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1. Introduction

We are going to talk about Ohm’s law. We are going to take a strongly
interacting quantum field theory, heat it up, throw in a bunch of charged
matter and place a (figurative) rusty crocodile clip on either end. Our goal
is simply to understand how to calculate the current that passes through
this material when we drop a voltage across it.

Rather than attempt this calculation within the framework of quantum
field theory, we are going to take a somewhat different approach. There are
classes of quantum field theories which have a dual description in terms of
gravitational theories in higher dimensions. This duality goes by the name
of the AdS/CFT correspondence or, sometimes, simply holography. The
purpose of these lectures is to explain how one can use general relativity
and the ideas of holography to extract the physics of conductivity.

This mini-course consists of three lectures. In the first lecture we describe
the basics of holography. Although the subject is grounded in string theory,
we take a more applied approach, simply focussing on how one can extract
correlation functions from classical gravitational theories. In the second
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lecture, we describe a few (very) basic facts about conductivity. In the final
lecture, we then draw these threads together and explain how to compute
the conductivity of strongly interacting theories with holographic duals.

2. Basics of holography

The purpose of this first lecture is to provide an introduction to the
AdS/CFT correspondence. There are a number of excellent, longer review
articles available. The first review article [1] focusses on the connections
to string theory and specific supersymmetric gauge theories; more recent
reviews [2, 3] have an emphasis on phenomenological applications, typically
in the context of condensed matter physics.

Holography is the statement of an equivalence between two very different
looking theories:

• Strongly interacting quantum field theories in d space-time dimensions;

• Theories of gravity in (at least) d+ 1 space-time dimensions.

There is a cartoon that illustrates the AdS/CFT correspondence that
will be useful to keep in the back of our minds throughout these lectures. It
is shown below. The black/blue plane, to the right of this picture, represents
the Minkowski space, Rd−1,1 and is usually called the boundary of the space.
This is where the quantum field theory lives. Properties of this theory will
be clarified as we go on, but for now it will suffice to think of it as describing
some strongly interacting matter. Here, matter means quantum fields with
spin 0, 1/2 or 1. The boundary quantum field theory does not include
gravity.

UV

IR

r

Fig. 1. A cartoon of AdS space.
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Stretching away from the boundary is another dimension, labelled with
coordinate r in the diagram. This larger space is usually referred to as the
bulk. Living inside the bulk is a different theory — a theory of gravity. In
practice, this usually means general relativity coupled to a bunch of other
fields.

The claim of holography is that these two theories — gravity in the bulk
and QFT on the boundary — are equivalent. Anything that happens in the
bulk is mirrored in some fashion on the boundary and vice versa.

The extra radial dimension, r, has a very natural interpretation. We
learned through the work of Kadanoff and Wilson and others that quantum
field theories are organised by length scale, or equivalently by energy scale.
The bulk radial direction r should be interpreted as this length scale. Pro-
cesses which happen at different slices in the bulk geometry correspond to
processes occurring at different wavelengths and energies in the boundary
theory. The r → 0 part of the bulk geometry corresponds to the ultra-
violet (UV) of the field theory, conveniently colour-coded black/blue in the
diagram. Meanwhile, r →∞ corresponds to the infrared (IR). In this man-
ner, the AdS/CFT correspondence provides a geometrization of the Wilso-
nian renormalization group, captured by general relativity in one higher
dimension. This statement can be succinctly expressed by the geek joke:
[G,R] = 0.

The first example of the correspondence mapped relativistic conformal
field theories (CFTs) on the boundary to gravity in anti-de Sitter (AdS) space
in the bulk [4]. This is where the name AdS/CFT derives from. However,
it did not take long before examples were found which moved beyond this.
For example, we now know of quantum field theories with a mass gap which
are dual to curved geometries which are not AdS. We also know of non-
relativistic theories which are dual to different geometries which are not
AdS. The name “AdS/CFT correspondence” is, therefore, rather limiting:
there are many extensions to not-AdS/not-CFT correspondences.

2.1. The GKPW formula

For these lectures, we are going to start with the simplest example where
the bulk geometry is AdS. We will work in the “Poincaré patch”. This is a
slice of global AdS in which the boundary is flat. The metric of the bulk
space is

ds2 =
L2

r2
(
dr2 + ηµνdx

µdxν
)
. (1)

Here, L is referred to as the AdS scale. The µ, ν = 0, . . . , d − 1 indices run
over the boundary space-time coordinates. The fact that the bulk space-
time is AdS means that the boundary theory is conformal. This shows
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up, for example, in the symmetry groups. AdS space-time has an SO(2, d)
isometry group. This is the same as the conformal group of the d-dimensional
boundary theory. However, deformations of the geometry away from AdS
can be thought of as deformations of the field theory away from the conformal
fixed point.

Usually in a quantum field theory, we want to compute the generating
function which is schematically of the form

ZQFT[φ0] =

∫
DA exp

(
i

[
SQFT +

∫
φ0O(A)

])
. (2)

Here, A is shorthand for all the fundamental fields in the theory. These
are the things we need to integrate over in the path integral. SQFT is the
action of the theory; it is a functional of the fields A. Finally, O(A) is an
operator of the theory built from the fields A. It may simply be one of the
fundamental fields themselves or it may be some composite operator. The
one thing that we will insist upon is that it is gauge invariant.

