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LESSON 1

Overview

Modern cosmology rests on four pillars: and expanding universe, Large Scale Structures, Cosmic Mi-
crowave Background and inflation. The plan of 24 hours is as follows

• 6h: A smooth expanding universe, FLRW, distances, constituents and thermal history

• 2h: Inflationary background

• 4h: Cosmological perturbation theory (CPT)

• 4h: Inflationary perturbations

• 4h: Cosmic Microwave Background (CMB)

• 4h: Large Scale Structures (LSS)

I use the shorthand notations: D for Dodelson’s Modern Cosmology book [13], W for Weinberg’s Cos-
mology book [51]. For example D 3 is Chapter 3 of Donelson’s book, while W appB is appendix B of
Weinberg’s book.

Check For Understanding (cfu) This a question that requires a short back-of-the-envelope calcula-
tion.

Check for understanding (CFU) This is a more conceptual or intuitive question that requires rea-
soning but not necessary a calculation.

Notation, units and conventions I use units in which ~ = c = kb = 1. Therefore energy is
temperature and inverse time or inverse length. On the other hand, I will try to keep the reduced Planck

mass explicit, MPl = (8πGN )
−1/2

. Beware that some authors use MPl to indicate the “full” Planck mass

G
−1/2
N ' 1.2× 1019GeV. The necessary conversion factors can be added using dimensional analysis and

c = 3× 108 m

sec
, pc = 3.2 lightyears , year = π × 107 sec , (1.1)

~c = 0.2 eVµm , MPl ' 2.4× 1018GeV . (1.2)

I use the mostly plus signature (−,+,+,+). Latin indices indicate space, i, j, · · · = {1, 2, 3}, while greek
indices run over spacetime, µ, ν, · · · = {0, 1, 2, 3}. 3D vectors are in boldface, e.g. k and x. Unless
otherwise specified, all tensors are expressed in terms of the FLRW coordinates

ds2 = −dt2 + a2dx2 . (1.3)
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. Standard derivatives are represented with a comme and covariant derivatives with a semi-column

T ......,µ ≡ ∂µT ...... , T ......;µ ≡ ∇µT ...... . (1.4)

Symmetrization and anti-symmetrization of a pair of indices is indicated with (. . . ) and [. . . ] respectively
and is defined to have weight 1

A(µν) ≡
1

2
(Aµν +Aνµ) , A[µν] ≡

1

2
(Aµν −Aνµ) . (1.5)

My convention for the Fourier transform are

F (x) =

∫
k

F̃ (k)eik·x, F (k) =

∫
x

F̃ (x)e−ik·x , with

∫
k

≡
∫

d3k

(2π)3
,

∫
x

≡
∫
d3x . (1.6)

There are surprisingly many conventions for the name of variables in perturbation theory. In particular,
Newtonian gauge is written as

ds2 ≡ − (1 + 2ΨD) dt2 + a2 (1 + 2ΦD) dxidxjδij (1.7)

≡ − (1 + 2ΦW ) dt2 + a2 (1− 2ΨW ) dxidxjδij (1.8)

in Dodelson’s (D) or Weinberg’s (W ) notations. The conversion is ΨD = ΦW and ΦD = −ΨW . In these
notes, I use Dodelson’s notation everywhere except in Les. 10 and Les. 10.7 where I keep the label W
explicit. In all other lessons I drop the D to simplify the notation.
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LESSON 2

General Relativity in a nutshell ref

In this lesson, I give a lightning review of the results in General Relativity (GR) that we will need in this
class and I set my notation. The reader familiar with GR and keen to start with cosmology can skip this
lesson move directly to FLRW spacetimes. In the following, I discuss the equivalence principle, geodesic
equation, conservation of energy-momentum tensor and conserved charge densities.

2.1 General Relativity

In GR the well-known metric of Minkowski spacetime ηµν is promoted to a dynamical metric field gµν .
The dynamics of gµν is determined by distribution of matter. The metric is not determined univocally,
but only up to a choice of coordinates, which change the metric in a specific way (somewhat similar to
gauge theories). The laws of nature formulated in GR are not only valid in every intertial frame, but
in any frame whatsoever. The phenomenon of gravitation is described by postulating that object move
along geodesics (shortest paths) of the metric. Additional dynamics due to non-gravitational forces is
generalized from the usual Minkoskian expression to account for the coordinate covariance of the theory.

One can derive all General Relativity (GR) from two principles:

• The principle of equivalence of mass and inertia, a.k.a. the equivalence principle: free falling
observers do not feel the effects of gravitation. Formally, in an open set around any spacetime
point I can choose the locally inertial frame (LIF), namely coordinates such that the metric tensor
is approximately Minkowski

gµν = ηµν , and ∂γgµν ≡ gµν,γ = 0 . (2.1)

• The principle of general covariance1: equations must be invariant in form under a change of
coordinates.

Strategy: first, write down the equations governing a (sufficiently small) system in the absence of gravity;
second, re-write them in a covariant way. The equation is now valid in the presence of gravity, i.e. in
any coordinates.2

Clocks, rods and tensors Take two spacetime points separated by an infinitesimal timelike interval.
We call this a clock because there is a reference frame in which this is some observer proper time. To go
from special to general relativity I just start from the right expression in the LIF and make it generally
covariant:

dxµdxνηµν
.
= −dT 2 → dxµdxνgµν = −dT 2 , (2.2)

where I use the signature (−,+ + +). Similarly for length contraction consider an infinitesimal spacelike
interval, aka a rod,

dxµdxνηµν
.
= dL2 → dxµdxνgµν = dL2 . (2.3)

Clocks and rod are dilated and contracted in the presence of a gravitation field (unlike in special rela-
tivity).

Covariant objects A covariant or contravariant scalar, vector and tensor transform under a change
of coordinates x′ = x′(x) as

φ′(x′) = φ(x) , v′µ
′

=
∂x′µ

′

∂xµ
vµ , g′µ′ν′ =

∂xµ

∂x′µ′
∂xν

∂x′ν′
gµν . (2.4)

1cfu: Be sure to understand the difference between covariance and invariance
2cfu: Is a free falling elevator a locally inertial frame? (yes) Are we in this room in a LIF? (no) Is the moon in a LIF?

(yes as a point particle, no because of small tides) the earth or the sun? (same as the moon)

4



A trick to get it right is to put the prime both on the tensor and on the indices. A tensor that is zero
in one frame is zero in every frame.34 Normal derivatives do not in general transform as tensors (unless
they act on a scalar), and need to be supplemented by a “connection” to transform covariantly. The
covariant derivative ∇µ, indicated also by the label ;µ appended to tensor it acts on, is defined as follows

∇µA = A;µ =
∂A

∂xµ
= ∂µA = A,µ , (2.5)

2A ≡ ∇µ∇µA = A;µ
;µ =

1√
−g

∂µ
(
gµν
√
−g∂νA

)
, (2.6)

Aµ;ν =
∂Aµ

∂xν
+ ΓµσνA

σ , (2.7)

Aµ;ν =
∂Aµ
∂xν

− ΓσµνAσ , (2.8)

Aµσ;ν =
∂Aµσ
∂xν

− ΓmσνA
µ
m + ΓµmνA

m
σ , (2.9)

Aµσ;ν =
∂Aµσ
∂xν

− ΓρµνAρσ − ΓρσνAµρ , (2.10)

where the Christoffel symbol

(2.11)

Γµαβ ≡
1

2
gµγ (gαγ,β + gβγ,α − gαβ,γ) , (2.12)

vanishes in the LIF5. Note for this form of the geodesic equation to be valid, u must be linearly related
to the proper time (for a generic time parameter u and additional term appears in this equation, see
e.g. []). It is useful to remember that

Γµνρ = Γµρν , Γµνρ + Γνµρ = gµν,ρ , Γµµλ =
1
√
g
∂λ
√
g , (2.13)

and that Γµνρ does not not transform as a tensor. Under a coordinate transformation xµ → yµ(x) one
finds

Γαβγ = ΓµνρJ
α
µ J

ν
βJ

ρ
γ + Jαµ ∂βJ

µ
γ , Jαµ ≡

∂yα

∂xµ
. (2.14)

Geodesic equation Derivative of dxµ with respect to some fixed time u, such as the proper time
along a trajectory dxµ is a vector because only dxµ changes, while u does not since it is uniquely defined
by the timeline of dxµ. But the second derivative is not a vector. We need another non-vector to make
a covariant expression. From Newton’s law in the LIF we find

d2xµ

du2

.
= 0 → d2xµ

du2
+ Γµαβ

dxα

du

dxβ

du
= 0 . (2.15)

The solution are called geodesics and maximize proper time for any timelike path connection two timelike
events.

Riemann and Ricci In Euclidean spacetime, initially parallel geodesics, i.e. straight lines, remain
forever parallel and never intersect. Conversely, the convergence or divergence of geodesics is a mani-
festation of the curvature of spacetime. Similarly, covariant derivatives on a curved spacetime do not
commute and parallel transport along a closed loop does not leave a vector unchanged. The Riemann
tensor quantifies the deviation from flat spacetime expectation

[∇µ,∇ν ]Vρ = RρσµνV
σ , (2.16)

3cfu: What is the inverse of gµν? (gµν)
4cfu: What is the metric (tensor)? (An infinitesimal distance, i.e. the norm of tangent vectors, not the distance

between points on the manifold. By integrating the norm of the tangent vector to some curve (computed with the metric
tensor), we can compute the length of the curve. Define by transforming as a two tensor and being ηµν in the LIF.)

5cfu: Why is it called “geodesic” equation? Because the solution minimizes
∫ √

∂uxµ∂uxµdu
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where the covariant tensor Rρσµν is given by6

Rρσµν = ∂[µΓρν]σ + Γρ[µλΓλν]σ , (2.17)

with anti-symmetrization defined in (1.5). The follow symmetry properties are useful

Rρσµν = Rµνρσ , Rρσµν = −Rσρµν = Rσρνµ , (2.18)

Rρσµν +Rρνσµ +Rρµνσ = 0 , (2.19)

where the latter is also known as first (algebraic) Bianchi identity. The second Bianchi identities are
instead a differential relation among the components of the Riemann tensor

∇λRαβµν +∇νRαβλµ +∇µRαβνλ = 0 (2.20)

which can be derived from the Jacobi identities for the commutator (2.16) of covariant derivatives (see
Sec 7.8 of [6]).

Two well known contractions of Riemann are the Ricci tensor and Ricci scalar7,

Rµν ≡ Rρµρν , R ≡ gµνRµν = Rµµ . (2.21)

Contracting all but one of the indices in the Bianchi equations (2.20) with the metric, one gets a con-
tracted Bianchi identity for the Einstein tensor Gµν

∇µGµν ≡ ∇µ
(
Rµν −

1

2
gµνR

)
= 0 . (2.22)

Box 2.1 Newtonian limit and gravitational time dilation This limit is relevant for the formation of
Large Scale Structures (LSS). Consider slowly moving particles, namely ∂ux

i � ∂ux
0 and choose time to

be proper time so that ∂ux
0 = 1. Then the geodesic equation is simply

d2xi

du2
= −Γi00 . (2.23)

For weak gravity, g = η + h, we can expand to linear order in h. Assuming slow time dependence wrt the
spacial dependence ∂0h� ∂ih one finds Newton’s law of gravitation:

ẍi = −∂iφ , (2.24)

with g00 = −1 − 2φ and φ the gravitational potential. This implies that proper time runs slower in the
gravitational field of a planet (φ < 0):

dT =
√
−dxµdxνgµν =

√
(1 + 2φ)dx0dx0 ' (1 + φ)dx0 , (2.25)

where dT is the proper time interval and dx0 is some global time coordinate that we use to compare observers

with different values of φ.

Einstein Equations and Energy-momentum tensor In GR the metric is dynamical and it’s evo-
lution is dictated by the EE’s: the matter energy momentum tensor tells spacetime how to bend. If the
matter theory is described by an action S, then 8 the energy momentum is given by (the sign depends
on conventions)

Tµν =
2√
−g

δS

δgµν
. (2.26)

If we limit ourselves to only two spacetime derivatives, there is only one covariant expression that reduces
to Poisson equation:

∂i∂
iφ

.
= 4πGρ → Rµν −

1

2
gµνR = −8πGTµν = −M−2

Pl Tµν . (2.27)

6cfu: How many spacetime derivates acting on the metric appear in ρ
σµν?

7CFU: How do ρ
σµν , Rµν and R change under a constant rescaling of the metric gµν→λgµν ?

8cfu: How do I know this formula is right? It’s covariant and in the comoving LIF uµ = (1, 0, 0, 0)
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As a consequence Tµν;ν = 0. The conservation of energy (µ = 0) and momentum (µ = i) currents is given
in GR by910

Tµν,ν
.
= 0 → Tµν;ν ≡ Tµν,µ + ΓµκνT

κν + ΓνκνT
κµ = 0 . (2.28)

EE’s can be derived from the Einstein Hilbert action (plus the Gibbons-Hawking-York boundary
term which I omit here)

S =

∫
d4x
√
−gM

2
Pl

2
(R+ Λ) , (2.29)

where Λ is a cosmological constant.

Box 2.2 Conserved currents and charges Symmetries of the law of physics are transformations that
commute with the time evolution and generate new solutions from old ones. Mathematically, we represent
symmetries by transformations of the (field) variables that leave the action invariant. By Noether theorem,
for each such symmetry, there is an associated conserved current ∂µJ

µ .
= 0. The corresponding covariant

expression is clearly ∇µJµ = 0. But the distinction is actually irrelevant (as long as one is careful with the
convention she is using) since for every covariantly conserved current Jµ, with Jµ;µ = 0, one can define a

normally conserved current J̃µ ≡
√
−gJµ, since

J̃µ,µ =
√
−gJµ;µ = 0 . (2.30)

The conserved charge Q̇ = 0 is then defined as usual by

Q ≡
∫
d3xJ̃µnµ =

∫
d3x
√
gJµnµ , (2.31)

where the integral is over some spatial hypersurface defined by the perpendicular vector nµ. It is always
possible and sometimes useful to split a current as Jµ = ρuµ with a normalised velocity uµ and a density ρ:

ρ ≡
√
−JµJµ , uµ ≡ Jµ

ρ
⇒ uµuµ = −1 . (2.32)

The density ρ is a density per proper volume, which is transformed into a density per coordinate volume by
the
√
−g factor in (2.30).

Lorentz symmetries are special. They lead to the covariant conservation of the energy momentum tensor
Tµν , see (2.28), but this cannot in general be used to define a conserved charge because the trick in (2.30)
does not work for a two-tensor,

0 =
√
−gTµν;µ = (

√
−gTµν ),µ + ΓνµλT

µλ , (2.33)

and we are stuck with the last term. Energy and momentum are globally conserved iff there exist a Killing

vector ε, which satisfies (3.22), ε(µ;ν) = 0. Then one can build the covariantly conserved current Jµε ≡ Tµν εν ,

which has only one index, and proceed as above. In cosmology we will be interested in homogeneous and

isotropic spacetimes, with six space-like Killing vectors but no time-like Killing vector. As a consequence

we can define some globally conserved momentum and angular momentum, but no globally conserved

energy. Intuitively, the cosmological spacetime exchanges energy with any system living on it, injecting and

subtracting energy depending on the dynamics.

Fluids A relativistic perfect fluid is defined as “as a medium for which at every point there is a locally
inertial Cartesian frame of reference, moving with the fluid, in which the fluid appears the same in all
directions.” (see B.10 of [51]). In the comoving LIF therefore the energy-momentum tensor must be
diagonal and isotropic: Tµν

.
= (−ρ, p, p, p). By boosting with a velocity uµ, which is a timelike vector

uµu
µ = −1, one finds the covariant form of the energy-momentum tensor

Tµν = (ρ+ p)uµuν + gµνp . (2.34)

Here the energy density ρ and the pressure p are covariant scalars, while uµ is a covariant vector.
Conversely, if you are given some Tµν in a spacetime with metric gµν , you check whether is is a perfect
fluid or not by finding a solution uµ to the following equation(

Λ−1
)µ
ρ
TΛ(u) = (2.35)

9cfu: What is gµν;γ? Why? It vanishes in the LIF, therefore it vanishes everywhere
10Remember that X;µ ≡ ∇µX for any tensor X.
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where Λ = Λ(u) is a Lorentz transformation with velocity uµ and T = Tµν If Tµν is that of a perfect
fluid, then you can derive ρ, p and uµ from (see Prob. P.2.2)

ρ ≡ 1

4

(√
12TµνTµν − 3T 2 − T

)
, (2.36)

p ≡ 1

12

(√
12TµνTµν − 3T 2 + 3T

)
, (2.37)

uµuν ≡ Tµν − gµνp
ρ+ p

, (2.38)

where T ≡ Tµνgµν = Tµµ .

The energy-momentum tensor is again covariantly conserved Tµν;ν = 0. This can be seen as the
conserved Noether current for the diffeomorphism invariance of the matter action (see e.g. 19.6 [6]).
Currents of gauge transformations (diffeomorphism are gauged by gravity) are identically conserved,
and, in fact, Tµν;ν = 0 follows directly from Einstein Equations (2.27). In general, an equation of state
p = p(ρ) is necessary to close the system of equations. The extension to imperfect fluids is nicely
discussed in B.10 of [51] and [47].

For the discussion of the Cosmic Microwave Background (CMB) and Large Scale Structures, we will
have to consider more general “imperfect” fluids, with additional contributions to Tµν , that are organised
in a derivative expansion as

T imp. ∼ T perfect
µν +

∑
n

dn∇nu (2.39)

with some length scale d. The theory of general fluids, namely hydrodynamics, should then be thought
of as a large scale effective theory, defined as an expansion in d/L, where L is the typical size of spatial
variations in the fluid and in the classical examples d is the mean free path of the microscopic constituents.

If the fluid carries some conserved charge N , such as for example the number of particles, in the rest
fram of the fluid one expects a charge density n ≡ N/V for some small volume V that is conserved ṅ

.
= 0.

To describe the conservation of n in any other frame, we must then have the covariant expression

(uµn);µ = 0 , (2.40)

which indeed reduced to ṅ
.
= 0 for uµ = {1, 0, 0, 0}. Since most processes in the universe are approxi-

mately adiabatic the total entropy of the universe is approximately conserved. An important covariantly
conserved quantity is therefore the entropy density s = S/V , with entropy current suµ. In general one
finds

s =
ρ+ p− µn

T
, (2.41)

with n the number density of particles.

Relativistic kinetic theory See Lesson 6.

Problems for lesson 1

P.2.1 Compute the Christoffel symbols for a flat FLRW spacetimes.

ds2 = −dt2 + a2dxiδijdx
j (2.42)

P.2.2 Derive the covariant expressions for ρ, p (as in (2.36)) and uµ in terms of Tµν and gµν . First build
the two non-trivial scalars using Tµν and gµν . Then compute their value using the definition of
Tµν for a perfect fluid, (2.34), and invert to find p and ρ. Finally derive uµuν .
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Check for understanding of Lesson 1

cfu.2.1 In special relativity the Lorentz invariant distance between any two point is d2 = ∆xµηµν∆xν .
What is the generalisation of this distance to GR? What distance does gµν(x) measure?

cfu.2.2 Study the geodesic equations, following appendix A of these lecture notes

d2xµ

du2
+ Γµαβ

dxα

du

dxβ

du
= 0 . (2.43)

cfu.2.3 For what phenomena in physics do I need General Relativity (GR), as opposed to Euclidean
spacetime and Newtonian dynamics?

LESSON 3

A Homogeneous and Isotropic Expanding Universe ref

In this lesson, I discuss FLRW spacetimes, fluids, cosmological equations of state, Friedmann, continuity
and acceleration equations and the expansion of the universe.

3.1 Symmetric spaces

Most solutions of GR that we work with contain some amount of at least approximate symmetry. A
metric enjoys an isometry if there is a change of variable x̃ = x̃(x) that leaves the metric unchanged in
the sense

g̃µν(x̃) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ(x)

!
= gµν(x̃) . (3.1)

This is equivalent to (prove it)

ds2(x) = gµν(x)dxmudxν
!
= gµν(x̃)dx̃mudx̃ν = ds2(x̃(x)) , (3.2)

where by ds2(x̃(x)) I mean that I substitute every x with an x̃(x). Isometries are best discussed using
Killing vectors. Given the change of coordinates x′µ = xµ + ξµ, every tensor changes by minus its Lie
derivative Lξ (see Box 1) in the ξ direction. For the metric to be invariant we require11

∆gµν(x) ≡ g′µν(x)− gµν(x) = −Lξgµν(x) (3.3)

= −∇µξν +∇νξµ
!
= 0 . (3.4)

Vectors ξ for which Lξgµν = 0 leave the metric invariant and are called Killing vector fields, or simply
Killing vectors. Remarkably, Killing vectors are completely determined by their value and that of their
derivative at one point. To see this, recall two defining properties of the Riemann tensor

[∇µ,∇ν ]Vρ = RρσµνV
σ , Rρσµν +Rρνσµ +Rρµνσ = 0 . (3.5)

We can sum over cyclic permutations of the first equation, use the second equation as well as the definition
of Killing Vectors (3.4) and find

∇ρ∇σξµ = [∇ρ,∇µ]ξσ = Rλσµρξ
λ . (3.6)

The solution of this second order pde are determined by the initial condition {ξµ(x̄),∇νξµ(x̄)} at some
point x̄ (at least locally one can construct the solution as a Taylor expansion in x− x̄), and so takes the
form

ξµ(x) = Aρµ(x, x̄)ξρ(x̄) +Bσρµ (x, x̄)∇σξρ(x̄) . (3.7)

Since we can specify at most D independent {ξµ(x̄)} and D(D− 1)/2 independent {∇νξµ(x̄)} (antisym-
metry of ∇µξν follows from the Killing condition), the maximum number of a isometries a spacetime

11CFU: Derive this expression taking advantage of the fact that the metric is covariantly constant, ∇µgνρ = 0, and
using Eq. (??).
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can enjoy is D(D + 1)/2, which reduced to 10 in D = 4. Spaces that saturate this upper bound on the
number of independent Killing vectors (isometries) are referred to as maximally symmetric spaces12.

To gain some intuition on these D(D+1)/2 generators, let us choose the following D(D+1)/2 linearly
independent initial conditions{

ξ
(α)
ρ = δαρ ,

∇ρξ(α)
σ = 0 .

(D solutions){
ξ

(αβ)
ρ = 0 ,

∇ρξ(αβ)
σ = δα(ρδ

β
σ) .

(D(D − 1)/2 solutions) ,

(3.8)

where the indices α and β label the solutions. The first D solutions cover completely the tangent space
of the manifold at point x̄ and can hence be thought of as generalised13 translations: they move the
(arbitrary) point x̄ in any of the D direction. It can be proven (see Ch 13 of [47]) that the remaining
D(D − 1)/2 Killing vectors change any vector V µ(x̄) into any other vector Ṽ µ(x̄) with the same norm
V µVµ = Ṽ µṼµ. These isometries can then be thought of as generalised14 rotation. We conclude that
a maximally symmetric space is homogeneous (invariant under generalised translations) and isotropic
(invariant under generalised rotations)15. The converse is also true, i.e. all homogeneous and isotropic
spacetimes are maximally symmetric as follows from a simple counting of isometry generators16.

There are three more theorems that I have to quote without a detail proof :

• Uniqueness: Maximally symmetric spaces are uniquely characterised by the value of the Ricci
scalar R, which is just a constant number over the space by homogeneity, and the signature of the
metric (see 13.2 of [47]).

• For Maximally symmetric spaces the Riemann tensor is proportional to the metric

Rµνρσ = Kgµ(σgνρ) , (3.9)

where K is related to the Ricci scalar by

R = −D(D − 1)K . (3.10)

• If a space M contains a maximally symmetric subspace N ⊂M , the metric can always be written
as the following “warp product”

ds2 = gab(x)dxadxb + f(x)g̃ij(y)dyidyj , (3.11)

with g̃ij the metric of the maximally symmetric subspace, y the coordinates of the subspace and x
the remaining coordinates.

Box 3.1 Lie derivatives This discussion is based on App. B of [?] and Ch. 8 of [6]. Consider a vector field
V µ on some manifold M , which we parameterise locally with coordinates x. The vector generates integral
curves, i.e. solutions of

∂xµ

∂t
= V µ(x) . (3.12)

These curves are tangent to V µ at every point. We can think of an integral curve xµ(t) as a one parameter
family of (finite) changes of coordinates xµ(t0)→ x′µ = xµ(t). Instead of a passive coordinate transformation
in which tensors on the manifold remain fixed, and points of the manifold change name according to the
change of coordinates above, we can define an active transformations in which we drop the prime from the

12cfu: If I can freely specify the initial conditions {ξµ(x̄),∇νξµ(x̄)}, why are not all spaces maximally symmetric?
There are “integrability” restrictions, which depend on the metric, on the set of initial data {ξµ(x̄),∇νξµ(x̄)} that admits
a solution (see 13.1.12 of [47]).

13“Generalised” here means both that these act as translations only locally, rather than globally, and that it is not
specified whether the coordinate they translate are Euclidean or not.

14“Generalised” here also refers to the fact that when the signature of the metric is e.g. Lorentzian, rather than
Minkowkskian, these isometries correspond locally to boosts rather than rotations.

15cfu: Does homogeneity imply isotropy? (no, e.g. this room with constant gravitational field) Does isotropy imply
homogeneity? (no around a single point) Does isotropy around every point imply homogeneity? (yes)

16CFU: Prove this. Prove also that the number of Killing vectors does not depend on the choice of coordinates.
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new coordinates x′ and impose a change of all the tensors with fixed coordinates, i.e. a diffeomorphism

x→ x′ , T (x)→ T (x′) (passive change of coords) , (3.13)

T (x)→ T ′(x′) ≡ T (x(x′)) (active diffeomorphism) . (3.14)

Then, we can ask how a given tensor changes under infinitesimal diffeomorphism generated by an integral
curve. We define the Lie derivative L of any covariant tensor T ...... (i.e. transforming as in Eq. (2.4)), in the
V µ direction is given by

LV T ...... (x) ≡ lim
ε→0

T ...... (x)− T ′...... (x)

ε
, with x′µ(x) = xµ + εV µ(x) . (3.15)

As the name suggests, this derivative is a linear operator and obeys the Leibniz rule

LV (aT + bS) = aLV T + bLV S , LV (T ∗ S) = (LV T ) ∗ S + T ∗ (LV S) , (3.16)

where ∗ represents any index contraction. For scalar, vector and tensor field one finds

LV φ = V µ∂µφ , (3.17)

LVWµ = V ν∂νW
µ −W ν∂νV

µ = V ν∇νWµ −W ν∇νV µ , (3.18)

LVWµ = V ν∂νWµ +Wν∂µV
ν = V ν∇νWµ +Wν∇µV ν , (3.19)

LV Tµν = V ρ∇ρTµν + Tρν∇µV ρ + Tµρ∇νV ρ . (3.20)

where the intermediate expressions makes it explicit that the Lie derivatives are independent of the metric.
Notice that the Lie Derivative is still a tensor of the same rank as suggested by Eq. (3.15). For vectors
LVW = −LWV . In particular, since the metric is symmetric and covariantly constant, one finds

LV gµν = ∇µεν +∇νεµ . (3.21)

Since isometries are defined by g′(x) = g(x), this give the Killing equation for the generators of isometries

∇µεν +∇νεµ = 0 . (3.22)

Note that any linear combination of Killing vectors is itself a Killing vector and so generates isometries.

3.2 The Friedmann-Lemaitre-Robertson-Walker metric

The Cosmic Microwave Background (CMB) radiation (representing the universe 370,000 years after the
Big Bang) appears isotropic to a part in 105 (see e.g. Fig. 2). The distribution of galaxies on scales
much larger than 5 Mpc is homogeneous (see Fig. 3) (inhomogeneities go from 10−5 on Hubble scales to
O(1) at around 5 Mpc). Both type of observations indicate that there exist a choice of coordinates in
our universe such that constant time hypersurfaces are approximately homogeneous and isotropic. Using
the theorem reported in the previous section, the metric of our universe therefore must be approximated
on large scales by

ds2 = −dt2 + a(t)2g̃ij(x,K)dxidxj . (3.23)

where g̃ij(x,K) is the metric of the maximally symmetric spatial 3D hypersurface, which we derive in
the following. A few comments are in order

• I can always re-define time as above to ensure that g00(t) = −1. This choice is called cosmological
time (or often simply time) and, as we will see in the next lecture, corresponds to the proper time
of observers at rest in the coordinates xi.

