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ABSTRACT

A novel mechanism of inflation based on the Dirac-Born-Infeld (DBI) action is
described. The model generates a distinctive spectrum of density perturbations,
with a lower bound on non-Gaussianity. It is falsifiable and observationally
distinct from traditional slow-roll inflation.

1. Introduction

In this talk I will describe a model of inflation based on ingredients from string theory.

The resulting spectrum of density perturbations in the CMBR includes a distinctive non-
Gaussian signal at a level observable in upcoming satellite experiments, and a strong

preference for observable tensor modes. The work presented here was done in collaboration

with Mohsen Alishahiha and Eva Silverstein [1,2]

2. Cosmology with a Speed Limit

Our starting point is the brane inflation scenario, with a D3-brane in type IIB string
theory moving down a warped throat [3,4]. At the UV end, the throat joins smoothly onto

a Calabi-Yau compactification which acts as an Randall-Sundrum Planck brane. This
ensures that four-dimensional gravity is dynamical. In the IR, the throat is smoothly

capped off at a scale φIR ∼ gsm.
Usually in such inflationary scenarios, the D3-brane is taken to move slowly down

the throat which maps to the condition for slow-roll in the 4d effective Lagrangian. We

will consider a somewhat different regime in which the brane moves down the throat
approaching the speed of light. Let φ denote the position of the brane. Then for φIR <

φ < φUV , we can approximate the throat by an AdS5 of radius R. (A better approximation
would be the Klebanov-Strassler throat, but this makes little difference to the ensuing

physics). The dynamics of the brane is captured by the Dirac-Born-Infeld (DBI) action
coupled to gravity,
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Here λ ∼ (R/ls)
4. Note that we have included a mass term m ∼ φIR/gs for φ. Such a

mass is generically generated for a scalar field which is protected by conformal invariance
only up to the scale of the capped off throat.

A crucial point about the action (1) is that it imposes a speed limit on how quickly
φ can change. For a homogeneous field, reality of the action requires φ̇ ≤ φ2/

√
λ. From



the perspective of the 5d geometry, this is nothing but Einstein’s causal speed limit in
the radial direction. However, when viewed from the dual 4d field theory, it is rather

novel: it is a speed limit on how fast an order parameter (the vev) may change [5].
Usual applications of brane inflation take a very slow moving brane, neglecting the higher

derivative terms in (1). In contrast, we shall exploit these higher derivative terms and
the resulting speed limit on φ. To see how this works, let us couple (1) to the Einstein-

Hilbert action and examine the resulting dynamics of φ(t) in a flat FRW ansatz: ds2 =

−dt2 +a2(t)dx2. It was shown in [1] that there exists a late time attractor solution of this
system,
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where Mp = 2.4×1018 GeV is the reduced Planck scale. Let us pause a minute to examine
this solution. We see that we have power-law inflation if ε < 1 which translates into√

λm � √
gsMp. We get accelerated expansion only if the inflaton mass is suitable large!

The parameter ε will play a role similar to the slow-roll parameter in standard power-law

inflation. Meanwhile, the scalar field φ appears to be slowing down – this effect gave rise
to the name D-cceleration for this mechanism. However, from the perspective of the 5d

geometry, a measure of the velocity of the brane in the radial direction is given by the
analog of the special relativistic γ factor,

γ ≡
√

1 − λφ̇2/φ4 ∼ 2

3
εm2t2 (3)

where in the second equality we have evaluated γ on our solution (2). We see that the
brane is approaching the speed of light as inflation proceeds. In summary, we have a fast

moving brane moving down a steep potential – a very counter-intuitive situation from the
perspective of traditional slow roll inflation. The reason the mechanism drives accelerated

expansion is because the potential does not affect the dynamics of φ; it is controlled almost
entirely by the speed limit. In contrast, the potential is the dominant contribution to the

dynamics of the scale factor a(t).
Since the throat is finite, inflation ends when the brane reaches φ ∼ φIR, either by

oscillating around the bottom of the throat or, more dramatically, by annihilating with
an anti-brane. The number of e-foldings that the universe undergoes in a single pass from

φUV to φIR is Ne ∼
√

λ/gs(m/Mp) log(φUV /φIR)

3. Density Perturbations

The power spectrum of density perturbations in this model was computed in [2],

following the work of Garriga and Mukhanov in the general context of k-inflation [6]. The
standard gauge invariant combination of the scalar field and the metric perturbations

is denoted ζ ≡ (H/φ̇)δφ + Φ where Φ is the Newtonian potential and H = ȧ/a is, of
course, the Hubble parameter. An interesting aspect of the fluctuations ζ in our model

is that high momentum ripples do not travel at the speed of light, but rather at a lower
sound speed cs ∼ 1/γ. This means that the fluctuations of wavenumber k do not freeze



out at the causal horizon aH = k as in traditional inflation, but rather when they cross
the smaller sound horizon aH = csk. From equation (3) we see that the speed of sound

is monotonically decreasing in our model. Taking this small subtlety into account, the
power in the fluctuation of the scalar modes can be computed to be

