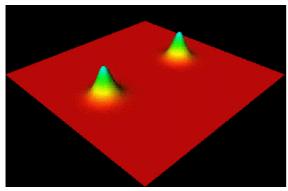
D-Branes in Field Theory

David Tong

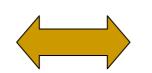
hep-th/0512192, JHEP 02 (2006) 030

The Plan

Objective

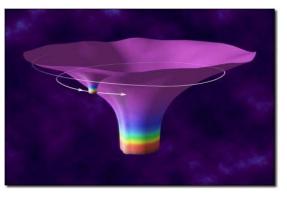

 To study D-brane like objects in field theories, removed from the complexities of gravity

Motivations

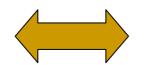

- To understand the relationship between string and gauge theories for semi-classical, magnetic strings.
- To develop a new perspective on soliton scattering in field theory.

Soliton Scattering

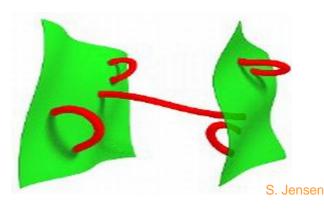
Field Theory



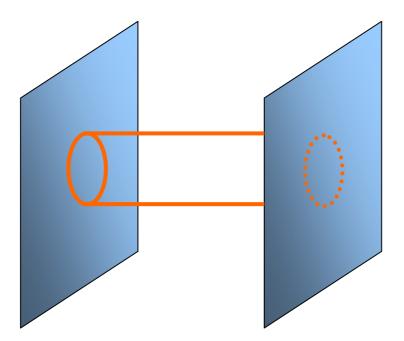
J. Moore and E.P. Shellard

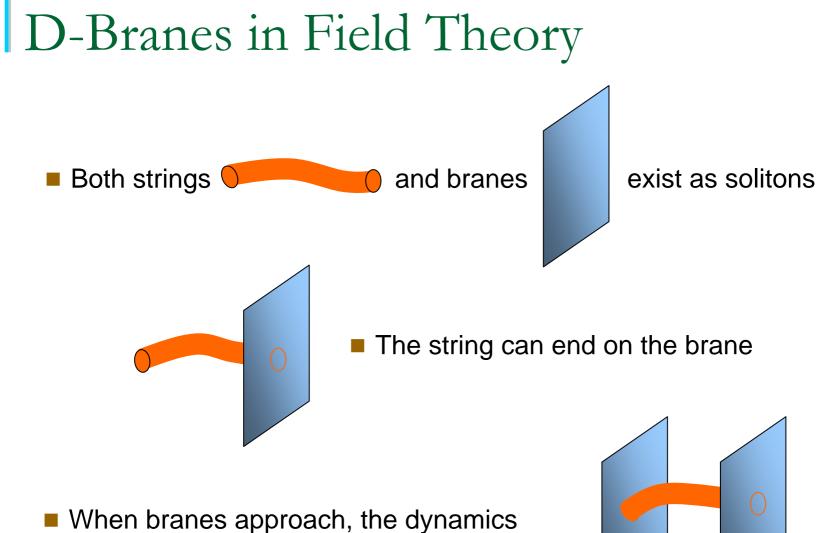

Closed String Description

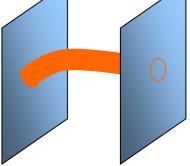
String Theory



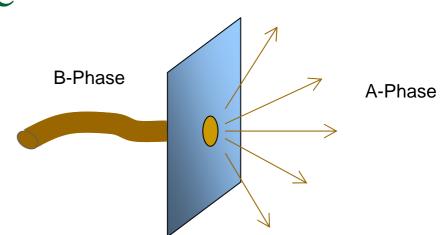
D. Davies and K. Thorne




Open String Description


Open-Closed String Duality

- Tree level closed string = one-loop open string
- Sum over all modes to see equivalence
- In certain regimes, can restrict attention to lowest mode