In the generating function above, the operator O(A) is sourced by φ0(x).
This is not dynamical. Rather, it is a fixed function that is under our
control. In the context of high-energy physics, we often think about φ0 as
a mere mathematical trick; differentiating with respect to φ0 some number
of times and subsequently setting φ0 = 0 computes correlation functions of
the operator O. However, in the context of condensed matter physics, the
source φ0 is usually something more real. It might be a background electric
or magnetic field, or a background pressure density, or a term that arises
because some guy is sticking a spoon into your quantum liquid and stirring.
In either context, the goal is the same: compute ZQFT[φ0] for all values of
the source φ0(x).

The basic idea of holography is to breathe life into this source φ0. We
promote it from a fixed function to a fully fledged dynamical field that
will be governed by its own equations of motion. The trick is that the
dynamics for φ0 takes place in the higher dimensional bulk, rather that
on the boundary. So we have some field φ(x, r) that is part of the bulk
gravitational theory. We keep a modicum of control over this field only
by insisting on its boundary value. Roughly speaking, we will require that
φ(x, r) → φ0(x) as we approach the boundary, r → 0. (Although we will
have to revisit this naive formula shortly.)

The fundamental formula of holography is the so-called GKPW formula
(named after its discovers Gubser, Klebanov and Polyakov [5] and Wit-
ten [6]). It relates the boundary generating function to the bulk partition
function

ZQFT[φ0] = ZQG [“φ→ φ0” on the boundary] . (3)
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Here, “QG” stands for “quantum gravity”: the right-hand side should be
thought of as a partition function of quantum gravity in the bulk of AdS.
At first sight, that does not seem particularly helpful. It may be hard to
compute the generating function of a strongly interacting field theory, but
it is surely no more difficult than figuring out quantum gravity. However,
there is a limit in which the right-hand side becomes eminently solvable:
this is when gravity is classical. Then we can approximate the bulk partition
function by its saddle-point to write

ZQFT[φ0] ≈ eiSbulk
∣∣
“φ→ φ0” . (4)

Now, the right-hand side is simply the on-shell bulk action, subject to the
requirement that φ→ φ0 on the boundary. (Here “on-shell” means that you
solve the equations of motion subject to this boundary condition and then
plug the answer back into the action.)

This is a lovely and powerful formula. But there is a catch: given a
quantum field theory SQFT, how do you figure out which bulk theory Sbulk
it corresponds to? And what guarantees that the bulk gravitational theory
will be classical to allow you to proceed from the useless (3) to the useful (4)?

This is the tricky part of AdS/CFT. There is certainly no prescriptive
way to start from SQFT and figure out what the dual gravity theory should
be. Instead, finding dual pairs of boundary and bulk theories typically
requires input from string theory. There now exist many examples of such
pairs, where both SQFT and Sbulk have been identified. The most famous
example is N = 4 super Yang–Mills in d = 3+1 dimensions which is dual to
type IIB string theory compactified on AdS5 × S5. For all examples, if we
want the bulk theory to be well approximated by classical gravity then one
requirement is that the boundary theory has a large N number of degrees of
freedom. (For example, SU(N) gauge theory in the ’t Hooft limit N →∞.)

In these lectures, we will take a somewhat different attitude: we will
start from a bulk theory of gravity and use this to define a corresponding
boundary field theory. Equation (4) provides a map which allows us to
compute any correlation function that we desire in the boundary theory.
Moreover, we will not be using anything complicated in the bulk: merely
Einstein–Maxwell theory. Since this is a component of all known holographic
theories (possibly accompanied by a dilaton coupling), you can think of the
results below as applying broadly to a wide class of holographic theories.

2.2. The dictionary

Above, we have seen that sources in the boundary theory become fields
in the bulk. In general, there is a field in the bulk for every operator that you
can write down in the boundary theory. That is a lot of fields. (It is related
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to the fact that, at least in known examples, the bulk is a string theory with
a tower of high-mass states.) However, typically we are only interested in a
few boundary operators and, correspondingly, a few bulk fields.

The simplest example maps the source for a scalar operator O(x) in the
boundary to a scalar field φ(x, r) in the bulk

φ(x, r) ←→ O(x) .

We will explore this in more detail below, where we will see that the mass
of the bulk scalar maps into the dimension of the boundary operator.

We could also think about fields of more general spin. Here, there are
no surprises: fermionic fields in the bulk map into fermionic operators in
the boundary; vector fields in the bulk map into vector operators in the
boundary. The most important such example is a bulk gauge field AA(x, r).
This maps into a conserved current Jµ in the boundary

AA(x, r) ←→ Jµ(x) .

It is not hard to show that gauge symmetry in the bulk implies conservation
of the boundary current: ∂µJµ = 0. (Note that the A vector index in
the bulk runs over one more value than the boundary µ index. This does
not cause a problem with the dictionary because you can always use gauge
invariance to set Ar = 0.)