• x are comoving coordinates as opposed to physical ones. A spacelike comoving interval ∆xi is
related to physical distance by a factor of a:

∆xphys =
√

∆xµgµν∆xν =
√
a2∆xig̃ij∆xj = a|∆x| . (3.24)

• The simplest possibility would of course be a constant a(t), which could then be re-absorbed into
the definition of x. But this is not what we observe. Since the early 20th century we know that in
average all nearby (� Gpc) galaxies recede from us at a speed proportional to their distance. This
was originally pointed out by the influential plot by Edwin Hubble reported in Fig. 1 and leads to
the mathematical relation called the Hubble law

11



Figure 1: Original plot of Hubble’s data on the distance (horizontal axis) and velocity (vertical axis) of
nearby galaxies.

v ≡ ẋphys = H0x , (3.25)

with some constant H0 called the Hubble constant. Using (3.24) the Hubble law gives

ẋphys = ∂t [a(t)|x|] = ȧ|x| = ȧ

a
a|x| = ȧ

a
xphys

!
= H0xphys (3.26)

where all time dependent quantities are evaluated today, t = t0. We conclude that

ȧ(t0)/a(t0) = H0 > 0 , (3.27)

and so the universe is expanding.

We want now to determine the explicit form of the 3D spatial metric g̃ij . It is actually sufficient to
find one maximally symmetric spatial (i.e. with all plus signature) metric with curvature K. Because
of the uniqueness theorem in the last section, all other possible maximally symmetric spatial metrics
with curvature K are related to this one by a change of coordinates (i.e. the spacetime is the same). A
very simple procedure is then to consider Euclidean space in one more dimension, i.e. D = 4 + 0, and
derived the induced metric on the well-known constant curvature objects: the sphere (K > 0), the plane
(K = 0) and the hyperboloid (K < 0). To minimise the use of indices and maximise transparency, I’ll do
this for a 2D surface embedded in 3 spatial dimensions. A generalization to any number of dimensions
is straightforward and is left as an exercise.

Let us start with a 2-sphere in flat space

R2 = x2 + y2 + z2 , ds2 = dx2 + dy2 + dz2 . (3.28)

The induced metric is simply derived from the embedding

dz = − xdx+ ydy√
R2 − x2 − y2

. (3.29)

Going to “polar” coordinates, one gets{
x = r̃ cosφ ,
y = r̃ sinφ

⇒
dl2 = dr̃2

1−r̃2/R2 + r̃2dφ2

= R2
[

dr2

1−Kr2 + r2dφ2
]
.

(3.30)

12



Generalizing to our universe [Problem P.4.2] one finds

ds2 = −dt2 + a2

[
dr2

1−Kr2
+ r2dΩ2

2

]
(3.31)

= −dt2 + a2
[
dχ2 + f(χ)dΩ2

2

]
, (3.32)

f(χ) =

 sinh (χ)
2

K = −1 (open hyperbolic space) ,
χ2 K = 0 (flat space) ,

sin (χ)
2

K = +1 (closed space or sphere) .

. (3.33)

where K is the spatial curvature and

dΩ2
2 = dθ2 + sin2 θdφ2 . (3.34)

Notice that χ ∈ {0,∞} for open and flat universe, while χ ∈ {π, 0} for closed universes1718. Also for flat
universe K = 0 there is an ambiguity due to the rescaling {r, a} → {λr, λ−1a}, which leaves the metric
invariant. This is often fixed by imposing the additional condition a0 = 1 (for K 6= 0 this rescaling
is fixed by normalizing K = ±1). It is sometimes convenient to have the metric in quasi-Cartesian
coordinates as well, as opposed to spherical ones, namely19

ds2 = −dt2 + a(t)2 dxidxjδij
(1 +Kx2/4)2

(3.35)

= −dt2 + a(t)2dx̃idx̃j
[
δij +K

x̃ix̃j
1−Kx̃2

]
. (3.36)

There is no evidence of spatial curvature in our universe and current upper bounds constrain it to be
at a sub-percent level (see (P.9.4) for a precise statement). For this reason, in these introductory notes
I will mostly focus on the flat case, K = 0. For future reference let us report the flat FLRW metric
[homework P.3.3]

ds2 = −dt2 + a2(t)dxiδijdx
j , (3.37)

= a2(t)
[
−dτ2 + dxiδijdx

j
]
, (3.38)

where in the second line I introduces to conformal time, adτ ≡ dt, which makes manifest that flat FLRW
is conformally equivalent to Minkowski.

It is important to appreciate that FLRW as 3 + 1D manifold is not maximally symmetric, since time
translations and boost are broken by the time dependent of the scale factor a(t). It is the constant-time
3D hypersurface that is maximally symmetric.

For a flat FLRW metric, many Christawful symbols vanish by the isotropy (rotational invariance) of
the FLRW spacetime20. The other Christoffel symbols are [homework P.2.1]

Γ0
ij = Ha2δij , Γji0 = Γij0 = Hδij , Γ0

00 = 0 . (3.39)

3.3 Dynamical equations

Continuity equation Let us focus on homogeneous and isotropic fluids, as relevant to describe an
FLRW background21. The most general homogeneous and isotropic two tensor takes the form

Tµν = Diag {−ρ, p, p, p} , Tµν = Diag
{
ρ, a2p, a2p, a2p

}
, (3.40)

where we will interpret ρ as the energy density (units of E/L3) and p as the pressure (units M/(T 2L) =
E/L3).

17cfu: What is the sum of the internal angles in a triangle?
18cfu: What is the volume of a spatial slice? It is finite only for a sphere
19CFU: Derive the relation between xi and {r, θ, φ}.
20cfu: What Christoffel symbols of FLRW vanish by symmetry? First, verify that Γ transforms as a tensor for affine

changes of coordinates x′µ
′

= Mµ′
µ xµ + Cµ

′
with C and M constant. This includes global rotations (both boosts and

rotations) and spacetime translations. Only spatial rotations and spatial translations are symmetries of FLRW. The only
tensor invariant under rotations is δij . So Γi00 = Γ0

0i = 0. Translations imply that Γ = Γ(t). Γ0
00 = 0 is an “accident” of

choosing the proper time of comoving observes t, instead of say τ or other t′ = f(t).
21cfu: Reflect on the fact that the simple diagonal form above arises in two unrelated contexts. It follows from homo-

geneity and isotropy for any energy-momentum tensor, not just that of a perfect fluid. It arises in the locally inertial
Cartesian frame of perfect fluids, for arbitrarily anisotropic and inhomogeneous configurations.
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Figure 2: The temperature anisotropies in the CMB as seen by COBE (lmax ∼ 20, θmin ∼ 9◦), WMAP
(lmax ∼ 800, θmin ∼ 0.2◦ ' 12 arcmin) and Planck (lmax ∼ 2500, θmin ∼ 0.07 ' 4 arcmin).

EE’s imply the covariant conservation of energy and momentum current, i.e. Tµν;ν = 0. The spatial
components of this equation are trivial because of isotropy. Instead the time component plays a crucial
role in cosmology:

ρ̇+ 3H (ρ+ p) = 0 . (3.41)

The one-parameter family of equation of state

p = wρ , (3.42)

with constant w is used constantly in cosmology. For these linear equations of state, it is easy to solve
the continuity equation implicitly

ρ̇+ 3
ȧ

a
(1 + w)ρ = 0 ⇒ ρ(t) = ρ(t0)

[
a(t)

a(t0)

]−3(1+w)

. (3.43)

For example:

• For non-relativistic matter, or dust, p = aP ' mv � mc ' E and therefore p � ρ or w � 1.
Expansion leads to ρ ∝ a−3

• For relativistic matter, or radiation, we have P ' E and therefore p = ρ/3 or w = 1/3 (see around
(5.1) for a detailed derivation). Expansion leads to ρ ∝ a−4

• For a cosmological constant, or vacuum energy, Tµν = Λgµν and therefore p = −ρ or w = −1.
Expansion leads to ρ ∝ a0 ∼ const

A simple interpretation of these scaling is that of an expanding box of linear size a(t). Non-relativistic
matter density dilutes with the volume, i.e. a−3. Relativistic matter, aka radiation also dilutes with the
volume as a−3, but it has an extra a−1 suppression due to the redshift of the momentum of each particle
(and the mass is negligible). Vacuum energy does not dilute22.

Friedmann equation Let solve the EE’s for an FLRW metric. Using the definition of the Riemann
and Ricci tensors in (2.17), and the FLRW metric (3.35), a lengthy but straightforward computation in
(quasi-)Cartesian coordinates shows

R00 = 3
ä

a
, Rij = −δij

2K + 2ȧ2 + aä

(1 +Kx2/4)
2 , R = −6

[
ä

a
+

(
ȧ

a

)2

+
K

a2

]
, (3.44)

22cfu: What is the time dependence of ρ(a) for infinitely long cosmic strings? And for a domain wall?
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Figure 3: The distribution of galaxies as measured by the Sloan digital Sky Survey. The 3D dimension
animated version is available here. In assessing homogeneity, keep in mind that more distant galaxies
correspond to earlier time, when structures had had less time to grow.

The 00-component of the EE’s in (2.27) is the easily derived

3M2
Pl

(
H2 +

K

a2

)
=
∑
i

ρi , (3.45)

where i runs over all constituents of the universe (radiation, DM, neutrinos and baryons). This is often
called the Friedmann equation. Notice that since a (flat) FLRW metric is specified by a single function
a(t), we need only one of the ten EE’s to determine the solution. It is then convenient to divide everything
by the critical density (a function of time)

ρc ≡ 3M2
PlH

2 , (3.46)

and find

1− Ωk =
∑
a

Ωa , with Ωk ≡ −
K

H2a2
, Ωa ≡

ρa
ρc
. (3.47)

Notice that only Ωk can be negative.
Using a to parameterize time and solving for H(a) gives23 (see P.3.4)

H =
ȧ

a
=

√
ρ

3M2
Pl

= H0

(a0

a

)3(1+w)/2

⇒ a(t) =

[
3

2
(1 + w)H0t

] 2
3(1+w)

(3.48)

for w 6= −1, where one fixes the integration constant requiring that a vanishes at past infinity.
Important solutions for the scale factor are then

• For non-relativistic matter, or dust, w ' 0 so a ∝ t2/3

• For relativistic matter, or radiation, w = 1/3 so a ∝ t1/2

23cfu: Is this a fully non-linear exact solution of EE’s? Yes.
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• For a cosmological constant, or vacuum energy, w = −1 this expressions is singular. One finds
a ∝ eH0t (see P.3.4)

Notice that if a is a monomial in t one finds always H ∝ t−1, or more precisely

Box 3.2 Null Energy Condition (NEC) A certain form of matter with energy-momentum tensor Tµν
satisfies the Null Energy Condition if for ever null vector NµNµ = 0 one has

TµνN
µNν ≥ 0 (NEC) . (3.49)

Using the perfect fluid parameterization in (2.34), this implies ρ + p ≥ 0. Violations of the NEC are often

associated with pathologies such as ghosts instabilities (i.e. field with the wrong-sing kinetic term that can

be nucleated by decreasing the energy of the system) or tachyon instabilities [15]. Yet, more exotic theories

with non-standard kinetic terms, such as the ghost condensate, are known to safely violate the NEC, see

e.g. [10,42].

H(t) =
2

3(1 + w)

1

t
. (3.50)

This gives the age of the universe for this simple universe (valid for any single-fluid cosmology, see 4.25
for a general derivation)

tage =
2

3(1 + w)

1

H(tage)
, (3.51)

There are two other combinations of EE’s that come in handy. First, subtracting the 00 EE from the
(summed) ii EE’s, one finds the acceleration equation

M2
Pl

ä

a
= −1

6
(ρ+ 3p) . (3.52)

Second, by taking the time derivative of the Friedmann equation and using the continuity equation to
get rid of ρ̇, we can find the variation of the Hubble parameter

−ḢM2
Pl =

1

2
(ρ+ p) . (3.53)

Most cosmological “stuff” obeys the Null Energy Condition (3.49), and so H decreases during cosmic
evolution.

Charge conservation How does a conserved charge density depend on time in an FLRW universe?
Isotropy implies that the normalised velocity defined in (2.32) and associated to the associated conserved
current must take the form uµ = {1,~0}. Then, the conservation of the current (nuµ);µ = 0 reduces simply
to

ṅ+ 3Hn = 0 , (3.54)

which admits the solution (see P.3.1)

n(t) =

[
a(t0)

a(t)

]3

n(t0) ∝ 1

a3
. (3.55)

Problems for lesson 2

P.3.1 Compute the evolution of the entropy density s(a) in an FLWR universe in the (good) approx-
imation that all processes are adiabatic. How does this compare to the evolution of any other
conserved charge?

P.3.2 Compute and solve the geodesic equation for a massless particle in FLRW
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P.3.3 Using the definition of isometry for a coordinate transformation x̃(x), namely

g̃µν(x̃) = gµν(x̃) , (3.56)

verify that the (flat) FLRW metric

ds2 = −dt2 + a2dxiδijdx
j (3.57)

is indeed homogeneous and isotropic (i.e. isometric with respect to spatial translations x̃i = xi+ bi

and rotations x̃i = Rijx
j).

P.3.4 Solve the Friedmann equation for for w = −1 and w 6= −1.

P.3.5 Consider an FLRW universe with a single fluid and derive the acceleration equation Eq. (3.52)
for ä(t). You can either derive the ii component of the Einstein equations or use the Friedman
equation together with the covariant conservation of energy, T 0µ

;µ = 0. For what w does one get
accelerated expansion?

Check for understanding of Lesson 2

cfu.3.1 Study the following equations, following appendix A of the lecture notes

Tµν = (ρ+ p)uµuν + gµνp , (3.58)

d2xµ

du2
+ Γµαβ

dxα

du

dxβ

du
= 0 . (3.59)

cfu.3.2 What is a fluid? At what distance can I describe air in this room as a fluid?

cfu.3.3 After having solved the geodesic equation for a massless particle in problem P.3.2, discuss how
conservation of energy works out. In particular, where does the energy of photon in an expanding
(or contracting) FLRW universe go?

cfu.3.4 How does the continuity equation Eq. (3.41), which expresses the covariant conservation of energy
compare with the covariant conservation of a charge density? How can I visualize this in terms of
things flowing in or out of a fixed region?
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LESSON 4

Redshift and distances ref

Important distances: particle horizon, luminosity (and magnitude) and angular diameter distances, age
of the universe. Constituents of the universe: curvature, photons, baryons, neutrinos, dark matter and
dark energy.

Cosmological redshift Olbers’ paradox is the argument that the universe cannot be eternal and
infinite because otherwise the night sky should be bright, since every direction in the sky would point
to some star with a similar intrinsic luminosity as the sum. In the Big Bang model, the universe has
a finite age (about 13.7 billion years). This actually makes the problem worse since the universe must
have been much hotter in the past and we should see an even brighter sky, say from very hot thermal
radiation. The resolution is that in FLRW the wavelength of light redshifts24 E ∼ λ−1 ∼ a−1. This can
be seen directly from the geodesic deviation discussed in 1, but I’ll give a different derivation.

Recall that redshift is defined as

1 + z ≡ λo
λe

, (4.1)

where e and o stand for emission and observation, respectively. Consider now the light propagating to us
along the −r̂ direction from some emitting source at comoving position {r, θ, φ} in spherical coordinates.
Photons are massless and so follow null geodesics with null tangent vector

ds2 = 0 ⇒ dt

a
= dr . (4.2)

Consider a wave crest being emitted at some time te and arriving at time to to the observer at the origin
r = 0. Then ∫ to

te

dt

a
=

∫ r

0

dr = r . (4.3)

Consider now the subsequent wave crest being emitted at some time te + λe (recall our units c = 1) and
arriving at time to + λo to the observer at the origin r = 0. We have similarly∫ to+λo

te+λe

dt

a
=

∫
dr = r . (4.4)

Subtract (4.3) from (4.4) and find ∫ te+λe/c

te

dt

a
=

∫ to+λo/c

to

dt

a
(4.5)

Performing the integral on each side under the approximation that a doesn’t change much25 we find

λe
ae

=
λo
a0
⇒ λo

λe
= 1 + z =

1

ae
, (4.6)

where I used the fact that in all practical application the observer is us today and so a0 = 1 by convention.
Notice that cosmological redshift is not Doppler redshift. The two agree only at linear order, i.e. v '
zc+O(z2) (where I stressed the speed of light c) on distances much smaller than the spacetime curvature
(H−1 for FLRW), because of dimensional analysis and the equivalence principle. To see this requires the
definition of comoving distance Eq. (4.13) discussed below.

V = H0a0χ(z) = H0

∫
dt

a
= H0

∫
dz

H(z)
' z +O(z2) (cosmoredshift) (4.7)

1 + z = γ

(
1 +

V

c

)
→ v ' z +O(z2) (Dopplerinspecial relativity) . (4.8)

24cfu: Where does the energy of the gravitationally redshifted photon go?
25CFU: Estimate the change in a(t) during one period of visible light
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Box 4.1 Geodesics in FLRW In FLRW, consider a massless particle

Pµ =
(
E,P i

)
= ∂ux

µ , PµPµ = 0 ⇒ E2 = P igijP
j , and ∂u = E∂t , (4.9)

where u is the affine parameter of the photon geodesic and P i is comoving momentum. Using the Christoffel
symbols Γ0

ij (see (3.39) and homework P.2.1), the 0-component geodesic equation is [homework P.3.2]

d2x0

du2
+ Γ0

αβ
dxα

du

dxβ

du
= E

(
Ė +HE

)
= 0 , (4.10)

and therefore E(t) = E(t0)a(t0)/a(t) and P i ∝ a−2. Note that the physical momentum scales as the energy√
P igijP j ∝ a−1, as expected.

4.1 Distances

In non-relativistic mechanisc there are many different ways to measure distance, such as using a ruler,
observing the apparent size of a object of known intrinsic size, observing the luminosity of a known
“standard” candle and so on. In general relativity, all of measurements give different answers, so we have
many different concepts of “distance” depending on how it is determined operationally. In cosmology
there are several important distances that are used for example to probe the expansion history of the
universe. All distances are conveniently related to comoving coordinates with appropriate factors of a.
For an FLRW metric, the comoving distance is the distance travelled by a photon in a certain time
interval in comoving coordinates. Consider spherical comoving coordinates

ds2 = a2
[
−dτ + dχ2 + χ2

(
dθ2 + sin θ2dφ2

)]
, (4.11)

and recall that for null geodesics ds2 = a2
[
−dτ2 + dη2

]
= 0. Then dτ = dη and τ = η + const. For the

comoving distance one finds

χ(ti, tf ) =

∫
dτ =

∫ tf

ti

dt

a(t)
=

∫
da

a2H(a)
=

∫
dz

H(z)
. (4.12)

A common case is when the photon arrive on earth now and so tf = t0 or a(tf ) = a0 = 1. Then one
finds the comoving distance to a given redshift

χ(z) =

∫ z

0

dz

H(z)
. (4.13)

The luminosity distance is useful as a measurement of the expansion of the universe when observing
an object of known luminosity. The intrinsic luminosity L is the total amount of energy radiated per
unit time. In Euclidean geometry, the intrinsic luminosity is related to the observed luminosity l by

l ≡ L

4πd2
L

, (4.14)

where dL is the luminosity distance and the factor of 4π comes about because l is defined as observed
energy per unit time per unit surface. Unfortunately astronomers use a conventions dating back to
the seventh century AD. Ptolemy made a survey of stars visible to the naked eye and divided them
in six groups, from bright in group one to faint in group six. Later, in the 1800 Pogson made this
mathematically precise introducing magnitude, which is related logarithmically to luminosity (lower
magnitude is brighter)

m ≡ −2.5 log l + const , (4.15)

and absolute magnitude is usually defined as observed magnitude at the distance of 10 pc. For a reference,
msum = −27, msirius = −1, mandromeda = 0 and the faintest thing26 we can see by eye is m < 6.

To obtain Eq. (4.14) in an expanding universe we have to account for three factors:

• The comoving distance from emitting source and observation is χ(te, to) and it gets a factor of ao
to become a physical distance

26cfu: What is the faintest magnitude we can see with telescopes, e.g. Hubble Space Telescope (HST)? The limit of HSC
using visible light is m ≤ 32.
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Figure 4: Angular diameter, comoving and luminosity distances as function of redshift. Thicker lines
represent a flat universe with ΩΛ = 0.7, while thinner refer to ΩΛ = 0.

• the rate of arrival of photons (remember l has units of energy per unit time and unit area) decreases

by a factor of ae/ao. Assuming ao = a0 = 1 this becomes ae/ao = ae = (1 + z)
−1

• the energy of incoming photons (remember l has units of energy per unit time and unit area) is

redshifted by another factor of ae/ao = (1 + z)
−1

Putting things together

l =
L

4π (χao)
2

(
ae
ao

)2

≡ L

4πd2
L

⇒ dL(z) = χao

(
ao
ae

)
= (1 + z) aoχ(z) , (4.16)

where people usually set ao = a0 = 1 by redefining coordinates appropriately, and z is the redshift of
emission.

The angular diameter distance in Euclidean geometry is defined for objects of size s subtending and
angle θ from the point of view of the observer by s ≡ dAθ. Here there is only one factor of a in the
relation of comoving to physical distance, hence

dA(z) =
χ(z)

1 + z
. (4.17)

The angular diameter distance is less useful in cosmology than the luminosity distance because object
such as supernovae or galaxies at cosmological distances do not have well defined edges from which to
extract a size. The various distances are summarized in Fig. 4.

27

Particle horizon Let us define the particle horizon dp.h. the maximum (physical, as opposed to co-
moving) distance that light can have traveled since some “beginning of time” ti (which could also be
infinite). Any place further than that, at distance d > dp.h. cannot have sent us any signal. We are not
inside their future light cone, they are not in our past light cone. The particle horizon is then given by
[Problem P.4.1]

dp.h.(t) ≡ a(t)χ(ti, t) = a(t)τ(ti, t) = a(t)

∫ t

ti

dt′

a(t′)
, (4.18)

where χ is the comoving distance and a(t) transforms it into a physical distance. To gain intuition let us
consider some simple single component universe, for which the scale factor is a power law in time (3.48),

27cfu: Notice that the angular diameter distance in our universe starts decreasing around z ∼ 1. Think of what happens
to dA for a fixed size segment on the surface of a sphere (or the earth), as you move it away from an observer at the north
pole. What happens as you pass the equator?
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a ∝ t2/(3+3w), with w > −1 for expansion (the case w = −1 is straightforward but requires a separate
discussion) and beginning of time ti = 0. Then

dp.h.(t) = t2/(3+3w)

∫ t

0

dt′

t′2/(3+3w)
=

t2/(3+3w)

1− 2/(3 + 3w)

[
t1−2/(3+3w) − 01−2/(3+3w)

]
. (4.19)

For 2/(3 + 3w) > 1, or equivalently w < −1/3 this diverges, while it converges to dp.h. ∝ t (as expected
by dimensional analysis) for w > −1/3. For example, dp.h. = 3t for matter (w = 0) and dp.h. = 2t for
radiation (w = 1/3).

Age of the universe The age of the universe is computed from

tage

∫
dt =

∫
da

ȧ
=

∫
da

aH(a)
=

∫
da

a

[∑
i ρi

3M2
Pl

]−1/2

, (4.20)

where H(a) is derived from the Friedmann equation. Notice that one does not need a(t) here.
It is often convenient to use the dimensionless fractional energy densities28 Ωi instead of the dimension-

ful ρa. This is obtained by dividing ρa(t) by the critical energy density

ρcrit(t) ≡ 3M2
PlH

2(t) ⇒ Ωa ≡
ρa(t)

3H2(t)M2
Pl

. (4.21)

The fractional energy densities at the present time (a = a0), indicated by a subscript 0, are worth
remembering:

ΩΛ,0 ≡ ΩΛ(t0) = 0.72 , Ωb,0 = 0.04 and ΩDM,0 ' 0.24 . (4.22)

The time evolution is then simply given by

ρi(t) = 3M2
PlH

2
0

Ωi,0
a(t)3(1+w)

. (4.23)

Nota that it is customary to express the fraction of density Ωi,0 multiplied by h2 defined by

H0 = 100× h km

sec Mpc
. (4.24)

Using Ωi,0h
2 instead of Ωi,0 one is immune to changes or errors in the measurement of H0. In other

words, measurements of the actual energy density ρi,0 can be converted into Ωi,0h
2 without assuming the

value of any other cosmo parameter. This is a particularly important point since as of 2018, percent level
measurement of H0 present a 3-4 σ tension. In particular CMB/BAO measurements give h = 67.6±0.6 [1]
while local measurements based on the distance ladder, which find h = 73.24± 1.74 [41]. In this way the
measurement of ρm is not contaminate by the error on H0. Notice that h−2 ' 2.

Finally, using (P.5.1) age of the universe is then (see P.5.1)

tage =
1

H0

∫ 1

0

da

a

[
ΩΛ + Ωma

−3 + Ωra
−4
]−1/2

. (4.25)

Problems for lesson 4

P.4.1 Compute the particle horizon for a matter and radiation dominated universe of fixed age. Which
one is larger? Interpret your answer.

P.4.2 (Mukhanov’s book ex 1.9) By embedding a 3D sphere (pseudo-sphere) in a (3 + 1)D Euclidean
(Lorentzian) space, verify that the metric of a 3D space of constant curvature can be written as

dl2 = R2

[
dr2

1− kr2
+ r2

(
dθ2 + sin θ2dφ2

)]
, (4.26)

where R > 0 and k = 0,±1.
28Beware of different conventions. Sometimes Ωa(t) is defined in terms of the time dependent critical energy density

3M2
PlH

2 and/or the time dependent density ρ(a) and sometimes it is just its value today, which I indicate as Ωa,0 to avoid
confusion.
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Check for understanding of lesson 4

cfu.4.1 Discuss the difference between Doppler and cosmological redshift. You can follow the discussion in
this note or read [23].

cfu.4.2 Does any of the distances introduced in this lesson (comoving, angular diameter and luminosity
distances) correspond to geodesic distance? Devise a though experiment that would measure
geodesic distance.
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LESSON 5

Constituents of the universe ref

We will now review the five main components of the universe: photons, baryons, neutrinos, dark matter
and dark energy.

Only particles with a lifetime comparable with the age of the universe have a sizable density today.
Within the standard model of particle physics, we have photons, protons and electrons. Free neutrons
decay in about 15 minutes, but they can be stable when combined with protons to form the nuclei of
atoms.

5.1 Photons

The density of photons can be derived straightforwardly from the temperature of the CMB, TCMB =
2.72548± 0.00057 K [17,18]. We know that the (dimensionless) chemical potential is small29 (defined in
Eq. (6.4)) µ < 6× 10−5, so we can use the exact Planck black body spectrum as in (6.13):

ργ = 3pγ =
π2

15
T 4

CMB , (5.1)

where I used that a photon is a boson with two degrees of freedom gγ = 2 (helicities ±1 ). From the
covariant conservation of energy we know that ργ ∝ a−4 and therefore for photons T a = const. Finally,
one finds

Ωγh
2 = 2.5× 10−5 , → Ωγ ' 5× 10−5 . (5.2)

5.2 Baryons

In particle physics, the word baryons indicates only protons and neutrons but in cosmological lingo it is
customary to include electrons as well. The universe appears to be neutral as a whole, so we will assume
as many electrons as protons30. With the prominent exception of neutrinos, all other hadrons and leptons
are present in negligible amount because they decayed long ago. Big Bang Nucleosynthesis (BBN) makes
predictions that are extremely well confirmed by observations: 75% Hydrogen (single proton with only
traces of deuterium) and 24.5 ± 0.004% of Helium [4] (2 protons, 2 neutrons, with traces of 3He). All
other elements have negligible densities (subject of next lecture). There are three main ways to measure
Ωb:

• most baryons are in the intergalactic medium, rather than in stars, where Ωbh
2 ' 0.02.

• The light of distant quasars (quasi-stellar radio sources, very bright and very distant galaxies,
z . 7; they cannot be resolved so “look like” stars) is absorbed during its propagation by the
intervenient Hydrogen

• The oscillating patters in the CMB power spectrum is very sensitive to all cosmological parameters.
Ωbh

2 changes the height of the acoustic peaks because it displaces the averages of the oscillations
and changes the diffusion damping scale. Planck gives the imposingly tight constraint (see Table
3 of [1])

Ωbh
2 = 0.02225± 0.00016→ Ωb ' 0.05 (5.3)

• The abundance of light elements produced during Big Bang Nucleosysnthesis (BBN) depends very
sensitively the baryon density, leading the constraint Ωbh

2 = 0.022± 0.006 [8]

As we will see, observations of the total matter density in the universe point to a much larger fraction
than a few percent, so there must be some other type of non-baryonic matter31.

29The bound come mostly from the instrument FIRAS on board of the COBE satellite [18], which reported in 1996,
µ < 9 × 10−5. Recently, the ground based experiment TRIS [20] has provided a mild improvement (µ < 6 × 10−5) by
decreasing the degeneracy with other parameters.

