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Instantons are composed of partons.

1. Introduction

It is both an honour and a great pleasure to deliver this talk as part of

the celebrations for Misha Shifman’s 60th birthday. As a graduate student,

I learned about instantons and supersymmetry from Misha’s beautifully

written reviews. This therefore seems like the perfect place to revisit an old

idea related to instantons, but with a slightly novel supersymmetric twist.1

The old idea that I would like to talk about is that instantons can be

thought of as containing constituent objects.2 This idea has been mooted

both for instantons in Yang-Mills theories and instantons in sigma-models.

In both cases, the first hint at the existence of underlying constituents

comes from simply counting the number of collective coordinates:

• Instantons in Yang-Mills theories. In SU(N) Yang-Mills theory,

the instanton has four translational modes, a single scaling mode,

and 4N − 5 orientation modes. This gives a total of 4N collective

coordinates.

• Instantons in sigma models. In the CPN−1 sigma-model, the in-

stanton has 2 translation modes, a single scaling mode, and 2N −3

orientation modes. This gives a total of 2N collective coordinates.

For each of these solutions the collective coordinates are Goldstone modes,

arising from the action of symmetries on an instanton. However, the nu-

merology suggests that there may be a different interpretation of the col-

lective coordinates: as the positions of N partons which comprise the in-
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stanton.

The conjecture that instantons should be thought of as containing N par-

tonic objects is usually framed in the context of d = 3 + 1 dimensional

Yang-Mills theories and d = 1+1 dimensional sigma-models. In both these

cases, the physics is strongly coupled in the infra-red. The hope is that in

the partons — which are objects localized in (Euclidean) spacetime — are

somehow liberated and the vacuum is best thought of as a correlated soup

of these objects. This is then invoked to explain low-energy phenomena

such as confinement or chiral symmetry breaking. Interesting ideas along

these lines were presented by Zhitnitsky at the Shifmania conference and a

good review can be found in.3

In this talk, I would like to examine the parton conjecture in the context of

d = 4+1 dimensional Yang-Mills theories and d = 2+1 dimensional sigma-

models. These theories are now weakly coupled in the infra-red, but strongly

coupled in the ultra-violet. They are to be thought of as non-renormalizable

effective field theories which require a UV completion. Moreover, the instan-

ton solutions are now particle-like solitons, carrying finite energy as opposed

to finite action. The parton conjecture becomes slightly better defined: it is

the idea that the instanton should be thought of as a multi-particle state.

Is this the right interpretation of the instanton in these models? And, if so,

how can we tell?

2. Five-Dimensional Yang-Mills

It is known from the work of Seiberg and others that there exists a UV

completion of certain Yang-Mills theories in d = 4 + 1 dimensions, at least

when endowed with N = 1 or N = 2 supersymmetry.4 However, we don’t

know a whole lot about the details of this UV theory.

The story is particularly interesting in the case of N = 2 supersymmetry.

(This means 16 supercharges). Here it is known that the UV completion of

d = 4 + 1 dimensional SU(N) Yang-Mills is really a conformal field theory

in d = 5+1 dimensions, usually referred to as the (2, 0) theory.5 This theory

is compactified on a circle of radius R, which is related to the 5d Yang-Mills

coupling by R = e2/8π2. Little is known about the dynamics of the (2, 0)

theory and, in particular, there is no known Lagrangian formulation. What

little knowledge we do have comes from the gauge-gravity correspondence.

Most strikingly, it can be shown that the (2, 0) theory has ∼ N3 degrees of
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freedom.6 This is many more than the ∼ N2 degrees of freedom that are

seen in the infra-red Yang-Mills theory. This means that if we’re looking

for the UV completion of the theory, then we need to find a lot of states!

Understanding how these N3 degrees of freedom arise is likely to tell us

something important about the degrees of freedom of M-theory.

The instanton in d = 4 + 1 dimensional Yang-Mills plays an important

role in this story: it is the Kaluza-Klein mode coming from the theory in

d = 5+1 dimensions. This can be seen already in the classical mass formula,

Minst =
8π2

e2
=

1

R
(1)

The proposal that I would like to explore is the following: The instanton

in d = 4 + 1 dimensional Yang-Mills should be thought of as an N particle

state. Moreover, the N partons are to be thought of as the remnant of the

UV degrees of freedom which comprise the (2, 0) theory.