Our final example is perhaps the most important. Any theory of gravity
necessarily has a bulk metric gAB. In any holographic theory, this is dual to
the energy-momentum tensor in the boundary

gAB(x, r) ←→ Tµν(x) .

Here, diffeomorphism invariance in the bulk ensures conservation of the en-
ergy and momentum currents: ∂µTµν = 0.

2.3. An example: the scalar field

Many of the most basic features of the map between bulk and boundary
can be illustrated with a toy model. (More details of this toy model, together
with models that are less toy, can be found in [7].) For these purposes, we
will forget about gravity completely for now and just work with a free scalar
field in a fixed background d+ 1-dimensional AdS space. The action is

Sscalar = −1
2

∫
dd+1x

√
g
[
gAB∂Aφ∂Bφ+m2φ

]
, (5)

where gAB is the (inverse) AdS metric (1). The equation of motion for the
scalar is

∂A
(√
−ggAB∂Bφ

)
−
√
−gm2φ = 0 . (6)



Holographic Conductivity 2585

Since we have translational invariance in the direction parallel to the bound-
ary, we can always Fourier transform and work with the ansatz φ = φ(r)eik·x.
The equation of motion becomes

−rd+1∂r

(
r−d+1∂rφ

)
+
(
k2r2 +m2L2

)
φ = 0 , (7)

where k2 = −ω2 +~k 2, with ω is the frequency and ~k the spatial momentum.
The solution to this equation is given by a Bessel function. But, for our

immediate purposes, we will only need the behaviour of the solution as we
approach the boundary at r = 0. For this, we can drop the k2 term, and try
the ansatz

φ ∼ r∆ . (8)

This solves the equation above if ∆(∆− d) = m2L2, which has roots

∆± =
d

2
±
√
d2

4
+m2L2 . (9)

We learn that the general near-boundary behaviour of a scalar field in AdS is

φ(r)→
( r
L

)∆−
[φ0(x) + . . .] +

( r
L

)∆+

[φ1(x) + . . .] . (10)

Let me make a few comments about this simple, but important, result.
Earlier, I said that we should fix φ → φ0 on the boundary of AdS. But

the calculation above shows that this cannot be right! (In fairness, I did
place this equation in quotation marks in (3) and (4); this was supposed to
be a hint that it needed ammending!) If we want to solve the equations of
motion, we should really impose the boundary conditions

φ→
( r
L

)∆−
φ0(x) (11)

as the φ approaches the boundary. We will interpret the function φ0(x) as
the source in the boundary field theory.

Note that both roots ∆± are real whenever

m2 ≥ −
(
d

2L

)2

. (12)

That is rather surprising. It means that, at least within the calculations
above, nothing bad happens for masses above this bound. In particular, the
mass-squared can be a little bit negative and that is OK. This is known as
the Breitenlohner–Freedman (or BF) bound: scalar fields can be a little bit
tachyonic in AdS and still be stable.
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2.4. Linear response

Let us ask a question. We have identified φ0(x) in (10) as the source
in the field theory. What is the interpretation of the other independent
function in the solution, φ1(x)?

The answer to this question is the key to many holographic calculations.
It is

φ1(x) = 〈O(x)〉 . (13)

The value of φ1(x) measures the one-point function of the operator O in the
presence of the source φ0. In other words, φ1 is telling you the response of
the operator to the source.

I will now sketch why equation (13) is true. We can always compute the
one-point function in a quantum field theory by differentiating the generating
function

〈O〉 =
1

ZQFT

∂ZQFT[φ0]

∂φ0
=
∂ logZQFT[φ0]

∂φ0
=
∂Sbulk[φ0]

∂φ0
, (14)

where, in the final equality, we have used (4). Recall that Sbulk[φ0] is the
on-shell bulk action, subject to fixed boundary conditions (11). We want to
know what happens to this on-shell action as we vary the boundary condi-
tions.

This kind of question is reminiscent of Hamilton–Jacobi theory in classi-
cal mechanics. Let us briefly remind ourselves how Hamilton–Jacobi theory
works in the simplest case of a point particle. When you vary the action for
a point particle with position q, you get two kinds of terms

δSparticle =

tf∫
ti

dt

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δq +

[
∂L

∂q̇
δq

]tf
ti

. (15)

When deriving the equations of motion, we fix the boundary conditions so
that δq(ti) = δq(tf) = 0 and the second term vanishes. Insisting that δS = 0
then gives us the equations of motion which sit inside the first term above.

But in Hamilton–Jacobi theory, we turn this on its head. We are inter-
ested in the on-shell action, which means that we evaluate the action on the
equations of motion. The on-shell action is a function only of the boundary
value of fields, qi = q(ti) and qf = q(tf). Suppose that we change the final
position of the particle. Equation (15) still tells us how the on-shell action
changes, but now the first term vanishes because the fields are on-shell. We
are left instead with

∂S[qi; qf ]

∂qf
=
∂L

∂q̇

∣∣∣∣
tf

= pf . (16)
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This tells us that varying the on-shell action with respect to the final position
gives us the final momentum of the particle.

