
Field Theory in Cosmology: Example Sheet 1

1. For a P (X,φ) theory

S =

∫ √
−gP (X,φ) , (1)

compute the equations of motion. Compute the energy-momentum tensor and find the identification
upon which it reduces to that of a perfect fluid

Tµν = (ρ+ p)uµuν + gµνp . (2)

Re-derive the equations of motion by combining the two Friedmann equations, which for a perfect
fluid take the general form

3M2
PlH

2 = ρ , −ḢM2
Pl =

1

2
(ρ+ p) . (3)

2. Compute the power spectrum of a massive scalar field in de Sitter. Consider the action

S = −
∫ √
−g 1

2

[
∂µφ∂

µφ−m2φ2
]
, (4)

for some mass m. Write φ(k) in terms of creation and annihilation operators {ak, a†k} and mode
functions fk. Derive the equation that fk(τ) has to satisfy from the action (4), using conformal
time. To solve this equation, re-write it as an equation for gk = (−τ)−3/2fk, and then use the fact
that the two linear independent solution of Bessel’s differential equation ,

x2∂2xy + x∂xy + (x2 − α2)y = 0 , (5)

can be taken to be the two Hankel functions H
(1,2)
α . Now that you have the most general solution

for fk, with two integration constant, match this solution in the −kτ →∞ limit to the flat space
solution. You may use the following expansions of the Hankel functions for x→∞

H(1)
α (x) '

√
2

π

eix√
x
, H(2)

α (x) '
√

2

π

e−ix√
x
, (6)

which are valid up to an irrelevant (α-dependent) phase. You should find

fk(τ) =

√
πH

2
(−τ)3/2H(1)

ν (−kτ) , ν =

√
9

4
− m2

H2
. (7)

3. Compute the two-point correlators

lim
τ→0
〈φ(k)π(k′)〉 = (2π)3δ3D (k + k′)

1

2kτ
, (8)

lim
τ→0
〈φ(k)π(k′)〉 = lim

τ→0
〈π(k)φ(k′)〉 , (9)

lim
τ→0
〈π(k)π(k′)〉 = (2π)3δ3D (k + k′)

k

2H2τ2
. (10)

4. Using the power spectrum derived in the lecture, compute the (real space) correlation function at
separate points for a massless scalar field in dS and show that it is IR divergent:

〈φ(x)φ(0)〉 =
H2

(2π)2

∫ ∞
0

dk̃
sin k̃

k̃2
. (11)
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5. Compute the amount of particle production in dS. In the lectures, we fixed the mode functions
by demanding that ϕ creates positive-energy particles at kτ → −∞. Let’s instead require that ϕ
creates positive-energy particles at some finite |τ∗| > ∞, still satisfying |kτ∗| � 1. The quantized
field then takes the form

ϕ(k) = gkbk + g∗kb
†
−k , (12)

where {bk, b†k} are a new set of creation and annihilation operators. Define the new vacuum state∣∣0̃〉. Find gk by matching to the Minkowski vacuum at τ∗ (you may multiply gk by a convenient
phase)

gk =
H√
2k3

[
1 +

i

kτ∗
− 1

2(kτ∗)2

]
fk(τ) + e−2ikτ∗

H√
2k3

1

2(kτ∗)2
f∗k (τ) ,

By matching (12) to the expressions for ϕ(k) we found in the lectures (i.e. matching to Minkowski
at |τ∗| → ∞), show that the two sets of ladder operators are related,

ak =

√
2k3

H

(
αbk + β∗b†−k

)
, a†k =

√
2k3

H

(
βb−k + α∗b†k

)
, (13)

This relation is called a Bogoliubov transformation. Invert it to give

bk =

√
2k3

H

(
α∗ak + β∗a†−k

)
, b†k =

√
2k3

H

(
βa−k + αa†k

)
, (14)

Now we want to ask what a detector that measures b†k excitations would measure in the Bunch
Davies vacuum |0〉, which we defined in the lecture as ak |0〉 = 0. To this end, let’s define the
“b-particle” number operator

Nb(k) = b†kbk . (15)

Compute the expectation value of Nb(k) on the state
∣∣0̃〉 and on the Bunch-Davies vacuum |0〉. To

understand the singular factor δ3D(0), work at finite volume

(2π)3δ3D(0) = lim
V→∞

∫
V

d3xe−i0·x = lim
V→∞

V , (16)

and define the number density of particles, nb(k) ≡ Nb(k)/V , instead of the total number Nb(k).
You should find that the Bunch-Davies state has a non-vanishing density of b-type particles given
by

