Field Theory in Cosmology: Example Sheet 1

1. For a $P(X, \phi)$ theory

$$
\begin{equation*}
S=\int \sqrt{-g} P(X, \phi) \tag{1}
\end{equation*}
$$

compute the equations of motion. Compute the energy-momentum tensor and find the identification upon which it reduces to that of a perfect fluid

$$
\begin{equation*}
T_{\mu \nu}=(\rho+p) u_{\mu} u_{\nu}+g_{\mu \nu} p . \tag{2}
\end{equation*}
$$

Re-derive the equations of motion by combining the two Friedmann equations, which for a perfect fluid take the general form

$$
\begin{equation*}
3 M_{\mathrm{P} l}^{2} H^{2}=\rho, \quad-\dot{H} M_{\mathrm{P} l}^{2}=\frac{1}{2}(\rho+p) \tag{3}
\end{equation*}
$$

2. Compute the power spectrum of a massive scalar field in de Sitter. Consider the action

$$
\begin{equation*}
S=-\int \sqrt{-g} \frac{1}{2}\left[\partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \phi^{2}\right] \tag{4}
\end{equation*}
$$

for some mass m. Write $\phi(\mathbf{k})$ in terms of creation and annihilation operators $\left\{a_{\mathbf{k}}, a_{\mathbf{k}}^{\dagger}\right\}$ and mode functions f_{k}. Derive the equation that $f_{k}(\tau)$ has to satisfy from the action (4), using conformal time. To solve this equation, re-write it as an equation for $g_{k}=(-\tau)^{-3 / 2} f_{k}$, and then use the fact that the two linear independent solution of Bessel's differential equation,

$$
\begin{equation*}
x^{2} \partial_{x}^{2} y+x \partial_{x} y+\left(x^{2}-\alpha^{2}\right) y=0 \tag{5}
\end{equation*}
$$

can be taken to be the two Hankel functions $H_{\alpha}^{(1,2)}$. Now that you have the most general solution for f_{k}, with two integration constant, match this solution in the $-k \tau \rightarrow \infty$ limit to the flat space solution. You may use the following expansions of the Hankel functions for $x \rightarrow \infty$

$$
\begin{equation*}
H_{\alpha}^{(1)}(x) \simeq \sqrt{\frac{2}{\pi}} \frac{e^{i x}}{\sqrt{x}}, \quad H_{\alpha}^{(2)}(x) \simeq \sqrt{\frac{2}{\pi}} \frac{e^{-i x}}{\sqrt{x}} \tag{6}
\end{equation*}
$$

which are valid up to an irrelevant (α-dependent) phase. You should find

$$
\begin{equation*}
f_{k}(\tau)=\frac{\sqrt{\pi} H}{2}(-\tau)^{3 / 2} H_{\nu}^{(1)}(-k \tau), \quad \nu=\sqrt{\frac{9}{4}-\frac{m^{2}}{H^{2}}} \tag{7}
\end{equation*}
$$

3. Compute the two-point correlators

$$
\begin{align*}
\lim _{\tau \rightarrow 0}\left\langle\phi(\mathbf{k}) \pi\left(\mathbf{k}^{\prime}\right)\right\rangle & =(2 \pi)^{3} \delta_{D}^{3}\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \frac{1}{2 k \tau} \tag{8}\\
\lim _{\tau \rightarrow 0}\left\langle\phi(\mathbf{k}) \pi\left(\mathbf{k}^{\prime}\right)\right\rangle & =\lim _{\tau \rightarrow 0}\left\langle\pi(\mathbf{k}) \phi\left(\mathbf{k}^{\prime}\right)\right\rangle \tag{9}\\
\lim _{\tau \rightarrow 0}\left\langle\pi(\mathbf{k}) \pi\left(\mathbf{k}^{\prime}\right)\right\rangle & =(2 \pi)^{3} \delta_{D}^{3}\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \frac{k}{2 H^{2} \tau^{2}} \tag{10}
\end{align*}
$$

4. Using the power spectrum derived in the lecture, compute the (real space) correlation function at separate points for a massless scalar field in dS and show that it is IR divergent:

$$
\begin{equation*}
\langle\phi(\mathbf{x}) \phi(\mathbf{0})\rangle=\frac{H^{2}}{(2 \pi)^{2}} \int_{0}^{\infty} d \tilde{k} \frac{\sin \tilde{k}}{\tilde{k}^{2}} \tag{11}
\end{equation*}
$$

