Two Stories of Magnetic Catalysis

David Tong

APC, Paris, November 16 2011

Based on work with Stefano Bolognesi

Magnetic Catalysis

Klimenko; Gusynin, Miransky and Shovkovy, '94

e.g. in
$$d=2+1$$

$$\lim_{m \to 0^{\pm}} \left\langle \bar{\Psi} \Psi \right\rangle = \mp \frac{B}{4\pi}$$

Story I: Magnetic Catalysis in the bulk

Massless Dirac Fermion in AdS₄

$$S = \frac{i}{2} \int_{\mathcal{M}} \sqrt{-g} \, \bar{\psi} \, \mathcal{D} \psi + \frac{i}{2} \int_{\partial \mathcal{M}} \sqrt{-h} \, \bar{\psi} \psi$$

4 component Dirac spinor

Flipping Helicity at the Boundary

$$\psi_L = \frac{1}{2}(1 - \gamma^5)\psi \longrightarrow \psi_R$$

$$\psi_R = \frac{1}{2}(1 + \gamma^5)\psi \longrightarrow \psi_L$$

$$ds^2 = L^2 \frac{dz^2 + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^2}$$

Chiral Symmetry Breaking in the Bulk

Allen and Lutken, '86

Bulk to bulk propagator for massive spinor

$$S(Z, W) = [Stuff] \times {}_{2}F_{1}[Horrible Blah]$$

Chiral Symmetry Breaking in the Bulk

Allen and Lutken, '86

Bulk to bulk propagator for massless spinor

$$S(Z,W) = \frac{1}{2\pi^2} \left(\frac{zw}{L^2}\right)^{3/2} \left[\frac{Z - W}{[(z-w)^2 + (\vec{x}-\vec{y})^2]^2} + \frac{Z\gamma^z + \gamma^z W}{[(z+w)^2 + (\vec{x}-\vec{y})^2]^2} \right]$$

Chiral Symmetry Breaking in the Bulk

Allen and Lutken, '86

$$S(Z,W) = \frac{1}{2\pi^2} \left(\frac{zw}{L^2}\right)^{3/2} \left[\frac{Z - W}{[(z-w)^2 + (\vec{x}-\vec{y})^2]^2} + \frac{Z\gamma^z - \gamma^z W}{[(z+w)^2 + (\vec{x}-\vec{y})^2]^2} \right]$$

$$\langle \bar{\psi}\psi \rangle = \lim_{Z \to W} \text{Tr S}(Z, W) = \frac{1}{4\pi^2 L^3}$$

Changing the Boundary Conditions

Porrati & Giradello, Rattazzi and Redi, '09

Chiral symmetry broken by boundary conditions \implies circle of boundary conditions

$$S_{\text{bdy}} = \bar{\psi}\psi \longrightarrow \bar{\psi}e^{i\alpha\gamma^5}\psi$$

$$\psi_L = \frac{1}{2}(1 - \gamma^5)\psi \longrightarrow e^{-i\alpha}\psi_R$$

$$\psi_R = \frac{1}{2}(1+\gamma^5)\psi \longrightarrow e^{i\alpha}\psi_L$$

A Magnetic Field in AdS

(Should work in Reissner-Nordstrom black hole; ignore backreaction for now)

A Magnetic Field in AdS

Solve the Dirac Equation in background B field

Stragey

- Ignore radial z direction
- Landau levels are given

$$E = \sqrt{2Bn} \qquad \qquad n \in \mathbf{Z}^{+}$$

- Zero modes (n=0) sector are ξ_{α} (2 component spinor)
- Promote $\xi_{\alpha} \to \xi_{\alpha}(z,t)$
- Effective 2d action

$$S_{\text{eff}} = \int dt dz \, \sqrt{-g} \, i\bar{\xi} \, \mathcal{D}_{2d} \xi$$

Condensate in Magnetic Field

$$\langle \bar{\xi}\xi \rangle = \frac{e^{i\alpha}}{2\pi} \, \frac{z^2}{L^3}$$

$$\langle \bar{\psi}_L \psi_R \rangle = \frac{B}{2\pi} \, \langle \bar{\xi} \xi \rangle$$