30cfu: Is there a good explanation for this?
31Remember that in the cosmology slang, “matter” means a component scaling approximately as ρb ∝ ρDM ∝ a−3
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Figure 5: The plot shows the orbital velocity of start in the galaxy NGC 3198 as function of radius. The
“disk” line shows what would be expected if all the matter in the galaxy were the baryons in the (flat)
galactic disk. By adding a diffuse dark matter component, a.k.a. “halo”, one can reconcile predictions
with observations.

Dark Matter The evidence for a non-baryonic component or Dark Matter comes exclusively from
gravitational physics, unlike that for baryons (which we observed using the light they emit). Evidence
comes from all possible scales

• The Swiss astronomer Fritz Zwicky pointed this out already in the ’30 that the orbits in the Coma
galaxy cluster indicated the existence of “dunkle Materie”. But much astrophysical uncertainty
was present and few believed him at the time.

• As the American astronomer Vera Rubin pointed out in the ’70, something similar can be seen for
galaxies. As can be seen in Fig. 5, observations tell us that galaxy rotation curves flatten out rather
than decaying to zero as it would be the case if the only matter present were stars and interstellar
medium [homework P.5.2].

• Now we have probed all other bound objects, from groups of galaxies to superclusters. One can
measure the mass-to-light ratio in many of these systems. This grow with scale and saturates at
Ωm ' 0.3 > 0.05.

• The CMB comes from when baryons where ionized and therefore evolved very differently form
DM. The CMB Temperature-Temperature power spectrum is sensitive to ΩDM , e.g. through the
relative height of odd and ever peaks and the size of the diffusion damping. The current bound
from Planck is ΩDMh

2 = 0.1198± 0.0015 leading to ΩDM ' 0.0267 [1].

• The matter power spectrum possesses small oscillations because the baryons were oscillating with
the photons before decoupling, unlike DM. These Baryon Acoustic Oscillations pin down the ratio
Ωb/Ωm giving a consistent measurement

5.3 Neutrinos

Neutrinos (see [14, 22, 26, 27] for a review) are the lightest fermions in the standard model and come in
three families: νe, νµ and ντ . They carry no electric charge or “color” and interact weakly being part
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of an SU(2) doublet together with each family of charged left-handed leptons, namely electron, muon
or tau. These neutrino states have well-defined weak charge but they are not energy eigenstates. The
linear relation between charge and energy eigenstates is νe

νµ
ντ

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ν1

ν2

ν3

 , (5.4)

where sij ≡ sin θij and cij ≡ cos θij . Hence, the free propagation of neutrinos is determined by three
masses, three mixing angles θij and one CP-violating phase δ. Neutrino oscillations imply that at least
two neutrinos have non-zero mass (Nobel prize 2015) [31]:

∆m2
21 = (7.9+1.0

−0.8)× 10−5 eV2 |∆m2
31| = (2.2+1.1

−0.8)× 10−3 eV2 (5.5)

What these measurements cannot determine is the overall scale of neutrino masses as the sign of
∆m2

31. The latter uncertainty implies that there are two possible mass ordering for the three eigenstates,
as shown in the left panel of figure6. At present, the tightest bounds on the sum of neutrino masses
come from cosmology. Combining CMB anisotropies with Baryon Acoustic Oscillations (BAO) gives (see
6.4 of [1])

3∑
i=1

mi < 0.17 eV . (5.6)
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Figure 6: Left: the normal and inverted scenarios for the neutrino hierarchy. Right: the total neutrino
mass as function of the yet unknown mass of the lightest neutrino. The current bound are shown in
the black dotted and blue dashed lines, while the red long-dashed line represent the expected future
sensitivity. This in particular shows that the sum of neutrino masses will be detected in the near future.

There is no explanation for the neutrino mass in the standard model and various models have been
proposed. It is also still not known whether neutrinos are their own antiparticle (namely they are
Majorana fermions) or not (Dirac fermions like the electron-positron). With the large improvement in
the precision of cosmological observations, we have now many different probes that will be able to detect
neutrino masses and determine (see righthand panel of Fig. 6) the correct hierarchy in the next 5 to 10
years!

Unlike their mass, the abundance of cosmological neutrino (sometimes called CNB or CνB for Cos-
mological Neutrino Background) has been observed via CMB anisotropies. The actual constraint is often
quoted in terms of the effective number of neutrinos Neff . Standard model predicts Neff = 3.04 [32],
which is fully compatible with the current CMB constraints Neff = 3.04 ± 0.18 (see 6.4 of [1]). Let us
see what this parameter means. Three periods characterize the evolution of cosmological neutrinos:

• Thermal equilibrium with SM particles at energies around a few MeV32. Neutrinos are very rela-
tivistic (MeV� 0.17eV) and obey a FD distribution with µ = 0 and massless dispersion relation

• Neutrino decoupling before electron-positron annihilation. As long as neutrinos are relativistic
(z � 500), the neutrino temperature is

T (a) = Tdec
adec
a

(5.7)

• Neutrinos became non-relativistic at late times (z < 500) and start clustering

We compute the temperature of neutrinos by relating it to that of photons, namely TCMB. An order one
effect is the extra energy that photons receive after electron-positron annihilation (e++e− → γ+γ), which
the neutrinos do not receive because they are already decoupled. Covariant conservation of entropy33

in an FLRW universe implies ∂t(a
3s) = 0. Before e+e- annihilation and neutrino decoupling, the total

entropy is dominated by relativistic species (see Section P.9.4), and was calculate in (6.15). For us

s1 =
2π2

45
T 3

1

[
gboson +

7

8
gfermions

]
(5.8)

=
2

3

π2

15
T 3

1

[
2 +

7

8
2× (1 + 1 + 3)

]
, (5.9)

32Different species decouple at slightly different times. Neglecting mass oscillations, one finds T (νe) ' 2.4MeV and
T (νµτ ) ' 3.7MeV [22]

33Electron position annihilation proceeds in states of equilibrium, since it could be reverse by re-contracting and heating
up the universe around the transition temperature. Therefore the total entropy is conserved
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Figure 7: Taken from [2]. The plot shows ∆Neff ≡ Neff − 3.04 and the number of degrees of freedom g∗
as function of the decoupling temperature Tγ for various types of particles.

where the bosons are just the two polarizations of the photon, and the fermions are the two helicities
of e−, e+ and the three neutrinos34. Then neutrinos decouple and their temperature redshifts such that
Ta is constant, so they maintain the same temperature as photons until e+ e- annihilation at around
0.5 MeV. After the annihilation, the total entropy is given by35

s2 =
2

3

π2

15

[
2T 3

γ +
7

8
2× 3T 3

ν

]
, (5.10)

where now we accounted for the fact that the neutrinos are not in equilibrium with the photons and so
could and indeed have a different temperature Tν . We can use the conservation of entropy a3

1s1 = a3
2s2

and a1T1 = a2Tν to find

Tν = Tγ

(
4

11

)1/3

⇒ Tν(a0) ' 1.96 K ' 1.7× 10−4 eV . (5.11)

So neutrinos are a bit colder than photons at any time after e+ e- annihilation. Notice that this does
not depend on whether neutrinos are Dirac or Majorana.

To compute the neutrino energy fraction today Ων , we have to account for their mass. The precise
calculation can only be done numerically, but there are two interesting analytical limits. First let us

34Notice that protons and neutrons are non-relativistic (GeV�MeV). The baryon to photon number ratio is nb/nγ ∼
10−9 and so baryons lead to a tiny contribution to the total entropy density. Electron and positron instead are quasi
relativistic

35The number density of surviving electrons is about ne ∼ 10−9nγ (same as for baryons), so they can be neglected in
the entropy.
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Figure 8: Left: Dodelson’s fig 1.7. Right: the same plot as required in exercise 16 chapter 2 with two
flat universes, one with ΩΛ = 0.7 (continuous blue line) and another with ΩΛ = 0 (dashed orange line).

assume the neutrinos are massless. The integral of the FD distributions is smaller than that over the
BE distribution by a factor of 7/8 so we find

ρν = ργ 3
7

8

(
4

11

)4/3

, h2Ων = 1.7× 10−5 (mν = 0) . (5.12)

At early times, when neutrinos are still relativistic (z � 500), the total radiation energy density ρr is
given by

ρr = ργ

[
1 +Neff

7

8

(
4

11

)4/3
]
, (5.13)

where Neff quantifies the number of relativistic species in the universe besides the photons. In the
standard model, Neff = 3.04 for the three neutrino species. The slight deviation from 3 comes from the
fact that neutrinos still have some small interaction with the SM at e+ − e− annihilation and so receive
tiny bit of heating as well. In analyzing the data, one can treat Neff as a free parameter to test for
deviations from the standard model. Currently CMB data gives the constraint Neff = 3.04 ± 0.18 [1],
implying a detection of a Cosmic neutrino Background CνB. Sensitivity to Neff is expected to improve
by a factor of three in the next ten years with the Simons Observatory (SO) even further with CMB
Stage 4 (S4) [2]. This could detect or exclude any particle that has ever been in thermal equilibrium
with the Standard Model (see Fig. 7).

If neutrinos are massive, when they are fully non-relativistic their energy density is simply given by
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Figure 9: The concordance or standard model of cosmology. Cluster counts, supernovae and the CMB
agree on a flat (K = 0 accelerated universe, dominated by Dark Energy)

ρν = mνnν , with nν their conserved number density defined by Eq. (??). One then finds (see P.5.4)

nν =
3

11
nγ =

6ζ(3)

11π2
T 3
γ ' 113 cm−3 , (5.14)

Ων =
ρν
ρcr

=

∑3
i=1mi

94h2 eV
(mν 6= 0) . (5.15)

Neutrinos were originally proposed to explain the entirety of dark matter but they are too light and one
finds Ων ≤ 0.4%. Nevertheless, neutrinos do cluster36 and they do produce small effects on structure
formation. A large number of experiments aims at detecting these effects in the next decade.

5.4 Dark Energy

In the late 90’s evidence began to accumulate that ä(t0) > 0, i.e. the current expansion of the universe
is accelerating. The discovery was announced by two groups: High-Z Supernova Search Team [40]
and the Supernova Cosmology Project [37], both of which got the Nobel prize in 2011. Supernovae of
Type 1a are exploding stars whose progenitor is a small and compact start called a white dwarf in a
binary system (i.e. orbiting another, usually larger star). SN1a are standard candles so their intrinsic
luminosity should be approximately the same (corrected for some dust absorption and some “unknown”
environmental dependence). We can calibrate nearby SN1A and hence know the intrinsic luminosity
L. So, if we measure a SN1A, we can deduce its luminosity distance dL, since we know L and measure
the flux l in (4.16). In addition, the redshift of each supernova can be measured from emission and
absorption lines in its spectrum. The resulting luminosity distance dL(z) = χ(z)(1 + z) or apparent
magnitude m−M as function of redshift are in Fig. 8. This is somewhat analogous to the classic Hubble
diagram in Fig. 1, with the remarkable difference that is extends to much further objects (z ∼ 1 so a few
Gpc as opposed to the few Mpc in Hubble’s diagram). One sees that SN appear fainter in our universe
than they should appear in a matter dominated universe. Introducing a cosmological constant, the
measurements agree with predictions. Also, this estimate of the accelerated expansion agrees beautifully
with CMB and cluster counts. This is known as the concordance model or LCDM for Λ Cold Dark
Matter (see Fig. 9).

36Clustering means to get denser or sparser around over or underdensities. Very relativistic particles, such as for example
photons, do not cluster because they cannot be captured by the gravitational potential of even the largest clusters of galaxies.
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From the acceleration equation (3.52) we know that ä > 0 implies ρ + 3P < 0 or equivalently
w < −1/3. Neither matter nor radiation can produce this effect since they both obey the Strong Energy
Condition, i.e. for ever future pointing time-like vector Xµ(

Tµν −
1

2
Tλλgµν

)
XµXν ≥ 0 ⇒ ρ+ 3p ≥ 0 (SEC) . (5.16)

We are then forced to either change the framework within which we interpret the data (e.g. change
the laws of gravity of the FLRW metric) or introduce a new constituent of the universe: Dark Energy.
A detailed study of the data shows that for Dark Energy to produce the accelerated expansion of the
universe ä > 0 we need

pDE = −ρDE (1± 0.05) and ΩDE,0 ' 0.7 (5.17)

Dark Energy is the politically correct and over-encompassing name for all the proposed theories of late
cosmic acceleration. The cosmological constant, quintessence and modified gravity are among the most
investigated scenarios for Dark Energy.

Let us briefly discuss the naively most conservative solution to late cosmic acceleration: a cosmological
constant. Diffeomorphism invariance of the EE allows for an additional constant term

Rµν −
1

2
gµνR = M−2

Pl (Tµν − Λccgµν) , (5.18)

which had originally been introduced by Einstein to find a static universe (see P.5.5). Interpreting
−Λccgµν as the energy-momentum tensor of the cosmological constant, we deduce pcc = −ρcc and
therefore37 wcc = −1. Notice that as the universe expands or contract the energy density remains
constant. Because of this the cosmological constant is also called vacuum energy meaning that ρcc = Λ
is an energy density associated with “empty” spacetime itself. Equivalently, the most general action
compatible with the symmetries is

S =

∫
d4x
√
−g
[
Λcc +

M2
Pl

2
R+O(R2)

]
, (5.19)

where additional terms such as R2 or R3 have more spacetime derivatives. In my conventions the
spacetime constant Λcc has dimension of an energy density [Λcc] = E4. What can we say about the value
of Λcc?

Consider General Relativity (GR) as and Effective Field Theory38 (EFT). Since [R] = E2, the theory
is not renormalisable in the traditional sense, i.e. at every order in perturbation theory new operators
need to be introduced with increasing number of fields and derivatives (i.e. higher and higher dimesion) to
cancel new UV divergences. Yet, like every EFT, at energies E well below the naive cutoff Λcutoff ∼MPl,
for experiment with some finite precision ε, there is just a finite number of counterterms needed to
compute finite, renormalized observables. Naively, for predictions at some scale E � Λcutoff we need
only operators of dimension l where (E/Λcutoff)

l ≥ ε. So the theory is predictive as long as we can make
independent measurement to impose all renoramalization conditions on all operators of dimension l or
less. We can then safely quantise gravity perturbatively, around some fixed (classical) background such
as FLRW. When we couple GR to a given model of particle physics, the additional dynamics might
introduce strong coupling at lower energies than MPl. Since we have successfully tested the standard
model of particle physics at accelerators, we conservatively assume TeV< Λcutoff < MPl. Here comes the
key point. In a natural EFT’s, every coupling constant is expected to be given by appropriate powers
of the cutoff of the theory. For exampleΛ is expected to be the cutoff of the theory to the fourth power,
and so

Λcc ' Λ4
cutoff > TeV4 (natural EFT expectation!?) , (5.20)

But the late time cosmic acceleration is an Infra-Red (IR) effect as compared with typical particle physics
scales. Late acceleration is associated with an energy density in the universe of order

3H2
0M

2
Pl ∼ (10−3 × eV)4 � TeV4 < Λ4

cutoff . (5.21)

37cfu: What is the critical w for which change from accelerated to decelerated expansion? Look back at the acceleration
equation Eq. (3.52)

38For an introductory discussion of EFT’s see e.g. [39]
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So the expectation based on naturalness are at least wrong by a factor of (1015)4. The above consid-
erations about the cosmological constant are usually summarised in terms of two conceptually distinct
problems:

• The cosmological constant naturalness problems or why don’t we observe a large contribution to
the universe energy budget of order Λ4

cutoff >TeV4?

• The cosmological constant fine tuning problem or how does the tiny dimensionless number Λ4
cutoff/M

2
PlH

2
0 >

1060 emerge from the laws of nature?

Many models have been constructed to address these issues over the years, but there is no clear favourite
so far. An ambitious observational program is underway to test many of these theories. For more details
see e.g. [9, 43].

Problems for lesson 5

P.5.1 Compute the age of the universe using for the numerical value of the cosmological parameter, the
latest result from the Planck satellite [arXiv:1502.01589]. Compare with the quoted result in the
same paper. [Hint: You will have to compute one integral numerically]

P.5.2 Compute the galaxy rotation curve, namely the velocity v as function of radius R, assuming
that there is only baryonic matter (stars and interstellar gas, but no dark matter). You can use

the Newtonian approximation and assume a Gaussian baryonic distribution ρ(R) = ρ0e
−(R/Rs)

2

where Rs is typically of order a few kpc, e.g. Rs ∼ 4 kpc for our Milky way. Notice that the
distribution of luminous matter can be deduced from the luminosity of the galaxy as function
of radius. The Gaussian profile above reproduces only qualitative the exponential decay at large
radius. Qualitatively compare your result with some actual data (e.g. google image “galaxy rotation
curves”).

P.5.3 (Dodelson’s Exercises 17 ch.2) Express the entropy density s as function of temperature T for mass-
less bosons and fermions, assuming equilibrium and zero chemical potential. Neglecting chemical
potential, show that a particle of mass m in equilibrium at T � m gives an exponentially small
contribution to the entropy s ∝ e−m/T .

P.5.4 (Dodelson’s Exercises 18 ch.2) Show that the number density of one generation of neutrinos and
anti-neutrinos in the universe today is approximately

nν =
3

11
nγ ∼ 100 cm−3 . (5.22)

P.5.5 Einstein originally introduced a cosmological constant in order to maintain a static universe. Find
out how he was proposing to realize this. Consider a universe with matter, radiation, a cosmological
constant defined by

Rµν −
1

2
gµνR+ gµνΛ =

1

M2
Pl

Tµν , (5.23)

and curvature K, so that

H2 +
K

a2
=

1

3M2
Pl

(ρM + ρR + ρΛ) , (5.24)

with ρΛ ≡ M2
PlΛ. Find the special value ā of a and of Λ such that the universe is static. Is this

static solution stable under perturbations away from ā?

P.5.6 Consider two supernovae, one with apparent magnitude m = 24.3 at z = 0.83 and one with
m = 16.08 at z = 0.026. Neglecting error bars and assuming a flat universe with just matter and
a cosmological constant, determine the preferred value of ΩΛ.
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Check for understanding of lesson 5

cfu.5.1 Imagine the neutrinos interacted much more strongly with electrons and protons, say an interaction
rate Γ = 103×ΓSM where ΓSM is the standard model value. In this hypothetical situation, would
the neutrinos be hotter or colder today as compared with the real universe?

cfu.5.2 How do Dark Matter and Dark Energy need to interact or not interact to fit observations? Weak,
strong, elctromagnetic or gravitational interactions?

cfu.5.3 Can cosmic neutrinos be the whole of Dark Matter or Dark Energy? Why?
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LESSON 6

Thermal history ref

So far we have learned that our universe was radiation dominated up to z ' 3300, then matter dominated
until z ' 0.4 and Dark Energy dominated since. In this lesson, we discuss the thermal history of the
homogeneous universe, which relies on equilibrium thermodynamics. Then we develop the formalism to
statistically describe out of equilibrium processes using the Boltzmann equations. In the next lecture we
will use this to study big bang nucleosynthesis (BBN), Dark Matter decoupling and recombination.

6.1 Relativistic kinetic theory

In a many particle system, one can also derive the energy-momentum tensor from relativistic kinetic
theory. Consider the phase space density f(x, p, t) for particles of mass m, defined as the infinitesimal
probability dProb for finding a particle at position x with momentum P at time t by

dProb = f(x,P, t)
∏
i,j

d3xid3Pj . (6.1)

The energy-momentum tensor and number density for a species a of particles are then

Tµνa (x, t) =
ga√
− det g

∫ ∏3
k dPk

(2π)3P 0
PµP νfa(x,P, t) , (6.2)

na(x, t) =
ga√
− det g

∫ ∏3
k dPk

(2π)3
fa(x,P, t) , (6.3)

where gi is the degeneracy of the one-particle state, equivalently the number of propagating degrees of
freedom. For example, g = 2 for massless vectors such as the photon or massless tensors such as the
graviton (only helicities ±1 and ±2 respectively); g = 2 for a Dirac fermion such as the electron e−,
the positron e+ or the proton p+ (helicities ±1/2); g = 1 for a Weyl or Majorana fermion such as the
neutrino and its antiparticle39.

It is convenient to adapt the very general integrals in (6.2) to the case of most relevance in cosmology.
First, let us then consider particles that are in equilibrium, and therefore obey Bose-Einstein or Fermi-
Dirac statistics40

fa(x,P, t) = fBE,FD(x, |P|, t) =
[
e(P

0−µ)/T ∓ 1
]−1

, (6.4)

where P 0 =
√
m2 + P igijP j and the spacetime dependence appears in the chemical potential µ = µ(x, t)

(defined to be dimensionless) and the temperature T = T (x, t). Second, let us restrict ourselves to a
flat FLRW universe, (3.37), for which

√
−g = a3. Third, by homogeneity and isotropy, the only non-

vanishing components of the energy momentum tensor are T 0
0 = ρ and T ii = 3p. Changing integration

variable from the comoving momentum P i to the physical three-momentum

q ≡
√
a2P jP iδij ⇒ dPk = adq , (6.5)

all factors of a cancel out. Then, using spherical coordinates, the angular integrations in (6.2) simply
give a factor of 4π. Finally, we find

ρa(x, t) =
ga

2π2

∫
dq q2 E

e(E−µ)/T ∓ 1
, (6.6)

pa(x, t) =
ga

2π2

∫
dq q2 q2

3E

1

e(E−µ)/T ∓ 1
, (6.7)

na(x, t) =
ga

2π2

∫
dq q2 1

eE(q)/T ∓ 1
, (6.8)

for bosons and fermions respectively, with E(q) =
√
m2 + q2.

39It is not known whether the neutrino is a Weyl or a Majorana particle. Either way the final counting is the same:
the 4 real components for a Majorana spinor can be written in terms of the 2 complex components for a Weyl spinor. A
Weyl spinor is a chiral particle (e.g. left-handed for neutrinos), with an antiparticle of opposite chirality (the right-handed
anti-neutrino). A Majorana particle instead has both chiralities and is its own anti-particle.

40cfu: How do you get the right sign in the denominator of fBE,FD? Remember the exclusion principle for Fermions
which implies fFD < 1.
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Relativistic particles For T � m, these integrals are mostly supported around q ' 3T and so at
high temperature we can approximate E(q) =

√
m2 + q2 ' q up to corrections of order (m/T ). At this

order p2/3E = E/3 and so ρ = 3p. Performing the integrals 41 above one finds

ρa = 3pa = ga
3

π2
T 4
[
±Li4(±eµ/T )

]
, (6.11)

na = ga
1

π2
T 3
[
±Li3(±eµ/T )

]
, (6.12)

for bosons and fermions respectively, where Lin(z) is the polylogarithm of z at order n. The chemical
potentials are small for all known particles and almost all times, so we can simplify these expressions in
the limit µ� T . The polylogarithms can be evaluated analytically and one finds

ρa = 3pa = ga
π2

30
T 4

{
1 (relativistic bosons)
7
8 (relativistic fermions)

, (6.13)

as well as

na = ga
ζ(3)

π2
T 3

{
1 (relativistic bosons)
3
4 (relativistic fermions)

, (6.14)

where the Riemann zeta-function is approximately ζ(3) ' 1.2. We can also compute the entropy density
(always neglecting µ)

s =
ρ+ p

T
= ga

2π2

45
T 3

{
1 (relativistic bosons)
7
8 (relativistic fermions)

. (6.15)

Non-relativistic particles In the opposite limit, at low temperatures m − µ � T both quantum
statistics reduce to a Boltzmann distribution since

e(
√
m2+q2−µ)/T > e(m−µ)/T � 1 . (6.16)

Now the integral is mostly supported around q '
√
Tm � m. If we also assume m � T , we can

approximate
√
m2 + q2 ' m + q2/(2m) everywhere, up to correction of order T/m � 1. Then the

integrals can be done analytically and the result is

na = ga

(
mT

2π

)3/2

e(µ−m)/T , (6.17)

ρa = ga

(
mT

2π

)3/2

e(µ−m)/T

(
m+

3

2
T

)
= na

(
m+

3

2
T

)
, (6.18)

pa = ga

(
mT

2π

)3/2

e(µ−m)/TT = naT (6.19)

sa =
ρa + pa
T

= . (6.20)

Notice that, if relativistic and non-relativistic particles are in thermal equilibrium, i.e. at the same
temperature, and µ� T , then

ρnon-rel

ρrel
∝ e−m/T

(
T

m

)5/2

� 1 . (6.21)

We conclude that in thermodynamical equilibrium, particles become irrelevant for the total energy,
pressure and entropy budge as soon as they become non-relativistic. It convenient to have a simple

41Here we have used the master integral∫ ∞
0

dy
yn

ey−z − η
=

1

η
Γ(n+ 1)Lin+1(ezη) (6.9)

where the polylogarithm is the generalisation of the logarithm in the sense that Li1(z) = − log(1− z) and

Lin+1(z) =

∫ z

0

Lin(z′)

z′
dz′ . (6.10)
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expression for the radiation energy density. Let us introduce the effective number of bosonic degrees of
freedom g∗ defined as

ρ = g∗
π2

30
T 4 , with g∗ ≡ gbosons +

7

8
gfermions . (6.22)

Box 6.1 Time-temperature relation Various quantities can be used to parameterize time: time (proper
t or comoving τ), redshift z, the Hubble scale H ≡ ȧ/a, the particle horizon, the scale factor a, temperature,
etc. A summary of the conversion is provided in table Tab. 1. A useful relation is that between cosmic
time t and temperature T (see P.6.1). Let us recall the continuity equation for radiation, w = 1/3 and use
ρ ∝ T 4 from (6.13)

0 = ρ̇+ 4Hρ ∝
(
Ṫ +HT

)
. (6.23)

For a number g∗ of relativistic species in thermodynamic equilibrium at temperature T the Friedmann
equation gives

H =

√
ρ

3MPl
=

√
g?
π2

90

T 2

MPl
. (6.24)

We can then solve the o.d.e.

Ṫ = −T 3 π

MPl

√
g∗
90

(6.25)

and find T (t) and its inverse

T (t) =

(
5

2g∗

)1/4
√

3MPl

πt
⇒ t =

√
5

2g∗

3MPl

πT 2
(radiation domination) . (6.26)

6.2 Thermal history

Let us now review the most important events and scales in chronological order (see Fig. 10)

• T ∼ 1018 GeV, approximately 10−43 sec: the perturbative quantum description of GR breaks
down and the theory needs a Ultra-Violet (UV) completion. For example, new, unknown degrees
of freedom could appear at or before this scale. This happens e.g. in String Theory, where higher
spin particles become dynamical at the string scale42 Ms . MPl. Alternatively the theory could
become strongly coupled and we don’t know what happens. It has been conjectured that GR
might possess a UV-fixed point, where all coupling constants of the theory (including all higher
dimension operators) have vanishing beta functions. This line of investigation goes under the name
of Asymptotic safely. Many other approach to tackle non-perturbative quantum gravity have been
proposed.

• H ∼ 103 GeV - 1013 GeV, a conjectured phase of accelerated expansion called cosmological inflation
seeds the primordial perturbation that later will give rise to the structure in the universe and
eventually to us. The energy scale of this process is one of the most uncertain scales in physics.
During inflation, the universe is cold and empty43, the abundance of any standard model species is
exponentially suppressed in time by the fast expansion a ∼ eHt, with H approximately constant.
The universe expands by at least a factor of approximately44 af/ai ∼ e60 ∼ 1026. Inflation ends
as the degree of freedom driving, some form or scalar condensate known as the inflaton, breaks
up into particles, which in turns decay into standard model fields in a process called reheating. In
the simplest and most standard paradigm, this final states consists of a hot (T >TeV) thermalized
soup of SM particles. The hot big bang starts here.

• T >100 GeV, an asymmetry in baryon number is created by some, yet unknown, non-equilibrium
(P and CP violating []) process called baryogenesis. As all quarks annihilate with anti-quarks, and

42The value of the string scale is of course unknown and depends on the details of the compactification from 10 (or 11)
down to 4 dimensions.

43Not unlike some places in Canada.
44The exact number of factors of e, namely N ≡ ln

(
af/ai

)
, aka efoldings, is not known. Many inflationary models have

40 < N < 60, while data constraints N > 20 [].
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only a part in a million of the baryonic matter in the universe survives. This will eventually form
all atoms in the universe.

• T ∼ 100 GeV - 103 GeV, the electroweak symmetry of the standard model SU(2)×UY (1) is broken
via the Brout-Englert-Higgs mechanism down to the abelian U(1) gauge symmetry that we call
electromagnetism. The details of this phase transition depend crucially on the properties of the
Higgs particle and of the spectrum of the standard model, which are being currently probed at
particle accelerators such as the Large Hadron Collider at CERN. All SM fermions (quarks and
leptons) as well as the W± and Z0 vector bosons acquire a mass proportional to the vacuum
expectation value (vev) of the Higgs field.

• T ∼ 200 MeV the free quarks and gluons become confined as the coupling of the strong interactions
becomes of order one. Because of its non-perturbative nature, the details of this QCD phase
transition leading to confinement are still not fully understood. As the temperature decreases
below the mass of the lightest mesons (the pions, π±,0 whose mass is protected by the approximate
global isospin symmetry), all quarks and gluons in the universe become confined inside protons
and neutrons, which obey an thermal distribution.