5. Compute the amount of particle production in dS . In the lectures, we fixed the mode functions by demanding that φ creates positive-energy particles at $k \tau \rightarrow-\infty$. Let's instead require that φ creates positive-energy particles at some finite $\left|\tau_{*}\right|>\infty$, still satisfying $\left|k \tau_{*}\right| \gg 1$. The quantized field then takes the form

$$
\begin{equation*}
\varphi(\mathbf{k})=g_{k} b_{\mathbf{k}}+g_{k}^{*} b_{-\mathbf{k}}^{\dagger} \tag{12}
\end{equation*}
$$

where $\left\{b_{\mathbf{k}}, b_{\mathbf{k}}^{\dagger}\right\}$ are a new set of creation and annihilation operators. Define the new vacuum state $|\tilde{0}\rangle$. Find g_{k} by matching to the Minkowski vacuum at τ_{*} (you may multiply g_{k} by a convenient phase)

$$
g_{k}=\frac{H}{\sqrt{2 k^{3}}}\left[1+\frac{i}{k \tau_{*}}-\frac{1}{2\left(k \tau_{*}\right)^{2}}\right] f_{k}(\tau)+e^{-2 i k \tau_{*}} \frac{H}{\sqrt{2 k^{3}}} \frac{1}{2\left(k \tau_{*}\right)^{2}} f_{k}^{*}(\tau)
$$

By matching (12) to the expressions for $\varphi(\mathbf{k})$ we found in the lectures (i.e. matching to Minkowski at $\left.\left|\tau_{*}\right| \rightarrow \infty\right)$, show that the two sets of ladder operators are related,

$$
\begin{equation*}
a_{\mathbf{k}}=\frac{\sqrt{2 k^{3}}}{H}\left(\alpha b_{\mathbf{k}}+\beta^{*} b_{-\mathbf{k}}^{\dagger}\right), \quad a_{\mathbf{k}}^{\dagger}=\frac{\sqrt{2 k^{3}}}{H}\left(\beta b_{-\mathbf{k}}+\alpha^{*} b_{\mathbf{k}}^{\dagger}\right) \tag{13}
\end{equation*}
$$

This relation is called a Bogoliubov transformation. Invert it to give

$$
\begin{equation*}
b_{\mathbf{k}}=\frac{\sqrt{2 k^{3}}}{H}\left(\alpha^{*} a_{\mathbf{k}}+\beta^{*} a_{-\mathbf{k}}^{\dagger}\right), \quad b_{\mathbf{k}}^{\dagger}=\frac{\sqrt{2 k^{3}}}{H}\left(\beta a_{-\mathbf{k}}+\alpha a_{\mathbf{k}}^{\dagger}\right) \tag{14}
\end{equation*}
$$

Now we want to ask what a detector that measures b_{k}^{\dagger} excitations would measure in the Bunch Davies vacuum $|0\rangle$, which we defined in the lecture as $a_{\mathbf{k}}|0\rangle=0$. To this end, let's define the " b-particle" number operator

$$
\begin{equation*}
N_{b}(\mathbf{k})=b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \tag{15}
\end{equation*}
$$

Compute the expectation value of $N_{b}(\mathbf{k})$ on the state $|\tilde{0}\rangle$ and on the Bunch-Davies vacuum $|0\rangle$. To understand the singular factor $\delta_{D}^{3}(\mathbf{0})$, work at finite volume

$$
\begin{equation*}
(2 \pi)^{3} \delta_{D}^{3}(\mathbf{0})=\lim _{V \rightarrow \infty} \int_{V} d^{3} x e^{-i \mathbf{0} \cdot \mathbf{x}}=\lim _{V \rightarrow \infty} V \tag{16}
\end{equation*}
$$

and define the number density of particles, $n_{b}(\mathbf{k}) \equiv N_{b}(\mathbf{k}) / V$, instead of the total number $N_{b}(\mathbf{k})$. You should find that the Bunch-Davies state has a non-vanishing density of b-type particles given by

$$
\begin{equation*}
\langle 0| n_{b}(\mathbf{k})|0\rangle=\frac{1}{4(k \tau)^{4}} \neq 0 . \tag{17}
\end{equation*}
$$

