fields �I .

The potential term in (7.39) is particularly interesting,

V = �1

4

X

I 6=J

Tr [�I ,�J ]2

The potential is positive semi-definite. We can look at the fields that can be turned

on at no cost of energy, V = 0. This requires that all �I commute which means that,

after a suitable gauge transformation, they take the diagonal form,

�I =

0

BB@

�I

1

. . .

�I

N

1

CCA (7.41)

The diagonal component �I

n
describes the position of the nth brane in transverse space

RD�p�1. We still need to get the dimensions right. The scalar fields have dimension

[�] = 1. The relationship to the position in space (which we mentioned before in 3.2)

is

~Xn = 2⇡↵0~�n (7.42)

where we’ve swapped to vector notation to replace the I index.

The eigenvalues �I

n
are not quite gauge invariant: there is a residual gauge symmetry

— the Weyl group of U(N) — which leaves �I in the form (7.41) but permutes the

entries by SN , the permutation group of N elements. But this has a very natural

interpretation: it is simply telling us that the D-branes are indistinguishable objects.

When all branes are separated, the vacuum expectation value (7.41) breaks the gauge

group from U(N) ! U(1)N . The W-bosons gain a mass MW through the Higgs

mechanism. Let’s compute this mass. We’ll consider a U(2) theory and we’ll separate
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the two D-branes in the direction XD ⌘ X. This means that we turn on a vacuum

expectation value for �D = �, which we write as

� =

 
�1 0

0 �2

!
(7.43)

The values of �1 and �2 are the positions of the first and second brane. Or, more

precisely, we need to multiply by the conversion factor 2⇡↵0 as in (7.42) to get the

position Xm of the m = 1st, 2nd brane,

Let’s compute the mass of the W-boson from the Yang-

Figure 44:

Mills action (7.39). It comes from the covariant derivative terms

D�. We expand out the gauge field as

Aa =

 
A11

a
Wa

W †
a
A22

a

!

with A11 and A22 describing the two U(1) gauge fields and W

the W-boson. The mass of the W-boson comes from the [Aa,�]

term inside the covariant derivative which, using the expectation

value (7.43), is given by

1

2
Tr [Aa,�]

2 = �(�2 � �1)
2|Wa|2

This gives us the mass of the W-boson: it is

M2
W

= (�2 � �1)
2 = T 2|X2 �X1|2

where T = 1/2⇡↵0 is the tension of the string. But this has a very natural interpretation.

It is precisely the mass of a string stretched between the two D-branes as shown in the

figure above. We see that D-branes provide a natural geometric interpretation of the

Higgs mechanism using adjoint scalars.

Notice that when branes are well separated, and the strings that stretch between

them are heavy, their positions are described by the diagonal elements of the matrix

given in (7.41). However, as the branes come closer together, these stretched strings

become light and are important for the dynamics of the branes. Now the positions of

the branes should be described by the full N ⇥N matrices, including the o↵-diagonal

elements. In this manner, D-branes begin to see space as something non-commutative

at short distances.
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In general, we can consider N D-branes located at positions ~Xm, m = 1, . . . , N in

transverse space. The string stretched between the mth and nth brane has mass

MW = |~�n � ~�m| = T | ~Xn � ~Xm|

which again coincides with the mass of the appropriate W-boson computed using (7.39).

7.7.1 D-Branes in Type II Superstring Theories

As we mentioned previously, D-branes are ingredients of the Type II superstring theo-

ries. Type IIA has Dp-branes with p even, while Type IIB is home to Dp-branes with

p odd. The D-branes have a very important property in these theories: they preserve

half the supersymmetries.

Let’s take a moment to explain what this means. We’ll start by returning to the

Lorentz group SO(1, D � 1) now, of course, with D = 10. We’ve already seen that

an infinite, flat Dp-brane is not invariant under the full Lorentz group, but only the

subgroup (7.40). If we act with either SO(1, p) or SO(D � p � 1) then the D-brane

solution remains invariant. We say that these symmetries are preserved by the solution.

However, the role of the preserved symmetries doesn’t stop there. The next step is

to consider small excitations of the D-brane. These must fit into representations of the

preserved symmetry group (7.40). This ensures that the low-energy dynamics of the D-

brane must be governed by a theory which is invariant under (7.40) and we have indeed

seen that the Lagrangian (7.39) has SO(1, p) as a Lorentz group and SO(D � p � 1)

as a global symmetry group which rotates the scalar fields.

Now let’s return to supersymmetry. The Type II string theories enjoy a lot of super-

symmetry: 32 supercharges in total. The infinite, flat D-branes are invariant under half

of these; if we act with one half of the supersymmetry generators, the D-brane solutions

don’t change. Objects that have this property are often referred to as BPS states. Just

as with the Lorentz group, these unbroken symmetries descend to the worldvolume of

the D-brane. This means that the low-energy dynamics of the D-branes is described

by a theory which is itself invariant under 16 supersymmetries.

There is a unique class of theories with 16 supersymmetries and a non-Abelian gauge

field and matter in the adjoint representation. This class is known as maximally su-

persymmetric Yang-Mills theory and the bosonic part of the action is given by (7.39).

Supersymmetry is realized only after the addition of fermionic fields which also live on

the brane. These theories describe the low-energy dynamics of multiple D-branes.
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As an illustrative example, consider D3-branes in the Type IIB theory. The theory

describing N D-branes is U(N) Yang-Mills with 16 supercharges, usually referred to as

U(N) N = 4 super-Yang-Mills. The bosonic part of the action is given by (7.39), where

there are D�p�1 = 6 scalar fields �I in the adjoint representation of the gauge group.

These are augmented with four Weyl fermions, also in the adjoint representation.
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