• T ∼ 1 − 3 MeV, 0.2 sec: neutrinos fall out of equilibrium as their weak interaction rate becomes
smaller than the expansion of the universe (different neutrino flavor, νe,µ,τ decouple at slightly
different energies). From this moment onward, neutrinos couple only gravitationally and mostly
free stream across the universe.

• T ∼ 1 MeV: the neutrons fall out of thermal equilibrium and their abundance freezes out (up to
some decaying rate which, on the time scale of the problem, produces only an order 10% effect).
The ratio of protons to neutrons in the universe is approximately fixed by this process.

• T ∼ 0.5 MeV, 5 sec: electron-positrons annihilation. As the temperature drops below the electron
mass 0.5 MeV, the process of electron-positron production becomes very rare and all positrons
annihilate with electrons. As we observe an electrically neutral universe, a number of electron
survive equal to the number of protons. As discussed around Eq. (5.11), this process releases
energy into the photons, which therefore become hotter than the neutrinos (which had decoupled
early).

• T ∼ 0.07 MeV, 3 minutes, z = 1010: protons and neutrons combine to form Deuterium (the
isotope of Hydrogen with one proton and one neutron), which in turn converts almost immediately
into Helium-4. The capture of neutrons to form nuclei prevents them from decaying further (the
lifetime of the free neutron is about 15 min). The primordial abundance of atoms is determined
in this process, which is known as big bang nucleosynthesis (BBN). For the lightest elements of
the periodic table, the BBN abundance gets modified only marginally by subsequent astrophysical
processes. The prediction of the abundance of light atoms is one of the greatest successes of the
big bang theory.

• T ∼ 0.5 keV, 2 months, z = 2 × 106: the number of photons with energy of the order of T
and above becomes effectively frozen because all active interactions (Compton scattering) conserve
photon number. This is the black-body time, after which any process involving photons can destroy
the black-body spectrum of the photons, which we eventually measure in the Cosmic Microwave
Background radiation (CMB).

• T ∼ 1eV, z = 3300: matter-radiation equality, where matter includes Dark (6 parts out of 7) and
baryonic (1 part out of 7) matter and radiation is made of photons (60%) and neutrinos (40%).
Dark Matter inhomogeneities start growing at this point to eventually form structures.

• T ∼ 0.3 eV, around 370 ky, z ' 1100: recombination of electron and protons to form neutral
Hydrogen (and earlier, at z = 1400 the recombination of Helium, which captures two electron per
nucleus; this is a smaller effect and can be neglected for rough estimates). The fraction of free
charged particles (e− and p+) decays very fast and very soon the photon cross section for Compton
scattering becomes tiny. The universe becomes transparent. The photons travel freely (up to the
10% effect of re-ionization, see below) in every direction. It is these photons that we detect as
CMB.
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Figure 10:

• z ∼ 200: radiation drag, i.e. baryonic matter, finally decouples from the photons (notice that
there 109 photon every baryon, so photons decouple from baryons much earlier than baryons from
photons) and starts falling into the gravitational potentials created by Dark Matter, which has
been gravitationally clustering since matter-radiation equality.

• z ∼ 10: most of the Hydrongen in the universe becomes ionized again as stars and galaxies become
abundant. The detailed of this process, known as reionization, are still very uncertain and are
expected to be clarified by ongoing and near future observations with large radio telescopes.

• z ∼ 0.3, 9 Gy: the matter energy density equals that of Dark Energy and the universe enters a
phase of accelerated expansion. Structure formation come to a stop because the expansion of the
universe wins over gravitational collapse.

• z ∼ 0, 14 Gy: these lecture notes are written.

6.3 Boltzmann equation

Our goal is to derive an equation to describe the evolution out of chemical equilibrium at various stages
in the history of the universe. We will assume isotropy and homogeneity throughout. We will consider
exclusively two-to-two body scattering, and use the notation 1 + 2↔ 3 + 4 for the reaction of states or
particles 1 through 4. We will assume that the reaction takes place in both directions. The variables
we want to describe are the densities of species 1 though 4 as function of time in a flat FLRW universe.
The Boltzmann equation for annihilation is given by45

45cfu: Why the factor of 1/Ei? To make the measure Lorentz invariant. It can be alternatively written as∫
d3pidEi δD(E2

i − p2i −m2
i ), with mi the mass of the i-th particle
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z Size Temperature Age Comov. Dist. Part. Horizon Energy

0 14.3 Gpc 0.000234 eV 13.7 Gy 0. 14.3 Gpc Λ
0.1 13.0 Gpc 0.000258 eV 12.4 Gy 414 Mpc 13.9 Gpc Λ
0.39 10.3 Gpc 0.000326 eV 9.48 Gy 1.51 Gpc 12.8 Gpc Λ = Ωm
1. 7.15 Gpc 0.000469 eV 5.92 Gy 3.32 Gpc 10.9 Gpc Ωm
3 3.57 Gpc 0.000937 eV 2.19 Gy 6.46 Gpc 7.81 Gpc Ωm
6 2.04 Gpc 0.00164 eV 947 My 8.42 Gpc 5.85 Gpc Ωm
10 1.3 Gpc 0.00258 eV 480 My 9.66 Gpc 4.61 Gpc Ωm
20 681 Mpc 0.00492 eV 181 My 11.0 Gpc 3.27 Gpc Ωm
50 280 Mpc 0.0120 eV 47.4 My 12.3 Gpc 2.00 Gpc Ωm
100 142 Mpc 0.0237 eV 16.8 My 12.9 Gpc 1.35Gpc Ωm
1100 13.0 Mpc 0.258 eV 369 ky 14.0 Gpc 280 Mpc Ωm
3200 4.47 Mpc 0.750 eV 56.9 ky 14.1 Gpc 119 Mpc Ωm = Ωr

5× 104 286 kpc 11.7 eV 292 y 14.3 Gpc 9.01 Mpc Ωr
2.× 106 7.15 kpc 468.7 eV 68.0 days 14.3 Gpc 0.229 Mpc Ωr

Table 1: Numerical conversion among various measures of time.

a−3 d
(
a3n1

)
dt

=

∫ ∏
i=1,4

d3pi
(2π)32Ei

δ3
D

∑
i=1,4

~pi

 δD

∑
i=1,4

Ei

 |M |2 (6.27)

[f3f4 (f1 ± 1) (f2 ± 1)− f1f2 (f3 ± 1) (f4 ± 1)] , (6.28)

and similarly for particles 2 through 4. Several comments are in order:

• In the absence of any interaction, the right hand side vanishes and n1 is covariantly conserved (i.e.
it scales just with the volume)

0 = (uµn);µ = a−3 d
(
a3n1

)
dt

(6.29)

• fi(x, ~p, t) is the phase space density function. For today we will assume it does not depend on
space.

• (fi ± 1) come about because of the quantum statistic and are called Bose enhancement (easier
to produce a boson in a state that is already occupied by a large number of particles) and Pauli
blocking (one cannot have a density of state large than one for Fermions).

• the f3f4 terms describes creation while the f1f2 destruction of particle 1.

• the probability amplitude M gives the probability |M |2 (quantum mechanics). This is the only
place where the dynamics of the theory under consideration appears. M is proportional to the
coupling constant responsible for the interaction.

• The delta functions ensure energy and momentum conservation in each interaction.

• the integrals over all four momenta sum over all possible ways that the interaction can proceed.

• This expression is not invariant under time reversal T. This is related to the (mysterious) fact
that to a large extent (weak interactions being an exception that is nevertheless not sufficient to
explain the mystery) microscopic physics is invariand under T, while all macroscopic process are
observed to have an “arrow of time”. In deriving this equation from the BBGKY hierarchy46 we
have neglected the 2-, 3-, . . . n-particle densities and therefore we have lost the correlation among
particles that is generated by interactions. This loss of information breaks T, even if the underlying
interactions were T-symmetric, and lead to the possible increase of entropy and selects an arrow
of time.

46If you don’t know what this is an have not idea what I am talking about buty you are curious read chapter 68 of [?]
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Figure 11: The chemical potential of different phases of water as function of temperature.

• This is a coupled system of non-linear, ordinary, integro-differential equations, a.k.a. it is pretty
hard to solve

To make some progress we will make two simplifying assumptions:

1. There is kinetic equilibrium. This means that there are efficient interactions that distribute energy
and momentum within a single species very quickly. It implies that we can use BE or FD statistic
for the distribution functions f ’s (equilibrium distributions). Notice that this is not the same as
chemical equilibrium, in which there are efficient interactions to change particles from one species
to another. For example, in chemical equilibrium µ1 + µ2 = µ3 + µ4 (see below), but we will not
assume this in the following. Intuitively this means that we consider a situation in which particles
can change their energy and momentum but not necessarily their type.

2. In the three cases of interest we will have T � E − µ and therefore we can drop the ±1 in the FD
and BE statistic and simply use Boltzmann distribution functions (“classical”)

fBE,FD =
1

e(E−µ)/T ∓ 1
' e−(E−µ)/T = fB . (6.30)

This also implies we can approximate fi ± 1 ' 1 since e−(E−µ)/T � 1

Let us define the species chemical equilibrium (µ = 0) densities n
(0)
i and out of equilibrium densities47

ni as (see Eq. (??))

n ≡ g
∫

d3p

(2π)3
e−(E−µ)/T = g eµ/T

{ (
mT
2π

)3/2
e−m/T T � m

T 3

π2 T � m
, n(0) ≡ n|µ=0 = n e−µ/T , (6.31)

with g the number of degrees of freedom (2 for the photon or the electron).
Assuming the chemical potential is momentum-independent, we can write

[f3f4 (f1 ± 1) (f2 ± 1)− f1f2 (f3 ± 1) (f4 ± 1)] ' e−(E1+E2)/T

[
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

]
, (6.32)

where we used the conservation of energy E1 +E2 = E3 +E4. Define the thermally averaged cross section
as48

〈σv〉 ≡ 1

n
(0)
1 n

(0)
2

∫ ∏
i=1,4

d3pi
(2π)32Ei

δ3
D

∑
i=1,4

~pi

 δD

∑
i=1,4

Ei

 |M |2e−(E1+E2)/T . (6.33)

47cfu: How can you compute these integrals by dimensional analysis? [n] = M3 so for relativistic particles it must be
n ∝ T 3.

48cfu: Check dimensions: [σ] = L2, [v] = L/T , . . .
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We can finally write

a−3 d
(
a3n1

)
dt

= 〈σv〉n(0)
1 n

(0)
2

[
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

]
. (6.34)

• Ordinary coupled differential equation

• Since [n] = L−3 and [〈σv〉] = L3T−1, we can think of n2〈σv〉 as a reaction rate Γ ([Γ] = T−1).
Here, Γ is rate at which species 1 changes (created or destroyed) due to the reaction 1 + 2↔ 3 + 4.

• The left hand side is of order n1/t. When the right hand side is negligible, the variation of n1 is
determined exclusively by the expansion of the universe. Species 1 is diluted ∂tn1 = −3Hn1.

Depending the rate of interaction and expansion of the universe, there are two relevant regimes

• Equilibrium Γ � H. he reaction is very efficient and determines the relative densities of species.
Generic initial values for ni are very quickly driven to the chemical equilibrium

n3n4

n
(0)
3 n

(0)
4

=
n1n2

n
(0)
1 n

(0)
2

⇔ µ1 + µ2 = µ3 + µ4 , (6.35)

which ensures a large cancellation of the rhs. This is sometimes called Saha equation. Notice that,
even if µi 6= 0, the ratio of abundances is the same as it would be if µi = 0 for every i, namely

n3n4

n1n2
=
n

(0)
3 n

(0)
4

n
(0)
1 n

(0)
2

. (6.36)

• Freeze-out Γ� H. The reaction is too slow to keep up with the expansion of the universe. One can
neglect the right hand side of Eq. (6.34) and find ni(t) ' ni(a∗)(a∗/a)−3, where ∗ refers to the (last)
moment at which Γ ' H. Notice in particular that, after an interaction goes out of equilibrium
the ratio of all species involved becomes constant (assuming there aren’t other processes that affect
them). This is called “freeze-out”.

Recall that µ is akin to any other potential, e.g. the gravitational or electric potential. Imagine a
single species. A larger number density implies a larger µ. If µ in region I is larger than µ in region II,
then particles move from A to B. This is the macroscopic description of diffusion, e.g. of smoke in air.
Now imagine a homogeneous system, so that µ is the same everywhere, but two species, A and B, which
can freely transform into each other. If µA > µB then all A particles will transform into B. This is what
happens in a phase transition, e.g. when water becomes ice below T = 0◦C (see Fig. 11).

Problems for lesson 6

P.6.1 A useful relation during radiation domination is TMeV ' O(1)
√
tsec. Derive it by yourself or

following 1.

P.6.2 Reproduce table 1. Columns correspond to redshift z, Eq. (??), particle horizon d, Eq. (P.4.1),
CMB temperature T , age of the universe tage, Eq. (4.25), comoving distance to a given redshift,
Eq. (4.13), and type of energy domination.

P.6.3 Exercise 1 (D3) on the integrals of the phase space distribution

P.6.4 Exercise 6 (D3) on the baryon to photon ratio in our late universe.
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LESSON 7

Out of equilibrium processes: Big Bang Nucleosynthesis ref

We use the Boltzmann equation to compute the out-of-equilibrium dynamics in three cosmological events:
Big Bang Nucleosynthesis, recombination and Dark Matter decoupling.

7.1 Big Bang Nucleosynthesis

The baryons in the universe today are observed to be 75% Hydrogen (1H) and 25% Helium (4He) with
only traces of the other isotopes and of the heavier elements (including us), see Fig. 13. Given that the
typical binding energy of a nucleus is O(2 − 8) MeV per nucleon, at temperature T � 2 − 8 MeV, all
the baryons in the universe were free protons and neutrons. At these temperatures, any atom would be
instantaneously destroyed by some 8 MeV photon in the thermal bath. So it is natural to ask how the
observed abundance of elements arose as the universe expanded and cooled much below this tempera-
ture49. This is the goal of Big Bang Nucleosynthesis (BBN).

To study BBN analytically we will decompose the problem in two separated steps:

1. Calculation of neutron abundance, T > 0.1 Mev

2. Formation of Deuterium, Helium and heavier atoms, T < 0.1 Mev

This is a well justified separation for an estimate because the creation of atoms is heavily suppressed
above 0.1 MeV.

Before we proceed, let us review the relevant species at MeV energies. Protons and neutrons are
non-relativistic since mp ∼ mn ∼ 1 GeV�MeV and give a negligible contribution to the total energy
density50. All neutrinos are relativistic and have just decoupled (around a few MeV, depending on the
species). Electron and positron annihilate with each other quickly around T ∼ 0.5MeV. This effect leads
to a correction that is relevant when comparing to data, but which we will neglect in the following to
keep the presentation simple.

Neutron abundance The abundance of neutrons and protons is related by the weak interactions. At
MeV energies the effective Fermi theory contains the following two-body processes51

n+ νe ↔ p+ + e− , n+ ē+ ↔ p+ + ν̄e , n→ p+ + e− + ν̄e . (7.1)

We neglect for the moment neutron decay and come back to it later. If protons and neutrons remained in
chemical equilibrium (µp = µn = 0), their ratio would be simply set by the usual Boltzmann suppression
(use Eq. (6.31))

nn
np

=
n0
n

n0
p

=

(
mnT
2π

)3/2
emn/T(

mpT
2π

)3/2

emp/T
' e(mn−mp)/T ≡ eQ/T , (7.2)

where the mass difference is Q ≡ mn−mp ' 1.3MeV and so mn/mp ' 1.001. So in equilibrium all neu-
trons would quickly decay away at T < 1.3 MeV. Luckily for us, the (weak) interactions responsible for
this decay go out of equilibrium and some relic neutrons survive. This requires working out of chemical
equilibrium, e.g. solving the differential Boltzmann equation Eq. (6.34).

Roughly we need temperature dependence of 〈σv〉 and the n
(0)
i and the time-temperature relation,

so that we can solve for the ratio

Xn ≡
nn

nn + np
. (7.3)

Steps:

49It is straightforward to check (see P.7.1) that only a small fraction of He could have been synthesized in stars at later
times.

50Recall that matter-radiation equality happens around zeq = Ωm,0/Ωr,0 ∼ 3500, corresponding roughly to T ∼eV.
51Three and higher n-body processes are suppressed when the number densities n are low with respect to the typical

interaction volume. In average, within an interaction volume d3int one finds nd3int particles. The probability for a given
particle to interact at a given instant with a single other particle is then nd3int. The probability to interact with k = 2, 3, . . .

other particles at the same instant is instead (nd3int)
k. The latter possibility is very unlikely if n� d−3

int.
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Figure 12: The fractional abundance of neutrons over baryons (n+p) as function of temperature. Around
T ' 1MeV neutrons go out of equilibrium and freeze out at 0.1MeV to Xn ' 0.15. BBN reactions become
then relevant. Some neutrons decay and some combine to form Deuterium and Helium

1. We assume the leptons are in complete equilibrium: nl = n
(0)
l . This means that the Boltzmann

equation, Eq. (6.34), becomes

a−3 d
(
a3nn

)
dt

= n
(0)
l 〈σv〉

{
npn

(0)
n

n
(0)
p

− nn

}
. (7.4)

2. Rewrite nn in terms of the dimensionless Xn. We can use that, for all the weak processes in (7.1),
the total number of baryons is conserved, so (np + nn)a3 is conserved. We get

dXn

dt
= λnp

[
(1−Xn)e−Q/T −Xn

]
, (7.5)

where we introduce the neutron-proton conversion rate λnp = n
(0)
l 〈σv〉, which is time dependent.

3. Let us define a new dimensionless dependent variable x = Q/T to substitute t. Use ρr ∝ a−4 ∝ T 4

to find

dx

dt
= −xṪ

T
= xH ⇒ dXn

dx
=
λnp(x)

xH(x)

[
e−x −Xn(1 + e−x)

]
. (7.6)

To solve this we must make the x dependence of H and λnp.

4. The calculation outlined in P.9.4 gives

λnp =
255

tlifex5

(
12 + 6x+ x2

)
, (7.7)

with tlife = 887sec ∼ 15 minutes.

5. To compute H(x) we use the time-temperature relation during radiation domination (6.26), i.e.
T ∝ t−1/2, with g∗ ' 10.75 for photons gγ = 2, three families of left-handed neutrinos and their
anti-particle gν = 3 × 2 = 6, left and right-handed electrons and their anti-particles (positrons)
ge = 2× 2 = 4. This gives

H(x) =
H(x = 1)

x2
' 1.1sec−1

x2
(7.8)
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Figure 13: The abundance of the lightest elements (Deuterium, Helium 3 and 4, Lithium) as function of
the baryon density today as predicted by BBN (colored bands). Black boxes represent the observational
constraints. For Ωb = 0.04 all data are compatible with predictions.

6. Finally we solve (7.6) numerically. The result is plotted in Fig. 12. Compare H(x = 1) ≈ 1.13 sec−1

and λnp(x = 1) ≈ 5.5 sec−1. After this, the collision rate drops much faster, so transition around
1 MeV.

7. After T ∼ 0.1 MeV, neutron decay due to the process n→ p+ e− + ν̄ becomes important. This is
easily taken into account by multiplying the number density of neutrons by e−t/tlife where tlife ∼ 15
minutes is the neutron lifetime for the above process52. The decay reduces the neutron abundance
by approximately 25 percent to Xn(Tnuc) = 0.11, before nucleosynthesis changes the story, which
we discuss next.

Light element formation A good approximation to light element formation is that it happens instan-
taneously at some temperature Tnuc that can be calculated in equilibrium. The equilibrium abundance
of Deuterium D is determined by the nuclear process

n+ p↔ D + γ . (7.9)

Let us use the equilibrium condition, i.e. the vanishing of the right-hand side of the Boltzmann equation
(6.34) adapted to the above process[

n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

]
⇒

[
nDnγ

n
(0)
D n

(0)
γ

− nnnp

n
(0)
n n

(0)
p

]
(7.10)

Since photons have negligible chemical potential nγ = n
(0)
γ , we find (see P.7.7)

nD
nnnp

=
n

(0)
D

n
(0)
n n

(0)
p

. (7.11)

52cfu: Why is the cosmological time t the right time to use? Because neutrons are non-relativistic mn �Mev and so
their proper time is well approximated by that of observers comoving with the Hubble flow, i.e. at constant comoving
coordinates x. This is the definition of cosmic time t.
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Using again (6.31) or (6.17), this reduces to

nD
nnnp

=
3

4

(
2πmD

mnmpT

)3/2

e(mn+mp−mD)/T ' 3

4

(
4π

mpT

)3/2

eBD/T , (7.12)

where we introduced the binding energy of Deuterium BD = mn+mp−mD ' 2.2 MeV and approximated
mD ∼ 2mp ∼ 2mn in the fraction. We now drop order one factors, approximate nn ∼ np ∼ nb and
introduce the baryon-to-photon ratio [Problem P.6.4]

ηb ≡
nb
nγ

=
ρb
mp

π2

2ζ(3)T 3
CMB

' 5× 10−10 . (7.13)

Finally, (7.12) becomes

nD
nb
' ηb

(
T

mp

)3/2

eBD/T , (7.14)

The physics behind this equation is that the process D + γ ↔ p + n happens in both ways as long as
there are enough photons with energy of order 2.2 MeV, which are able to break up Deuterium. Naively
one would expect this to stop being true at Tnaive ∼ 2.2MeV. This is too rough though, because there
are a billion photons per baryon Eq. (7.13). Even when T < 2.2MeV, there are still enough photons in
the hot tails of the phase space distribution to destroy Deuterium. Deuterium remains in equilibrium
well past 2.2 MeV. Solving for the T = TD when nD ' nb, one finds53

TD &
2.2

log(5× 10−10)
MeV ∼ 2.2

20
MeV ' 0.1MeV . (7.15)

This means that we assume that around 0.1 MeV roughly all remaining neutrons combine with protons
to form deuterium. Actually, since the binding energy for Helium is higher than that of deuterium, very
soon after Tnuc, the helium abundance grows larger than the deuterium abundance. It is therefore a
good approximation to assume all neutrons go into 4He. Since two neutrons go into one helium nucleus,
our prediction for the helium mass fraction of the total amount of baryons is

X4 ≡
4n4He

nb
≈ 2Xn(Tnuc) = 0.22. (7.16)

Good approximation to actual result: one of the pillars of observational cosmology!
Note: deuterium doesn’t completely disappear. Freeze out turns out to be very sensitive to ηb: great
probe! Find Ωbh

2 = 0.0205 +−0.0018, which is a very good CMB-independent probe. Show plot.

7.2 Recombination*

Process:

e− + p+ ↔ H0 + γ. (7.17)

Happens around ∼ 1 eV. Again compare with hydrogen binding energy of 13.6 eV. We are going to track
the electron to hydrogen abundance (so the effect of the expansion of the universe drops out)

Xe ≡
ne

ne + nH
=

np
np + nH

, (7.18)

where the latter equality is ensured by the neutrality of the universe. Note that this is in principle not
the quantity that measures the kinetic equilibrium of the photons: the photons are chemically decoupled
from the fluid since 1 MeV, but remain in kinetic equilibrium until decoupling of photons from matter,
which we investigate later. Due to the imbalance between photons and baryons, the decoupling of
matter from photons is yet another question. Our discussion of recombination will be very similar to
the neutron-to-proton ratio story. Once again, one can start from equilibrium considerations to find the
temperature at which the ratio starts to change significantly. The equilibrium condition (Saha equation)
is again

nenp
nH

=
n

(0)
e n

(0)
p

n
(0)
H

, (7.19)

53cfu: What is the interpretation of the other large factor (3/2) log (T/mp) ' −14?
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Figure 14:

which can be written as

X2
e

1−Xe
=

1

ne + nH

[(
meT

2π

)3/2

e−ε0/T

]
, (7.20)

with ε0 = me + mp − mH . At T ∼ 13.6 eV, this gives us a tiny amount of neutral H. At T ∼ 1 eV,
or z = 1000 neutral H grows, but the process goes out of equilibrium and the full differential equation
Eq. (P.9.4) needs to be solve.

The equation governing the electron fraction going out of equilibrium is

dXe

dt
= 〈σv〉

{
(1−Xe)

(
meT

2π

)3/2

e−ε0/T −X2
enb

}
. (7.21)

Very similar to previous case. Difference is in the fact that electron mass matters and ne = np (explains
the square appearing) and we use ne + nH = nb. For the cross section we need

〈σv〉 = α(2) =
10α2

m2
e

(ε0
T

)1/2

ln
(ε0
T

)
. (7.22)

Draw energy levels of hydrogen.
54

Fig. 14 show the result of the numerical integration.

Decoupling Photons remain in kinetic eq. mainly due to Thomson scattering off electrons, σT '
0.7× 10−24 cm−2. They go out of equilibrium when this rate becomes comparable to the expansion rate
of the universe:

neσT = XenbσT ∼ H−1. (7.23)

Plugging in the numbers we find [Problem P.7.8]

neσT
H

= 113Xe

(
Ωbh

2

0.02

)(
0.15

Ωmh2

)1/2(
1 + z

1000

)3/2 [
1 +

1 + z

3600

0.15

Ωmh2

]
. (7.24)

54cfu: Why α(2)? Answer: 13.6 eV photon is reionizing. Formation through cascade.
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Figure 15:

So around z = 1100, the photons decouple when the electron fraction becomes of order 10−2. We see
from the numerical solution this indeed quickly happens around z = 1100, so photons decouple (CMB
emission) at the time of recombination. Note that even if for some spurious reason all hydrogen gets
reionized at some point, the photons will still decouple later, solely due to the expansion of the universe.
This is relevant since we actually think such a reionization event took place before z = 6. Solving the rate
equality for Xe = 1 tells us that photons decouple around z = 43 regardless. This is why only around 10
percent of CMB photons rescatter at this reionization event and the primordial data are not distorted
too much. The latest PLANCK results estimate reionization took place instantaneously at z = 8.8+1.7

−1.4.

7.3 Dark matter decoupling*

We investigate the WIMP scenario here. There are other scenario’s, such as decaying DM, which allow
one to search for DM masses in a wide range. The WIMP scenario however predicts GeV masses. Process:

X +X ↔ l + l, (7.25)

where X is the heavy DM particle and l is a light known particle that DM weakly interacts with. The
light particles are in complete chemical as well as kinetic eq. The equation governing the DM fraction

Y ≡ nX
T 3

, (7.26)

now becomes

dY

dt
= T 3〈σv〉

{
Y 2
EQ − Y 2

}
, (7.27)

with YEq ≡ n
(0)
X /T 3. At very high temperatures T � m, Dark Matter was relativistic and YEq = 1.

Note that when the process goes out of equilibrium, Y > YEQ, and Y decreases with time, so the sign
in this equation is correct. The T 3 basically comes from the fact that the relevant era here is radiation,
during which a ∼ T−1. Again we would need to know the temperature dependence and size of the cross
section when the temperature is of the order of the DM particle mass. (Comment on approximation for
and definition of λ?) Let us use x ≡ m/T as time, then we find the master equation

dY

dx
= − λ

x2

[
Y 2 − Y 2

Eq

]
, (7.28)
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with λ ≡ m3〈σv〉/H(m) . After looking at the numerical solution in Fig. 15, we can derive a rough
estimate of the freeze out abundance

dY

dx
∼ − λ

x2
Y 2 ⇒ Y∞ ∼

xf
λ
∼ 10

λ
. (7.29)

After freeze-out, the energy density falls off as 1/a3. However, just like for neutrinos, the photon
fluid temperature develops slightly differently due to the decoupling of all massive particles in the range
100 GeV till now. Therefore the DM energy density today is

ρX = mY∞T
3
0

(
a1T1

a0T0

)3

≈ mY∞T 3
0 /30. (7.30)

where (a1T1)/(a0T0) ∼ 1/30 arises from the fact the number of degrees of freedom around T ∼ GeV
was about 100, while it is a few today [Problem P.7.4] Then one can make prediction of ΩX : insensitive
to DM mass, since Y∞ ∼ xf ∼ 1/m: energy density does not depend on mass (apart from indirect
dependence of g? and the final ratio m/Tf ). WIMP mass high compared to SM particles. Then we can
estimate the relevant cross sections: a few orders of magnitude below estimates from supersymmetry.
Show plots.

47



Problems for lesson 7

P.7.1 Compute the luminosity-to-mass ratio that stars would need in order to synthesize the observed
25% of 4He during the last 14 billion years. Compare the result to the observed luminosity-to-mass
(baryonic) ratio observed in the universe, L/Mb . 0.05L☼/M☼, where the label ☼ refer to our
sun. [Hint: compute the energy per baryon from the binding energy of He. Divide by the age of
the universe and compare with L☼/M☼]

P.7.2 (From Dodelson Ch 3, Ex 2) Track the density of electron and positron during BBN. Since electro-
magnetic interactions are very strong during BBN, you can estimate this using µe− = µe+ = µγ = 0.
When does the energy density of ne fall to 1% of that of photons?