〈0|nb(k) |0〉 =
1

4(kτ)4
6= 0 . (17)

6. The fact that an FLRW background is invariant under translations, x → x + b, implies that also
correlators must be invariant

〈φ(x1) . . . φ(xn)〉 = 〈φ(x1 + b) . . . φ(xn + b)〉 . (18)

Using this, prove that momentum space correlators must always be proportional to a delta function
of the total momentum

〈φ(k1) . . . φ(kn)〉 ∝ δ3D

(
n∑
a=1

ka

)
. (19)

7. For the metric

ds2 = −dt2 + a2 (δij + γij) dx
idxj (20)

=
1

H2τ2
[
−dτ2 + (δij + γij) dx

idxj
]
, (21)
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where γii = ∂iγij = 0, we want to expand the Einstein-Hilbert action in de Sitter

S2 =

∫
d4x
√
−g
[
M2

Pl

2
R− Λ

]
(22)

to second order in γ to find the action of a free graviton. You already performed a similar expansion
around Minkowski in the General Relativity course and it was a painful calculation. Instead of doing
it again, let’s use a trick. Start by noticing that the dS metric is proportional to the Minkowski
one

gdSµν = a2gMink
µν =

1

H2τ2
gMink
µν , (23)

with the identification τ (dS) = t(Mink). Notice that by the Friedmann equation

3M2
PlH

2 = Λ (24)

A metric with this property is called conformally flat. Given an arbitrary function Ω of the
coordinates, the rescaling

gµν → g̃µν = Ω2gµν , (25)

is called a Weyl transformation. Various GR tensors transform quite easily under a Weyl rescaling.
For example, the Ricci scalars R̃ ≡ g̃µνR̃µν and R ≡ gµνRµν for the two metrics are related by
[this can be proven by direct calculation, if you wish]

R̃ = Ω−2 [R− 6∇µ∇µ ln Ω− 6(∇µ ln Ω)(∇µ ln Ω)] . (26)

Now recall that in Minkowski, you found

SMink
2 =

M2
Pl

2

∫
d4x
√
−gR (27)

=
M2

Pl

8

∫
d3xdt [γ̇ij γ̇ij − ∂kγij∂kγij ] +O(γ3) (Minkowski) (28)

Use (26) to rewrite the Einstein-Hilbert action around dS in terms of that around Minkowski, for
which you can use the expansion above. You should find that around dS the graviton free action is

S2 =
M2

Pl

8

∫
d3xdτ a2

[
γ′ijγ

′
ij − ∂kγij∂kγij

]
. (29)

8. Prove that the two in-in expressions for a generic in-in correlator

〈O(t)〉 =

∞∑
N=0

iN
∫ t

−∞
dtN

∫ tN

−∞
dtN−1 . . .

∫ t2

−∞
dt1 (30)

× 〈0| [Ĥint(t1), [Ĥint(t2), . . . [Ĥint(tN ),O(t)] . . . ]] |0〉 ,

〈O(t)〉 = 〈0|
[
T̄ e

(
i
∫ t
−∞(1+iε)

dt′Ĥint(t
′)
)]
O(t)

[
Te

(
−i
∫ t
−∞(1−iε) dt

′Ĥint(t
′)
)]
|0〉 , (31)

are indeed equivalent. Proceed by induction. First prove that they are equivalent at order N = 0
and N = 1. Then, assuming that they agree at order N−1, take the time derive of each Nth-order
expression and rewrite it as the correlators of some other field to order N −1. This proves that the
expression agree to order N up to a constant. By taking the limit t→ −∞ show that the constant
has to vanish.

9. Using the in-in formalism, compute the bispectrum in a P (X) theory induced by the interactions
ϕ̇3 and ϕ̇(∂iϕ)2.

10. The fact that the de Sitter metric,

ds2 =
−dτ2 + dxidxjδij

τ2H2
, (32)
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is invariant under dilations, {τ,x} → λ{τ,x}, implies that equal time correlators that do not depend
on time, such as for example the power spectrum of a massless scalar field or of the graviton at
τ → 0, must obey

〈φ(x1)φ(x2) . . . φ(xn)〉 = 〈φ(λx1)φ(λx2) . . . φ(λx3)〉 . (33)

Using this, prove that momentum space correlators Bn, defined as

〈φ(k1) . . . φ(kn)〉 = (2π)3δ3D

(
n∑
a=1

ka

)
Bn(k1, . . . ,kn) . (34)

must scale as

Bn(λk1, . . . , λkn) =
1

λ3(n−1)
Bn(k1, . . . ,kn) . (35)
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