Let’s look at some circumstantial evidence for this proposal. Firstly, we

can compute the free energy in the infra-red and ultra-violet and ask: at

what energy does the scaling change from ∼ N2 to ∼ N3? We can attack

this calculation using the supergravity dual,7 but the correct result also

follows simply from assuming a second order phase transition and equating

the two free energies at the critical point,

F ∼ N2T 5 ∼ RN3T 6 (2)

from which we learn that the cross-over happens at the critical temperature

T ∼
1

NR
∼

1

e2N
(3)

The factor of 1/N is all-important here. It tells us that, whatever the new

degrees of freedom are, they come in at the energy scale below the Kaluza-

Klein scale. Indeed, this had to be the case: the 5d theory becomes strongly

coupled at the energy scale E ∼ 1/e2N and it is here that new UV degrees

of freedom are required to render the theory well-defined in the UV. This

is 1/N th the mass of an instanton. These are our conjectured partons.

There is more circumstantial evidence for the partonic nature of the in-

stanton. There is a refinement in the count of the number of degrees of

freedom that comes from looking at the anomaly coefficient. For G = ADE

gauge group, the coefficient is,8,9

c2(G) × |G| (4)
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where c2(G) is the dual Coxeter number (equal to c2(G) = N for

G = SU(N)) while |G| is the dimension of the gauge group (equal to

|G| = N(N − 1) for G = SU(N)). For G = SU(N), this reproduces the

leading order scaling, but also gives the subleading contribution: N3 − N .

However, for arbitrary G = ADE gauge group, this formula has an in-

teresting interpretation in terms of the partonic nature of instantons for

G = ADE gauge group. This is because the dimension of the instanton

moduli space is known to be 4c2(G). If the anomaly coefficient is a good

measure of the number degrees of freedom, it is suggesting that each parton

itself transforms in the adjoint of the gauge group G. Making sense of this

statement would go a long way towards understanding the parton picture

of instantons.

Finally, the partonic interpretation of instantons naturally resolves a puz-

zle that arises upon quantization: the scaling mode of the instanton gives

rise to a continuous energy spectrum above Minst. This is very peculiar

behaviour for a one-particle state in quantum field theory. However, it is

entirely natural for a multi-particle state.

The upshot of the above discussion is that the partonic interpretation

of instantons would explain several known features of the UV behaviour

of 5d Yang-Mills theories. However, there are lots of questions that remain

unanswered. Most pertinent among these is: why are the partons confined to

live within the instanton? This is not confinement as we know it in QCD.

The existence of the instanton moduli space means that the partons are

individually free to wander R4. Nonetheless, there are interactions between

them which mean that are denied an existence on their own. What is the

cause of these interactions? And how can we understand the nature of the

partons given that we only have access to the low-energy physics of Yang-

Mills theories.

I have not been able to answer these questions in the context of Yang-Mills.

Rather, in the rest of this talk I will retreat and discuss a simple toy model

which contains many of the same problems, but in a context where we can

completely understand the relevant physics. In fact, the toy-model is very

familiar to everyone who got stuck with QCD and looked for inspiration in

something simpler: it is the CPN−1 sigma-model. Since we are interested

in an analogy for Yang-Mills theory in d = 4 + 1 dimensions, we will look

at the sigma-model in d = 2 + 1 dimensions.
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3. Three Dimensional Sigma Models

The toy model that we consider in a supersymmetric sigma model in d =

2+1 dimensions. Specifically, we will consider N = 4 supersymmetry (which

means eight supercharges). While the low-energy physics will be a sigma-

model, in contrast to the case of Yang-Mills theory, we will also stipulate

the UV completion: it is a gauge theory first discussed by Intriligator and

Seiberg.10 We first describe this gauge theory and then explain how the

sigma model emerges in the infra-red. We construct the gauge theory out

of vector multiplets and hypermultiplets. These contain the following fields:

• Vector multiplet: V = (Aµ, φi, fermions), φi are real scalars with

i = 1, 2, 3.

• Hypermultiplet: Q = (q, q̃, fermions). q and q̃ are both complex

scalars.

The gauge theory that we consider is U(1)N with N hypermultiplets. The

charges of the matter multiplets are best summarized by the following

quiver diagram in which each node corresponds to a gauge group and each

link to a hypermultiplet.