P.7.3 (From Dodelson Ch 3, Ex 6) Determine the baryon to photon ratio and show it is approximately
given by

ηb ≡
nb
nγ

= 5× 10−10

(
Ωbh

2

0.02

)
(7.31)

P.7.4 (from Dodelson Ch 3, Ex 11) As long as g∗ is constant, the conservation of total entropy s ∝ a−3

plus the relation s ∝ g∗T
3 (since entropy is dominated by relativistic species) implies T ∝ 1/a.

Compute aT at T = 10 GeV and today to quantify how much our universe deviates from the simple
inverse scaling relation, due to the change in g∗.

P.7.5 Exercises 7 (D3) on the baryon loading for recombination (don’t forget neutrinos)

P.7.6 Optional Exercise 12 (D3) on the density of baryon in the absence of baryogenesis

P.7.7 Optional Estimate the Deuterium abundance assuming chemical equilibrium Eq. (7.15). [Hint: use
the chemical equilibrium condition Eq. (6.35) and the binding energy of Deuterium mp+mn−mD '
2.2 MeV. ]

P.7.8 Derive equation Eq. (7.24)

Check for understanding of lesson 7

cfu.7.1 Why does BBN take place at T ∼ 0.1 MeV, which is about 20 times colder than the binding energy
or Deuterium, BD ∼ 2.2 MeV?

cfu.7.2 How much has the universe expanded since the end of inflation until today in term of N ≡ ln ai/a0?
Assume (as it is the case) that the scale of inflation is completely unknown and that we do not
want to spoil the successes of BBN. What is the lowest possible value of N allowed by observation?

cfu.7.3 How does BBN constrain the abundance of additional light degrees of freedom beyond the standard
model that interact only gravitationally, including e.g. a stochastic background of gravitational
waves?
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LESSON 8

Inflation: Motivations ref

In this section I discuss several problems with any cosmological model in which the universe is dominated
by radiation in the far past, all the until the Big Bang. I will refer to this class of models collectively
as “Hot Big Bang” model, where “hot” refers to the temperature of radiation. In particular, the root of
all problems will be that most55 of the expansion (ȧ > 0) of the universe e.g. in ΛCDM is decelerated
ä < 0. Decelerated expansion starts from the Big Bang (which in ΛCDM would happen during radiation
domination) at z → ∞ or a → 0 and lasts all the way until Dark Energy takes over “recently” around
z ' 0.5. First, I discuss old “background” problems, namely the horizon and curvature problems,
which can be stated already for the unperturbed FLRW universe that we have studied so far. These
problems were originally formulated in the 80’s and have not changed much since. Second, I discuss
new “perturbation” problems, namely scale invariance and phase-coherence problems, which have to do
with the large amount of new data we have collected in the past 30 years, especially from the Cosmic
Microwave Background (CMB). Finally, in preparation for the next lecture, I review the basic properties
of the maximally symmetric spacetime with positive cosmological constant, i.e. de Sitter spacetime

8.1 Old background problems

In the following I discuss two of the problems that were well known more than 40 years ago and pushed
many cosmologists to modify the early expansion history of our universe.

8.1.1 Curvature problem

The first background problem is that we do not observe any spatial curvature in our universe, despite the
fact that curvature dilutes more slowly than radiation and matter (and in fact than anything obeying
the SEC) and show grow with time relatively to them. Let us see this in formulae.

Current bounds tell us that [1]

ΩK ≡
(

K

a2H2

)
, Ω0 = 0.000± 0.005 . (8.1)

On the other hand, as we saw in Lecture 3, the most general homogeneous and isotropic space can have
spatial curvature, i.e. K 6= 0. From Eq. (8.1) we see that ΩK grows with time in an decelerated (ä < 0)
expanding (ȧ > 0) universe

Ω̇K = −ä2K

ȧ3
∝ −ä ∝ (ρ+ 3p) ∝ (1 + 3w) , (8.2)

where in the second step I used the acceleration equation (3.52) to show that in an expanding universe
(ȧ > 0) the Strong Energy Condition (SEC, see (5.16)) implies deceleration. Since at early times in
ΛCDM the universe is dominated by radiation, w = 1/3, we conclude that ΩK must have been even
smaller in the past56. In other words, extrapolating closer and closer to the Big Bang singularity at a→
and ρ→∞, we are forced to assume that the initial curvature was tiny, ΩK(ai)→ 0, or equivalently the
initial total density of the universe was extremely close to the critical one,

∑
i ρi → ρc (defined in 3.46).

There are only three logical possibilities:

1. The curvature of the universe is zero to begin with, and so it did not grow with time. While this
is a possibility in an exactly homogeneous universe, it is very unlikely be realized in our universe
because we observe non-vanishing perturbations on all scales. In particular, we measure deviations
from exact FLRW of order ∆(λ) ∼ 10−5 at wavelength λ of order the (physical) Hubble radius
λ ∼ 1/H. These perturbations are approximately scale invariant for shorter scales, λ < 1/H and
so it is natural to expect that there exists non-vanishing perturbation of a similar amplitude on
superHubble scales λ & 1/H. Such perturbations would induce a local spatial curvature of the
order

K =
∆(λ)

λ2
⇒ ΩK,0 =

∆(λ)

λ2H2
0

. 10−5 . (8.3)

55This is measured on a log scale, i.e. the duration of a cosmological phase is measured in terms of log
(
af/ai

)
, where

ai,f are the initial and final value of the scale factor.
56CFU: Estimate ΩK at Big Bang Nucleosynthesis.
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This argument strongly disfavours this possibility.

2. The initial conditions of the universe, as it emerged from some yet unknown non-perturbative theory
of quantum gravity57, were extremely fined tuned close to ΩK . In this scenario, the existence of
the universe as we know it is a very rare fluctuation, since any larger initial value of ΩK(ti) would
have grown to dominate the energy density of the universe and prevented the formation of galaxies
and therefore life as we know it. Also not a great option, in the opinion of many.

3. The early expansion history of our universe is modified to stop ΩK from growing as we move back
in time. From (8.2) we see that this requires either ä, ȧ < 0, i.e. an early phase of decelerated
contraction, or ä, ȧ > 0, i.e. an early phase of accelerated expansion. Since we know the current
universe is expanding (recall Hubble’s law), the first of these options requires to bounce i.e. to
transition from ȧ ∝ H < 0 to ȧ ∝ H > 0. Achieving the bounce in a controlled construct is still
an open problem and the many proposed models have a series of pathologies, as discussed in Box
(1). Therefore we focus an early phase of accelerated expansion, a.k.a. cosmological inflation, in
the rest of these notes.

Summarising, to avoid fine tuned initial conditions for the universe, we postulate the existence of a
primordial phase of accelerated expansion, ä, ȧ > 0, called inflation.

Box 8.1 Bouncing Universes To transition from a contracting phase, H < 0 to an expanding one, H > 0,

we need Ḣ = 0. . . .

8.1.2 Horizon problem

A second background problem of the Hot Big Bang model is that the homogeneity of the observed universe
on large scales is at odds with the decelerated expansion history. In fact, cosmological observations of
far away objects allow us to see regions in the past that are much larger than the particle horizon at the
time. Any mechanism attempting to explain the observed homogeneity in a causal way then necessarily
violates causality, leading the horizon problem.

To see this quantitatively, recall that the comoving distance (see Lecture 4) between two generic times
t1 and t2 with a1 = a(t1) < a(t2) = a2 is found to be

χ(a1, a2) ≡
∫ a2

a1

da

a2H
=

1

a1H1

2

3w + 1

[(
a2

a1

)(3w+1)/2

− 1

]
, (8.4)

where I assumed w 6= −1/3. Then, the distance of an object at redshift 1+z = a−1 from us at a = a0 = 1
is given by

χ(a, 1) ≡
∫ a0

a

d log a

aH
=

1

H0

2

3w + 1

[
1− a(3w+1)/2

]
, (8.5)

Imagine now to look out in the night sky in opposite directions and detect a pair of antipodal object,
each sending us radiation with the same58 redshift z. The relative comoving distance ∆χ between the
objects is just 2χ(a, 1). To simplify the algebra, let us neglect Dark Energy59 and so w > −1/3 (In
ΛCDM w ∈ {0, 1/3}) and assume a� 1. Then

∆χ(a, 1) ' 2× 1

H0

2

3w + 1
' O(1)

H0
, (8.6)

Recall that the redshift of these objects is 1 + z = 1/a, and so we conclude that high redshift objects
z � 1 are at a distance of order the Hubble radius today H−1

0 , almost independently of z.60 Since this is

57cfu: Strictly within GR, K is just a parameter, not a dynamical variable, and so there in no physical perturbation that
can make ΩK = 0 unstable. On the other hand, GR is most likely just a low-energy (subPlanckian) effective description of
some UV-complete theory of quantum gravity, and it is at least plausible that ΩK = 0 might be unstable within that larger,
yet unknown theory. Perhaps a more concrete example is bubble nulceation. instanton solutions are known in which a
new universe nucleates from a single point []. To respect the isometries of the system the new universe must have some
negative curvature. It is not known whether bubble nucleation and the ensuing ideas about the multiverse play a role in
the history of our own universe, and the discussion among experts continues.

58This assumption is clearly not necessary, but it allows us to avoid obfuscating ideas with indices.
59cfu: Check that this does not affect the argument at all.
60CFU: Using the Hubble law, show that the Hubble radius H−1 represents the physical distance beyond which comoving

object move away from us faster than the speed of light, namely ∂txphy > c = 1.
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a comoving distance between objects at fixed comoving position (i.e. far away object are in the Hubble
flow), it does not depend on time. Let us compare now this distance with the comoving particle horizon
in a hot Big Bang model, i.e. extrapolating radiation domination all the way to ai = 0. Recall that the
comoving particle horizon61 xp.h. is the comoving distance traveled by light since the beginning of time
τi, namely xp.h.(a) ≡ χ(ai, a). Notice that xp.h. depends on the integral in (8.5) over the whole history of
the universe, as opposed for example to the Hubble radius rH , which carries information about a single
instant of time. Recall also that for w > −1/3, or equivalently decelerated expansion ä < 0 (as it is
the case for radiant and dust), one can safely take ai → 0 and so xp.h.(a) equals the comoving Hubble
radius62 times an order one number63

xp.h.(a) =
1

aH

2

3w + 1
' 1

aH
O (1) ' rH(a)O (1) (decelerated) . (8.8)

Assuming decelerated expansion since the Big Bang, one finds

∆χ(a)

xp.h.(a)
' 2

aH

a0H0
' 2

(
1

a

)(3w+1)/2

� 1 (decelerated) . (8.9)

We just learnt that, in an ever decelerating universe, by observing far away objects (1/a = 1 + z � 1)
we are actually probing scales much larger than the particle horizon at that time. In practice, one
can reach a = (1 + z)−1 ∼ 0.1 with quasar and a ∼ z−1 ∼ 10−3 with Cosmic Microwave Background
(CMB) photons. In both cases, the observed physical properties (e.g. density of quasars, temperature
and polarization of the CMB) are the same in the opposite directions in average. We conclude that, in
the absence of accelerated expansion in our past, the mechanism responsible for this observed statistical
isotropy must violate causality. This is the particle horizon problem.

Conversely, for a phase of accelerated expansion, ä > 0 or w < −1/3 (such as during Dark Energy or
inflation) during a period a ∈ {ai, af}, the result is divergent as ai → 0:

xp.h.(af ) =
1

afHf

2

|3w + 1|

[(
af
ai

)|3w+1|/2

− 1

]
(8.10)

' 1

afHf

2

|3w + 1|

(
af
ai

)|3w+1|/2

� rH (accelerated) . (8.11)

In the extreme case w ' −1 (inflation), H is approximately constant and xp.h. asymptotes to the constant
value

xp.h. →
1

aiHi
(inflation) . (8.12)

Yet again, if we want to keep causality as a guiding principle, we must postulate a phase of accelerate
expansion ä, ȧ > 0 in the early universe64 (or a phase of decelerated contraction ä, ȧ < 0, with the
problems discussed in Box 1).

The horizon problem is well summarised by the plot in Fig. ??, which shows the time evolution of
xH and xp.h. for our universe. The ordinate represents time and is parameterized by the number of
e-foldings of expansion

dN ≡ Hdt = d log a ⇒ N = log a+ const . (8.14)

61This is simply related to the physical particle horizon dp.h. of (4.18) by axp.h.(a) ≡ dp.h.(a)
62Recall the comoving Hubble radius rH , which is defined as

rH ≡
1

aH
=

1

ȧ
=
a(3w+1)/2

H0
(single fluid) , (8.7)

where in the third equality I used the solution of the Friedmann equation for a single fluid with p = wρ and constant w.
As usual, the physical Hubble radius is simply rH,phys = arH = H−1. In the literature, rH is often referred to as Hubble
“horizon”. This is a misnomer since neither (aH)−1 nor its physical cousin H−1 represent a horizon in the usual sense of
GR. This nomenclature is widely spread and not harmful as long as one is aware of the subtleties. In these notes, I will
try hard to use the expressions“Hubble radius” or just “Hubble scale” instead of “Hubble horizon”.

63CFU: Show that if two different decelerated phase follow each other (radiant and matter domination in our universe),
the contribution from the latter dwarfs that of the former.

64CFU: Prove that, during decelerated expansion, ä < 0, perturbations “re-enter” the Hubble horizon, in the sense that

∂

∂t

(
λphy

H−1

)
< 0 , (8.13)

and viceversa.
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Figure 16: The plot shows the evolution of the comoving distance and the particle horizon in the phase
of early accelerated and late decelerated expansion. The large growth of the particle horizon during
inflation ensures that it is causally possible for any point in the current observable universe today to
exchange information with any other.

Figure 17: The plot shows the cross-correlation between CMB temperature T and E mode polarization
[1]. The anti -correlation around l ∼ 100 shows that superHubble perturbations at the time of last
scattering exist and they oscillate with coherent phases.

I have chosen the integration constant so that N = 0 separates early accelerated expansion, i.e. inflation,
from late deceleration, i.e. radiation and matter domination. The abscissa of the upper and lower panels
indicates physical and comoving scales respectively. The black lines represent Hubble radius, while ...
Diagonal, thin, red lines represent the physical wavelength λphy or comoving wavelength λ of some
(monocromatic) perturbation.

Box 8.2 Topological defects To be written

8.2 New perturbation problems

There are problems with the hot Bib Bang models that were not know 40 years ago because the data
was not good enough. I believe these “new” problems must play an important role in guiding us towards
a theory of the early universe.

8.2.1 Phase coherence problem

As we saw discussing the horizon problem, by observing distant objects at z � 1, we can see scales
much larger than the Hubble radius at the time. Our universe does have perturbations already on
these superHubble scales, i.e. with wavelength λ > 1/H. What’s really remarkable is that all these
superHubble perturbations we have observed appear to oscillate in exact synchronicity: they have all the
same phase! This is the phase coherence of cosmological perturbations, which give rise to the distribution
of galaxies in the universe today. In an ever decelerating universe, the Hubble radius and the particle
horizon are the same up to an unimportant order one factor. In this case then phase coherence is observed
even on scales much large than the particle horizon. This is a problem because on these super-horizon
scales no causal mechanism can be devised to “synchronized” the phases and so their coherence becomes
a very unlikely coincidence. This strongly suggests that there was a primordial phase, before the hot
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Big Bang, during which perturbations were produced and synchronized, rather than being generated at
“late” time, during the hot Big Bang. Let us see this more in detail.

In the CMB, for each direction n̂ of the sky (n̂ · n̂ = 1), we observe both temperature fluctuations
∆T (n̂) ≡ T (n̂)− T̄ around the average temperature T̄ , and a specific type of photon polarization called
E-mode and denoted by E(n̂). Because of the isotropy of the universe on large scales, it is convenient
to decompose fields on the sphere into spherical harmonics

X(n̂) =

∞∑
l=0

l∑
m=−l

aXlmYlm(n̂) ⇒ aXlm =

∫
d2n̂X(n̂)Y ∗lm(n̂) , (8.15)

where X = {∆T,E}. The isotropy of the universe tells us that different values of m correspond to
independent realisations of the universe. Using the ergodic theorem (see Lecture), we can then approxi-
mate quantum or stochastic averages, which we can compute from the theory side with angular averages,
which can be observed experimentally

〈Ô1Ô2 . . .〉 ∼
1

(2l + 1)

∑
m

aO1

lma
O2

lm . . . . (8.16)

theory ↔ observations (8.17)

For example, the correlation between ∆T and E can be obtained observationally from the observed
spherical harmonic coefficients

〈aTlmaElm〉 =
1

(2l + 1)

∑
m

aTlma
E
lm ≡ CTEl . (8.18)

It is customary to plot the quantity DETl ≡ l(l+1)CETl to make the figure more visible. This correlation
was measured most recently by the Planck satellite is shown in Fig. 17 as function of the multipole l.
The green circle draws your attention to the negative cross-correralation for l . 100.

Let us see how we can interpret this feature on the theory side. At cartoonish level, temperature fluc-
tuations are a measurement of dimensionless density fluctuations of the photon-electron-baryon plasma,
while the polarization is a measurement of the divergence of the plasma velocity v(x, t) at the spacetime
point of origin (x, t) of the CMB photon65.

∆T (x, t)

T̄
∼ δ ≡ ρ(x, t)− ρ̄(t)

ρ̄(t)
, E(x, t) ∼ ∂ivi(x, t) . (8.19)

One therefore finds

〈aTlmaElm〉 ∼ 〈δ ∂ivi〉 , (8.20)

We now need to specify the stochastic properties of δ and ∂iv
i, so that we can compute this average.

Consider the simplest possible toy model: a single, monocromatic (sound) wave

δ(x, t) = A cos (k · x) cos (ωt+ φ) , (8.21)

where ω is some fixed frequency, A is the amplitude and φ the phase. To mimic the real calculation
we should be doing in a quantum mechanical universe, we will assume that A and φ are some random
variables drawm from some distribution to be specified. Using the linearised continuity equation

δ̇ + ∂i
[
(1 + δ) vi

]
' δ̇ + ∂iv

i = 0 (fluid continuity eq.) , (8.22)

we can compute the velocity as well

∂iv
i(k, t) = −δ̇(x, t) = ωA cos (cos (ωt+ φ) sin (ωt+ φ)) sin (ωt+ φ) . (8.23)

Now we need to assume something about the probability distribution that governs A and φ. For this,
let us consider the comoving particle horizon at the time the CMB was emitted, the “last scattering” of
photon, at redshift zLS ' 1100. We know from (8.8) that in a decelerating universe this is approximately

65This is of course an extreme oversimplification. The different physical effects are discussed a bit more in detail in Box
??.
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the same as the comoving Hubble radius (aH)LS ' 4× 10−3 Mpc−1, corresponding to CMB multipoles
of approximately lLS ∼ τ0kLS ' 70. Therefore observations on l . lLS effectively measure perturbations
that were super-horizon at the time of emission. In addition, perturbations with lLS < l < 150 have
spent less than one Hubble time H−1 inside the Hubble radius. Since their typical frequency is also of
the order of H, they have evolved little from their initial value on superHubble scales. It seems then
reasonable to assume that the distribution of φ is not peaked around any specific value, since no causal
process could have chosen one over another. We will then tentatively assume a flat distribution for
φ ∈ {0, 2π}, i.e. incoherent, uncorrelated phases. Then the cross-correlation vanishes,

〈δ∂ivi〉 ∝ 〈AA〉〈cos (ωt+ φ) sin (ωt+ φ)〉 (8.24)

= 〈AA〉
∫ 2π

0

dφ cos (ωt+ φ) sin (ωt+ φ) = 0 , (8.25)

where non-random variables such as ω and cos(k · x) can be factored outside the average. Since this
correlator was our proxy for CTEl , which is instead observed to be negative and far from zero in Fig. 17,
we conclude that the initial superHubble phases were not random but rather coherent. In other words,
any two perturbations (with the some fixed wavenumbers |k| = |k′| corresponding to the same l) must
have been been synchronised at some early time before the Hot Big Bang.

One last piece of evidence as to how the synchronisation might have taken place is the negative sign
of the correlation. Gravitational collapse is often quoted to make “the rich richer and the poor poorer”.
This alludes to the fact that, when pressure is negligible, the leading (growing) mode of linearized
gravitational collapse consists of a flow away from underdense regions into overdense ones. In formulae

δ > 0 ⇒ δ̇ > 0 ⇒ ∂iv
i ∼ −δ̇ < 0 , (8.26)

and viceversa, where in the last step I used the (non-relativistic, linear) continuity equation66. This is
pictorially summarized in Fig. ??. Notice that, even if one started with some different initial conditions,
say with completely uncorrelated δ and ∂iv

i, always in the absence of pressure, this mode will eventually
dominate. Therefore, we would not be surprised to find anti-correlations on scales that have spend
some sizable amount of time evolving inside the Hubble radius in the absence of pressure. On the
other hand, the negative ET correlation on large scales, l < 150, tells us that the coherent superHubble
perturbations where already in the “growing” mode, even though there was not enough time for any
late-time dynamics to select this mode. Some sort of gravitational collapse mush have started already
in the very early universe.

8.2.2 Scale invariance problem*

The second an last problem with the perturbed universe is the surprising fact that the amplitude of
perturbations observed in our universe is approximately the same (within 4%) on all cosmological scales
(about 3 orders of magnitudes 10−4 − 10−1 Mpc−1). This remarkable feature of what we can now call
primordial perturbations goes under the name of (approximate) scale invariance67 . The mathematical
statement is that for every λ ∈ R and n ∈ N+, a field φ obeys scale invariance iff68

〈φ(x1)φ(x2) . . . φ(xn)〉 = 〈φ(λx1)φ(λx2) . . . φ(λx3)〉 , (8.28)

where all the fields are evaluated at the same time69. Scale invariance is most evident in the large scales
(l . 40) of the CMB temperature angular power spectrum, i.e. the average (or quantum correlator)

CTTl ≡ 1

2l + 1

∑
l

aTlm(aTlm)∗ = 〈aTlm(aTlm)∗〉 . (8.29)

66cfu: Check that the addition of the linear relativistic correction (e.g. in Newtonian gauge) does not alter the sign of
∂iv

i.
67cfu: Primordial perturbations are most easily discussed in terms of the curvature perturbation R, which are time

independent on superHubble scale. In this sense, the initial conditions can be though of as correlators in a (0 + 3)-
dimensional field theory. In this Euclidean interpretation correlators are fully conformal invariant

68CFU: Derive the equivalent statement for the correlators of the Fourier transform of the field φ(k). In particular, for
the two-point function in Fourier space, a.k.a. the power spectrum, you should find

〈φ(k)φ(k′)〉 = (2π)3δD
(
(k + k′

) C
k3

, (8.27)

for some constant C.
69Beware that this is Cosmology lingo. In other fields, such as Conformal Field Theory, sometimes the term scale

invariance is used to refer to the invariance under scaling of time as well as space in the correlators.

54



Figure 18:

From Fig. 18, we see that on large scales or small multipoles l � 70, where we can neglect the acoustic
oscillations of the photon-electron-baryon plasma (to be discussed in Lecture P.9.4), the angular power
spectrum Cl is well approximated by Dl = l (l + 1)Cl = const.

By using and abusing the flat sky approximation, 70 one finds

〈δT (n̂)δT (n̂′)〉 '
∫
dl2dl′2 ei(l·n+l′·n′) 〈δT (l)δT (l′)〉 (8.31)

'
∫
dl2dl′2 ei(l·n+l′·n′) 〈a(l)a(l′)〉 (8.32)

'
∫
dl2 eil·(n−n

′) Cl . (8.33)

Since Cl ∼ l−2, one recognises in the last line the solution of Poisson’s equation71 with a uniform constant
source. By appropriately regulating the divergence, the solution is a constant, i.e. independent of n−n′,
so the primordial correlation function of R is independent of scale (distance |n−n′| ) as advertised. An
analogous derivation goes through using the large scales of the matter power spectrum (see right panel
of Fig. P.9.4), but I leave this to the ambitious reader.

One would like to see scale invariance emerging from some (scaling) symmetry of the primordial
physics that generated perturbations. A very simple and elegant solution is found by assuming that,
during some primordial era, the background spacetime was well approximated by de Sitter space (dS) in
flat slicing (see Sec. 8.3)

ds2 =
−dτ2 + dxidxjδij

τ2H2
, (8.34)

for some constant Hubble parameter H.

70cfu: The flat sky approximation corresponds to the substitution

δT

T̄
(n̂) =

∑
lm

almYlm(n̂)→ Θ(n) =

∫
dl2 eil·n Θ(l) , (8.30)

where the coordinates of the sphere n̂ = {θ, φ} are approximated by euclidean 2d coordinates n = {n1, n2}. This is valid
as long as we consider only a small portion of the sphere (sky).

71cfu: The mathematically inclined reader can proceed to perform the integral directly by using polar coordinates and the
residue theorem. It is useful to include a small tilt Cl ∝ l−2+ε to regulate the result.
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Box 8.3 Invariance under translations and rotations Consider the most general homogeneous and
isotropic spaces, namely an FLRW space. If all other relevant background quantities are also homogeneous
and isotropic, then all primordial correlators must be left invariant by the generators of spatial translations
and rotations. In real space, these are

Pi : −∂i and Rij : − (xi∂j − xj∂i) , (8.35)

and act on the argument of each perturbation φ (assumed to be a scalar for simplicity) as in

n∑
a=1

∂

∂xa
〈φ(x1)φ(x2) . . . φ(xn)〉 !

= 0 , (8.36)

n∑
a=1

(
xia

∂

∂xja
− xja

∂

∂xia

)
〈φ(x1)φ(x2) . . . φ(xn)〉 !

= 0 . (8.37)

The general solution of the first constraint is that the correlator only depends on n−1 variables, for example
xa − x1 for a = 2, . . . n. The generators acting on Fourier space correlators are

Pi : −ki and Rij : − (ki∂j − kj∂i) , (8.38)

and therefore

n∑
a=1

ka〈φ(k1)φ(k2) . . . φ(kn)〉 !
= 0 , (8.39)

n∑
a=1

(
kia

∂

∂kja
− kja

∂

∂kia

)
〈φ(k1)φ(k2) . . . φ(kn)〉 !

= 0 . (8.40)

The first condition is satisfy if the correlator is proportional to Dirac delta function, while the second requires

it to depend only on the rotational invariant contractions ka · kb EP: What about εijk? .

One of the ten isometries of this maximally symmetric spacetime is the dilation symmetry72

τ → λτ , x→ λx . (8.41)

If all other non-gravitation background quantities depend very weakly on time, then Eq. (8.41) is an
approximate symmetry of the full theory and primordial correlators must be invariant under it. Follow-
ing [?], it is then immediate to see scale invariance arise. In Fourier space, under the transformation
Eq. (8.41), a field scales as φ(k, τ)→ φ(k/λ, λτ) so the power spectrum must take the form in Eq. (8.27)
up to an arbitrary function F (kτ), which must be zero if the field under consideration is constant, as it
is the case for R on superHubble scales.

It is useful to prove this simple result using a more cumbersome but also more powerful formalism.
It is easiest work again in Fourier space and introduce the following notation

〈φ(k1)φ(k2) . . . φ(kn)〉 = (2π)
3
δD

(
n∑
b=1

kb

)
〈φ(k1)φ(k2) . . . φ(kn)〉′ . (8.42)

Then the generator of dilations in real space73 is

D : −τ∂τ − xi∂i (real space) , (8.44)

acting on each field in the correlator. When acting on primed Fourier-space correlators 〈. . .〉′, the
generator becomes74

D : −3 +

n∑
a=1

(3− τa∂τa) + ka
∂

∂ka
(Fourier space) . (8.45)

72CFU: Prove this assertion using the definition Eq. (3.1)
73CFU: Check that indeed ξµ = {−τ,−xi} is a Killing vector for the dS metric in Eq. (8.41), namely it solves

Lξgµν = − (∇µξµ −∇µξµ) = 0 . (8.43)

where L is the Lie derivative. Convince yourself that this equation is equivalent to Eq. (3.1).
74CFU: If you desire reproducing this, keep in mind that the −3 in front comes from the Dirac delta I factored out in

Eq. (8.42), the +3 comes from the Fourier transform in each coordinate and I used the identity k · ∂k = k∂k.
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The desired scale invariance is obtained by requiring that D leaves correlators of R invariant. Since
theseR is conserved on superHubble scales, we can drop the time derivatives and find[

3(n− 1) +

n∑
a=1

ka
∂

∂ka

]
〈R(k1)R(k2) . . .R(kn)〉′ !