6. The fact that an FLRW background is invariant under translations, $\mathbf{x} \rightarrow \mathbf{x}+\mathbf{b}$, implies that also correlators must be invariant

$$
\begin{equation*}
\left\langle\phi\left(\mathbf{x}_{1}\right) \ldots \phi\left(\mathbf{x}_{n}\right)\right\rangle=\left\langle\phi\left(\mathbf{x}_{1}+\mathbf{b}\right) \ldots \phi\left(\mathbf{x}_{n}+\mathbf{b}\right)\right\rangle . \tag{18}
\end{equation*}
$$

Using this, prove that momentum space correlators must always be proportional to a delta function of the total momentum

$$
\begin{equation*}
\left\langle\phi\left(\mathbf{k}_{1}\right) \ldots \phi\left(\mathbf{k}_{n}\right)\right\rangle \propto \delta_{D}^{3}\left(\sum_{a=1}^{n} \mathbf{k}_{a}\right) \tag{19}
\end{equation*}
$$

7. For the metric

$$
\begin{align*}
d s^{2} & =-d t^{2}+a^{2}\left(\delta_{i j}+\gamma_{i j}\right) d x^{i} d x^{j} \tag{20}\\
& =\frac{1}{H^{2} \tau^{2}}\left[-d \tau^{2}+\left(\delta_{i j}+\gamma_{i j}\right) d x^{i} d x^{j}\right] \tag{21}
\end{align*}
$$

where $\gamma_{i i}=\partial_{i} \gamma_{i j}=0$, we want to expand the Einstein-Hilbert action in de Sitter

$$
\begin{equation*}
S_{2}=\int d^{4} x \sqrt{-g}\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R-\Lambda\right] \tag{22}
\end{equation*}
$$

to second order in γ to find the action of a free graviton. You already performed a similar expansion around Minkowski in the General Relativity course and it was a painful calculation. Instead of doing it again, let's use a trick. Start by noticing that the dS metric is proportional to the Minkowski one

$$
\begin{equation*}
g_{\mu \nu}^{\mathrm{dS}}=a^{2} g_{\mu \nu}^{\mathrm{Mink}}=\frac{1}{H^{2} \tau^{2}} g_{\mu \nu}^{\mathrm{Mink}} \tag{23}
\end{equation*}
$$

with the identification $\tau^{(\mathrm{dS})}=t^{(\mathrm{Mink})}$. Notice that by the Friedmann equation

$$
\begin{equation*}
3 M_{\mathrm{Pl}}^{2} H^{2}=\Lambda \tag{24}
\end{equation*}
$$

A metric with this property is called conformally flat. Given an arbitrary function Ω of the coordinates, the rescaling

$$
\begin{equation*}
g_{\mu \nu} \rightarrow \tilde{g}_{\mu \nu}=\Omega^{2} g_{\mu \nu} \tag{25}
\end{equation*}
$$

is called a Weyl transformation. Various GR tensors transform quite easily under a Weyl rescaling. For example, the Ricci scalars $\tilde{R} \equiv \tilde{g}^{\mu \nu} \tilde{R}_{\mu \nu}$ and $R \equiv g^{\mu \nu} R_{\mu \nu}$ for the two metrics are related by [this can be proven by direct calculation, if you wish]

$$
\begin{equation*}
\tilde{R}=\Omega^{-2}\left[R-6 \nabla_{\mu} \nabla^{\mu} \ln \Omega-6\left(\nabla_{\mu} \ln \Omega\right)\left(\nabla^{\mu} \ln \Omega\right)\right] \tag{26}
\end{equation*}
$$

Now recall that in Minkowski, you found

$$
\begin{align*}
S_{2}^{\mathrm{Mink}} & =\frac{M_{\mathrm{P} l}^{2}}{2} \int d^{4} x \sqrt{-g} R \tag{27}\\
& =\frac{M_{\mathrm{P} l}^{2}}{8} \int d^{3} x d t\left[\dot{\gamma}_{i j} \dot{\gamma}_{i j}-\partial_{k} \gamma_{i j} \partial_{k} \gamma_{i j}\right]+\mathcal{O}\left(\gamma^{3}\right) \quad \text { (Minkowski) } \tag{28}
\end{align*}
$$