is governed by light, stretched strings

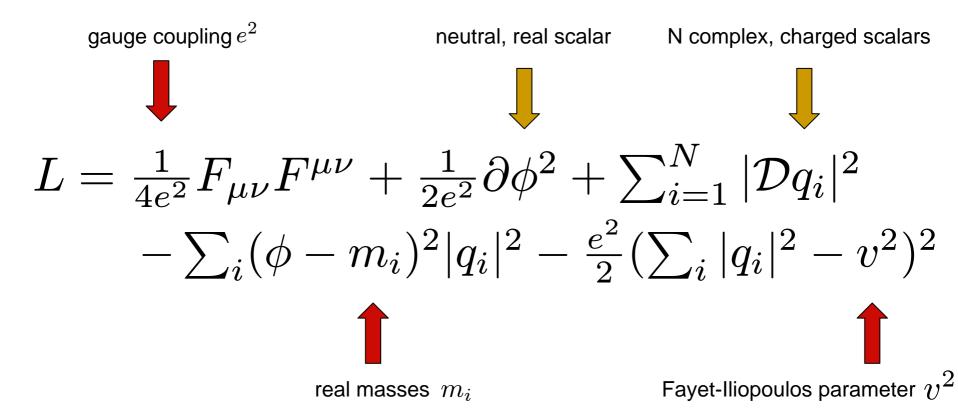
D-Branes in Nature

D-Branes in³He

D-Branes in Fluid Dynamics

D-Branes in Wyoming

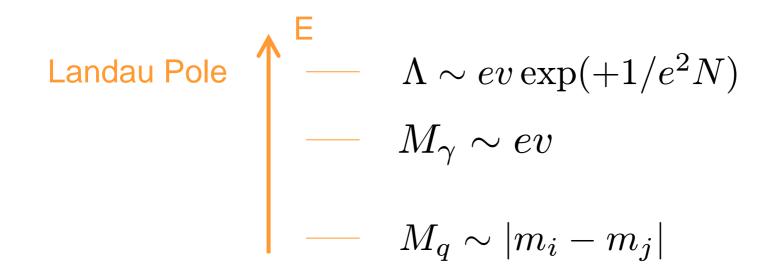
But they only satisfy the first 2 criteria


D-Branes in Field Theory

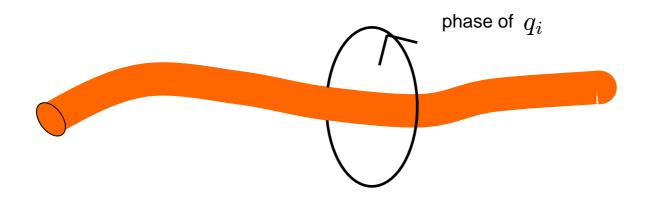
There are 3 field theories that admit D-branes with all properties

- $\mathcal{N} = 1$ super Yang-Mills in d=3+1: The domain wall is a D-brane for the QCD flux tube.
 Witten; Acharya and Vafa
- $\mathcal{N} = 2$ super QCD in d=3+1: The domain wall is a D-brane for the magnetic vortex string.

• $\mathcal{N} = 2$ super Yang-Mills in d=5+1: The monopole 2-brane is a D-brane for the instanton string. Hanany and Witten