P scalar =
1
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1

4π2
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where the numerical value is the COBE normalisation. When computing the tilt of
this spectrum, an interesting cancellation occurs: the deviation of the background from

a scale invariant de Sitter space is compensated by the shrinking sound horizon which
means modes are freezing out on ever smaller scales and, to leading order in ε, the tilt

vanishes. We have ns ∼ 1 + O(ε2). The power in the tensor modes can be computed
using standard techniques; the fluctuations now freeze at the causal horizon, and yield

the simple ratio

r =
P tensor

P scalar
=

16ε

γ
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while the tensor tilt is nt = −2ε. As discussed in [6], the low sound speed alters the usual
consistency relations between r, ns and nT from that found in weakly coupled, slow-roll

inflation.
Finally, we come to the non-Gaussianity as measured by the 3-point function 〈ζk1

ζk2
ζk3

〉.
Recall that standard, single field, slow-roll inflation robustly predicts negligible deviation
from a Gaussian spectrum [7]. Since our model contains an infinite series of higher deriva-

tive terms, all important to the dynamics, one may expect to find large non-Gaussianities.
Indeed, this is the case. A accurate estimate of their magnitude can be found by expanding

the Lagrangian (1) to quadratic L2 and cubic L3 order and evaluating on the solution,

L3/L2 ∼ γ2
√

P scalar (6)

From which we see that the non-Gaussianity is intimately tied to our D-cceleration effect
as measured by γ.

Detection of primordial non-Gaussianity in the CMBR is an exciting prospect, offering
a window on the short distance physics involved in the inflationary regime. Indeed, if non-

Gaussianity is observed, it provides a wealth of information about the early universe since
it is a function of any triangle ~k1 + ~k2 + ~k3 = 0 that can be drawn on the sky. The full

momentum dependence of the 3-point function 〈ζk1
ζk2

ζk3
〉 for our model can be found in [2]

and distinguishes the DBI model of inflation from others on the market. (In fact, the same
~k dependence of the 3-point function is also generated by higher derivative terms, albeit at

a lower scale [10]). A detailed discussion of the shape of the non-Gaussianities that arise
in different models was given by Babich, Creminelli and Zaldarriaga in [8]. For example,

any non-Gaussianity that is generated outside the horizon – as in the curvaton scenario, or
models with fluctuations in reheating efficiency – is peaked on tall, thin triangles with, say,

k3 → 0. This long wavelength mode creates a background in which shorter wavelengths
propagate. The resulting non-Gaussianity is parameterised by a number fNL, arising as



a non-linear correction to a Gaussian ensemble: ζ = ζg − 3

5
fNL(ζ2

g − 〈ζ〉2) where ζg is
Gaussian. Tests for non-Gaussianity of this form have been performed on WMAP data

[9] resulting in the bound |fNL| ≤ 100. The forthcoming Planck satellite will improve
this bound to |fNL| ≤ 5. However, for other shapes of non-Gaussianity, rigorous tests of

WMAP data remain to be done. In particular, the non-Gaussianity of our DBI model is
peaked on equilateral triangles, k1 = k2 = k3. This is also true for other models which

alter the kinetic term of the inflaton, such as higher derivative interactions [10] and ghost

inflation [11]. Clearly it would be exciting to analyse the data for this specific form of
3-point correlations.

To finish, we determine the parameters and scales involved in our model. As discussed
above, limits on our specific form of non-Gaussianity are not available. If instead we take

the WMAP limit on fNL [9] it translates into L3/L2 ≤ 10−2. Equation (6) then provides
an upper bound on the speed of our brane γ ≤ 40. In fact, it turns out that with

this measure of non-Gaussianity, to keep fNL suppressed even for the 10 e-foldings that
we see in the CMBR requires us to start with a value for φ slightly above the Planck

scale, a somewhat undesirable feature. Matching to COBE normalisation now gives us
a mass of the inflaton in the range m ∼ 1013 → 1014 GeV. Like all inflationary models,

ours is fine-tuned: we require λ ∼ 1012. While this looks ridiculous when viewed as a
’t Hooft coupling of the 4d theory, it becomes very reasonable when seen from the dual

5d perspective: recall that R = λ1/4ls, so we simply require a throat radius R 103 times
larger than the string scale. Finally, note from (5) that the upper bound on γ results in

a lower bound on the tensor modes; we favour a large, observable component of tensor

modes with 0.02 ≤ r ≤ 0.4.
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