Field Theory in Cosmology: Example Sheet 1

1. For a P(X, ¢) theory

5= / VgP(X.4), (1)

compute the equations of motion. Compute the energy-momentum tensor and find the identification
upon which it reduces to that of a perfect fluid

Ty = (P + p) Uy Uy + GuuD - (2)

Re-derive the equations of motion by combining the two Friedmann equations, which for a perfect
fluid take the general form
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2. Compute the power spectrum of a massive scalar field in de Sitter. Consider the action
1
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for some mass m. Write ¢(k) in terms of creation and annihilation operators {ay, aL} and mode
functions fi. Derive the equation that fi(7) has to satisfy from the action (4), using conformal
time. To solve this equation, re-write it as an equation for g = (—7)~3/2f;, and then use the fact
that the two linear independent solution of Bessel’s differential equation ,

2?02y + 20,y + (2* — )y =0, (5)

can be taken to be the two Hankel functions Hél’g). Now that you have the most general solution
for fi, with two integration constant, match this solution in the —k7 — oo limit to the flat space
solution. You may use the following expansions of the Hankel functions for z — oo
2 eim 2 e—iz
HO @) =25, 2,
T\ T T

which are valid up to an irrelevant (a-dependent) phase. You should find

HP (2) =~
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3. Compute the two-point correlators
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4. Using the power spectrum derived in the lecture, compute the (real space) correlation function at
separate points for a massless scalar field in dS and show that it is IR divergent:
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5. Compute the amount of particle production in dS. In the lectures, we fixed the mode functions
by demanding that ¢ creates positive-energy particles at k7 — —oco. Let’s instead require that ¢
creates positive-energy particles at some finite |7.| > oo, still satisfying |k7.| > 1. The quantized
field then takes the form

p(k) = grbi + gib' ., (12)

where {bx, bL} are a new set of creation and annihilation operators. Define the new vacuum state
|O>. Find g by matching to the Minkowski vacuum at 7. (you may multiply gx by a convenient
phase)
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By matching (12) to the expressions for ¢(k) we found in the lectures (i.e. matching to Minkowski
at |7«| = 00), show that the two sets of ladder operators are related,

ax = ‘/12? (abwc+ 8701 af = ?jg (B0 +a%e]) , (13)

This relation is called a Bogoliubov transformation. Invert it to give

V2k3 /o, . V2k3
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Now we want to ask what a detector that measures bL excitations would measure in the Bunch
Davies vacuum |0), which we defined in the lecture as ay |0) = 0. To this end, let’s define the
“b-particle” number operator

Ny(k) = bl by . (15)

Compute the expectation value of Nj(k) on the state ’(~)> and on the Bunch-Davies vacuum |0). To
understand the singular factor 6%,(0), work at finite volume

(27)36%,(0) = lim [ d*ze”®* = lim V, (16)
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and define the number density of particles, ny(k) = Ny(k)/V, instead of the total number Ny(k).
You should find that the Bunch-Davies state has a non-vanishing density of b-type particles given
by

(0] np (k) |0) =

s (17)

6. The fact that an FLRW background is invariant under translations, x — x + b, implies that also
correlators must be invariant

(@(x1) ... d(xn)) = (d(x1 +b) ... ¢(xn +b)). (18)

Using this, prove that momentum space correlators must always be proportional to a delta function
of the total momentum

(d(k1)... o(kn)) x 6} <Z ka) : (19)

7. For the metric

ds? = —dt® + a® (8;; + ;) da'da? (20)
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where 7;; = 0;7;; = 0, we want to expand the Einstein-Hilbert action in de Sitter
M2
Sy = /d4z\/—g {QPZR - A} (22)

to second order in «y to find the action of a free graviton. You already performed a similar expansion
around Minkowski in the General Relativity course and it was a painful calculation. Instead of doing
it again, let’s use a trick. Start by noticing that the dS metric is proportional to the Minkowski
one

2 Mink — ]‘ Mink (23)
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with the identification 7(45) = ¢(Mink) Notice that by the Friedmann equation
3MEH? = A (24)

A metric with this property is called conformally flat. Given an arbitrary function € of the
coordinates, the rescaling

Juv — g;ux = QQQMV ) (25>

is called a Weyl transformation. Various GR tensors transform quite easily under a Weyl rescaling.
For example, the Ricci scalars R = g*”R,,,, and R = g""R,,, for the two metrics are related by
[this can be proven by direct calculation, if you wish]

R=Q72[R-6V,V*InQ—6(V,InQ)(V*InQ)| . (26)

Now recall that in Minkowski, you found
) M3
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Use (26) to rewrite the Einstein-Hilbert action around dS in terms of that around Minkowski, for
which you can use the expansion above. You should find that around dS the graviton free action is
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8. Prove that the two in-in expressions for a generic in-in correlator

(O) zgw /_too dtx /: dtN_l.../_t:o it (30)
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are indeed equivalent. Proceed by induction. First prove that they are equivalent at order N = 0
and N = 1. Then, assuming that they agree at order N — 1, take the time derive of each Nth-order
expression and rewrite it as the correlators of some other field to order N — 1. This proves that the
expression agree to order N up to a constant. By taking the limit ¢ — —oco show that the constant
has to vanish.

9. Using the in-in formalism, compute the bispectrum in a P(X) theory induced by the interactions

¢ and (0ip)*.

10. The fact that the de Sitter metric,

—d7r? + dztdxi6;;
2 _ ij
ds” = T2H? ’ (32)




is invariant under dilations, {7, x} — A{r, x}, implies that equal time correlators that do not depend
on time, such as for example the power spectrum of a massless scalar field or of the graviton at
7 — 0, must obey

(Pp(x1)p(x2) - .. p(xn)) = (p(Ax1)P(AX2) . .. P(Ax3)) . (33)

Using this, prove that momentum space correlators B,,, defined as

<¢(k1) s ¢(kn)> = (27T)3(5% (Z ka) Bn(kh e 7kn) . (34)
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must scale as
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Ba(ky, ... k). (35)