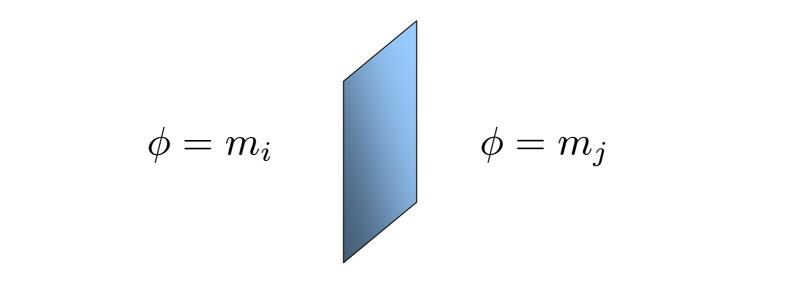

The Lagrangian: $\mathcal{N} = 2$ Supersymmetric U(1) gauge theory

N isolated vacua: $\phi = m_i$ and $|q_j|^2 = v^2 \delta_{ij}$


The Spectra

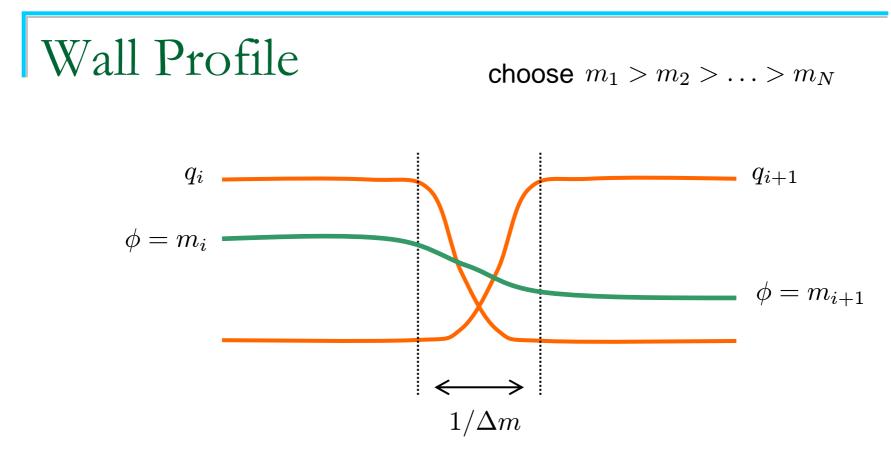
There are three perturbative energy scales:

- Classically, in the strong coupling limit $e^2 \rightarrow \infty$ the theory reduces to a massive sigma model (GLSM).
- We assume a UV completion.


$$B_3 = e^2 \left(\sum_i |q_i|^2 - v^2\right)$$
$$\mathcal{D}_z q_i = 0$$
$$\sum_{z=x_1 + ix_2}$$

$$T_{\rm vortex} = 2\pi v^2$$

Nielsen and Olesen, '73


Isolated vacua domain walls

$$\partial_3 \phi = e^2 (\sum_i |q_i|^2 - v^2)$$

 $\mathcal{D}_3 q_i = (\phi - m_i) q_i$

$$T_{\text{wall}} = |m_i - m_j|v^2$$

Abraham and Townsend, '91

Two Collective Coordinates

Center of Mass X

Phase from U(1) flavour action: $q_i \rightarrow e^{i\sigma}q_i$

$$q_{i+1} \to e^{-i\sigma} q_{i+1}$$

Moduli Space is $\mathbf{R} imes \mathbf{S}^1$

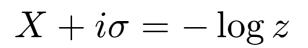
Domain Wall Dynamics

The collective coordinates are promoted to dynamical degrees of freedom on the domain wall worldvolume:

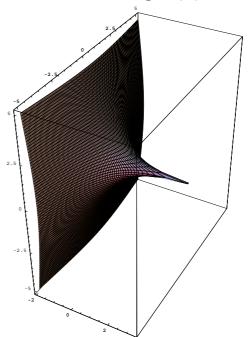
$$\mathcal{L}_{\text{wall}} = T_{\text{wall}} \int d^3x \ (\partial X)^2 + (\partial \sigma)^2 + \text{fermions}$$

But in d=2+1, σ is dual to a U(1) gauge field: $\partial_{\alpha}\sigma \sim \epsilon_{\alpha\beta\gamma}F^{\beta\gamma}$

low energy dynamics is
$$\mathcal{N}=2$$
 U(1) gauge theory

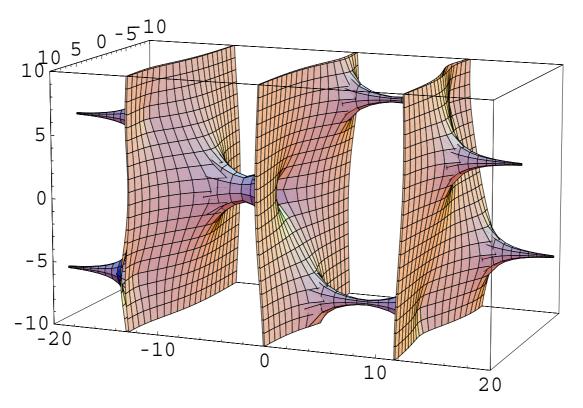

$$\mathcal{L}_{\text{wall}} = \int d^3x \, \frac{1}{4g^2} F_{\alpha\beta} F^{\alpha\beta} + \frac{1}{2g^2} (\partial \psi)^2 + \text{fermions}$$

 $\frac{1}{g^2} = \frac{\Delta m}{4\pi^2 v^2}$ and $\psi = 2\pi v^2 X = T_{\text{vortex}} X$