We can apply the analog of the Hamilton–Jacobi equation (16) to our
scalar field in AdS. A little thought will convince you that the correct gen-
eralisation is

∂S

∂φ0
=
( r
L

)∆− ∂L
∂(∂rφ)

∣∣∣∣
r=0

, (17)

where the extra power of (r/L)∆− arises because the boundary condition is
given by (11). Now we are almost done. It just remains to compute ∂L/∂φ′.
I will leave this as an exercise. Completing the proof shows that

〈O〉 ∼ φ1 (18)

as promised. (There is, in fact, a subtlety in this calculation which I am
brushing under the carpet. Boundary terms are necessary in the bulk action,
both to have a well defined variational principle and to avoid divergences in
the on-shell action. A correct treatment of these boundary terms is necessary
to get the coefficient right in (18).)

Nearly all applications of holography boil down to implementing some
version of the response calculation sketched above. There is a general strat-
egy that one takes in all these holographic calculations, which is as follows:

• Fix φ0 as r → 0.

• Since the equations of motion for φ are second order, we need another
boundary condition. This is imposed in the infrared of the geometry
(i.e. as r →∞). Exactly what boundary condition we impose depends
on the context. If we are working in Euclidean signature, we typically
require that fields do not diverge in the interior of the geometry. If we
are working in Lorentzian signature, we typically require some kind of
ingoing boundary condition in the interior. (We will see examples in
Section 4.)

• With these two boundary conditions in place, we now solve the equa-
tions of motion and extract the response of the system φ1.

The main purpose of these lectures is to perform these calculations in
situations where the source is a background electric field and the response is
a current. This allows us to compute the conductivity of our theory. Before
we delve into this, we take a small diversion to review some basic features
that we expect from conductivity in different systems.
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3. Basics of conductivity

In this section, we leave ideas of holography behind. Instead, we will take
something of a diversion to explain a few basic features of conductivity. Our
goal is to simply review some essential facts in order to place the holographic
calculations of the next section in some kind of context.

We all learned about Ohm’s law in kindergarten. It is “V = IR”, relating
the voltage drop V to an induced current I. The ratio is the resistance R.
Here we work in slightly more grown-up language. We will discuss the
induced current density ~j(t, ~x) due an applied electric field ~E(t, ~x).

In what follows, we will work with an electric field that is constant in
space, but varying in time. It is most convenient to work with the Fourier
transform of the fields vibrating at some fixed frequency ω

~E(t) =

∫
dω

2π
e−iωt ~E(ω) , ~j(t) =

∫
dω

2π
e−iωt~j(ω) . (19)

In this notation, Ohm’s law reads

~j(ω) = σ(ω) ~E(ω) . (20)

Note that if we shake the electric field at frequency ω, then the system
responds at the same frequency ω. This is the regime of linear response.

The ratio σ(ω) is the optical conductivity. Since we are working in Fourier
space, σ is complex. The real part captures what you would intuitively
call the conductivity (or inverse resistivity) of the system: it describes the
dissipation of the current. The imaginary part is the reactive part. We will
illustrate this with some examples below.

3.1. The Drude model

Let us go right back to basics. The Drude model is a simple description
of charge transport, based on the idea of billiard ball-like charge carriers
bouncing off things in a solid. It is nothing more than Newtonian physics.
However, rather surprisingly, several features of the Drude model are ex-
tremely robust, surviving many subsequent revolutions in physics. Indeed,
in the next section, we will see aspects of the Drude model emerging from
general relativity! But we are getting ahead of ourselves . . .

Consider a particle of mass m, charge q and velocity ~v. The essence of
the Drude model is Newtonian “F = ma”, where the force is due to the
electric field, together with a linear friction term

m
d~v

dt
+
m

τ
~v = q ~E . (21)
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The coefficient τ is known as the scattering time. It can be thought
of as the average time that the particle travels unimpeded before it hits
something.

The current is ~j = nq~v, where n is the density of charge carriers. For an
AC electric field, with frequency ω, we need only solve (21) to determine the
steady-state current ~j(ω). The definition (20) then tells us the conductivity:
it is

σ(ω) =
σ0

1− iωτ
, (22)

where the ω → 0 DC conductivity is

σ0 =
nq2τ

m
.

We plot the real and imaginary parts of the conductivity in figure 2. The
real part exhibits a peak at frequencies ω < 1/τ ; this will be referred to
below as the Drude peak. At high frequencies, ωτ � 1, the conductivity
is dominated by the imaginary part, σ ∼ −1/iω. This is the conductivity
of a free particle. You can think about this as shaking the particle so fast
that it turns around and goes the other way before it had the chance to hit
something.
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Fig. 2. The real and imaginary parts of the Drude conductivity.

3.2. Particle–hole creation

At high frequencies, there is another simple effect that can contribute
to conductivity. This is not captured by the Drude model, but is instead a
quantum field-theoretic effect, namely particle–anti-particle creation. Or, in
a condensed matter context, particle–hole creation. It is perhaps simplest
to illustrate by showing some data.