= 0 . (8.46)

For the power spectrum75 PR(k) ≡ 〈R(k)R(k′)〉′, this gives[
3 + k

∂

∂k
+ k′

∂

∂k′

]
PR(k)

!
= 0 ⇒ PR(k) =

C

k3
, (8.47)

for some constant C. Summarizing, the observed scale invariance of the primordial power spectrum
follows directly from the dilation isometry of de Sitter space.

8.3 de Sitter spacetime

De Sitter spacetime (dS) is one of three maximally symmetric spacetimes, together with Anti-de Sitter
(AdS) and Minkowski space. Recall from Lecture 3, that maximally symmetric spaces in D spacetime
dimensions have D(D+ 1)/2 isometries76. Therefore, in our (3 + 1)-dimensional world, dS has 10 Killing
vectors. It arises as a solution of Einstein equations in the presence of a cosmological constant

Rµν −
1

2
gµνR+ gµνΛ = 0 . (8.48)

The trace of this expression (for d > 2) tells us R = Λ2d/(d−2) and therefore dS is an Einstein manifold,
namely the Ricci tensor is proportional to the metric77

Rµν =
2Λ

d− 2
gµν . (8.50)

dS in D-dimensions can be defined as a codimension one, hyperbolic surface in (D + 1)-dimensional
Minkowski space, defined by78

−
(
X0
)2

+

d∑
a=1

XaXa = L2 , with Λ =
(d− 2) (d− 1)

2L2
, (8.51)

where L is the dS radius. The dS hyperboloid is invariant under (D + 1)-dimensional Lorentz transfor-
mations (but not translations), namely the group79 SO(D, 1). While the (D+ 1) Minkowski coordinates
of Eq. (8.51) are useful because they transform linearly under this SO(D, 1) isometry group, they are
clearly redundant. There are three common ways to define D non-redundant coordinates (see [45] for
other useful coordinates), which differ in how dS is sliced into constant time hypersurfaces. All three
slicings can be though of as intersecting the dS hyperboloid in Eq. (8.51) with a one-parameter family
of D-dimensional hyperplanes:

• If the vector perpendicular to the planes is time-like with respect to the (D+1) metric, namely the
planes are more “horizontal” than 45 degrees, their intersection with the hyperboloid has a finite
volume. Without lost of generality, one can choose the planes to be horizontal (the circles on the
lefthand side of Fig. 19). This is called closed slicing of dS because the constant time hypersurfaces
of dS are hyper-spheres, with positive spatial curvature and finite volume.

• Analogously, a family of “vertical” planes provides the open slicing, with constant-time hypersur-
faces of negative spatial curvature and infinite volume.

75CFU: Using Eq. (8.46) derive the scaling of any n-point function.
76cfu: This is easily remembered as the dimension of the d-dimensional Poincaré group R(d−1,1) × SO(d − 1, 1) or as

that of the (d+ 1)-dimensional Lorentz group SO(d, 1).
77Actually, the full Riemann tensor is also given in terms of the metric

Rµνρσ =
R

12
(gµρgνσ − gµσgνρ) . (8.49)

78cfu: Notice that the sign of +L2 is such that the hyperboloid lies outside the light cone (Xa = 0 yields no solution)
79cfu: How many boost and how many rotations?
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Figure 19: The three time slicing of dS space (from [35]). From left to right they are closed, open and
flat slicing.

• The case in between, namely 45 degrees planes, has flat constant-time hypersurfaces of infinite
volume. This slicing is commonly used for inflation, which dilutes curvature and makes it negligibly
small. The flat-slicing metric in normal and conformal time is80

ds2 = −dt2 + e2Htdx2 =
−dτ2 + dx2

τ2H2
, (8.52)

related to the Minkowski coordinates by (here i = 1, . . . , d− 1)

X0 = L sinh(Lt)− 1

2

xixi
L

e−Lt , Xi = xie−Lt , Xd = L cosh(Lt)− 1

2

xixi
L

e−Lt . (8.53)

Finally, it is useful to consider combination of dS coordinates that are invariant under dS isome-
tries. The simplest one requires two points and can be thought of as an invariant distance. Using the
(redundant) (D + 1) Minkowski coordinates, this distance is obviously

|X −X ′|2 = (X −X ′)µ ηµν (X −X ′)ν , (µ = 0, 1, . . . , d) . (8.54)

Since the two points X and X ′ lie on the dS hyperboloid, |X|2 = |X ′|2 = L2, so the only part of this
distance that actually depends on their position is XµηµνX

′ν . It is therefore convenient to define the
invariant distance as

D(X;X ′) ≡ −X0X ′0 +XiX ′i (i = 1, . . . , d) , (8.55)

D(t, xi; t′, x′i) ≡ cosh (Ht−Ht′)− |x− x
′|2

2H2
e−H(t+t′) , (8.56)

D(τ, xi; τ ′, x′i) ≡ τ2 + τ ′2 − |x− x′|2

2ττ ′
, (8.57)

for the different sets of coordinates.

Box 8.4 Penrose diagrams . . .

LESSON 9

Single-field slow-roll inflation ref

The problems encountered in the previous section suggested we need a prolonged phase of accelerated
expansion (curvature, horizon and phase coherence problem), with a background close to dS, which we

80CFU: Derive the relation between the Hubble parameter H and the dS radius L.
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will call inflation [21]. In this section, I move beyond these kinematical considerations and discuss the
dynamics of inflation.

As we saw in the previous section around Eq. (8.48), a cosmological constant Λ supports a dS solution.
However, as the name suggest, the cosmological constant does not change with time and the dS phase
would be eternal, and could not be connected to the universe as we know it. There is an easy fix: let
us introduce a clock φ that “turns off” Λ after some time so that the dS phase can indeed stop when
desired. I will call this clock-dependent cosmological non-constant V (φ), to avoid confusing it with the
cosmological constant Λ. We can now proceed in two different directions:

1. We can simply specify some function φ(t) and obtain the desired inflationary background. Naively,
this breaks explicitly the diffeomorphism invariance upon which GR is build and seems to introduce
a time-dependent function by hand. On a second thought, a gauge symmetry81 can never be really
broken (as the Stückelberg trick teaches) and the choice of time in GR is arbitrary anyways. This
approach, made popular by [7], is very effective (pun intended) for model-independent discussion,
to highlight the role of symmetries and finally to make connection with observations. On the other
hand, it requires a higher level of abstraction than the alternative.

2. We can insist that φ(t) is the solution of some diff-invariant theory. The simplest choice, as we
will see shortly, is a single, canonical scalar field minimally coupled to gravity. An advantage
of this point of view is that it provides an important stepping stone to understand the origin of
inflation within a UV-complete theory of gravity, such as string theory. This second approach is
more intuitive and pedagogical, and so more appropriate for this introductory course.

9.1 Prolonged quasi-de Sitter expansion

The horizon, curvature and phase coherence problems taught us that we should postulate the existence
of an early phase of accelerated expansion ä, ȧ > 0, which we call inflation. Let us reformulate this as

ä

a
= Ḣ +H2 = H2 (1− ε) > 0 , (9.1)

where I have introduced the first Hubble slow-roll parameter

ε ≡ − Ḣ

H2
, (9.2)

which is a dimensionless measure of the time variation of H. Using (3.53) it is easy to see that for
a single-fluid universe ε = 3(1 + w)/2. From (9.1), we recognise that acceleration requires ε < 1 (or
w < −1/3, as we knew from (3.52)). Also, as long as the matter sector satisfies the Null Energy Condition
(see Box 2), ε > 0 (or w > −1). Observations of both of the CMB and of Large Scale Structures
(LSS) probe cosmological scales over roughly three orders of magnitudes82and observe approximate
scale invariance up to percent corrections (see the scale invariance problem P.9.4). A detailed study of
cosmological perturbations (see Lecture P.9.4) shows that scale invariance follows very generically if the
spacetime background during inflation is close to de Sitter spacetime, i.e. H is approximately constant.
Quantitatively, we will therefore be interested in 0 < ε� 1 (or w ∼ −1) during inflation.

Let us estimate how long inflation has to last to address the problems discussed in the previous
section. A necessary condition to solve the horizon problem is that the particle horizon is larger than
the observable universe today. In terms of comoving quantities

xp.h. > rH =
1

a0H0
(horizon problem) . (9.3)

It is convenient to multiply both sides by the Hubble radius at the end of inflation. This is the time when
the early acceleration expansion stops and the decelerated hot Big Bang starts. We will call this time

81cfu: GR can indeed be thought of as a gauge symmetry, with spacetime varying Lorentz transformations.
82cfu: On the large-scale end, both CMB and LSS probe subHubble scales (although LSS surveys up to date have still

a rather small volume and so give weaker constraints than CMB on the largest scales). On the short-scale end, CMB
anisotropies are cut-off by the thickness of the last scattering surface and diffusion (a.k.a. Silk-) damping to scales of about
.2× Mpc−1. LSS in principle extend to shorter scales, but our lack of understanding of non-linear and baryonic physics
limits our current ability to extract cosmological information from scales smaller than about 0.2× Mpc−1. To currently
both CMB and LSS probe a similar window of scales {10−4 − 10−1} Mpc−1. There is hope to enlarge this “CMB/LSS
window” towards smaller scales with the CMB spectrum and 21 cm.
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reheating since this is when the energy is transferred from the inflationary sector to Standard Model
particles. If we indicate the comoving Hubble radius by rHreh

= (arehHreh)−1 and use (8.12) for the
particle horizon during a quasi de Sitter expansion, we find

arehHreh

aiHi
>
arehHreh

a0H0
, (9.4)

where ai indicates the beginning of inflation. There is great uncertainty about the time of reheating.
We are going to parameterize this uncertainty using the temperature of the plasma of Standard Model
particle at that time

3M2
PlH

2
reh = g∗

π2

30
T 4

reh , (9.5)

where g∗ ∼ 100, but the precise value will not matter given the much large uncertainty in Treh. Also,
since the temperature of photon has approximately evolve at T ∼ 1/a until now83, we can estimated
areh ∼ TCMB,0/Treh. Then the right-hand side of (9.4) is

arehHreh

a0H0
' 4× 1021

(
Treh

1010GeV

)
. (9.6)

The actual reheating temperature may dramatically differ from the reference temperature 1010GeV, and
a reasonable range of uncertainty is Treh ∈ {1 − 1015} GeV. It is convenient to re-express the duration
of inflation on the left-hand side of (9.4) in terms of efoldings of expansion, defined by

dN ≡ da

a
= Hdt ⇒ N2 −N1 = log

(
a2

a1

)
. (9.7)

Taking the log of (9.4) we finally find

∆Ninfl > 50 + log

(
Treh

1010GeV

)
, (9.8)

and so ∆Ninfl ∈ {25− 60}. I’ll often use ∆Ninfl ∼ 50 for numerical estimates.

We observe approximate scale invariance for about 7 of the total ∆Ninfl efoldings of expansion, but
it is natural to assume that ε� 1 remains to be valid during most of inflation. To quantify this, let us
re-write the definition of ε and generalise it to the second and higher order Hubble slow-roll parameters84

ε ≡ − Ḣ

H2
= −∂N lnH , (9.9)

η ≡ ε̇

Hε
= ∂N ln(ε) , (9.10)

ξn≥3 ≡ ∂N ln ξn−1 , (9.11)

with ξ2 ≡ η and where I used dN = Hdt from (9.7). Then, the Taylor expansion of ε around some
reference time N∗ is

ε(N)− ε(N∗) =
∂ε

∂N

∣∣∣∣
N∗

(N −N∗) +
∂2ε

∂N2

∣∣∣∣
N∗

(N −N∗)2

2
+O

(
∂3
N ε
)

(9.12)

= ε

[
η (N −N∗) + ηξ3

(N −N∗)2

2
+O

(
η3, η2ξ3, ηξ3ξ4, ε

)]
, (9.13)

where all the slow-roll parameters are evaluated at N∗. The requirement that ε does change much during
inflation is then η∆Ninfl, ξnη∆Ninfl < 1 and so

ε, η, ξn � 1 (slow-roll inflation) . (9.14)

Note that, under the simplistic assumptions that the Taylor above expansion approximates ε(N) during
most of inflation and that η ∼ ξn, one can think of η−1 as the approximate duration of inflation in
efoldings. ask how such e

83This neglects the changes in g∗ around mass thresholds, but these again lead to small changes in the final result.
84cfu: Notice that all slow-roll parameters are dimensionless.
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9.2 Single field inflation

In the previous subsection, we have characterised the expansion history during inflation. We now want
to ask how such an expansion history can emerge dynamically, from solving the equations of motion.
To try to mimic a cosmological constant, we were led to consider the action of scalar field coupled to
gravity. A minimally coupled85, canonical (see Box P.9.3) scalar field is the simplest option

S = −
∫ √

−g 1

2

[
M2

PlR+ ∂µφ∂
µφ+ 2V (φ)

]
, (9.15)

where the potential V (φ) is an arbitrary function. The energy-momentum tensor (2.26) is then86

Tµν = ∂µφ∂νφ− gµν
[

1

2
∂µφ∂

µφ+ V (φ)

]
. (9.16)

Box 9.1 Non-canonical scalar fields A canonical scalar field has a simple quadratic kinetic term with one
spacetime derivative per field, as in (9.15). We easily imagine more general but still covariant possibilities.
The most generic one with at most one derivative per field is a generic function P (X,φ) of φ and the kinetic
term X ≡ −∂µφ∂µφ/2. The homogeneous equations of motion are then

φ̈ (PX + 2XPXX) + 3Hφ̇PX + (2XPXφ − Pφ) = 0 , (9.17)

while the Friedmann and acceleration equation read

3M2
PH

2 = 2XPX − P , −M2
P Ḣ = XPX . (9.18)

These theories can give rise to slow-roll inflation and sometime go under the name of k-inflation [19] or

simply “P-of-X ” theories. An interesting subclass of these theories are those with an exact “shift symmetry”

φ → φ + c resulting in P = P (X), without any φ dependence. In flat space these always admit a solution

X = const (see Prob. P.9.3) and describe the low-energy effective theory of superfluids [44]. When minimally

coupled to gravity, there are no slow-roll solutions [16] but if there is a point Xs where ∂XP (X)|Xs = 0,

then there is an exact de Sitter solution (see Prob. P.9.3).

This takes the same form as the energy-momentum tensor of a perfect fluid (see Eq. (2.34)), under the
following identifications87

ρ = −1

2
∂µφ∂

µφ+ V (φ) , (9.19)

p = −1

2
∂µφ∂

µφ− V (φ) , (9.20)

uµ =
∂µφ√
−∂µφ∂µφ

. (9.21)

Let us focus on the homogeneous background dynamics. It is useful to specify the fluid parameterisation
to the case φ = φ(t),

ρ =
1

2
φ̇2 + V (φ) , p =

1

2
φ̇2 − V (φ) , uµ = {1,0} . (9.22)

The equation of motion for φ following from Eq. (9.15) are simply 2φ = 0 with the d’Alambert operator
defined in Eq. (2.6). It needs to be supplemented with the Friedman equation, Eq. (??), to give a closed
system of equations. Since we will be interested in accelerated expansion, which dilutes spatial curvature,
I will set K = 0 in the following. For homogeneous configurations one finds88

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (background) (9.23)

85Minimal coupling mean that we should write down a Lorentz invariant Lagrangian and then simply couple it to gravity
with the substitutions d4x → d4x

√
−g and ∂µ → ∇µ. This does not capture non-minimal couplings such as for example

Rf(φ) or Rµνρσ∂µφ∂νφ∂ρφ∂σφ
86CFU: Compute this from the definition of Tµν
87cfu: Notice that the perfect fluid ansatz, Eq. (2.34), is more general that a single scalar field. For example, how many

functions of space (initial conditions) does one need to fully specify a solution φ(x, t)? and how many to specify δ(x, t)
and u(x, t)? Consider carefully the order of time derivatives in the equations of motion of the two systems. As I discuss
in Sec. P.9.4, a scalar field maps bijectively to a perfect superfluid rather than a fluid.

88cfu: Recall that, as consequence of diffeomorphism invariance, Einstein’s equations generically imply the equations of
motion of matter (see e.g. Sec. 19.6 of [6]). In practice, the Bianchi identities imply the conservation of Tµν . Check
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While the first and last terms are very familiar from Newton’s law, the middle term89 represents a
genuinely relativistic effect. This is sometimes called Hubble friction and always opposes changes in φ,
slowing down the field. The system is closed using the Friedmann equation

3H2M2
Pl =

1

2
φ̇2 + V (φ) (background) . (9.24)

For almost any potential these EOMs cannot be solved exactly90. On the other hand, as will see shortly,
general approximate solutions are available in the regime most relevant for observations (quasi dS).
Before proceeding, notice that, by taking the time derivative of Eq. (9.24) and using Eq. (9.23), one finds
the very useful exact relation

−ḢM2
Pl =

1

2
φ̇2 . (9.25)

Box 9.2 The Hamilton-Jacobi formalism and exact solutions Following [28] and references therein,
one can divide both sides of Eq. (9.25) by φ̇ to find

2H,φM
2
Pl = φ̇ , (9.26)

where the time dependence of H has been traded for its φ dependence, H(t) = H(t(φ)). Then the Friedmann
equationEq. (9.23) can be re-written as

3H2M2
Pl = V + 2 (H,φ)2M2

Pl . (9.27)

One can then choose some function H(φ) and find the potential V form this algebraic equation. The first

order differential equation Eq. (9.26) can be solved to find φ(t) and hence H(t).

9.3 Potential slow-roll parameters

The Hubble slow-roll parameters in (9.9)=(9.11) express in a simple and compact way the necessary
requirements of an extended inflationary phase. On the other hand, their dependence on the properties
of the scalar field that drives the expansion remains implicit: given some V (φ), one needs to solve the full
dynamics to find H(t). We will now study an approximation scheme to evaluated them more directly.

In the hope to find some easily calculable slow-roll parameters, one might define the potential slow-roll
parameters

εV ≡
M2

Pl

2

(
V ′

V

)2

, ηV ≡M2
Pl

V ′′

V
, ξ3V ≡M4

Pl

V ′V ′′′

V 2
, (9.28)

and the higher orders will not be relevant for us91. The relation between these and the Hubble parameter
can be derived by repetitively differentiating the Friedmann equation (9.24) (and using (9.25) and the
definition of ε)

V = (3− ε)H2M2
Pl (9.29)

with respect to time and using the chain rule V̇ = V ′φ̇. For example, assuming φ̇ > 0 one finds the exact
expressions (see App. ?? for more relations)

εV =
ε(η − 2ε+ 6)2

4(ε− 3)2
, ηV =

η(η + 2ξ3 + 6)− 2(5η + 12)ε+ 8ε2

4(ε− 3)
. (9.30)

these statements for a homogeneous scalar field (you can use Eq. (??)). What happens when φ̇ = 0? Convince yourself
that gravity would erroneously think that φ(x, t) = C is a solution for any C, even if φ = C is not a minimum of the
potential. Ponder then on the quote from [34] (Sec. 20.6):

Electromagnetism has the motto, “I count all the electric charge that’s here”. All that
bears no charge escapes its gaze. “I weigh all that’s here” is the motto of spacetime
curvature. No physical entity escapes this surveillance.”

Apparently, cosmological constants do escape its surveillance.
89cfu: Convince yourself that, unless the numerical coefficient is exactly 3, namely the number of space dimensions, this

EOM cannot follow directly from a Lagrangian.
90cfu: The Hamilton-Jacobi formalism can be used to find the right scalar potential V (φ) that gives rise to some

(restricted) class of exact solutions as discussed in Box 2.
91cfu: Higher order potential slow-roll parameters can be defined by asking that lower order ones do not change much

in one efolding (or one Hubble time).
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Naively it looks like things got even more complicated. But as long as all the Hubble slow-roll parameter
appearing here are small, we can find the approximate and much simpler relations

ε ' εV , and η ' 4εV − 2ηV . (9.31)

Notice from their definitions in Eq. (9.28), that the potential slow-roll parameter only depend on V (φ).
This is in general not sufficient to know the solution of the EOM92, Eq. (9.23), since one still has to
impose two initial conditions (φi and φ̇i). So what these parameters tell you is that there exist some
choice of initial conditions that support and extended phase of inflation, but they do not tell you whether
a given solution of the EOM does it or not. In practice, for many classes of potential the inflationary
trajectory is a local attractor in phase space, so after some time, the approximation in Eq. (9.31) becomes
very good. Beware though that this statement does not hold in general and in principle one needs to
consider each case individually.

9.4 Slow-roll inflation

The assumption that slow-roll parameters are small allows to find approximate solutions to the EOM.
We will see that the definitions in Eq. (9.28) emerge quite naturally.

For ease of calculation and further convenience, it is useful to introduce a shorter name for the
canonical kinetic term

X ≡ −1

2
gµν∂µφ∂ν

background−→ X = +
1

2
φ̇2 . (9.32)

Then the relevant background equations become

ρ = X + V , p = X − V , and Ẋ + 6HX + V ′φ̇ = 0 , (9.33)

where the last equation is just the continuity equation, which is equivalent to the EOM Eq. (9.23)
multiplied by φ̇ (see also footnote 88). Making use of Eq. (9.25), the condition ε � 1 tells us that the
Friedmann equation, Eq. (9.24), is dominated by the potential term V and we can neglect the kinetic
term X,

ε = − Ḣ

H2
=

X

H2
=

3X

V +X
� 1 ⇒ X � V , (9.34)

and so

3M2
PlH

2 ' V . (9.35)

It is then straightforward to derive the exact relation

η =
ε̇

εH
= 2ε+

Ẋ

XH
. (9.36)

Since ε, η � 1 we learn that (assuming φ̇ 6= 0)

Ẋ � XH ⇒ 2φ̈� φ̇H , (9.37)

and so we can neglect the acceleration term φ̈ in Eq. (9.23) (or Ẋ in Eq. (9.33))

3Hφ̇ ' −V ′ . (9.38)

There is a bit more to this equation than meets the eye:

• The second order EOM has become a first order one, which can be straightforwardly integrated
(at least formally)

• The righthand side depends only on the shape of the potential, while the lefthand side really knows
about the specific solution. This equation is therefore the bridge between Hubble and potential
slow-roll parameters93.

92cfu: Take from example a constant potential V (φ) = V̄ , so that εV = ηV = 0. The set up some initial φ̇i 6= 0.
Convince yourself that nevertheless ε and η can be very large, depending on φ̇i and V .

93CFU: Use Eq. (9.38) and Eq. (9.25) to show that ε ' εV .
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• Third, in this approximate equation, φ̇ is fixed once we specify φ. We will see that this remarkable
simplification is somewhat an accident of having a single field and does not generalize to two or
more fields.

Combining the two approximate equations of motion (9.38) and (9.35) one can reduce the problem to
solving the following non-linear 1st order ordinary differential equation

φ̇ ∼ −V
′MPl√
3V

⇒ t =

∫
dφ

√
3V

V ′MPl
+ const . (9.39)

The resulting φ(t) is the slow-roll solution, which is a good approximation to the exact solution when
ε, η � 1. Mountains of papers have been written about the infinitely many possible choices of V (φ) (see
e.g. [29] for an older and [33] for a recent review). I will not review any of them here, but the reader is
advised to choose some toy model and work it out in full details, e.g. along the lines of Prob. P.9.1 and
Prob. P.9.2.

9.5 End of inflation and reheating

By definition, inflation ends at te when ε(te) ≥ 1 and the expansion starts to decelerate. This time can
be easily computed if one has an exact solution, whether analytical of numerical. But it is also possible
to estimate te in the slow-roll approximation, by the condition ε(te) ∼ εV (φe) = 1, where φe = φ(te).
In many simple models this happens when we approach a minimum of the potential at φmin.. It is
also possible thought that the potential stops being slow-roll steep and the inflation fast rolls down for
some time before settling in a minimum. For consistency with the late universe and the rate of the
current acceleration of the universe, one typically assumes that the energy at the minimum matches the
cosmological constant today, i.e. V (φmin) ∼ (10−3eV)4. This is such a tiny energy as compared with
the typical scale of inflation, (9.5), that we might as well assume V (φmin) = 0 for all practical purposes
and εV generically94 blows up as we approach it.

Given the above picture, we can estimate the number of efoldings of inflation via the chain rule

N =

∫
dN =

∫
Hdt =

∫
H

φ̇
dφ =

∫
dφ

MPl

√
2ε
'
∫

dφ

MPl

√
2εV

=

∫
dφ

V

M2
PlV

′ , (9.40)

where the integration should run from φi at the beginning of inflation to φe at the end where ε(te) '
εV (φe) ' 1. To help our intuition, let us make the very rough approximation that

√
2εV does not vary

much for most of the duration of inflation. Then (9.40) gives the relation

∆φ

MPl
∼ ∆N

MPlV
′

V
. (9.41)

This tells us that, to achieve a given number of efoldings, say, ∆N ∼ 50, flat potentials need a small
field excursion ∆φ = φe − φi, while steep potential need a large field excursion. It customary to di-
vide inflationary potentials into small field or large field models, depending on wether ∆φ < MPl or
∆φ > MPl, respectively. Then (9.41) tells us that potentials that vary on a parametrically subPlanckian
scale Λφ � MPl, defined as ΛφV

′ ∼ V , lead to superPlanckian field excursions ∆φ � MPl and vice
versa. There is an ongoing very active and controversial debate as to whether these large field models
are allowed in a consistent quantum theory of gravity.

As the inflaton oscillated around the minimum of the potential, with ever decreasing amplitude due
to the Hubble friction term in (9.23), quantum processes become relevant and the inflaton decays into a
hot soup of standard model particles.

Problems for lesson 9

P.9.1 Consider the simple “chaotic inflation” potential

V (φ) = λpφ
p , (9.42)

for p > 0.

94If V is analytic around the minimum, which we can take to be at φ = 0 without loss of generality, we can approximate it
with its Taylor expansion and then εV ∼M2

Pln
2/(2φ2), where n ∈ 2×N+ indicate the first non-vanishing Taylor coefficient

at the minimum, usually n = 2.
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(a) What is the mass dimension of λp

(b) When are the potential slow-roll parameters εV , ηV small?

(c) At what φe does acceleration end (recall ä > 0→ ε < 1)?

(d) Focus on p = 2 and find N(φ) in the slow-roll approximation. What φi gives 50 efoldings?

P.9.2 Consider a canonically normalized scalar field φ with the potential

V = V0

[
1 + cos

(
φ

f

)]
, (9.43)

with V0 setting the overall vertical scale and the axion decay constant f setting the horizontal scale.

(a) What symmetries does this theory enjoy?

(b) Compute εV and ηV for this potential, as function of φ. Notice how they depend on the overall
scale V0

(c) Estimate φCMB corresponding to 60 efoldings before the end of inflation

(d) In what regime of the parameters f and V0 does this potential become indistinguishable,
during the last 60 efoldings of inflation, from the quadratic potential m2φ2/2?

P.9.3 Derive the equations of motion or the P (X,φ) theories.

(a) Derive the equations of motion (9.17) by varying the action δS/δφ.

(b) Compute the energy-momentum tensor for homogeneous configurations of the field φ = φ(t).

(c) From Tµν , compute the energy density ρ and the pressure p.

(d) Derive the Friedmann and acceleration equations (9.18) by using the general expression (3.45)
and (3.52), and the expression for ρ and p in terms of P (X,φ) and its derivatives you computed
previously.

(e) Specify to P = P (X) and prove that a stationary point Xs where ∂XP (X)|Xs = 0 provides a
solution the EoM. This is called the ghost condensate [3]. What spacetime solution emerges?

P.9.4 Around (9.8) we compute the minimum number of efoldings to solve the horizon problem. Compute
the lower bound on ∆Ninf obtained by requiring to solve the curvature problem, assuming that at
the beginning of inflation Ωk . O(1) (but you are allowed to neglect K in the Friedmann equation).

Check for understanding of lesson 9

cfu.9.1 Consider the dynamics of a scalar field with a slow-roll flat potential εV , ηV � 1, starting with
arbitrary initial conditions. Under what conditions on the initial conditions {φi, φ̇i} are the Hubble
slow-roll parameters small?

cfu.9.2 Was the overall scale of inflation, i.e. V , constrained in some way by the slow-roll requirement?
How do the potential slow-roll parameters change under rescaling of V ?

cfu.9.3
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LESSON 10

Cosmological Perturbation Theory

In this lesson, we sail off the land of calm and homogenous seas into the perilous and stormy spacetime
oceans. More specifically we assume95

gµν(x, t) = ḡµν(t) + hµν(x, t) , (10.2)

Tµν(x, t) = T̄µν(t) + δTµν(x, t) , (10.3)

with |hµν | � |ḡµν |, |δTµν | � |T̄µν | and barred quantities representing the homogenous and isotropic
exact background solutions we discussed in the previous lessons. In particular, ḡµν is the flat FLRW
metric in (3.37), T̄µν was given in Eq. (3.40) and ūµ = {1, 0, 0, 0}. We work perturbatively in the small
perturbations |hµν | and |δTµν |.