The Domain Wall as a D-Brane

Gauntlett, Portugues, Tong and Townsend, '00 Shifman and Yung,'03

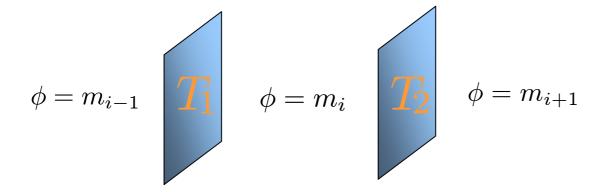
Simplest to see from domain wall worldvolume. String appears as a "Blon"


with
$$z = x^1 + ix^2 = re^{i\theta}$$

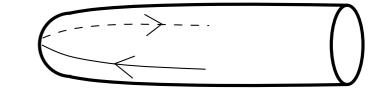
 $\sigma \sim heta \implies F_{0r}
eq 0 \implies$ end of string electrically charged

Bulk Solutions

Analytical solutions to bulk equations known in simplest case; numerical solutions found in others

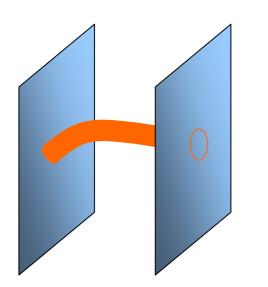


Isozumi, Nitta, Ohashi and Sakai '04


Scattering of Two Walls

Solutions exist for all separations

Gauntlett, Tong, Townsend '00


Moduli Space is: $\mathcal{M}_{2-\mathrm{wall}}\cong \mathbf{R} imes \mathbf{S}^1 imes \mathcal{M}_{\mathrm{cigar}}$

- Metric is known, but messy
 - smooth at the tip
 - exponentially close to the flat cylinder

Tong '01

Open String Description

Low-energy dynamics is $U(1)^2$ gauge theory, coupled by the vortex string

vortex charge = (+1,-1) vortex mass = $T_{vortex}\Delta X = (\psi_2 - \psi_1)$

What is BPS state? Vector multiplet Chiral multiplet

- Add charged chiral multiplet, with fields q and λ

Chern-Simons-Higgs Theory

The relative dynamics of the two walls is governed by U(1) gauge theory coupled to chiral multiplet

But: Integrate in Dirac fermion in d=2+1 is Induce a Chern-Simons term

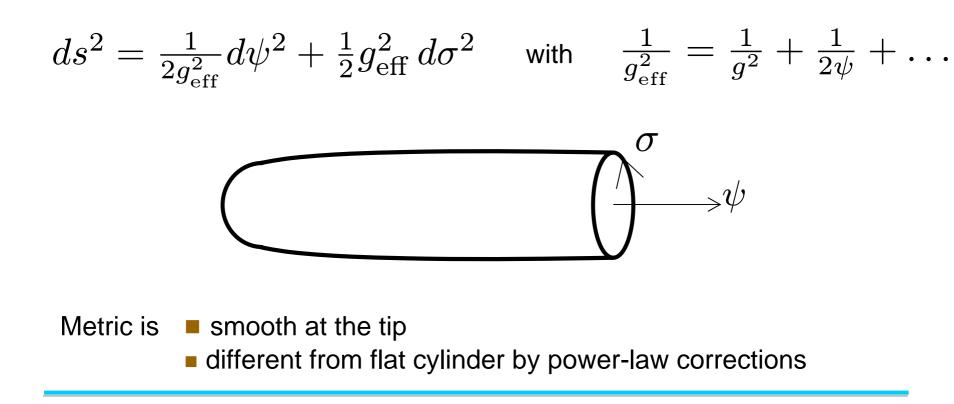
$$\mathcal{L}_{\text{wall}} = \frac{1}{4g^2} F_{\alpha\beta}^2 + \frac{1}{2g^2} (\partial \psi)^2 + |\mathcal{D}q|^2 + \psi^2 |q|^2$$
$$+ \kappa A \wedge F + \frac{g^2}{2} (|q|^2 - \kappa \psi)^2 + \text{fermions}$$
$$\bigwedge \qquad \psi = \psi_2 - \psi_1$$

where $\kappa = -rac{1}{2}$ from integrating charged fermion λ

The Vacuum Moduli Space

Chern-Simons theory captures domain wall dynamics
 Vacuum manifold \cong domain wall moduli space