Fig. 1. The quiver diagram for the UV gauge theory.

We will need to introduce a couple of parameters for this theory. Each

gauge group is assigned coupling constant g2. Each matter multiplet is

assigned bare mass m. However, the physical mass, Ma, a = 1, . . . , N of

the N th matter multiplet also depends on the expectation value of the
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scalars in the vector multiplets in the ath and (a + 1)th gauge groupa,

Ma = φa − φa+1 + m (5)

While the quiver gauge theory happily describes the UV physics, our real

interest is in the infra-red. At low energies, we integrate out the massive

hypermultiplets and seek an effective theory describing the massless vector

multiplets: these are 3N scalar fields φa
i together with 3N photons, each of

which can be dualised in favour of a periodic scalar field,

F a
µν ∼ g2ǫµνρ∂ρσ

a (6)

Integrating out the hypermultiplets induces derivative interactions between

the vector multiplet fields. The resulting physics is a low-energy sigma-

model on the Coulomb branch with target space10

R3 × S1 × T ⋆CPN−1 (7)

The fields φa
i and σa provide coordinates on this space. We won’t go through

the derivation of this sigma-model, but it will be useful to sketch how it

works in the simple example of N = 2. In this case, the quiver has just

two nodes. The diagonal U(1) gauge field has nothing charged under it

and decouples (it will give rise to the R3 × S1 factor of the target space).

Meanwhile, the axial U(1) couples to two hypermultiplets with charge +1

and −1. The discussion is simplest if we ignore two of the scalars in the

vector multiplet (these will give rise to the cotangent bundle T ⋆) and focus

just on a single scalar φ and the dual photon σ. The low-energy dynamics

for these fields is given by

L =
1

g2
eff

(∂φ)2 + g2
eff(∂σ)2 (8)

where the effective coupling constant gets one-loop contributions from each

of the hypermultiplets,

1

g2
eff

=
1

g2
+

1

m − φ
+

1

m + φ
(9)

The target space for |φ| < |m| is drawn in the figure below. Topologically,

it is a sphere CP1. For finite g2, the space has the shape of a rugby ball:

it has a squashed metric with only U(1) isometry. In the limit g2 → ∞,

aThis expression actually describes a triplet of masses for each hypermultplet, corre-

sponding to the triplet of scalars in a vector multiplet. For details of how this works,

and why it’s not important for the following discussion, see.1



June 16, 2009 13:47 WSPC - Proceedings Trim Size: 9in x 6in innards

7

the target spcae becomes round, like a footballb, and the isometry of the

metric is enhanced to SU(2).

Fig. 2. The target space for the low-energy sigma model.

The Soliton

The low-energy sigma-model has a soliton. It is the sigma-model lump,

a.k.a. the sigma-model instanton that we discussed in the introduction. In

d = 2 + 1 dimensions, this is a particle-like state. For target space CP1

(either with a squashed or round metric), the spatial variation of the fields

is governed by the first-order Bogomolnyi equation

∂µφ = g2
effǫµν∂νσ (10)

Similar first order equations hold for the soliton in CPN−1.

What does this soliton correspond to in the microscopic theory? There

are a few clues. Firstly, it is a BPS state. Secondly, its mass is Nm. In

fact, this is enough to identify the microscopic origin of this soliton: it is an

N -particle state constructed from taking a hypermultiplet field from each

link of the quiver ring:11 Q1Q2 . . . QN . Now we see the importance of this

three-dimensional example. It is an explicit model in which the partonic

nature of the soliton is realised. A single soliton in the low-energy theory is

indeed interpreted as a multi-particle state in the UV. Our goal now is to

ask the question in reverse: given only access to the IR physics, what can we

learn about the UV physics by studying the soliton? Of course, hindsight is

a wonderful thing and we intend to employ it to its full extent in our study.

Nonetheless, the answer is rather surprising. By studying the properties of

the soliton, we will be able to reconstruct the full UV physics. In particular,

bThis sporting analogy is to be taken in the European sense.
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this means resolving the quantum numbers of the partons that lurk inside

the soliton. In the rest of this talk, we will see how this comes about.