2590 D. Tong

Figure 3 shows the real part of the conductivity of graphene, taken
from [8]. For our purposes, graphene should be thought of as relativistic
quantum field theory in the lab. It is a particularly simple relativistic quan-
tum field theory in d = 2 + 1 dimensions, consisting of four, free Dirac
fermions. The plots shown in the figure are not measured at the relativistic
Dirac point, but instead at finite chemical potential. The curves that lie
further to the right correspond to systems with higher Fermi energy EF.

Fig. 3. The optical conductivity of graphene, taken from [8].

At low frequencies, we can see the beginning of the Drude peak. But
at higher frequencies, the conductivity begins to rise again, signalling the
presence of new charge carriers, before levelling off. The rise happens around
ω ∼ 2EF. At these frequencies, we can excite electrons from the filled valence
band into the conduction band, and these particle–hole pairs then contribute
to the charge density. (Note that the excited electron must have the same
momentum as the hole, which is why the 2EF energy is required.)

There is also interesting physics contained in the plateaux region at very
high energy. The fact that the conductivity does not change is telling us
that we have a scale invariant theory: we get the same physics at all scales.
This statement is specific to theories in d = 2 + 1 dimensions. To see this,
we can do some naive dimension counting: the dimension of the electric field
is always [E] = 2. The dimension of a conserved current density in d space-
time dimensions is always [J ] = d − 1. This means that the dimension of
the conductivity is [σ] = d− 3. So in d = 2 + 1 dimensions, the conductivity
is dimensionless and in any conformal field theory, it necessarily reaches a
constant value. (In d = 3 + 1, the conformal behaviour of the conductivity
is σ ∼ ω.) The height of the plateaux is telling us the number of charged
degrees of freedom in the game: roughly speaking, it is the coefficient of
the 〈JJ〉 correlation function. In the present case, one can determine that



Holographic Conductivity 2591

there are indeed four Dirac electrons in graphene from the height of the
conductivity plateaux. For more details of conductivity at quantum critical
points, see [9].

3.3. A strongly interacting material

The charge carriers in graphene are essentially free and their dynamics
is well understood. To end this section, we make some brief comments on
strongly interacting systems that are not so well understood. There are a
large number of such systems in nature, including heavy fermion materials
and various classes of unconventional superconductors, of which the cuprates
are perhaps the most prominent example. These cuprates are effectively
two-dimensional, with charge transport taking place in copper–oxide planes.

At optimal doping, above the transition temperature, the cuprates sit in
a phase that is often called the “strange metal”. Here, they exhibit many
anomalous transport properties. (See, for example, [10] for a basic but very
readable account of these materials.) The system is strongly coupled and
various experiments strongly imply that there are no well-defined quasi-
particles in the system. There are also suggestions that the physics in this
region may be governed by a quantum critical point. In this sense, it is sim-
ilar to the kind of theories studied using holography. (Although, of course,
in detail the underlying physics is nothing at all like the theories studied
using holography!)

The most famous of the anomalous transport properties is the DC resis-
tivity, ρ = σ(ω = 0), which grows linearly with temperature

ρ ∼ T .
In many materials, this behaviour is seen over a couple of orders of magni-
tude. Its underlying cause is not understood. (For some grounding, the ex-
pected behaviour for resistivity dominated by strong electron interactions is
ρ ∼ T 2, arising from umklapp scattering. Electron–phonon interactions give
ρ ∼ T 5 below the Debye temperature and, encouragingly, ρ ∼ T above the
Debye temperature. However, the linear DC resistivity seen in the cuprates
extends way below the Debye temperature.)

Anomalous behaviour is also seen in the optical conductivity. At low
frequencies — roughly ω < T — the material exhibits the kind of the Drude
peak we described above. But at higher frequencies, there is a surprise. The
conductivity flattens out and now exhibits a power-law behaviour. In the
left-hand side of figure 4, we show a log–log plot of the absolute part of the
conductivity |σ(ω)| in BiSCCO, taken from [11]. Over a large range, the
conductivity scales as

|σ| = B

ωγ
,
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where γ ≈ 2/3. Moreover, the coefficient B is independent of temperature.
(This can be seen in the plots by the fact that all the lines — each plotted
at a different temperature — sit directly on top of each other in the scaling
regime.) At the same time, the phase of the conductivity, shown in the
figure on the right, is constant, around 60◦, compatible with the holomor-
phic behaviour σ ∼ 1/(iω)2/3. This scaling behaviour is poorly understood.
(See [12–14] for models which attempt to explain it.)

Fig. 4. The optical conductivity of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ,
taken from [11].

Note that the cuprates do not exhibit the rise in the conductivity due
to particle–hole creation. However, the Fermi energy EF is much higher
in these systems, nestling at the lattice scale where one no longer expects
simple universal behaviour.

With this quick background to the optical conductivity, let us now re-
turn to our (much more!) theoretical study of charge transport in strongly
coupled holographic models.