Use (26) to rewrite the Einstein-Hilbert action around dS in terms of that around Minkowski, for which you can use the expansion above. You should find that around dS the graviton free action is

$$
\begin{equation*}
S_{2}=\frac{M_{\mathrm{P} l}^{2}}{8} \int d^{3} x d \tau a^{2}\left[\gamma_{i j}^{\prime} \gamma_{i j}^{\prime}-\partial_{k} \gamma_{i j} \partial_{k} \gamma_{i j}\right] \tag{29}
\end{equation*}
$$

8. Prove that the two in-in expressions for a generic in-in correlator

$$
\begin{align*}
\langle\mathcal{O}(t)\rangle= & \sum_{N=0}^{\infty} i^{N} \int_{-\infty}^{t} d t_{N} \int_{-\infty}^{t_{N}} d t_{N-1} \ldots \int_{-\infty}^{t_{2}} d t_{1} \tag{30}\\
& \times\langle 0|\left[\hat{H}_{\text {int }}\left(t_{1}\right),\left[\hat{H}_{\text {int }}\left(t_{2}\right), \ldots\left[\hat{H}_{\text {int }}\left(t_{N}\right), \mathcal{O}(t)\right] \ldots\right]\right]|0\rangle, \\
\langle\mathcal{O}(t)\rangle= & \langle 0|\left[\bar{T} e^{\left(i \int_{-\infty(1+i e)}^{t} d t^{\prime} \hat{H}_{\text {int }}\left(t^{\prime}\right)\right)}\right] \mathcal{O}(t)\left[T e^{\left(-i \int_{-\infty(1-i c)}^{t} d t^{\prime} \hat{H}_{\text {int }}\left(t^{\prime}\right)\right)}\right]|0\rangle, \tag{31}
\end{align*}
$$

are indeed equivalent. Proceed by induction. First prove that they are equivalent at order $N=0$ and $N=1$. Then, assuming that they agree at order $N-1$, take the time derive of each N th-order expression and rewrite it as the correlators of some other field to order $N-1$. This proves that the expression agree to order N up to a constant. By taking the limit $t \rightarrow-\infty$ show that the constant has to vanish.
9. Using the in-in formalism, compute the bispectrum in a $P(X)$ theory induced by the interactions $\dot{\varphi}^{3}$ and $\dot{\varphi}\left(\partial_{i} \varphi\right)^{2}$.
10. The fact that the de Sitter metric,

$$
\begin{equation*}
d s^{2}=\frac{-d \tau^{2}+d x^{i} d x^{j} \delta_{i j}}{\tau^{2} H^{2}}, \tag{32}
\end{equation*}
$$

is invariant under dilations, $\{\tau, \mathbf{x}\} \rightarrow \lambda\{\tau, \mathbf{x}\}$, implies that equal time correlators that do not depend on time, such as for example the power spectrum of a massless scalar field or of the graviton at $\tau \rightarrow 0$, must obey

$$
\begin{equation*}
\left\langle\phi\left(\mathbf{x}_{1}\right) \phi\left(\mathbf{x}_{2}\right) \ldots \phi\left(\mathbf{x}_{n}\right)\right\rangle=\left\langle\phi\left(\lambda \mathbf{x}_{1}\right) \phi\left(\lambda \mathbf{x}_{2}\right) \ldots \phi\left(\lambda \mathbf{x}_{3}\right)\right\rangle . \tag{33}
\end{equation*}
$$

Using this, prove that momentum space correlators B_{n}, defined as

$$
\begin{equation*}
\left\langle\phi\left(\mathbf{k}_{1}\right) \ldots \phi\left(\mathbf{k}_{n}\right)\right\rangle=(2 \pi)^{3} \delta_{D}^{3}\left(\sum_{a=1}^{n} \mathbf{k}_{a}\right) B_{n}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) . \tag{34}
\end{equation*}
$$

must scale as

$$
\begin{equation*}
B_{n}\left(\lambda \mathbf{k}_{1}, \ldots, \lambda \mathbf{k}_{n}\right)=\frac{1}{\lambda^{3(n-1)}} B_{n}\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{n}\right) \tag{35}
\end{equation*}
$$