10.1 Linearised equations of motion

In these notes we mostly focus on the leading non-trivial order, namely linear order in hµν and δTµν .
We want to expand all equations of motions to linear order in perturbations. We start from the two
(dependent) set of equations96

Rµν −
1

2
gµνR = −8πGTµν , Tµν;ν = 0 . (10.4)

The trace reversed EE’s are also often useful

Rµν = −8πG

[
Tµν −

1

2
gµνT

]
, T ≡ Tµµ . (10.5)

Linearising these equations is lengthy but straightforward. I leave it as an exercise. Nowadays the
calculation can be done in less than a second using publicly available codes such as the mathematica
package xPand [38] (which uses xAct). I discuss this in Prob. P.10.1. Computing δRµν and δTµν and
substituting it into

δRµν = −8πG

[
δTµν −

1

2
ḡµνδT

λ
λ −

1

2
hµν T̄

λ
λ

]
, (10.6)

gives the scary looking expressions
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M2
Pl

(
δTij −

a2

2
δijδT

λ
λ

)
= −1

2
∂ijh00 − δij

[(
2ȧ2 + aä

)
h00 +

1

2
aȧḣ00

]
+

(
H2 + 3

ä

a

)
hij

+
1

2a2

(
∂2
l hij − ∂l(ihj)l + ∂ijhll

)
+
H

2

(
ḣij − δij ḣll

)
− 1

2
ḧij +Hδij (Hhii + ∂lh0l) +

1

2

(
∂(iḣj)0 +H∂(ihj)0

)
,

(10.7)

− 1

M2
Pl

δTj0 = H∂jh00 +
1

2a2

(
∂2
l hj0 − ∂jlhl0

)
+

(
H2 + 2

ä

a

)
hj0

+
1

2
∂t

[
1

a2
(∂jhkk − ∂khjk)

]
,

(10.8)

− 1

M2
Pl

(
δT00 +

1

2
δTλλ

)
=

1

2a2
∂2
l h00 +

3

2
Hḣ00 −

1

a2
∂iḣi0 + 3

(
H2 +

ä

a

)
h00

+
1

2a2

[
ḧii − 2Hḣii + 2

(
H2 − ä

a

)
hii

]
,

(10.9)

95When working with perturbations, one has to decide about the meaning of covariant and contravariant indices (up and
down). I use Weinberg’s conventions that δT ...... represents the perturbation of T ...... , as opposed to the perturbations of say
T...... raised by the background metric. For example

hµν = δ (gµν) = gµν − ḡµν = −ḡµρḡνσhρσ , (10.1)

where I used that the expansion of the inverse of a matrix M + δM is δ(M−1) = −M−1δMM−1 + . . . . Here hµν 6=
ḡµρḡνσhρσ . Another example is δu0 = δu0 in (10.29).

96Notice that the different sign in the Einstein Equation depends on convention. I follow Weinberg’s notation in this
section (different from Dodelson’s).
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where ∂2
l ≡ ∂lδlk∂k and (see footnote 95)

δTµν = ḡµλ
[
δTλν − hλρT̄ ρν

]
. (10.10)

Notice that, as implied by the Bianchi identities 97 , the four metric perturbations hµ0 appear with at
most one time derivative in these equations and are therefore non-dynamical. It is useful to discuss this
quantitatively in terms how many initial conditions we need to and can specify to find a solution. , and
are therefore subject to constraints. The linearised conservation of the energy momentum tensor takes
the following form

δ (∇µTµν ) = ∂µδT
µ
ν + Γ̄µµλδT

λ
ν − Γ̄λµνδT

µ
λ + δΓµµλT̄

λ
ν − δΓλµνδT

µ
λ = 0 . (10.12)

Using (10.10), we can write this in terms of hµν as

∂0δT
0
j + ∂iδT

i
j + 2HδT 0

j − a2HδT j0 − (ρ̄+ p̄)

(
1

2
∂jh00 −Hhj0

)
= 0 (10.13)

∂0δT
0
0 + ∂iδT

i
0 + 3HδT 0

0 −HδT ii +
ρ̄+ p̄

a2

(
Hhii −

1

2
ḣii

)
= 0 . (10.14)

Three observations make the task of solving the above equations more manageable:

• Fourier decomposition: because we expand around a homogeneous background, different Fourier
modes decouple from each other at linear order.

• Scalar-Vector-Tensor (SVT) decomposition: because we work with general covariant theories and
we expand around an isotropic background, objects that transform differently under spatial rota-
tions do not mix with each other at linear order.

• Gauge transformations: since we are dealing with GR, a covariant formulation of gravity, there is
some redundancy in our description due to the arbitrary choice of coordinates. One can always
perform a coordinate transformation (which we will soon interpret as a gauge transformation on
the fields) to conveniently simplify the equations.

Notice that the first two simplifications crucially rely on working at linear order, while the last survives
at all orders in perturbation theory. Let us discuss these three points in detail.

10.2 Fourier decomposition

We would like to parameterise the perturbations hµν and δTµν in such a way as to simplify the calculation
as much as possible. Experience teaches us that it is wise to choose variables that transform nicely under
the symmetry of the system98. While the theories we are working with are fully covariant, i.e. invariant
in form under changes of coordinates, the background we have chosen is only invariant under rotations
and translations. By rotating and translating a perturbation that solves the equations of motion, we
obtain another, in general different perturbation that also solves them. This is a linear operation and
so, in more mathematical terms, the space of solutions provides a linear representation of the isometry
group SO(3)×R3 = ISO(3), called the Euclidean group. The building blocks of these representations are
irreducible representations (irreps). In this context, an irrep is a family of solutions that can all be trans-
formed into each other by some element of ISO(3). Intuitively99 these can be thought of as cosmological

97To see this recall that the Bianchi identities (2.22) (which are not equations of motion, but indeed identities) say
∇µGµν with Gµν the Einstein tensor on the left-hand side of EE’s. Expanding the covariant derivative we find

∂tG
tβ = −∂kGkβ − ΓααγG

βγ − ΓβαγG
αγ . (10.11)

Since the right-hand side has at most second derivatives of the metric (in Gµν), we conclude that Gtβ has at most first
derivatives. It takes a bit more work and the ADM formalism to specify which components of the metric appear with at
most one derivative. At linear order, by inspection we see that it is hµ0.

98cfu: Think about some physical system you have studied and how its symmetries were used to simplify the problem.
For example, translational invariance in solid state physics, isotropy in the hydrogen atom or Poincaré invariance in
scattering amplitudes.

99This discussion follows closely the analogous introduction of particles in relativistic QFT. In relativistic theories,
particles are the irreducible representation of the Poincaré group. These are first classified by their mass m2 = −pµpµ.
Then, for massive particles m > 0, they are further classified by their spin, i.e. the eigenvalues of the total spin operator
J2 and the spin in one of the three spatial directions Jz . Massless particles are instead further classified by their helicity,
i.e. the eigenvalue of their angular momentum in their direction of motion piJi.

67



“particles”, the building blocks of more general cosmological perturbations. The construction of irreps of
the non-compact groupr ISO(3) is easily performed using the method of “induced representations”. The
idea is to find a representation for a subgroup, in this case the little group, and extend that representation
to the whole group. A summary of the derivation in Sec. 10.9 is that perturbations are classified by the
norm of their three moment k2 and by their helicities, 0,±1,±2, . . . . Let us now see how the isometries
restrict the possible interaction among these perturbations.

We claim that, because of the homogeneity of the background, different Fourier modes decouple
from each other at linear order. To see why this is the case, consider the general form of the linearized
equations of motion ∑

A

OA PertA(x, t) = 0 , (10.15)

where A enumerates all perturbations PertA = {hµν , δTµν} and OA are linear differential operators
acting on the perturbations (e.g. H(t)∂t or a−2∂i∂i). Because of general covariance, these operators
must be constructed out of covariant spacetime derivates ∇µ and other tensorial objects evaluated on
the background

OA = OA(∇µ, ḡµν , T̄µν) = OA(∂µ, ∂
#
t ḡµν(t), ∂#

t T̄µν(t)) . (10.16)

Since the background is homogeneous, OA cannot depend on space x, but it does in general depend on
time through ḡµν(t) and δ̄Tµν(t). As we take the Fourier transform of (10.15), we find∫

d3xe−ixk
∑
A

OA PertA(x, t) =
∑
A

ÕA PertA(k, t) = 0 , (10.17)

with (see Eq. (1.6) for my Fourier conventions)

PertA(~k, t) =

∫
d3x eixk PertA(x, t) (10.18)

and ÕA = OA(∂t, ∂i → iki, ∂
#
t ḡµν(t), ∂#

t T̄µν(t)) (10.19)

where all spatial derivative have been integrated by part to act on e−ixk hence giving ik. While
Eq. (10.15) was a partial differential equation, Eq. (10.17) is now a infinite set of ordinary differen-
tial equations, one for each k. Since in each equation only one k appears in the arguments of PertA,
different Fourier modes with ~k 6= ~k′, decouple from each other. In other words, at linear order one can
always look for solutions with a single, monochromatic perturbation with wavevector k in an otherwise
unperturbed background universe. Any linear combination of these solutions is also a solution (linear
superposition). Finally, notice that k is the Fourier conjugate of x, and so it is a comoving momentum.
Physical momentum is instead kphy = k/a, in the same way that xphy = xa.

10.3 Scalar-Vector-Tensor decomposition

Let us know take advantage of the isotropy of the background. Because we work with general covari-
ant theories and we expand around an isotropic background, different helicities, i.e. perturbations that
transform differently under spatial rotations do not mix with each other at linear order. Let us see why.

Rotations are changes of coordinates of the form

{x0, xi} → {x′0, x′i
′
} = {x0, R i′

i xi} ⇒ Jµ
′

µ ≡
∂x′µ

′

∂xµ
=

(
1

Ri
′

i

)
(10.20)

and the Jacobian has only non-trivial spacial components. Let us use this to compute how different
objects transform. Consider the simplest objects, namely diff-scalars and their perturbations. 100 Some
examples are

δρ(x, t) ≡ ρ(x, t)− ρ̄(t) and δp(x, t) ≡ p(x, t)− p̄(t) , (10.21)

100Some nomenclature. The terms scalar, vectors and tensor may refer to the transformation of an object either under
general change of coordinates, a.k.a. diffeomorphisms (diffs), or only under spatial rotations. To be crystal clear, in this
section I’ll denote these two concepts differently. I define diff-scalars, diff-vectors and diff-tensors objects that transform
covariantly under general changes of coordinates, as in (2.4). Analogously, rotations-scalars, rotation-vectors and rotation-
tensors will be objects that transform appropriately under rotation, as we will see in the following. In the rest of the
lectures instead the difference will hopefully be clear from the context
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For general changes of coordinates xµ → x′µ(x) any diff-scalar s = {ρ, p, . . . } transforms as s′(x′, t′) =
s(x, t). Since rotations are a special case of diffs, we find that perturbations to a diff-scalar are rotation-
scalars, i.e. transform as

δs(x, t)→ δs′(x′, t) ≡ s′(x′, t)− s̄(t) = s(x, t)− s̄(t) = δs(x, t) . (10.22)

Perturbations to diff-vectors (such as uµ) and symmetric two-tensors (such as gµν) are more complicated.
From their transformation properties under general diffeomorphism, (2.4), it is immediate to see that
when all indices are in the time direction, these objects transform as rotation-scalars, e.g.

δu′0(x′, t) ≡ u′0(x′, t)− ū′0(t) = J0
µu

µ(x, t)− ū0(t) = u0(x, t)− ū0(t) = δu0(x, t) ,

h′00(x′, t) = g′00(x′, t)− ḡ′00(t) = Jµ0 J
ν
0 gµν(x, t)− ḡ00(t) = g00(x, t)− ḡ00(t) = h00(x, t) .

Notice that I only use active transformation for which only perturbations transform, but not the back-
ground, e.g. ū′0(t) = u0(t). When the indices are in the spatial directions we can apply the Hodge
decomposition, which is a generalization of Helmholtz decomposition, which is familiar from the study
of electromagnetism. For example, any spatial vector vi such as δui = ui can be decomposed as101

vi = ωi + ∂iθ , (10.23)

where ωi is divergence-free or transverse, namely ∂iωi = 0. To find θ, we take the gradient of this
equation

∂ivi = ∇2θ . (10.24)

On a topologically trivial space such as R3 and assuming that ui vanishes at spatial infinity, this Poisson
equation can be uniquely solved for θ. Then ωi is simply given by substituting this solution into (10.23).

The Helmholtz decomposition is covariant under rotation if we assume that θ transform as a rotation-
scalar (see P.10.2) and ωi as a rotation-vector, i.e.

ω′i′(x
′, t) = R i

i′ ωi(x, t) . (10.25)

Exactly the same Helmholz decomposition can be used for any two tensor with one spatial and one time
index such as h0i. The last object we will need to decompose is the spatial part of a two-tensor, for
example hij . It is straightforward to see that the trace hii (taken with the background metric) is a rotation-
scalar. For the remaining 5 components102 we can use a generalisation of Helmholz decomposition to any
tensor, which breaks up hij into two rotation-scalars, one transverse vector and a transverse-traceless
spatial two-tensor (vii = ∂ivij = 0). The explicit decomposition is given below.

Let us introduce some notation to conveniently deal with the SVT decomposition. The metric per-
turbation hµν is a symmetric 4× 4 matrix with 10 independent entries. They can be SVT-decomposed
as follows103

h00 = −E ,
hi0 = a [∂iF +Gi] , (10.26)

hij = a2
[
δijA+ ∂ijB + ∂(iCj) +Dij

]
,

with ∂iGi = ∂iCi = Dii = ∂iDij = 0. In P.10.3 you will explicitly perform this decomposition. We have
four scalars E, A, B and F , two transverse vectors Ci and Gi (with two “polarizations” each) and one
transverse traceless tensor Dij (also two polarizations), adding up to 10, as expected. Analogously, the
energy-momentum tensor can be SVT-decomposed as follows (see P.10.3):

δT00 = −ρ̄h00 + δρ ,

δTi0 = p̄h0i − (ρ̄+ p̄)
[
∂iδu+ δuVi

]
, (10.27)

δTij = p̄hij + a2
[
δijδp+ ∂ijπ

S
ij + ∂(iπ

V
j) + πTij

]
,

101Helmholtz theorems states that any smooth and rapidly decreasing at infinity scalar field can be uniquely decomposed
into a curl-free vector and a divergence-free vector. In R3, these vectors can be written as the gradient of a scalar potential
potential (e.g. the electro-static potential) and the curl of a vector potential (e.g. the vector potential generating a magnetic
field). In cosmology it is customary to work with the scalar potential (e.g. θ in Eq. (10.23)) and the divergence-free vector
(e.g. ωi in Eq. (10.23)).
102 3(3-1)/2 components for a general symmetric tensor minus 1 for the trace.
103The factors of a in these definitions are of course arbitrary and chosen for future convenience.
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with four scalars (δρ, δp, δu and πS), two transverse vectors (πV and δuV ) and one transverse traceless
tensor (πT ), adding up again to 10. Notice that we SVT decomposed the fluid velocity with a lower
index

uµ = {−1 + δu0, ∂iδu+ δuVi } , (10.28)

and that, to maintain the normalization of uµ, one needs at linear order

uµu
µ = −1 ⇒ δu0 = δu0 = h00/2 . (10.29)

The π’s are called anisotropic inertia and are a property of a given fluid that needs to be specified to
close the system of equations. For example, all anisotropic inertia vanishes for a perfect fluid (as can be
seen from just counting degrees of freedom in Eq. (2.34)).

Now the essential point: rotation-scalars, rotation-vectors (or transverse vectors) and rotation-tensors
(or transverse-traceless tensors) decouple from each other at linear order104. The reason is conceptually
analogous to the decoupling of different Fourier modes. Intuitively, it is impossible to construct a non-
vanishing scalar from a transverse vector ωi or a transverse-traceless tensor vij using only derivatives and
background quantities. In fact, the only object that one can use to contract the spatial indices are the
background spatial metric, proportional to δij , and spatial derivatives ∂i. Any contraction of all indices
is identically zero because of the transverse and traceless conditions. A similar argument shows that all
other potential mixing terms must vanish.

10.4 Gauge transformations

Since we are dealing with GR, one can always perform a coordinate transformation to simplify the
equations. Consider the coordinate transformation

xµ → x′µ = xµ + εµ(x) , (10.30)

for arbitrary εµ(x). We will be interested in transformations that make some perturbations vanish
identically, so we will restrict ourselves to cases in which εµ is a regular and decreasing function at
spatial infinity and it is of first order in perturbations ε ∼ O(hµν , δTµν). While we know that tensors
such as gµν and Tµν transform as in Eq. (2.4), we have now the additional complication that every tensor
is split between a background and a perturbation, as e.g. in Eq. (10.2). We have therefore an ambiguity
on how the background and the perturbation transform separately, while keeping the covariance of the
full tensor. A convenient an very common way to solve this ambiguity is to work with so called gauge
transformations, in which case the background is kept fixed and all the transformations of the full tensor
are attributed to the perturbations. More in detail, the rules are the following

1. Transform the full tensor covariantly, as in Eq. (2.4), but keep the background unchanged

2. Drop the prime from the new coordinates

3. Attribute all the transformation to the perturbations

In equations, for example for a scalar field s(x) = s̄+ δs, one find the transformation ∆δs to be

∆δs ≡ s′(x)− s(x) = s(x− ε)− s(x) = −εµ∂µs(x) +O(ε2) , (10.31)

where I used

s′(x′) = s(x) ⇒ s′(x) = s(x− ε) . (10.32)

Since we will always work with a homogeneous background, s̄(x) = s̄(t), this simplifies to

∆δs = −ε0 ˙̄s+O(ε2, εhµν , εδTµν) . (10.33)

The same rules apply to vectors and (symmetric two-)tensors, for which one finds (see P.10.4)

∆δV µ ≡ V ′µ(x)− V µ(x) = −εν∂νV µ + V ν∂νε
µ = −εν∇νV µ + V ν∇νεµ , (10.34)

∆hµν(x) ≡ g′µν(x)− gµν(x) = −∇µεν −∇νεµ . (10.35)

104Decoupling means that in solving the equations of motion for one of the three types of perturbations, I can set the
others to zero. Any combination of the three sets of solutions thus obtained is also a solution.
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The attentive reader will have noticed that the gauge transformations look very similar to Lie derivatives
(see Box 1). This is in fact the case. The transformation of the perturbations to any tensor are given by
minus its Lie derivative in the direction ε. At linear order this simplifies to

∆δTensor = −LεTensor = −LεTensor +O(ε2) , (10.36)

where in the last equality I used the fact that ε is already first order in perturbation. In particular,
notice that all covariant derivatives in (10.34) should be computed from the background metric. So far
we have discussed gauge transformation for the full diffeomorphism tensors, but we would like to know
how each SVT component transforms. Using Eq. (10.36) and the SVT decomposition Eq. (10.26) and
Eq. (10.27), we find the following linear gauge transformations of the SVT components for the metric105

∆A = 2Hε0 , ∆B = − 2

a2
εS ,

∆Ci = − 1

a2
εVi , ∆Dij = 0 , ∆E = 2ε̇0 , (10.37)

∆F =
1

a

(
−ε0 − ε̇S + 2HεS

)
, ∆Gi =

1

a

(
−ε̇Vi + 2HεVi

)
,

and for the energy-momentum tensor

∆δρ = ˙̄ρε0 , ∆δp = ˙̄pε0 ∆δu = −ε0 , (10.38)

∆πS = ∆πVi = ∆πTij = ∆δuVi = 0 ,

where we have used the SVT-decomposed gauge parameter

εµ = {ε0, ∂iεS + εiV } , (10.39)

with ∂iε
i
V = 0. Notice that the transformations of δρ and δp can be easily derived from Eq. (10.33), and

those of δuµ from Eq. (10.34).

10.5 Vector perturbations

Because we work only with diffeomorphism invariant theories, all equations of motions can be written
as the vanishing of some tensor. For example, we are interested in the EE’s, i.e. M2

PlGµν + Tµν = 0. We
can then apply the same SVT decomposition to this 2-index tensor and extract 4 scalar, two transverse-
vector and one transverse-traceless-tensor equations. We will start with the vector and tensor equations
since they are the simpest and study the scalars last.

Vectors106 decay with time and so do not play much of a role in cosmology107. To see this, let us
take advantage of the SVT decomposition and set all scalar and tensor perturbations to zero. We are
left with

h00 = 0 δT00 = 0 ,

h0i = aGi , δT0i = p̄aGi − (ρ̄+ p̄) δuVi (10.40)

hij = a2∂(iCj) , δTij = a2
(
p̄∂(iCj) + ∂(iπ

V
j)

)
,

Plugging this into the linearized momentum conservation equation T iµ;µ = 0, (10.13), one finds

∂2πVj + ∂0

[
(ρ̄+ p̄) δuVj

]
+ 3H (ρ̄+ p̄) δuVj = 0 . (10.41)

All ingredients of the standard cosmological model (baryons, Dark matter, dark energy, photons, neu-
trinos) behave as a perfect fluid to good approximation and so we neglect the anisotropic inertia108. We
then find

(ρ̄+ p̄) δuVj ' a−3 . (10.42)

105Notice that ε0 = −ε0.
106From now on I simply write “vectors” and “tensors” and omit specifying “transverse” and “transverse traceless” every

time.
107An exception are the speculated primordial magnetic fields (see [] for a review).
108Neutrinos do have some anisotropic inertia as they become non-relativistic, and this results in a 10% correction to the

spectrum of tensor modes [49]
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Using (10.40) into the linearized 0i part of the trace-reversed EE’s, (10.8), one finds

8πG (ρ̄+ p̄) δuVj a =
1

2
∂2
(
Gj − aĊj

)
, (10.43)

and so Gi− Ċ decays as a−2 by virtue of (10.42). Using Eq. (10.37), one can prove that this combination
is indeed the only gauge-invariant vector mode (see Prob. P.10.5).

10.6 Tensor perturbations

From the space-space (ij) components of the EE’s one can extract the transverse traceless part following
P.10.3. But given that we proved that SVT components decouple, it is much easier to set all scalars and
vectors to zero and keep only Dij in the linearised EE’s. Substituting

h0µ = 0 = δT0µ , hij = a2Dij and δTij = a2
(
p̄Dij + πTij

)
(10.44)

into (10.7) and recalling that Dii = ∂iDij = 0, one finds (see cfu.10.5)

D̈ij + 3HḊij −
∂2

a2
Dij = 8πGπTij . (10.45)

The tensor anisotropic inertia πT is small for all components of the universe. The largest contributors
are neutrinos and their πT eventually leads to a 20% reduction in the amplitude of Dij (see [49] or Sec
6.6 of [51] for a detailed calculation). After neglecting πT , (10.45) takes the same form as the equation
of motion for a massless scalar field in FLRW (see P.10.6). The solution is best understood in Fourier
space

D̈ij + 3HḊij +
k2

a2
Dij = 0 . (10.46)

Polarisation tensors Because of the isotropy of the background, each of the two independent com-
ponents of Dij has the same time dependence. To make this more explicit, let us separate the index
structure from the time dependence:

Dij(t,k) =
∑
s=+,×

εsij(k)Ds(t, k) . (10.47)

Here ε+,×ij (k) are the “plus” and “cross” polarisation tensors, which satisfy the transverse-traceless con-

ditions kiεsij(k) = εsii(k) = 0 and the normalisation εsijε
s′

ji = 2δss′ . Since all these conditions are invariant
under rotations, to find εsij explicitly, we can simply choose some convenient k and then rotate the result.

If we take k̂ = k/k = ẑ a simple solution to all the above conditions is

ε+ij(ẑ) =

 1 0 0
0 −1 0
0 0 0

 and ε×ij(ẑ) =

 0 1 0
1 0 0
0 0 0

 (10.48)

This is not the only choice since any rotation around ẑ gives a different choice of polarization. More
generally, given any wavevector k, we define û and v̂ to form an orthonormal basis with k̂ = k/k. Then

ε+ij(k) = ûiûj − v̂iv̂j and ε×ij(k) = v̂iûj + v̂j ûi . (10.49)

Time evolution We are not interested in solving

D̈s(t, k) + 3HḊs(t, k) +
k2

a2
Ds(t, k) = 0 . (10.50)

In practical applications, one usually specifies the expansion history a(t), and then solves this equation
numerically to the required precision. Here we will instead look at some approximate solutions valid
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for any cosmology (any a(t)). First, consider the superHubble regime in which the wavelength of the
perturbation is much larger than the Hubble radius k/a� H. Then we can drop the spatial derivatives109

k � aH : D̈s + 3HḊs ' 0 ⇒ Ḋs ∝ a−3 , (10.51)

and so the two independent superHubble solutions are

Ds(t, k � aH) =
[
As(k) +Bs(k)a3(w−1)/2

]
, (10.52)

The time dependent solution is decaying for w < 1, which is always satisfied in standard cosmologies,
and so it can usually be neglected after some efoldings of superHubble evolution. In the opposite regime
of subHubble perturbations k � aH, we can solve (10.45) in the WKB approximation. By making

an Ansatz Ds = X(t) exp
[
ik
∫ t
dt′/a(t′)

]
and the solving the resulting differential equation for X(t) to

leading order in k � aH, one finds X ∝ a−1. So, the two independent subHubble solutions are

Ds(t, k) =
Ãs cos(kτ(t)) + B̃s sin(kτ(t))

a
(k � aH) , (10.53)

with τ ≡
∫ t
dt′/a(t′). These solutions describe the oscillations of gravitational waves as they propagate,

but we also notice that the amplitudes decay as a−1 due to the expansion of the universe. Notice that,
if parity is broken, the two polarizations plus and cross could have different initial conditions.

10.7 Scalar perturbations

It is time to tackle the most complicated and most relevant modes for cosmology: scalar perturbations.
Let us start with a simple counting, assuming for simplicity that we have only one fluid110. We have
four independent scalar equations (00, ii, longitudinal 0i, and longitudinal ij parts of the Einstein
Equations111) for 8 variables (four in the metric, A,B,E and F , and four in δT , namely δρ, δp, δu
and πS). The pressure p and anisotropic stresses πS,V,T depend on the property of the fluid under
consideration and need to be specified by some constitutive equations, such as the equation of state
p = p(ρ, . . . ). For example, for a relativistic perfect fluid p = ρ/3, while for a non-relativistic one
0 =' p� ρ. Also, for a perfect fluid, which is a good approximation in most cosmological applications,
the anisotropic inertia vanish πS,V,T = 0. This determines112 two scalars, namely πS and δp. We are still
left with 6 variables for 4 equation, but we have not used the two scalar gauge transformations ε0 and
εS . One can now proceed in two ways. One can work only with gauge-invariant combinations, namely
4 independent linear combinations of the 6 scalars that are invariant under the gauge transformations
(10.37) and (10.38). We will encounter two such variable later, (10.84). Alternatively, one can fix the
gauge and work with a particular set of coordinates. This second approach is somewhat more convenient
and will be followed in this course.

The idea of fixing the gauge is to choose coordinates that correspond to the constant hypersurfaces of
some of the perturbations, so that those perturbations appear constant. In other words, we can choose
ε0 and εS in Eq. (10.39) in such a way to cancel whatever profile of some of the scalar perturbations,
using the transformation properties in (10.37). Since there are 6 scalar perturbations but only two scalar
gauge parameters, there are clearly many different possible choices (in fact infinitely many). Notice that
the gauge parameters εµ need to vanish at spatial infinity in the same way as the physical perturbations
they need to cancel. In this sense these are small gauge transformations. See below Eq. (10.87) for a
discussion of large gauge transformations. Let us see the most commonly used gauge choices

Newtonian gauge Using (10.37), we see that{
εS = a2B/2

ε0 = aF − a2

2 Ḃ
⇒

{
B′ = B + ∆B = B −B = 0
F ′ = F + ∆F = F − F = 0 .