4. Holographic conductivity

Let us now get back to the world of holography. For the remainder of
these lectures, we are going to work with a d = 3 + 1 dimensional bulk, cor-
responding to a d = 2+1 dimensional boundary theory. We chose Einstein–
Maxwell theory

Sbulk =

∫
d4x
√
−g
[

1

2κ2

(
R+

6

L2

)
− 1

4e2
FABF

AB

]
. (23)

The negative cosmological constant Λ = −3/κ2L2 is tuned so that the
ground state is the AdS metric (1) with curvature scale L.



Holographic Conductivity 2593

As we reviewed in Section 2, the metric is dual to the boundary stress
tensor Tµν and the gauge field is dual to a conserved current Jµ. We will
not turn on any other fields in the bulk, but all the results that we describe
below will hold for any bulk theory with an Einstein–Maxwell sector

We will compute the conductivity associated to the current Jµ. Before we
do this, there are a few rudimentary concepts that we need to introduce into
our gravitational model. These are the temperature and chemical potential
of the boundary theory. As we now review, both are associated with black
holes in the bulk.

4.1. Black holes

The first thing that we want to do is to place the boundary theory at
some finite temperature T . This is done by placing a black hole in the bulk
of AdS [15]. In the Poincaré patch, the black hole is really a black brane;
the horizon lies parallel to the (spatial) boundary.

There are a few ways to see that the black hole corresponds to thermal
field theory. Perhaps the easiest is to Wick rotate to Euclidean signature.
Equilibrium thermal physics in quantum field theories is captured by com-
pactifying Euclidean time with period β = 1/T . Solving the bulk equations
of motion with a such a compact Euclidean circle, one finds the Euclidean
AdS black hole.

Wick rotating back to Lorentzian signature, we have the AdS Schwarzchild
black hole with metric

ds2 =
L2

r2

(
−f(r)dt2 +

dr2

f(r)
+ ηµνdx

µdxν
)

(24)

and

f(r) = 1−
(
r

rh

)3

(25)

so that the black hole horizon sits at r = rh, where f(r) = 0. The claim
is that this background continues to describe the boundary field theory at
finite temperature, now in Lorentzian signature. The temperature of the
boundary is given by the Hawking temperature of the black hole

T =
3

4πrh
. (26)

However, in Lorentzian signature, the identification of the black hole with a
thermal field theory is much more powerful than the corresponding identifi-
cation in Euclidean space. This is because the bulk no longer captures only
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equilibrium physics. Instead, dynamics in the bulk space-time corresponds
to real time dynamics in the boundary thermal field theory. Usually, it is
rather challenging to do such computations in field theory. But, within the
context of holography, it is conceptually trivial: we simply need to solve
the time dependent Einstein equations. This ease with which one can com-
pute transport properties — even far from equilibrium transport — is one
of the real powers of holography. Note, in particular, that dynamics at finite
temperature exhibits a new phenomenon that does not arise at zero tem-
perature: dissipation. This is captured in the bulk by stuff falling into the
black hole horizon.

We should elaborate on this a little more. In Section 2.4, we briefly
mentioned that, when performing holographic calculations, you must im-
pose some appropriate boundary conditions in the infrared of the geometry.
In the presence of the black hole, this means appropriate boundary condi-
tions at the horizon. But which boundary conditions? In fact, we have a
choice and this choice corresponds to the choice of Lorentzian propagator
in the boundary field theory. The most useful and physically motivated
choice is simply to impose ingoing boundary conditions on the horizon, en-
suring that stuff only falls into the black hole and nothing comes out. In
the boundary field theory, this corresponds to working with retarded propa-
gators. This is the choice relevant for linear response calculations. (Had we
imposed outgoing boundary conditions at the horizon, we would have ad-
vanced propagators on the boundary.) For more details of this relationship,
see [16].

So black holes in the bulk correspond to placing the boundary field theory
at some finite temperature. We would now like to throw in a finite density of
stuff in the boundary which is achieved by placing the theory at a chemical
potential µ. This corresponds to charging the black hole, so it emits an
electric field [17]. This is the Reissner–Nordström black hole solution. It
again has metric (24), now with the function f(r) taking the form

f(r) = 1−
(

1 +
r2hµ

2

γ2

)(
r

rh

)3

+
r2hµ

2

γ2

(
r

rh

)4

. (27)

The horizon is again at r = rh, where f(rh) = 0. The coefficient γ is a ratio
of the gravitational and electromagnetic couplings

γ =
2e2L2

κ2
. (28)

The Hawking temperature of the black hole horizon is now given by

T =
1

4πrh

(
3−

r2hµ
2

γ2

)
. (29)
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Meanwhile, the temporal component of the gauge field takes the form

A0 = µ

(
1− r

rh

)
. (30)

Note that A0 = 0 at the horizon. This is necessary because the Killing
vector ∂/∂t degenerates at the horizon and the gauge field A0 is ill-defined
unless it vanishes there.

From our discussion in Section 2, we can read off the physics from the
profile of A0. We know that in the boundary field theory the gauge field
couples to a conserved current, Lboundary ∼ AµJ

µ. The leading order term
in A0 should be interpreted as the source for J0. This is indeed the chemical
potential µ. Meanwhile, the subleading term should be interpreted as the
expectation value 〈J0〉, which is simply the charge density. We see that

〈J0 〉 ∼ µ

rh
. (31)

We can then use (29) to re-express rh in terms of T and µ.