$$V = \psi^2 |q|^2 + \frac{g^2}{2} (|q|^2 - \kappa \psi)^2$$


Set $\psi \neq 0$ \longrightarrow $V = rac{1}{2} \kappa^2 g^2 \psi^2$. Integrate out q and λ

$$\kappa_{\text{eff}} = -\frac{1}{2} + \frac{1}{2}\operatorname{sign}(\operatorname{Mass}[\lambda]) = -\frac{1}{2} + \frac{1}{2}\operatorname{sign}\psi = \begin{cases} 0 & \psi > 0\\ -1 & \psi < 0 \end{cases}$$
Yukawa coupling $\psi \overline{\lambda} \lambda$

 \Rightarrow Massless $F_{lphaeta}$ and ψ when $\psi > 0$ \implies Walls cannot pass!

Vacuum Moduli Space

The low energy dynamics of the light fields on the wall is a sigma model involving the separation ψ and dual photon σ

Summary

- We can study either
 - Classical solutions of bulk field equations
 - Quantum dynamics of open strings
- Both lead to the same qualitative physics

Regimes of Validity

The bulk and open string calculation are valid in different regimes

Bulk:

- Bulk theory is non-renormalizable.
 - Expect higher derivative corrections of order $(\partial/v)^2$
 - These are negligible for domain walls when:

$$\frac{\Delta m}{v} \ll 1$$

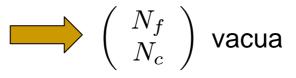
Open String:

- $\hfill The energy of the open string ground state <math display="inline">Xv^2 \ll \Delta m$, the excitation of the string.
- \blacksquare Wall separation $X\gg 1/\Delta m$, the width of the wall

$$\frac{\Delta m}{v} \gg 1$$

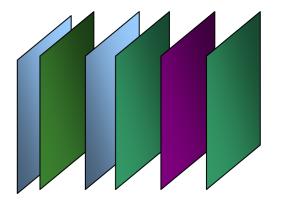
String Coupling?

Question: Does the D-brane tension scale as 1/g_s?
Problem: It's not clear how to compute g_s.


$$T_{\text{wall}} = \left(\frac{T_{\text{vortex}}}{2\pi}\right)^{3/2} \frac{\Delta m}{v} \quad \Longrightarrow \quad g_s \stackrel{?}{=} \frac{v}{\Delta m}$$

For e² ≪ 1 the vortices always reconnect and g_s ~ 1
Our massive sigma model arises from the e² → ∞ limit and the relationship g_s = v/\Delta m seems plausible.

- If true, interesting for cosmic strings
- With this definition, open strings require $g_s \ll 1$


More General Domain Walls

Can consider $U(N_c)$ with $N_f > N_c$ fundamental flavors

- Many interpolating domain walls
- Interesting ordering properties (penetrable and impenetrable walls)
- Vortices end on only certain domain walls

Isozumi, Nitta, Ohashi and Sakai '04 Sakai and Tong '05

Open string description: Abelian Chern-Simons-Higgs theory.

(No non-abelian symmetry enhancement)

Other D-Branes

N=1 d=3+1 SU(N) Super Yang-Mills:

- k domain wall theory is d=2+1, N=1 U(k) + adjoint multiplet + CS term at level N
 Acharya and Vafa
- Two-loop computation in 1/N reproduces qualitative force between domain walls
 Armoni and Hollowood

- N=2 d=5+1 SU(2) Super Yang-Mills: (LST)
 - k monopole theory is d=2+1, N=4 SU(k) super Yang-Mills Hanany and Witten
 - Quantum Coulomb branch reproduces monopole moduli space
 - Monopole has $1/g_s$ tension with $g_s = 1/e\phi$

Seiberg and Witten Chalmers and Hanany

Conclusion

- We have presented an open string description for semiclassical D-branes in d=3+1 field theory
- Agrees qualitatively with classical bulk description

Questions:

- Can we quantize the semi-classical string with Dirichlet boundary conditions?
- □ Is the bulk calculation truly a "closed string" description?
 - 't Hooft limit underlying d=3+1 confining theory
 - Little string underlying d=5+1 SYM
- Is there a little string theory underlying the d=3+1 massive sigma model?