(10.54)

109This is sometimes called the “separate universe” approximation because after dropping the spatial derivatives every
superHubble patch of the universe evolves completely independently from the others. One can also keep subleading order
in spatial derivatives.
110In practice there will be several different components of the universe. Some components might be interacting with

each other such as electron, baryons and photons before recombination, while some components might be decoupled,
such as neutrinos at T �MeV. The energy momentum tensor is separately conserved for each set of mutually interacting
components.
111Notice that the equations for the conservation of the energy-momentum tensor are not independent
112Given a simple equation of state p = p(ρ), one finds δp = (∂p/∂ρ) δρ.
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In a more compact form, we will simply write the gauge condition

B = 0 F = 0 . (10.55)

Notice that these two conditions determine ε0 and εS completely, so small scalar gauge transformations
are fully fixed by these requirements. The scalar part of the metric has then only diagonal perturbations,
namely in h00 and hii. Traditionally these perturbations are called Φ and Ψ. So, with the identification
E = 2Φ and A = −2Ψ, we find 113

ds2 = − (1 + 2Φ) dt2 + a2 (1− 2Ψ) dxiδijdx
j . (10.56)

This is the perturbed metric in Newtonian gauge 114 . Since in this gauge B = F = 0, the Einstein and
Energy-momentum equations simplify considerably. Because of the SVT decomposition and are gauge
choice, we can find the scalar equations by substituting

h00 = −2Φ , δT00 = 2ρ̄Φ + δρ ,

h0i = 0 , δT0i = − (ρ̄+ p̄) ∂iδu , (10.58)

hij = −a2δij2Ψ , δTij = a2∂ijπ
S + δija

2 (δp− p̄2Ψ) ,

into the linearised Einstein equations. In particular, we have four equations corresponding to the trace
of (10.7) (contracting with δij), the traceless part of (10.7), (10.8) and (10.9), which take the form

− 1

2M2
Pl

[
δρ− δp−∇2πS

]
= HΦ̇ +

(
4H2 + 2

ä

a

)
Φ− ∇

2Ψ

a2
+ Ψ̈ + 6HΨ̇ , (10.59)

− a2

M2
Pl

∂i∂jπ
S = ∂i∂j (Φ−Ψ) , (10.60)

1

2M2
Pl

(ρ̄+ p̄) ∂iδu = −H∂iΦ− ∂iΨ̇ , (10.61)

1

2M2
Pl

(
δρ+ 3δp+∇2πS

)
=
∇2Φ

a2
+ 3HΦ̇ + 3Ψ̈ + 6HΨ̇ + 6

ä

a
Φ . (10.62)

The two scalar energy-momentum conservation equations (T 0µ
;µ = 0 and the longitudinal part of T iµ;µ = 0)

are similarly obtained (see P.10.10)

δp+∇2πS + ∂0 [(ρ̄+ p̄) δu] + 3H (ρ̄+ p̄) δu+ (ρ̄+ p̄) Φ = 0 , (10.63)

δρ̇+ 3H (δρ+ δp) +∇2

[
(ρ̄+ p̄)

a2
δu+HπS

]
− 3 (ρ̄+ p̄) Ψ̇ = 0 . (10.64)

A few comments are in order. First, notice also that although the energy-momentum conservation
equations are not independent from the EE’s, they contain one less derivative and therefore they are
often more convenient to use. Second, the scalar constraint equation in this gauge is manifest in (10.60),
which contains no time derivatives. In the absence of anisotropic stresses, a good approximation to our
real universe, this equation is solved115 by

Φ = Ψ (no anisotropic inertia) . (10.65)

From the discussion around (2.24), we know that Φ corresponds to the non-relativistic Newtonian po-
tential appearing in Newton’s law of motion ẍi = −∂iΦ. Because of these two facts, both Ψ and Φ are
often called Newtonian potentials.

113Be aware that this is possibly the least universal convention in physics. You might find references where the definitions
of Φ and Ψ as well as their signs are exchanged. Here I follow Weinberg’s notation, which differ from Dodelson’s notation
by ΦW = ΨD and ΨW = −ΦD.
114Be aware of the existence of the closely related conformal Newtonian gauge, defined such that

ds2 = −a2
[
(1 + 2Φ) dτ2 + (1− 2Ψ) dxiδijdx

j
]
. (10.57)

115Notice that it is crucial to demand that Φ and Φ vanish at infinity for this solution to be unique.
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Synchronous gauge* An alternative choice of gauge makes the temporal scalar part of the metric
h0µ vanish identically, namely one chooses ε0 and εS such that

E = 0 and F = 0 . (10.66)

The perturbed metric takes the form

ds2 = −dt2 + a2dxidxj [δij(1 +A) + ∂i∂jB] . (10.67)

The clocks of observers at rest in these coordinates tick at the same rate, hence the name “synchronous”.
The four scalar Einstein equations are

− 1

M2
Pl

[
δρ− δp−∇2πS

]
=
∇2A

a2
− Ä− 6HȦ−H∇2Ḃ (10.68)

− 2

M2
Pl

∂i∂jπ
S = ∂i∂j

[
A

a2
− B̈ − 3HḂ

]
, (10.69)

1

M2
Pl

(ρ̄+ p̄) ∂iδu = ∂iȦ , (10.70)

− 1

M2
Pl

(
δρ+ 3δp+∇2πS

)
= 3Ä+ 6HȦ+∇2B̈ + 2H∇2Ḃ . (10.71)

The two scalar energy-momentum conservation equations (T 0µ
;µ = 0 and the longitudinal part of T iµ;µ = 0)

are

δp+∇2πS + ∂0 [(ρ̄+ p̄) δu] + 3H (ρ̄+ p̄) δu = 0 , (10.72)

δρ̇+ 3H (δρ+ δp) +∇2

[
(ρ̄+ p̄)

a2
δu+HπS

]
+

1

2
(ρ̄+ p̄) ∂0

[
3A+∇2B

]
= 0 . (10.73)

Unlike for Newtonian gauge, the synchronous gauge conditions E = 0 = F do not fix completely small
gauge transformations. One can still perform a gauge transformation with

ε0 = −T (x) εS = a2T (x)

∫
dt′

a(t′)
, (10.74)

which does not alter the condition E = 0 = F , but changes perturbations according to

∆Ψ = −∇
2T

a2
− 3TḢ , δu = T , (10.75)

∆δρ = −T ˙̄ρ ∆δp = −T ˙̄p . (10.76)

This additional redundancy can be fixed if the universe contains a non-relativistic fluid, such as for
example Dark Matter. In that case, (10.72) tells us that δuD is constant in time (up to corrections of
order p̄D/ρ̄D � 1) and one can impose the additional gauge condition δuD = 0, which completely fixes
the gauge. To transform from synchronous to Newtonian gauge we can use (see P.10.11)

Φ = −1

2
∂0

(
a2B

)
, Ψ = −1

2
A+

a2H

2
Ḃ , (10.77)

while the opposite conversion is W 5.3.46. A classic and extensive discussion of cosmological perturbation
theory in Newtonian and syncronous gauges can be found in [30].

Comoving orthogonal gauge* Another option, often employed in the study of perturbation during
inflation is comoving gauge116, in which

δu = 0 and F = 0 . (10.78)

It is straightforward to check that δu = 0 fixes ε0, while εS is completely fixed by the condition F = 0.
From its definition, the linearly perturbed energy momentum tensor is (W 5.1.43)

δT ij = δijδp+ ∂ijπ
S + ∂iπ

V
j + ∂jπ

V
i + πTij , (10.79)

T i0 = δT i0 =
ρ̄+ p̄

a2

(
a∂iF + aGi − ∂iδu− δuVi

)
, (10.80)

T 0
i = δT 0

i = (ρ̄+ p̄)
(
∂iδu+ δuVi

)
. (10.81)

116Notice that here again there is some confusion in the literature for the use of the term comoving.
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Neglecting vector modes, Gi = 0 = δuVi , we find that in this gauge T i0 = T 0
i = 0. The fact that T i0 = 0

means that observers at rest in these coordinates are comoving with the fluid, while the fact that T 0
i = 0

means that the velocity of the fluid is orthogonal to the constant time hypersurfaces. Notice that in
general in this gauge δρ 6= 0.

Constant density gauge* This is another useful, but less used gauge for inflationary perturbations.
As the name suggests, one imposes

δρ = 0 and F = 0 . (10.82)

These conditions fix the small gauge completely.

Spatially flat gauge* One last option we want to mention is to fix the spatial part of the metric to
be completely unperturbed, gij = a2δij , so that hij = 0. In the SVT notation one imposes

A = 0 and B = 0 . (10.83)

In this gauge of course E,F 6= 0. But these (and more generally all h0µ) are non-dynamical degrees of

freedom, since they appear with at most first derivatives in the EE’s and the initial condition ḣ0µ cannot
be specified arbitrary but is fixed by the other initial conditions. So in some sense all dynamical scalar
degrees of freedom in this gauge are in the matter sector as opposed to the metric sector.

10.8 Adiabatic modes

As the reader might have painfully noticed, even at linear order and for a single fluid, the equations of
motion are already quite lengthy. Things get much worse when one includes all relevant constituents
of the universe and/or goes beyond linear order. In practice this is often done with numerical codes
such as CLASS or CAMB (one of the first efficient and popular code was CMBFAST). These codes,
often collectively referred to as Boltzmann codes, are routinely used in data analysis and theoretical
forecasting. To solve the equations of motion one also needs initial condition. In the currently favored
cosmological model, initial conditions are set up during a phase of very fast accelerated expansion in the
first fraction of a second (inflation), as we mentioned in Lec. 6. One problem immediately arises when
we try to evolve these initial condition forward in time since we do not know the constituents of the
universe at energies much bigger than those probed at colliders, say above 10 TeV. Luckily for us, there
seems to be quantities that, under certain conditions, are conserved and therefore can be trivially evolve
in time. This result, which we are about to discuss, is one of the most important in cosmology. It allows
one to study high energy physics by looking at the distribution of galaxies or of sub-eV photons. This
remarkable connection of low-energy observables to high-energy physics has been a tremendous drive for
the field of cosmology and has open new possibility to explore the fundamental laws of nature.

Let us start by introducing two new variables117

R ≡ A

2
+Hδu , (10.84)

ζ ≡ A

2
−H δρ

˙̄ρ
. (10.85)

From the gauge transformations, it is straightforward to check that both R and ζ are gauge invariant
at linear order. We will refer to R as curvature perturbations on comoving hypersurfaces, because in
comoving gauge R = A/2 and A modifies the spatial diagonal part of the metric. For the same reason,
ζ is often called curvature perturbations on constant density hypersurfaces. The two gauge-invariant
variables are related at linear order due to the equations of motion. This is most easily seen in Newtonian
gauge

ζ(~k, t) = R(~k, t) +
M2

Pl

3a2(ρ̄+ p̄)
k2A(~k, t) (Newtonian gauge) . (10.86)

Notice that the difference ζ − R is proportional to (k/aH)
2
, and therefore is negligible outside the

Hubble radius, namely for kphy = k/a � H. So R will be conserved outside the Hubble radius if ζ is,
and viceversa. We are now ready to state an important theorem [48].

117Notice that, unfortunately, different conventions for the names of these variables exists. A useful summary of the many
possible choices in the literature is given in App A of [46].
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Theorem 1. Whatever the constituents of the universe and outside the Hubble radius, k � aH, there
are two conserved scalar adiabatic modes, i.e. Ṙ = 0, one of which satisfies R 6= 0, and one conserved
tensor mode, i.e. Ḋij = 0, for which Dij 6= 0.

This statement is valid to all orders in perturbation theory around a flat FLRW spacetime, but we
will prove it only at linear order. Also, we will work in Newtonian gauge118. Consider the following large
gauge transformation that maintains Newtonian gauge (see P.10.12)

εµ =
{
ε(t), a2ωijx

j
}
, (10.87)

with ε some time dependent by space independent function and ωij an arbitrary spacetime 3×3 constant
matrix. Since εµ does not vanish at spatial infinity, its existence does not contradict the statement that
Newtonian gauge conditions completely fixes the small gauge. If we start from an unperturbed flat
FLRW universe, after this gauge transformation we find

Φ = −ε̇ , Ψ = Hε− 1

3
ωii ,

δp = − ˙̄pε , δρ = − ˙̄ρε , δu = ε , πS = 0 , (10.88)

Dij = −ω(ij) +
2

3
δijωkk .

Notice that these transformation are completely different from those valid for small gauge transforma-
tions, Eq. (10.37), for example, the tensor perturbations Dij is not invariant and so on. Notice that the
anti-symmetric part of ωij is irrelevant since it does not generate any perturbation. Now comes the first
crucial point. Since GR is a diff invariant theory and we started from unperturbed FLRW plus unper-
turbed T̄µν , which is a solution, the perturbations in Eq. (10.88) must be a solution of the equations of
motion. This is also easily verified (see P.10.13). Recall that ε and ω do not vanish at spatial infinity, so
this solution is an unphysical one. After all, it is just a change of coordinates.

The clever insight of Weinberg is to demand whether this gauge transformation can be extended
to a physical solution. This is most easily though about in Fourier space, where the perturbations in
Eq. (10.88) are all proportional do δD(~k) and its derivative. A physical solution must eventually vanish

at infinity and so its Fourier transform must be supported at ~k 6= 0. When ~k 6= we are not guaranteed
anymore that Eq. (10.88) is a solution. For all equations of motion that do not vanish as ~→0, we know
that a small modification of Eq. (10.88) is still a solution. For example, for the tensor perturbations,

one can look for a solution of the form Dij(t) + δDij(t,~k), where Dij(t) is the large perturbation in

Eq. (10.88), and δDij(t,~k) is a small spatially varying (supported at ~k 6= 0) correction. Given that
we are solving linear differential equations, we can always find one such δDij . So we conclude that,
whatever the constituents of the universe, there is always a solution to the equations of motion with
a constant, non-vanishing Dij , up corrections suppressed by k2 in the superHubble limit. This solu-
tion represent the conservation of primordial gravitational waves. As we will discuss with inflation, the
existence of this solution constitutes a unique opportunity to probe GR and its perturbative quantization.

The extension to a physical, non-constant solution can therefore be obstructed only when a given
equation of motion vanishes identically for ~k = 0. This happens for the off-diagonal part of the space-
space Einstein equations, Eq. (10.60). We need therefore to check that this equation is solved also for
~k 6= 0, namely

kikj (Φ−Ψ) = 0 ⇒ Φ = Ψ . (10.89)

This physicality condition fixes ε in terms of ωkk as

ε̇+Hε =
1

3
ωkk ⇒ ε(t) =

ωkk
3a(t)

∫ t

T

a(t′)dt′ , (10.90)

where T represents some integration constant. Using this solution for ε and the perturbations in
Eq. (10.88), we find

R =
ωkk
3

. (10.91)

118The theorem of can be proven in other gauges as well. In the original paper [48], Newtonian and synchronous gauges
are discussed. In [11] and [24] the same derivation was presented for comoving gauge (aka “ζ-gauge”) and generalized to
higher order in derivatives.
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We conclude that a solution with Ṙ = 0 and R 6= 0 must always exist as consequence of diffeomorphism
invariance. In other words, there is always a physical solution with constant R that sits nearby a gauge
transformation. Notice that this procedure gives us the solution for metric perturbations

Φ = Ψ = R
[
−1 +

H

a

∫ t

T

a(t′)dt′
]
, (10.92)

and for fluid perturbations

δs
˙̄s

= −δu = −R
a

∫ t

T

a(t′)dt′ , (10.93)

for any diff scalar s (such as ρ and p). If we define w = p/ρ for the background cosmology, these
expressions give

Φ = Ψ = −R3 (1 + w)

5 + 3w
. (10.94)

H
δs
˙̄s

= −Hδu = −R 2

5 + 3w
= Φ

2

3(1 + w)
. (10.95)

for single fluid backgrounds. These will be the initial conditions we will use to study the formation of
Large Scale Structures and the Cosmic Microwave Background. Finally, in Les. 8 to Les. ??, we will
see how quantum fluctuations during inflation generate precisely these modes. Before concluding, notice
that since integration constant T is arbitrary, there is actual a second solution given by the different of
two solutions with different T . This solution is

Φ = Ψ =
CH(t)

a(t)
, (10.96)

δs
˙̄s

= −δu = −R
a
, . (10.97)

and decays with time during the hot big bang.

10.9 Irreducible representations of ISO(3)*

The following discussion below paraphrases [50] Chapter 2, and I could not find an equivalent discussion
in the literature). To find the irreps of ISO(3) we need to find a set of matrices U(R,α) for each ISO(3)
element {Rij , αl} that act on some Hilbert (vector) space of perturbations. In the following I will borrow
the language from Quantum mechanics and refer to perturbations as “states” or “state-vectors”. To
begin, we note that “the component of the three-momentum all commute with each other and so it is
natural to express physical state-vectors in terms of eigenvectors of the three-momentum.” [50]. This is
the usual Fourier transform: we consider state-vectors that are eigen-functions of translations

P̂ iψkσ = kiψkσ , (10.98)

where σ is some other (discrete) quantum number that we have to figure out. Translations are represented
by the unitary transformation

U(1, α)ψkσ = e−ik
iαiψkσ . (10.99)

Now, we want to find the action of rotations U(R, 0) ≡ U(R). Using the group properties, we note that

U(R)ψkσ = Cσσ′(R, k)ψRkσ′ , (10.100)

that is, a rotation changes the three-momentum of the state. We want now to find irreducible Cσσ′ (i.e.
that cannot be decomposed into smaller blocks by changing the basis for ψkσ). For this we will use the
method of induced representations. The subgroup of ISO(3) we will be interested in is SO(3). The only
invariant under SO(3) is the norm of a vector (and any function thereof), kikjδij = k2. Let us play some
algebraic tricks now. For a reference vector qi, define the rotation S(k) that transforms it into any other
vector ki as

S(k)q = k ⇒ S−1(k)k = q . (10.101)
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We can then re-write any state with momentum k as a transformation of a state with reference momentum
q,

ψkσ = U(S(k))ψqσ . (10.102)

Then, the action of a general rotation R can be massaged as follows:

U(R)ψkσ = U(R)U(S(k))ψqσ (10.103)

= U(S(Rk))U(S−1(Rk)RS(k))ψqσ (10.104)

= U(S(Rk))Dσσ′ψqσ′ (10.105)

= Dσσ′U(S(Rk))ψqσ′ (10.106)

= Dσσ′ψRkσ′ , (10.107)

(10.108)

where in the third line we recognised that S−1(Rk)RS(k)q = q and so

U(S−1(Rk)RS(k))ψqσ ≡ Dσσ′ψqσ , (10.109)

i.e. it must be some linear combination Dσσ′ of states with momentum q. From this definition of Dσσ′ ,
we see that is it provides a representation of the little group, namely the subgroup of SO(3) that leaves
the representative vector q invariant. For every little group rotation r, we have

U(r)ψqσ = Dσσ′(r)ψqσ′ . (10.110)

Summarising, choosing a representative vector q and given a representation Dσσ′ of the little group for
q, we get a representation of the full group ISO(3) defined by

U(1, α)ψkσ = e−ik
iαiψkσ ,

U(R, 0)ψkσ = Dσσ′(r(R, k))ψRkσ′ ,
(10.111)

where the little group element r(R, k) is given by

r(R, k) ≡ S−1(Rk)RS(k) . (10.112)

10.9.1 Little groups*

While for the Poincaré group there are 6 little groups, of which only three have physical significance (the
vacuum, massive particles and massless particles), for cosmology there are only two little groups: SO(3)
itself for qiqi = 0, and SO(2) for qiqi 6= 0.

The irreps of SO(3) are well known from the study of angular momentum in quantum mechanics.
They are classified by the Casimir operator J2, with eigen-values l(l+ 1) for l = 0, 1/2, 1, . . . and are of
dimension 2l+ 1 with states |l,m〉 and |m| ≤ l. Focussing on the bosonic irreps with integer l, we know
they correspond to spin zero, one, two, etc. The field operators that generate those states are:

Spin zero: φ, hii, . . . (10.113)

Spin one h0i, ui, . . . (10.114)

Spin two: h〈ij〉 ≡ hij −
1

3
hkkδij , . . . . (10.115)

Notice that the splitting between the trace of the two-tensor hij , which has spin zero, and its traceless
part h〈ij〉, which has spin two, is purely algebraic and does not involve any (inverse) Laplacians. These
q = 0 irreps are relevant to classify and discuss the background and adiabatic modes. For physical
perturbations, we have to consider the other representative vector.

For qiqi 6= 0, we can choose as representative vector qi = {q, 0, 0} so that the little group is recognised
as two-dimensional rotations, namely SO(2), which is an abelian group. All complex representations of
an Abelian group are one-dimensional by Schur’s lemma (all real representations are two dimensional).
There are infinitely many such representations, enumerated by an integer m ∈ N. Physically, we can
interpret m as the “helicity” of the state, i.e. how it transforms under a rotation around the direction of
its momentum. If the underlying theory is parity invariant, which is sometimes assumed in cosmological
applications, for every state with helicity m there as to exist a state of helicity −m. So we have classify
states as helicity 0, 1, 2 etc.
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Problem lesson 10

P.10.1 Otional Find a computer with Mathematica. Install xAct and xPand following the instructions
here, and use it to derive the linearised Einstein Equations in any gauge, as given in the notes.

P.10.2 Solve Eq. (10.23) for θ(v) (not θ(v, ω)). From the solution, assuming that vi transforms as tensors
under diffeomorphism (and therefore also under rotations), show explicitly that θ transforms as a
scalar under rotations θ′(x′, t) = θ(x, t). Does θ transform as a scalar also under general diffs?

P.10.3 Extract all the 4 tensors, 2 transverse vectors and the transverse traceless two-tensor from the
a generic symmetric two-tensor Tµν . It is sufficient to write down an appropriate number of
differential equations satisfied by these objects, you do not need to write the solutions of those
equations (which is anyways straightforward). To achieve this, you might want to consider acting
on the tensor with various combinations of one and two spatial derivatives ∂i.

P.10.4 Derive the gauge transformation for vectors and two-tensors Eq. (10.34) and Eq. (10.35), at linear
order in εµ.

P.10.5 A change of coordinates x′µ = xµ + εµ(x) induces a gauge transformation on all perturbations.
In particular, the vector perturbations in the metric Ci and Gi, defined in Eq. (10.26), transform
according to Eq. (10.37). Find a combination of Ci and Gi that is invariant under gauge transfor-
mations. It will help to think about the mass dimension of these two perturbations. Compare the
gauge invariant combination with the equations for vectors (10.43) (see also W 5.1.50-52).

P.10.6 Compute the equation of motion for a massless scalar field, with action

S =

∫
d4x
√
−g 1

2
∂µφ∂

µφ . (10.116)

Compare it with the equation of motion for the tensor modes in Eq. (10.45), aka gravitational
waves.

P.10.7 Assuming πTij = 0, solve the tensor equations of motion well inside and well outside the Hubble
radius, k � aH and k � aH respectively.

P.10.8 Optional Compute the gauge transformations of the components of the metric A,B,Ci, Dij , E, F
and Gi and the analogous SVT components of the energy momentum tensor. You should reproduce
Eq. (10.37) and Eq. (10.38). What do you need to assume about the scaling of εµ(x) for x→∞?

P.10.9 Optional Verify that the actual eom’s Eq. (10.41), Eq. (10.43) and Eq. (10.45) are indeed of the
form Eq. (10.15). Perform a Fourier transform and check that indeed different Fourier modes
decouple.

P.10.10 Derive the continuity equation in Newtonian gauge, Eq. (10.64)

P.10.11 Derive the conversion formulae from synchronous to Newtonian gauge. You should reproduce W
5.3.51-52.

P.10.12 Prove that the transformation Eq. (10.87) maintains the Newtonian gauge conditions, namely the
form of the metric in Eq. (10.56). Beware that since Eq. (10.87) represents a large gauge transfor-
mation (it does not vanish at spatial infinity), one can still use the general gauge transformations
Eq. (10.35) but not those in Eq. (10.37), which had been derived only for small gauge transforma-
tions, which vanish at infinity.

P.10.13 Verify that Eq. (10.88) are solutions of the Newtonian gauge equations of motion.

Check for understanding of lesson 10

cfu.10.1 What is the difference between a scalar under general diffeomorphism (a diff-scalar) and a scalar
under spatial rotations (a “rotation scalar”), as discussed in this lesson? Given an example of a
diff-scalar, a rotation scalar that is also a diff-scalar and a rotation scalar that is not a diff scalar.
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cfu.10.2 In this lesson, we saw that the isometries of the background suggest a way to organize pertur-
bation theory that greatly simplifies the algebraic complexity of the equations (SVT and Fourier
decomposition). Give at least three more examples of such a simplification in a classical theory, in
quantum mechanics and in general relativity.

cfu.10.3 Write down a simple example to show that different Fourier modes and different helicities couple
to each other at second order.

cfu.10.4 What happens to different Fourier modes and different helicities at linear order if the cosmological
background depends on some spatial coordinate and spatial translations are broken? Write down
a schematic simple example

cfu.10.5 Write down the form of all possible terms that are allowed by symmetry and general considerations
to appear in the eom for tensor modes Dij . Compare this general expectation with the actual
equation Eq. (10.45).
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LESSON A

A toolkit to study an equation

In every subject there are a few pivotal equations that needs to be understood as well as possible. Here I
collect a step-by-step toolkit to study a given equation for the first time, with the goal of understanding
its many implications. A partial, semi-ordered list of things to do contains:

1. Form Stare at the equation as you would stare at a beautiful painting. Take at least 30 seconds to
just look at it. Discover all of its tiny indices, hidden dependences, overall form. Is it an algebraic
or differential equation? If differential, to what order? Is it partial or ordinary?

2. Variables Enumerate and characterize the variables in the equations: what are they functions of,
how do they appear (e.g. with or without derivatives, integrated over, implicitly, ...)

3. Dimensional analysis Know/review the mass dimension (or other dimension is ~ 6= 1 6= c) of
every single parameter, variable and function appearing in the equation. Be sure to master this.

4. Symmetries Discuss the symmetries of the equation: is it covariant (i.e. invariant in form) under
change of coordinates? is it exactly/approximately invariant under some other symmetry? How
do you build new solutions from known ones?

5. Limits Enumerate simple limits in which the equation takes a simple, well-known or intuitive form
or in which you know a (simple) solution

As an example, let me discuss the geodesic equation,

d2xµ

du2
+ Γµαβ

dxα

du

dxβ

du
= 0 . (A.1)

1. Form Four second order partial differential equations for four variables xµ(u), with two terms and
Lorentz indices. Γ is evaluated at xµ, and therefore depends implicitly on it.

2. Variables The particle spacetime position xµ(u) as function of proper time u (or an affine trans-
formation thereof u′ = λu+ c). Γ are the Christauwful symbols, related to the metric and its first
derivative as in Eq. (2.12). xµ appears explicitly only with (time) derivatives (one or two deriva-
tives), but it may appear without derivative inside Γ, if e.g. the metric is not translation invariant.
The metric appears both without derivatives and with one derivative. In typical applications, the
metric determines the “background” and it is not a “dynamical” variable in this equation.

3. Dimensional analysis [xµ, u] = M−1, [Γ] = M1, [gµν , g
µν ] = M0. Each term in the equation is

an overall M−1.

4. Symmetries The full equation is covariant under general spacetime diffs. Only dxµ/du is covariant,
while d2xµ/du2 and Γ are not. The two terms are not separately covariant. u is proper time and
therefore invariant under diffs. The theory is not invariant under a general reparameterization of
the particle worldline u′ = u′(u).

5. Limits In the local inertial frame (which always exists thanks to the equivalence principle), the
geodesic equation becomes simply ä = 0. In the Newtonian limit (see Les. ??), one finds äi = −∂iφ,
as it should be.

LESSON B

Lesson references and further reading

Cosmology There are many good introductory textbooks to cosmology. I especially like those by Scott
Dodelson [13], Viatcheslav Mukhanov [35] and Steven Weinberg [51]. Where possible I follow Weinberg’s
notation.

Sec. 2 This Lesson follows App. B of Weinberg’s book, Sections 2.1, 2.3 of Dodelson and selected
topics from Blau’s notes and Carrol’s book.
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Lec. 3 The discussion of isometries and FLRW spacetime follows Ch. 13 of Weinberg’s old book [].
The rest is very standard.

Lec. 4 The discussion of distances follows 2.2 of Dodelson. Curvature is discussed following 1.3.1 of
Mukhanov.

Lec. 5 Further details can be found in specialized reviews: for Dark Energy see [9, 43]; for neutrinos
see [14,22,26,27]; for Dark Matter see [5].

Lec. 6 Thermal history is summarized in most textbook, see e.g. Mukhanov 3 and expecially 3.2. The
discussion of the Boltzmann equation follows closely 3.1 of Dodelson.

Lec. 7 In the Part III course I cover only BBN, but I leave here some material on recombination and
Dark Matter decoupling. They all follow closely 4 of Dodelson.

Sec. 8 The horizon and flatness problems can be found in any textbook. The discussion of coherent
superHubble perturbations was inspired by [12], while that of scale invariance borrows from ?? and ??.

Sec. 8.3 A nice introductory discussion of dS and conformal diagram is given in Sec 1.3.6 and Sec. 2.3
of [35]. A more advanced discussion including QFT and Quantum Gravity in dS can be found in [45].

Sec. 9 The general discussion of inflation and slow-roll parameters can be found in any textbooks.

Les. 10 and Les. 10.7 In these lecture notes I have mostly followed Weinberg’s book [51]. The
equivalent chapter in Dodelson’s book is Ch. 5. Two classic references on Cosmological Perturbation
Theory are the review by Sasaki and Kodama [25] and that by Mukhanov, Feldman and Brandenberger
[36].
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