4.2. Computing conductivity

The Reissner–Nordström black hole describes the boundary field theory
at finite temperature and density. Now, we want to perturb the boundary
by turning on an electric field with frequency ω. This is a source for the
current Jx. We would like to extract the response of the current 〈Jx〉.

We can implement this using the basic techniques described in Sec-
tion 2.4. We work with an electric field in the Ax direction and turn on
a source Ax = (E/iω)eiωt on the boundary. Obviously, then, the electric
field is Ȧx = Eeiωt as required. In the bulk, the leading order terms in Ax
take the form

Ax =
E

iω
eiωt + 〈Jx〉r + . . . (32)

As described above, we impose ingoing boundary conditions for Ax at the
horizon of the black hole. Our goal is to determine the sub-leading fall-off
〈Jx〉 by solving the equations of motion in the bulk.

These calculations were first performed in [18] for the Schwarzchild black
hole and in [2] for the Reissner–Nordström black hole. One can show that
sourcing Ax in this way will also turn on the metric component gtx, but no
further fields. The Maxwell equation is

(
f(r)A′x

)′
+

w2

f(r)
Ax = −A

′
0r

2

L2

(
g′tx +

2

r
gtx

)
,
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while the Einstein equations require

g′tx +
2

r
gtx +

4L2

γ2
A′0Ax = 0 .

We can use this latter constraint to eliminate the metric, leaving us with
a single second order equation of motion for Ax(

fA′x
)′

+
w2

f
Ax =

4µ2

γ2r2h
r2Ax . (33)

Solving this equation, subject to the ingoing boundary conditions at the
horizon, allows us to determine the response 〈Jx〉 in terms of the source.
The ratio is the optical conductivity, which we can write as

σ(ω) =
1

e2
A′x
iωAx

∣∣∣∣
r=0

. (34)

Although (33) cannot be solved analytically, it is a simple matter to solve it
numerically. The result is plotted in figure 5.
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Fig. 5. Holographic optical conductivity.

Let us compare this to our expectations from the previous section. We
see that at frequencies ω ≥ µ, there is a rise in the conductivity, before it
reaches a plateaux for higher ω. This is analogous to the behaviour seen
in graphene and, as we mentioned in Section 3, is typical of any CFT in
d = 2 + 1 dimensions.

However, there is no Drude peak at small frequencies. Instead, some-
thing much more dramatic happens. In the numerical data shown, this re-
veals itself as a pole in the imaginary part of the conductivity, Imσ ∼ 1/ω.
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But the Kramers–Kronig relation (which is essentially the requirement of
causality imposed on response functions) means that this pole is necessar-
ily accompanied by a zero-frequency delta-function in the real part of the
conductivity

Reσ(ω) ∼ Kδ(ω) . (35)

This delta function does not show up in the numerical plots above. But it
is there, lurking. It should be thought of as the Drude peak (22) with the
scattering time τ →∞.

The existence of this delta-function is not surprising. In fact, it follows
from very general considerations. We have a system with a background
charge density and with translational invariance. If you subject the system
to a constant, ω = 0, electric field then the charge density will necessarily
accelerate. However, because there is translational invariance, there is mo-
mentum conservation. This means that there is no way for the charges to
dissipate their momentum and the current will persist. This is the origin of
the delta-function (35).

Of course, in real materials, there is no translational invariance. Even
in the absence of impurities, there is a background lattice structure which
means that, through umkalpp processes, momentum is only conserved mod-
ulo the lattice momentum. If we want to understand the conductivity in
these strongly interacting field theories, we are going to have to introduce
the physics of translational symmetry breaking to tease apart that delta-
function. In the remainder of these lectures, we will see how to do this.

4.3. A black hole lattice

The most direct way to implement translational symmetry breaking is
by introducing a spatially modulated source. For example, we could choose
to introduce a chemical potential that varies in space

L = LCFT + µ(x, y)J0 . (36)

To do this holographically, we must solve the bulk Einstein–Maxwell equa-
tions, subject to the boundary condition A0 → µ(x, y) as r → 0. That is
not possible analytically. Instead, we need to turn to numerics.

Working with a general function µ(x, y) would require solving three-
dimensional PDEs with the radial direction providing the third variable.
Here we do something a little easier. We work instead with a striped chemical
potential of the form

µ = µ̄ (1 +A0 cos(kx)) . (37)
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This now requires solving PDEs in two variables. The solutions were found
numerically in [19]. They are, as you may expect, rippled Reissner–Nordström
black holes. We refer to this as a holographic lattice.

With the solutions in hand, it is conceptually straightforward to de-
termine the conductivity using the same method described in the previous
section, running the electric field in the x-direction, against the grain of the
stripes. However, while conceptually straightforward, it is calculationally
challenging. In the case with translational invariance, sourcing Ax turned
on only gtx. In the absence of translational invariance, almost everything is
sourced. One ends up with ten, coupled PDEs in two independent variables,
linearised around the numerical rippled Reisnner–Nordström black holes.
These equations were solved numerically in [19, 20].