The Partons

Let’s first ask how we can see the partons inside the soliton in this model

more explicitly. As we mentioned in the introduction, the counting of col-

lective coordinates is certainly suggestive of an interpretation in terms of

the positions of N objects on the plane. However, if we simply plot the

energy configuration of a single soliton, it just looks like a round blob with

no hint of any internal structure. How do we reconcile these statements?

In fact, the UV theory is already telling us the right place to look. Recall

that the round Fubini-Study metric on CPN−1 only arises in the limit g2 →

∞. If, instead, we study the sigma-model at finite g2, then the metric is

squashed with only a U(1)N−1 isometry. The full 2N collective coordinates

of a single soliton survive at finite g2 (they are protected by index theorems),

but they are no longer Goldstone modes. They now explicitly determine the

positions of the partons. For example, the figure below shows the energy

profile for a single soliton for a CP1 target space. We see that the two

partons dramatically reveal themselves as the target space is squashed.

Fig. 3. The two partons inside a CP
1 lump for m/g2 = 0, 1 and 2.

A similar phenomenon happens for target space CPN−1. Here is the

example of CP2, where the single soliton decomposes into three partons. A

similar mechanism to see the partons was described in the talk at Shifmania

by Ken Konishi.12
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Fig. 4. The three partons inside a CP
2 lump as the target space is squashed.

We can also see explicitly that the collective coordinates change the

positions of the partons. For example, we could keep the “scale size” fixed

and change the “orientation” modes of the soliton. For a round target space,

this would leave the energy profile unchanged. However, with the squashed

target space, the orientation modes govern the relative positions of the

partons. For example, here’s some plots showing the single lump in CP2

with different values of the collective coordinates.

Fig. 5. Moving the partons inside a CP
2 lump.

Let’s now turn to the question of confinement. Why must the partons sit

together inside a lump even though they are free to roam? The answer from
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the microscopic theory is simple: any electrically charged state gives rise to

an electric field which asymptotically goes like E ∼ 1/r. This gives rise to

a logarithmically divergent contribution to the energy. Only gauge singlet

states have finite mass, and this is the reason that the partons are bound

together in the state Q1, . . . QN . Moreover, this log-divergence re-appears

in the low-energy effective theory once we ask the partons to move: it is

seen as a log-divergence in the metric on the soliton moduli space.

We have seen above that squashing the sigma-model allows us to graphi-

cally see the partons that sit inside the instanton. But how do we see their

quantum numbers? Here we explain this for solitons in CP1. The Bogo-

molnyi equation for the soliton is given in (10). The k soliton has a moduli

space of solutions of dimension 2k. Using the duality transformation (6),

we can rewrite this equation as

F0µ = ∂µφ (11)

These are the dual Bogomolnyi equations. In contrast to (10), they have

no smooth solutions. But this is entirely expected: after a duality trans-

formation, solitons become fundamental excitations. These should not be

associated to smooth solutions, but rather to solutions of equations with

sources.

∂µ

(

1

g2
eff

F0µ

)

=

k
∑

n=1

δ(z − z+
n ) − δ(z − z−n ) (12)

One can show that solutions to (12) and (11) coincide with smooth solutions

to (10). The positions of the sources z±n become coordinates on the moduli

space of the soliton. This provide a very simple and explicit map between

fundamental excitations and solitons in a field theory.

The construction of the dual Bogomolnyi equation also works for solitons

in CPN−1. It allows us to determine the quantum numbers of the partons.

In this way, we can reconstruct the quiver diagram of the UV theory, details

which one might have reasonably expected were lost to the winds of the

renormalization group by the time we restriced ourselves to the low-energy

physics. Details of this can be found in the longer paper.1

4. Summary: Questions, not Answers

Our toy model in d = 2 + 1 dimensions did all that we hoped. It provides

an explicit setting where the single soliton has the interpretation of an N -

particle state. The partons inside the soliton are identified with the degrees
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of freedom necessary to form a UV completion of the sigma-model. More-

over, by studying the properties of this soliton we were able to reconstruct

the quantum numbers of these partons and therefore the UV physics.

All of this is heartening. However, the real question remains: can we do

the same for Yang-Mills instantons in d = 4 + 1 dimensions? What is

the confinement mechanism that keeps these partons trapped inside an

instanton and what is this telling us about the microscopic dynamics of the

(2, 0) theory? I don’t yet have answers to these questions but I hope that

further study of the Yang-Mills instanton will provide some vital clues.
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