Density of states in lowest Landau level

Caveat

- Gap to higher levels is warped in AdS to $\,\sim \sqrt{B} Lz$
- Higher Landau levels important near boundary

Condensate in Magnetic Field with Hard Wall

Condensate in Magnetic Field with Hard Wall

First going left: I bounce 3 bounces 5 bounces
$$\sqrt{\frac{1}{\xi_L}} \xi_R \rangle = \frac{1}{\pi} \left(\frac{z}{L}\right)^3 \left[\frac{e^{i\alpha}}{2z} + \frac{e^{2i\alpha}}{2z + 2z_\star} + \frac{e^{3i\alpha}}{2(z + 2z_\star)} + \ldots\right] \\ -\frac{1}{\pi} \left(\frac{z}{L}\right)^3 \left[\frac{1}{2(z_\star - z)} + \frac{e^{-i\alpha}}{2(2z_\star - z)} + \frac{e^{-2i\alpha}}{2(3z_\star - z)} + \ldots\right]$$
 First going right: I bounce 3 bounces 5 bounces

Condensate in Magnetic Field with Hard Wall

$$\langle \bar{\psi}_L \psi_R \rangle = e^{i\alpha} \frac{B}{4\pi^2} \left(\frac{z}{L}\right)^3 \sum_{n=-\infty}^{+\infty} \frac{e^{in\alpha}}{z + nz_{\star}}$$

Series is conditionally convergent, but not absolutely convergent.

$$\lim_{\alpha \to 0^{\pm}} \langle \bar{\psi}_L \psi_R \rangle = \text{real } \pm \frac{i}{2\pi} \frac{Bz^3}{L^3 z_{\star}}$$

c.f.
$$\int_{-\infty}^{+\infty} dn \; \frac{e^{i\alpha n}}{z + nz_{\star}} = \text{real} \; \pm \; \frac{i\pi}{z_{\star}} \text{sign}(\alpha)$$

Punchline of Story I

$$\lim_{\alpha \to 0^{\pm}} \langle \bar{\psi} \gamma^5 \psi \rangle = \pm \frac{1}{2\pi} \frac{Bz^3}{L^3 z_{\star}}$$

"Chiral" Symmetry Breaking in d=3+1

Spontaneous breaking of CP

Story 2: Magnetic Catalysis in the boundary

Usual AdS/CFT Dictionary

$$\psi \longleftrightarrow \Psi$$

Four component bulk spinor

Two component boundary spinor

$$\Delta[\Psi] = \frac{3}{2} + mL = \frac{3}{2}$$

$$\bar{\psi}\psi \iff ?$$

$$\bar{\psi}\psi \longleftrightarrow ?$$

$$\bar{\psi}\gamma^5\psi \longleftrightarrow ?$$

Our Claim

$$\bar{\psi}\gamma^5\psi \longleftrightarrow \bar{\Psi}\Psi$$

Symmetries

Implication

$$\bar{\psi}\gamma^5\psi \longrightarrow \frac{\sin\alpha}{4\pi^2L^3} + \frac{1}{2\pi}\frac{B}{L^3z_{\star}}z^3 + \dots$$

Source for $\bar{\Psi}\Psi$ (Arises due to boundary terms)

Expectation value $\langle \bar{\Psi} \Psi \rangle$

Punchline of Story 2

$$\langle \bar{\Psi}\Psi \rangle = \pm \frac{3}{2}BM$$

with
$$M=rac{1}{z_{\star}}$$

Summary and Open Questions

- Hard Wall + Magnetic Field = Magnetic Catalysis
 - Spontaneous CP breaking

•
$$\bar{\psi}\psi \longleftrightarrow ?$$

Other effects due to bulk condensates?

Comments and Remarks

Caveat

- Gap to higher levels is warped in AdS to $\,\sim \sqrt{B} Lz$
- Higher Landau levels important near boundary

Note: RN black hole

- Non-extremal: condensate diverges at the horizon
- Extremal: condensate constant at the horizon