The real and imaginary parts of optical conductivity in the presence of
a holographic lattice is shown in figure 6. (The black dotted line is the con-
ductivity in the absence of a source that we saw previously in figure 5.) At
high frequencies, ω ∼ µ, the conductivity is unchanged. The main differ-
ence is at low-frequencies where the breaking of translational invariance has
resolved the delta-function. (We can see this most clearly in the imaginary
part which is now dipping back towards zero at low-frequencies.) We will
now look a little more closely at the form of the optical conductivity.
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Fig. 6. Holographic optical conductivity in the presence of a lattice, taken from [20].

At the lowest frequencies — roughly ω ≤ T — the conductivity is very
well approximated by the Drude form (22)

σ(ω) =
Kτ

1− iωτ
. (38)

This is shown in figure 7. Here, K is the coefficient of the delta-function in
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the absence of the lattice (35). (This is because there is a sum rule which
says that the area under the curve should remain the same.) Meanwhile,
the scattering time τ is extracted from the numerical data by fitting to
this curve. Already here there is, perhaps, something of a surprise. The
original Drude formula was derived by thinking about billiard balls moving
under Newtonian physics. Here, we have found the same result from general
relativity. There are no billiard balls in sight! The Drude form continues
to hold in systems that have no quasi-particle description. What is really
required is not the existence of quasi-particle, but rather that the time-scale
for momentum dissipation remains much longer than any other process.
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Fig. 7. The low frequency Drude form of the conductivity, taken from [20].

The low-frequency behaviour allows us to extract the scattering time
τ(T ). It also allows a direct measurement of the DC, ω → 0, conductivity.
In fact, in this limit, one can make analytic progress by thinking about
irrelevant perturbations of the infrared geometry of the black hole [21]. (The
IR geometry is AdS2 and reflects the fact that the boundary theory flows to
a so-called locally critical fixed point in which time scales, but space does
not.) This analysis predicts a form for the resistivity

ρ =
1

Kτ
∼ T 2ν−1 , (39)

where the exponent ν depends on the lattice spacing k and the chemical
potential µ in a complicated manner:

ν =
1

2

√√√√
5 + 2

(
k

µ

)2

− 4

√
1 +

(
k

µ

)2

. (40)
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This result is confirmed by the numerical work of [20]. Clearly, our holo-
graphic models do not give a universal linear resistivity as seen in so many
materials. Instead, the resistivity of locally critical theories is more compli-
cated. Nonetheless, a mechanism has been suggested to drive this system to
linear resistivity ρ ∼ T [22].

At higher frequencies, the conductivity deviates from the Drude form
and flattens out. There is a regime in which the conductivity appears to be
well-defined by a powerlaw, albeit with an off-set

|σ(ω)| = B

ωγ
+ C .

To within numerical accuracy, the exponent is given by γ ≈ 2/3. This is
depicted in the log–log plot in figure 8 in which the conductivity is shown
at three different temperature.

Fig. 8. The intermediate conductivity, taken from [19].

For all value of the parameters, the powerlaw seems to hold in the region
2 < ωτ < 8. In the same region, the phase of the conductivity hovers around
arg(σ) = 65◦ to 70◦. Note, however, that the powerlaw is not seen over a
parametrically large range of frequencies. Instead, it seems to be emerging
from the delta-function, or Drude peak, and both lower and upper-limits are
dictated by 1/τ .

Given that the powerlaw extends over less than an order of magnitude,
why should we care? There are two striking features. The first is that the
exponent γ = 2/3 is robust against changing all parameters: temperature T ,
chemical potential µ, lattice height A0 and lattice spacing k. In contrast, the
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other variables τ , B and C do change by order one when we vary different
parameters. The second feature is that the coefficient B is independent of
temperature. This is seen clearly in figure 8, where the curves sit on top of
each other when they reach the powerlaw regime.

Notably, both the exponent and the independence of B on temperature
coincide with the optical conductivity seen in the cuprates that we described
in Section 3.3. We do not know if this is coincidence, or if it points towards
something deeper. It is worth stressing that the powerlaw in the cuprates
extends over several orders of magnitude and does not require a significant
off-set C.

Similar powerlaws are seen in other observables in the same region, in-
cluding thermoelectric conductivity in d = 2 + 1 and optical conductivity
in d = 3 + 1 dimensions [19] (with different exponents). For all of these
powerlaws, there is currently only numerical evidence.

4.4. Summary

The purpose of these lectures is to explain how one can use holography
to compute the conductivity of certain strongly interacting field theories. As
we have seen, the holographic dictionary allows us to extract some familiar
condensed matter physics out of these gravitational systems, while providing
quantitative information about charge transport in this class of field theories.

My thanks to Gary Horowtiz and Jorge Santos for enjoyable collabora-
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Michał Praszałowicz and the Organisers of the Zakopane school for the op-
portunity to speak, and especially to the students for making the lectures
so much fun. I am supported by STFC and the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007–
2013), ERC Grant agreement STG 279943, Strongly Coupled Systems.
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